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NOTE ON THE IRRATIONALITY OF CERTAIN MULTIVARIATE
q-FUNCTIONS

Peter Bundschuh
To my friend Wolfram Jehne on the occasion of his 80th birthday

Abstract. Various irrationality results on certain infinite series and prod-
ucts representing q-functions were established in recent years by Borwein,
Lubinsky, and Zhou [1], [7-10]. In all these papers, Padé approximants to ap-
propriate functions were constructed to produce rational approximations that
are too rapid to be consistent with rationality. The main purpose of this note
is to show how an old and seemingly forgotten irrationality criterion of the
present author [3], particularly suited for q-functions, can be used to deduce
very easily much more general results.

1. INTRODUCTION AND MAIN RESULT

Very recently, Zhou [9] published a paper whose main result reads as follows.
Let q, m ∈ N := {1, 2, ...}, q > 1, and define

(1) F (x, y) :=
∞∑
i=0

q−mi
i∏

j=0

(1 + q−mjx + q−2mjxy)

for each (x, y) ∈ C2. If m ≥ 2 and x, y ∈ Q+ then at least one among the m
numbers F (q−τx, q−τy), τ = 0, ..., m− 1, is irrational.

The same statement with m = 1 was claimed to be proven a few years earlier by
Borwein and Zhou [1]. But, as Zhou [9] explained following the present author’s
review of [1] in MR 2001g:11114, “equation (2.19) in the proof of Theorem 2.2 in
that paper is not correct. That critical error voids the proof...”. Similar results, e.g.,
concerning the infinite product

(2)
∞∏

j=0

(1 + q−jx + q−2jxy),
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have been proved by Zhou and Lubinsky [10] and Zhou [7], but see also [8]. In
all these papers, the general approach was to examine the Padé approximants to
appropriate functions and to show that they provide rational approximations that are
too rapid to be consistent with rationality.

It is the main purpose of the present note to show how much more general
results than Zhou’s above-mentioned one from [9] can easily be deduced from our
old irrationality criterion [3], at least in the case m > 2. To cover also the case
m = 2 we slightly extend our criterion proceeding along our former lines, i.e., using
Newton interpolation series. As a matter of fact, our deduction here is much shorter
than the proof in [9], since we have simply to check all conditions in the criterion
(if necessary in its extended form).

To begin with our generalization of [9], let K denote either Q or an imaginary
quadratic number field, and let OK be the ring of integers in K. Furthermore, in
the whole paper, we suppose q ∈ OK with |q| > 1.

Our first statement is the following.

Theorem 1. Let �, m ∈ N satisfy

(3) m ≥ �(� − 1) + 1,

and assume r1, ..., r� ∈ K× := K \ {0} such that

(4) 1 +
�∑

ν=1

q−kνrν �= 0

holds for each k ∈ N0 := N ∪ {0}. Then at least one among the m numbers

∞∑
i=0

q−mi
i∏

j=0

(1 + q−(mj+τ )r1 + ... + q−(mj+τ )�r�) (τ = 0, ..., m− 1)

is not in K.

Remark. We have not only Zhou’s case K = Q, � = 2 from [9] (by now only
for m ≥ 3, compare (3)). But even if K = Q, some of the numbers q, r1, ..., r�

may be negative as long as condition (4) holds for each k ∈ N0.
The following one-dimensional case of Theorem 1 should be separately speci-

fied. Taking m = 1 we have

Corollary 1. If r ∈ K× satisfies r + qj �= 0 for each j ∈ N0, then the number

∞∑
i=0

q−i
i∏

j=0

(1 + q−jr)
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does not belong to K.

Remark. Here we clearly see that the non-vanishing of r + qj for each j is a
necessary condition for the truth of the assertion (under the other conditions on q

and r).

To get Zhou’s full result in [9], i.e., for m ≥ 2 = � we prove

Theorem 1’. Condition (3) in Theorem 1 can be replaced by

(3’) m ≥ � and m(� + m)2 > �2(�(m − 1) + m2),

or by

(3”) � ≥ m and (� + m)2 > �((�− 1)m + �2).

Remarks.

(1) Theorem 1’ implies Theorem 1 since both inequalities in (3’) are consequences
of condition (3). For the first, this is evident. Assuming m(� + m)2 ≤
�2(�(m − 1) + m2) leads to m(� + m) < �(m − 1) + m2, by (3), and this
last inequality is certainly false.

(2) It should be also noted that � ≥ 2 and m ≥ �(� − 1) together imply (3’).
Hence Theorem 1’ contains Zhou’s main result.

(3) In Theorem 1.1 of [9], the author claims, as an application of the main result
with m = 2, that at least one of the series

∞∑
i=0

q−i
i∏

j=0

(1 + q−jr + q−2js) and
∞∑
i=0

q−2i
i∏

j=0

(1 + q−2jr + q−4js)

is irrational for q ∈ N \ {1}, and r, s ∈ Q+. Unfortunately, this assertion
remains open since the identity on p. 451, on which the proof depends
essentially, is incorrect.

(4) The case � = 2, m = 1, unsuccessfully studied in [1], is not covered by
Theorem 1’ since the second inequality in (3”) fails in this case.

Whereas we will deduce Theorems 1 and 1’ from the irrationality criterion in [3]
and from its refined version in our subsequent Lemma 1’, respectively, we take this
opportunity to mention another application of Lemma 1’ to get a result on infinite
products generalizing (2). Since the arguments in this case are very similar to those
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for Theorem 1’, we will leave the proof to the reader as an exercise after giving a
short hint at the end of Section 4.

Theorem 2. Let �, m ∈ N satisfy (3’) or (3”). Suppose further r1, ..., r� ∈ K×

such that inequality (4) holds for each k ∈ N0. Then at least one of the infinite
products

∞∏
j=0

(1 + q−(mj+τ )r1 + ... + q−(mj+τ )�r�) (τ = 0, ..., m− 1)

is not contained in K.

Remark. For � = 1 we may take m = 1. Assuming r ∈ K× with r+qj �= 0 for
each j ∈ N0 we can conclude

∏∞
j=0(1 + q−jr) /∈ K. This is essentially Lototsky’s

[4] classical result from 1943, but compare also [2] for a quantitative version.

2. TWO LEMMAS

First we quote our irrationality criterion [2], Satz 1, as

Lemma 1. Let

(5) f(z) =
∞∑

ν=0

cνz
ν ∈ K[[z]]

be an entire transcendental function satisfying the two following conditions:

(i) For every n ∈ N0, there exists bn ∈ OK \ {0} such that bncν ∈ OK for
ν = 0, ..., n, and |bn| ≤ |q|λn2+o(n2) with some fixed real λ ≥ 0.

(ii) There are a ∈ K×, and a sequence (Tk)k=0,1,... in OK \ {0} satisfying
|Tk| ≤ |q|µk2+o(k2) with some fixed real µ ≥ 0, such that, for every k ∈ N0,
Tkf(aq−κ) ∈ OK holds for κ = 0, ..., k. Then the inequality

(6) ρ∗(f) := lim sup
r→∞

log |f |r
log2 r

≥ (
1
λ

+
1
µ

)
1

4 log |q|
holds, where |f |r := max|z|=r |f(z)|.

Remark. If λµ = 0 the right-hand side of (6) has to be interpreted as +∞.

The following lemma is needed to precisely calculate the left-hand side of (6)
in a wide class of cases.



Irrationality of Certain q-Functions 607

Lemma 2. Suppose that the entire transcendental function f satisfies a func-
tional equation

(7) f(Qz) = P0(z)f(z) + P1(z)

with fixed Q ∈ C, |Q| > 1, and P0, P1 ∈ C[z]. Then

log |f |r =
deg P0

2 log |Q| log2 r + O(log r)

and hence

(8) ρ∗(f) =
deg P0

2 log |Q| .

Remark. The above sharper assertion can be found in [5], Lemma 2, whereas
(8) is already contained in [6]. Of course, (7) implies that P0 is non-constant, i.e.,
deg P0 ≥ 1 since f itself is not a polynomial.

3. PROOF OF THEOREM 1

For fixed x := (x1, ..., x�) ∈ C�, the infinite series

(9) f(z) :=
∞∑
i=0

q−mi
i∏

j=0

(1 + q−mjx1z + ... + q−�mjx1 · ... · x�z
�)

defines an entire function of z, where f(1) = F (x1, x2) in terms of (1). It is easily
checked that f satisfies the functional equation

(10) f(qmz) = (1 + qmx1z + ... + q�mx1 · ... · x�z
�)(q−mf(z) + 1),

or, with Q := qm,

(11) f(Qz) = (1 + Qx1z + ... + Q�x1 · ... · x�z
�)(Q−1f(z) + 1).

Assuming x1 · ... · x� �= 0 every entire solution f of this functional equation is
transcendental and log |f |r = (�/2 log |Q|) log2 r + O(log r) follows from Lemma
2. Hence we note

Proposition 1. For x1, ..., x� ∈ C× the entire transcendental function f in (9)
satisfies

ρ∗(f) =
�

2m log |q| .
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If f has Taylor series (5) about the origin, then (11) leads to the following
recurrence formula for the c’s1

(12) cn(Qn+1 −1) =
min(�,n−1)∑

i=1

Qix1 · ... ·xicn−i +γn
Qn+2

Q − 1
x1 · ... ·xn (n ∈ N)

with γn := 1 for n = 1, ..., �, and γn := 0 for n > �, and additionally c0 =
Q/(Q − 1). From (12) we easily deduce Proposition 2. For each n ∈ N0, we

have

(13) cn

n+1∏
ν=1

(Qν − 1) ∈ Z[Q, x1, ..., x�],

and this polynomial is homogeneous of degree n in x 1, ..., x�.

Proof. Since c0(Q− 1) = Q, (13) holds for n = 0, where no x’s occur on the
right-hand side. Let n > 0 and assume the truth of the assertion for all subscripts
less than n. Multiplying (12) by

∏n
ν=1(Q

ν − 1) gives the assertion for n.

From Proposition 2 we immediately conclude

Proposition 3. If x1, ..., x� ∈ K× have a common denominator ξ ∈ OK \ {0},
then

cnξn
n+1∏
ν=1

(Qν − 1) ∈ OK .

Since Q = qm, we may take bn := ξn
∏n+1

ν=1(qmν − 1) for n = 0, 1, ... in condition
(i) of Lemma 1, hence λ := m/2.

Henceforth we suppose x1, ..., x� ∈ K× as in Proposition 3, and moreover

(14)
�∑

ν=0

q−kνx1 · ... · xν �= 0

for every k ∈ N0. Assuming f(q−τ ) ∈ K for τ = 0, ..., m− 1 we find from (10)

(15) f(q−(k−m)) = (q−mf(q−k) + 1)
�∑

ν=0

q−(k−m)νx1 · ... · xν

As usual, empty sums or products have to be interpreted as 0 or 1, respectively.
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for each k ≥ m. By (14), this leads inductively to f(q−k) ∈ K for every k ∈ N0.
Now we want to apply Lemma 1 with a = 1. For this we have to find a sequence

(Tk) as described in that lemma. To perform this last step, we write k = hm + τ

with h := [k/m] ∈ N0, τ ∈ {0, ..., m−1} to prepare the following consideration. If
h ≥ 1 and th−1,τ ∈ OK \ {0} has the property th−1,τf(q−(h−1)m−τ ) ∈ OK , then,
by (14) and (15),

th,τ := th−1,τ ξ�
�∑

ν=0

q(�−ν)((h−1)m+τ )x1 · ... · xν ∈ OK \ {0}

is a denominator of f(q−hm−τ ), where ξ is as in Proposition 3. Hence, if Ξ ∈
OK \ {0} is a denominator for all f(q−τ ) with τ = 0, ..., m− 1, then

Ξ
h−1∏
j=0

(
ξ�

�∑
ν=0

q(�−ν)(jm+τ )x1 · ... · xν

)

is a denominator for f(q−κ) with κ ≤ k and κ ≡ τ (mod m). Taking each residue
class modulo m into account it is evident that

Tk := Ξ
m−1∏
τ=0

[k/m]−1∏
j=0

(
ξ�

�∑
ν=0

q(�−ν)(jm+τ )x1 · ... · xν

)

is a sufficient choice. This leads to the estimate |Tk| ≤ |q|(�/2)k2+O(k), and we may
apply Lemma 1 with µ := �/2. Combined with Proposition 1 and (3), inequality (6)
of that lemma says �/m ≥ 1/m + 1/�, or equivalently �(�− 1) ≥ m contradicting
(3). Hence our above assumption (after (14)) cannot be true.

We finally remark that, given r1, ...., r� according to Theorem 1, we define
x1 := r1 and xν := rν/rν−1 for ν = 2, ..., � (if � > 1). Hence x1 · ... · xν = rν for
ν = 1, ..., � and conditions (4) and (14) are equivalent. Then we work with these
x1, ..., x� from the beginning of the present section.

4. PROOF OF THEOREM 1’

To prove this strenghtened version of Theorem 1 we use just the fact that more
precise arithmetical informations on the power series coefficients of f as contained,
e.g., in Proposition 3, lead to a sharper version of Lemma 1, namely

Lemma 1’. Let the hypotheses of Lemma 1 be satisfied but with condition (i)
replaced by the following one.
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(i’) There are ξ ∈ OK \ {0}, m ∈ N, t ∈ N0 such that

cnξn
n+t∏
ν=1

(qmν − 1) ∈ OK

holds for every n ∈ N0.
Then the inequality

(6’) ρ∗(f) ≥ (m + 2µ)2

(2µm + m2
2 − m1)m1

· 1
2 log |q|

is valid, where m1 := min(2µ, m) and m2 := max(2µ, m).

Accepting, for a moment, the truth of Lemma 1’, our assumption f(q−τ ) ∈ K

for τ = 0, ..., m− 1 leads again to µ = �/2 as at the end of the last section. Hence
we have m1 = min(�, m) and m2 = max(�, m), and Proposition 1 and (6’) yield
�2(�(m − 1) + m2) ≥ m(� + m)2 if m ≥ �, and �((� − 1)m + �2) ≥ (� + m)2 if
� ≥ m. This proves Theorem 1’.

To demonstrate finally (6’) we resume our proof of Lemma 1 as given in [3],
pp.177-179. The decisive fact is that the former denominator Bk+j(k)−1 ∈ OK \{0}
of A∗

k+j(k)−1 defined in [3], (9) can now be replaced by the substantially smaller
denominator

B∗
k+j(k)−1 := sk+j(k)−1Tk−1ξ

j(k)−1 ·
j(k)+t−1∏

ν=1

(qmν − 1) ·
k−1∏

ν=j(k)+t

(qν − 1)

the last product being 1 if it is empty. Here we have j(k) := [µ+ε
λ+εk] with arbitrary

real ε > 0 as in [3],(2), λ being m/2 in our present situation. Hence estimate (10)
in [3] can now be replaced by

(16)

∣∣B∗
k+j(k)−1

∣∣

≤ exp
{(

µ + ε +
m

2

(µ + ε

λ + ε

)2
+

δ

2

(
1 −

(µ + ε

λ + ε

)2))
k2 log |q| + O(k)

}

with δ := 0 for µ ≥ λ (i.e., j(k) ≥ k) and δ := 1 for µ < λ. From this point on,
the reasoning is as in [3]. Combination of formulae (6) and (8) in [3] leads to our
old upper estimate for |A∗

k+j(k)−1|. This and our above inequality (16) lead to

2(λ + µ)2

2λ2µ + mµ2 + δ(λ2 − µ2)− λ2
≤ 4ρ∗(f) log |q|

if we let ε tend to zero. Taking λ = m/2 into account this last inequality is
equivalent with (6’).
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Remark. To prove Theorem 2 the reader may use the infinite product

∞∏
j=0

(1 + q−mjx1z + ... + q−�mjx1 · ... · x�z
�)

as new function f(z).
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