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SUBGRADIENTS OF DISTANCE FUNCTIONS AT OUT-OF-SET POINTS

Boris S. Mordukhovich and Nguyen Mau Nam

Abstract. This paper deals with the classical distance function to closed
sets and its extension to the case of set-valued mappings. It has been well
recognized that the distance functions play a crucial role in many aspects of
variational analysis, optimization, and their applications. One of the most
remarkable properties of even the classical distance function is its intrinsic
nonsmoothness, which requires the usage of generalized differential construc-
tions for its study and applications. In this paper we present new results in
theser directions using mostly the generalized differential constructions intro-
duced earlier by the first author, as well as their recent modifications. We
pay the main attention to studying subgradients of the distance functions in
out-of-set points, which is essentially more involved in comparison with the
in-set case. Most of the results obtained are new in both finite-dimensional and
infinite-dimensional settings; some of them of provide essential improvements
of known results even for convex sets.

1. INTRODUCTION

This paper is devoted to the study of generalized differential properties of dis-
tance functions, which play a remarkable role in variational analysis, optimization,
and their applications; see, e.g., the books [3, 15, 19] for more discussions and
references. Since the standard/classical distance function

d(x; Ω) := inf
y∈Ω

‖x − y‖, x ∈ X,(1.1)

is not differentiable (while always Lipschitz continuous on X) even for the simplest
sets Ω ⊂ X , tools of generalized differentiation are heavily needed for its study and

Received November 1, 2004; Accepted April 7, 2005.
2000 Mathematics Subject Classification: 49J52, 90C30.
Key words and phrases: Variational analysis and optimization, Distance functions, Generalized dif-
ferentiation, Lipschitzian stability.
Research was partially supported by the National Science Foundation under grant DMS-0304989 and
by the Australian Research Council under grant DP-0451168.

299



300 Boris S. Mordukhovich and Nguyen Mau Nam

applications. We refer the reader to [2, 6-9, 11, 13, 15, 16, 19, 21] among other
publications devoted to computing and estimating various subgradient sets for the
classical distance function (1.1) in finite and infinite dimensions. Note that there
are two principal and essentially different cases for generalized differentiation of
(1.1): the in-set case of x̄ ∈ Ω and the out-of-set case of x̄ /∈ Ω. The latter case is
much more involved and less investigated.

In this paper we consider, along with the standard distance function (1.1), it
extension

ρ(z, x) := inf
y∈F (z)

‖x − y‖ = d(F (z); x)(1.2)

built upon the generating set-valued mapping F : Z →→ X . The latter function,
called the general distance function in what follows, may be essentially more com-
plicated than (1.1). In particular, it is not generally Lipschitz continuous and even
lower semicontinuous (l.s.c.) around given/reference points. Some generalized dif-
ferential properties of (1.2) were studied in [4, 5, 16, 20]. Again, there are two prin-
cipal settings for studying local properties of (1.2): the in-set case of (z̄, x̄) ∈ gph F
and the out-of-set case of (z̄, x̄) /∈ gph F . To the best of our knowledge, the latter
case has been investigated only in the papers [4, 16].

The present paper can be considered as a continuation and development of our
previous one [16] being, in contrast to [16], entirely devoted to the out-of-set case for
both the general and standard distance functions. New developments concern, first
of all, the involvement of intermediate points between the reference and projection
ones into upper subgradient estimates; see below. This brings us to new results even
for convex sets in finite dimensions. We establish also new relationships between
singular subgradients and mixed coderivatives of marginal/value functions that are
directly applied to the general distance function (1.2) in the non-Lipschitzian case.
Moreover, we extend the class of subdifferentials under consideration in comparison
with [16] and obtain new applications to the projection nonemptiness and Lipschitz
stability.

The rest of the paper is organized as follows. In Section 2 we briefly discuss
some preliminary material needed in what follows. Section 3 collects new upper
estimates for various subgradients of the distance functions (1.1) and (1.2) involving
intermediate points. In Section 4 we present upper estimates for the new type of
right-sided limiting subgradients for both distance functions under consideration.
Section 5 is devoted to establishing relationships between singular subgradients
of marginal functions, including the general distance function (1.2), and mixed
coderivatives of the generating set-valued mappings. Finally, Section 6 contains
some new applications of the main results obtained in the paper.

Unless otherwise stated, all the spaces under consideration are Banach, with X ∗

denoting the dual space of X . As usual, IB and IB∗ stand for the closed unit balls
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of the space in question and its dual, while S and S ∗ denote the corresponding unit
spheres. The notation B(x̄; δ) := x̄ + δIB stands for the closed ball centered at x̄
with radius δ. Note also that IN := {1, 2, . . .} and that the convention 0 · ∅ = 0 is
used in what follows.

2. PRELIMINARIES

This section contains some preliminary material, which is widely used in the
main body of the paper. The reader can find more details and references in the books
by Rockafellar and Wets [19] in finite dimensions and by Mordukhovich [15] in
both finite-dimensional and infinite-dimensional spaces.

Given Ω ⊂ X and ε ≥ 0, define the (Fréchet-like) ε-normals to Ω at x̄ ∈ Ω by

(2.1) N̂ε(x̄; Ω) :=
{
x∗ ∈ X∗

∣∣∣ lim sup
x

Ω−→x̄

〈x∗, x− x̄〉
‖x − x̄‖ ≤ ε

}
,

where x
Ω−→ x̄ means that x → x̄ with x ∈ Ω. When ε = 0, the set N̂0(x̄; Ω) in

(2.1) is a cone called the Fréchet normal cone and denoted by N̂(x̄; Ω).
The basic/limiting normal cone N (x̄; Ω) is obtained from N̂ε(x; Ω) by taking

the sequential Painlevé-Kuratowski upper (or outer) limit in the weak∗ topology w∗

of X∗ as

(2.2) N (x̄; Ω) := Lim sup
x

Ω→x̄
ε↓0

N̂ε(x; Ω).

One can equivalently put ε = 0 in (2.2) when Ω is closed around x̄ and when
the space X is Asplund, i.e., a Banach space whose separable subspaces have
separable duals. This class of spaces is sufficiently large including, in particular,
every reflexive space; see, e.g., [18] for more information. The cone of proximal
normals is defined by

NP (x̄; Ω) :=
{

x∗ ∈ X∗
∣∣∣ ∃δ > 0, η > 0 such that 〈x∗, x− x̄〉 ≤ η‖x− x̄‖2

for all x ∈ B(x̄; δ)
}
.

If the space X is Hilbert, then the basic normal cone (2.2) can be equivalently ob-
tained as the the sequential Painleveé-Kuratowski limit of proximal normals instead
of Fréchet ones in (2.1) with ε = 0:

N (x̄; Ω) = Lim sup
x

Ω→x̄

NP (x; Ω),
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which reduces to the normal cone introduced by Mordukhovich [12] in finite di-
mensions.

Let f : X → IR := [−∞,∞] be an extended-real-valued function finite at x̄.
The set

(2.3) ∂̂εf(x̄) :=
{
x∗ ∈ X∗

∣∣∣ lim inf
x→x̄

f(x) − f(x̄) − 〈x∗, x − x̄〉
‖x − x̄‖ ≥ −ε

}

is called the ε-subdifferential of f at x̄. If ε = 0, then ∂̂0f(x̄) is said to be the
Fréchet subdifferential of f at x̄ and is denoted by ∂̂f(x̄). Similarly to the case of
normals, the proximal subdifferential of f at x̄ is defined by

∂P f(x̄) : =
{
x∗ ∈ X∗∣∣ ∃δ > 0, η > 0 such that 〈x∗, x − x̄〉

≤ f(x)− f(x̄) + η‖x− x̄‖2 for all x ∈ B(x̄; δ)
}
.

The basic/limiting subgradient of f at x̄ is defined by

(2.4) ∂f(x̄) := Lim sup
x

f−→x̄
ε↓0

∂̂εf(x),

where x
f−→ x̄ means that x → x̄ and f(x) → f(x̄). Note that ∂̂εf(x) can

be replaced by ∂̂ϕ(x) := ∂̂0f(x) in (2.4) when X is Asplund while f is lower
semicontinuous around x̄. Moreover, one can equivalently use the proximal subdif-
ferential under the “Lim sup” in (2.4) if X is Hilbert. Let us mention the geometric
representation of the basic subdifferential:

∂f(x̄) =
{
x∗ ∈ X∗∣∣ (x∗,−1) ∈ N ((x̄, f(x̄)); epif)

}
via the epigraph epi f := {(x, µ) ∈ X × IR| µ ≥ f(x)} of f . It follows from (2.4)
that

∂̂f(x̄) ⊂ ∂f(x̄),(2.5)

while the equality in (2.5) defines the class of lower regular functions [13, 15],
which particularly includes the case of Clarke regularity as defined in [19].

Recall the singular subdifferential construction for f : X → IR at x̄ defined by

∂∞f(x̄) = Lim sup
x

f→x̄
ε,λ↓0

λ∂̂εf(x).(2.6)

This construction makes sense only for non-Lipschitzian functions, since ∂∞f(x̄) =
{0} if f is Lipschitz continuous around x̄. Note that ε > 0 can be equivalently
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omitted in (2.6) if X is Asplund and f is l.s.c. around x̄. Observe that in the latter
case the singular subdifferential (2.6) admits the equivalent geometric representation

∂∞f(x̄) :=
{
x∗ ∈ X∗∣∣ (x∗, 0) ∈ N ((x̄, f(x̄)); epif)}.(2.7)

We also need to recall some directional derivative/subderivative constructions
used in what follows. The Rockafellar subderivative of f : X → IR at x̄ is defined
by

f↑(x̄; h) := sup
δ>0

[
lim sup

(x,α)↓f x̄,t↓0

(
inf

h′∈B(x̄;δ)

f(x + th′) − α

t

)]
,

where (x, α) ↓f x̄ means that (x, α) ∈ epif, (x, α) → (x̄, f(x̄)). If f is l.s.c.
around x̄, then

f↑(x̄; h) := sup
δ>0

[
lim sup
x

f−→x̄,t↓0

(
inf

h′∈B(x̄;δ)

f(x + th′) − f(x)
t

)]
,

where x
f−→ x̄ stands for f(x) → f(x̄) with x → x̄. Moreover, when f is locally

Lipschitzian around x̄, the subderivative f ↑(x̄; h) agrees with the Clarke directional
derivative

f◦(x̄; h) := lim sup
x→x̄,t↓0

f(x + th) − f(x)
t

.

Finally, the Dini-Hadamard directional derivative of f at x̄ is given by

f−(x̄; h) := lim inf
h→h,t↓0

f(x̄ + th′)− f(x̄)
t

,

which is simplified by

f−(x̄; h) := lim inf
t↓0

f(x̄ + th) − f(x̄)
t

when f is locally Lipschitz around x̄. The corresponding Clarke and Dini-Hadamard
subdifferentials of f at x̄ are defined by

∂Cf(x̄) :=
{
x∗ ∈ X∗∣∣〈x∗, h〉 ≤ f↑(x̄; h), for all h ∈ X

}
,

∂−f(x̄) :=
{
x∗ ∈ X∗∣∣〈x∗, h〉 ≤ f−(x̄; h), for all h ∈ X

}
.

We say that f is directionally regular at x̄ if f −(x̄; h) = f↑(x̄; h) for all h ∈ X ,
which implies that ∂Cf(x̄) = ∂−f(x̄).
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Considering a set-valued mapping F : X →→ Y between Banach spaces with the
graph

gph F :=
{
(x, y) ∈ X × Y

∣∣ y ∈ F (x)
}
,

we recall its normal coderivative D ∗
NF (x̄, ȳ) : X∗ →→ Y ∗ and mixed coderivative

D∗
MF (x̄, ȳ) at (x̄, ȳ) ∈ gph F defined respectively by

(2.8) D∗
NF (x̄, ȳ)(y∗) :=

{
x∗ ∈ X∗∣∣ (x∗,−y∗) ∈ N ((x̄, ȳ); gphF )

}
,

(2.9)
D∗

MF (x̄, ȳ)(y∗) :=
{
x∗∈X∗

∣∣∣∃εk ↓0, (xk, yk)
gphF→ (x̄, ȳ), x∗

k
w∗−−→ x∗,

y∗k
‖·‖−−→ y∗ with (x∗

k,−y∗k)∈N̂εk
((xk, yk); gphF )

}
,

where w∗→ signifies the weak∗ sequential convergence in X∗, while
‖·‖→ stands for the

norm convergence in the dual space; we omit ‖ · ‖ in the latter. We can equivalently
put εk = 0 in (2.9) if X and Y are Asplund and if the graph of F is closed around
(x̄, ȳ). Clearly D∗

MF (x̄, ȳ)(y∗) ⊂ D∗
NF (x̄, ȳ)(y∗), where the equality holds if

dim Y < ∞ and in more general settings of “strong coderivative normality” listed
in [14, Proposition 3.2] and [15, Proposition 4.9]. Observe that the basic and
singular subdifferentials in (2.4) and (2.7) can be described as

∂f(x̄) = D∗Ef(x̄, f(x̄))(1) and ∂∞f(x̄) = D∗Ef(x̄, f(x̄))(0)

via the coderivative of the epigraphical multifunction Ef : X →→ IR associated with
f by Ef(x) := {µ ∈ IR| µ ≥ f(x)}.

One of the most fundamental differences between variational analysis in finite
and infinite dimensions, crucial for many aspects of generalized differentiation and
optimization, is the necessary of imposing additional compactness requirements in
infinite-dimensional spaces that ensure the nontriviality while passing to the limit
in the weak∗ topology. In this paper we use the following general properties that
are automatic in finite dimensions, hold for “reasonably good” sets and mappings,
and are preserved under various operations; see [15] for the comprehensive theory
and applications.

A set Ω is sequentially normally compact (SNC) at x̄ if for any sequences
εk ↓ 0, xk

Ω→ x̄ and x∗
k ∈ N̂εk

(xk; Ω) one has

[
x∗

k
w∗→ 0

]
=⇒ [‖x∗

k‖ → 0
]

as k → ∞,(2.10)

where εk can be omitted if X is Asplund and if Ω is locally closed around x̄.
The SNC condition is automatic when Ω satisfies the so-called “compactly epi-
Lipschitzian” property in the sense of Borwein and Strojwas, particularly when it is
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convex and finite-codimensional with nonempty relative interior; see [15] for more
details. We say that a set Ω ⊂ X×Y is SNC with respect to X at (x̄, ȳ) ∈ Ω if (2.10)
holds for any sequences εk ↓ 0, (xk, yk)

Ω→ (x̄, ȳ), and (x∗
k, y

∗
k) ∈ N̂εk

((xk, yk); Ω)
as k ∈ IN .

A set-valued mapping F : X →→ Y is SNC at (x̄, ȳ) ∈ gph F if its graph enjoys
this property. For the case of mappings a more subtle partial SNC (i.e., PSNC)
property can be defined. We say that F is PSNC at (x̄, ȳ) if for any sequences
εk ↓ 0, (xk, yk)

gphF→ (x̄, ȳ) and (x∗
k, y

∗
k) ∈ N̂εk

((xk, yk); gphF ) one has

[
x∗

k
w∗→ 0, ‖y∗k‖ → 0

]
=⇒ [‖x∗

k‖ → 0
]

as k → ∞,

where εk = 0 in the Asplund space and closed graph setting. The PSNC property
always holds when F is Lipschitz-like around (z̄, x̄) in the following sense of Aubin
[1]: there exist neighborhoods V of z̄ and W of x̄ as well as modulus 	 ≥ 0 such
that

F (u) ∩ W ⊂ F (v) + 	‖u − v‖IB whenever u, v ∈ V.(2.11)

This reduces to the classical (Hausdorff) local Lipschitzian behavior of F around z̄
for W = X in (2.11). The Lipschitz-like property of F is known to be equivalent
to the metric regularity and linear openness properties of the inverse mapping
F−1; these three equivalent properties play a fundamental role in many aspects of
nonlinear analysis especially those related to optimization; see [3, 15, 19] and the
references therein.

Finally in these preliminaries, let us mention a version of the SNC property for
extended-real-valued functions f : X → IR finite at x̄. Namely, f is sequentially
normally epi-compact (SNEC) at x̄ if its epigraph is SNC at (x̄, f(x̄)). This property
always holds for locally Lipschitzian functions and their appropriate extensions.

3. UPPER ESTIMATES fOR VARIOUS SUBDIFFERENTIALS OF DISTANCE FUNCTIONS

In this section we derive some upper estimates of all the subdifferentials defined
in Section 2 for the general distance function ρ(z, x) = d(F (z); x) and its standard
specification d(x; Ω) at out-of-set points. The main new feature of the results
obtained is that they involve all intermediate points between a given out-of set
point and its projections on the set. This allows us to essentially improve known
results even for convex subsets of finite-dimensions.

We start with the following statement, which can be easily derived from the
result by Bounkhel [4, Proposition 3.2].
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Lemma 3.1. (Projections in Banach space) Let F : Z →→ X be a set-valued
mapping between Banach spaces with (z̄, x̄) /∈ gph F satisfying Π(x̄; F (z̄)) �= ∅.
Then for any t ∈ (0, 1] and ω̄ ∈ Π(x̄; F (z̄)) one has

ω̄ ∈ Π(tω̄ + (1 − t)x̄; F (z̄)).

This gives, in particular, that

ω̄ ∈ Π(tω̄ + (1 − t)x̄; Ω) whenever t ∈ (0, 1]

for any Ω ⊂ X , any x̄ /∈ Ω with Π(x̄; Ω) �= ∅, and any ω̄ ∈ Π(x̄; Ω).
The next proposition establishes useful upper estimates for ε-subgradients of the

distance functions at the reference points via those at intermediate points. Note that
the upper estimate in this proposition and the subsequent results involve intermediate
points corresponding to every t ∈ (0, 1] in what follows.

Proposition 3.2. (Upper estimates for ε-subgradients of distance functions via
intermediate points) Let F : Z →→ X be a set-valued mapping between Banach
spaces. Assume that (z̄, x̄) /∈ gph F and that Π(x̄; F (z̄)) �= ∅. Then for any
t ∈ (0, 1] we have the inclusion

(3.1) ∂̂ερ(z̄, x̄) ⊂
⋂

ω̄∈Π(x̄;F (z̄))

∂̂ερ(z̄, tω̄ + (1− t)x̄) ∩ C∗
ε , ε ≥ 0,

where C∗
ε := {(z∗, x∗) ∈ Z∗ × X∗∣∣ 1 − ε ≤ ||x∗|| ≤ 1 + ε}. In particular,

(3.2) ∂̂εd(x̄; Ω) ⊂
⋂

ω̄∈Π(x̄;Ω)

∂̂εd(tω̄ + (1− t)x̄; Ω) ∩ [1 − ε, 1 + ε]S∗

for any Ω ⊂ X and x̄ /∈ Ω satisfying Π(x̄; Ω) �= ∅.

Proof. To justify (3.1), take an arbitrary (z∗, x∗) ∈ ∂̂ερ(z̄, x̄) and ω̄ ∈
Π(x̄; F (z̄)) with any t ∈ (0, 1]. Putting x̃ := x̄ + t(ω̄ − x̄), one gets by Lemma 3.1
that

ω̄ ∈ Π(x̃; F (z̄)) and ρ(z̄; x̃) = (1− t)‖x̄ − ω̄‖ = (1 − t)ρ(z̄, x̄).

Given η > 0 find δ > 0 by Definition (2.4) of ε-subgradients such that

〈z∗, z − z̄〉 + 〈x∗, x− x̄〉 ≤ ρ(z, x)− ρ(z̄, x̄) + (ε + η)(‖z − z̄‖ + ‖x − x̄‖)

whenever ‖z − z̄‖ < δ and ‖x − x̄‖ < δ. Then for any (z, x) ∈ Z × X such that
||z − z̄|| < δ and ||x− x̃|| = ||(x− x̃ + x̄) − x̄|| < δ, one has
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〈z∗, z−z̄〉+〈x∗, x−x̃〉 ≤ ρ(z; x−x̃+x̄)−ρ(z̄, x̄)+(ε+η)(‖z−z̄‖+‖x−x̃‖)
≤ ρ(z, x)+‖x̃−x̄‖−‖x̄−ω̄‖+(ε+η)(‖z−z̄‖+‖x−x̃‖)
≤ ρ(z, x)+t‖ω̄−x̄‖−‖x̄−ω̄‖+(ε+η)(‖z−z̄‖+‖x−x̃‖)
= ρ(z, x)−(1−t)‖ω̄−x̄‖+(ε+η)(‖z−z̄‖+‖x−x̃‖)
= ρ(z, x)−ρ(z̄, x̃)+(ε+η)(‖z−z̄‖+‖x−x̃‖)

This gives (z∗, x∗) ∈ ∂̂ερ(z̄, x̃). Since x∗ ∈ ∂̂εd(x̄; Ω) for Ω := F (z̄) with x̄ /∈ Ω,
we get by [10, Proposition 1.5] that

1− ε ≤ ‖x∗‖ ≤ 1 + ε,

which completes the proof of (3.1). Inclusion (3.2) is an obvious specification of
(3.1) for F (·) = Ω ⊂ X .

It happens that counterparts of the upper estimates (3.1) and (3.2) from Propo-
sition 3.2 hold not only for Fréchet subgradients but also for proximal and Dini-
Hadamard subgradients from Section 2.

Theorem 3.3. (Upper estimates for Fréchet, proximal, and Dini-Hadamard sub-
gradients of distance functions via intermediate points) Let in the setting of Propo-
sition 3.2 the symbol ∂ • stand for one of the following subdifferentials: Fr échet,
proximal, and Dini-Hadamard. Then one has

(3.3) ∂ρ•(z̄, x̄) ⊂
⋂

ω̄∈Π(x̄;F (z̄))

∂•ρ(z̄, tω̄ + (1 − t)x̄) ∩ C∗,

where C∗ := {(z∗, x∗) ∈ Z∗ × X∗∣∣ ||x∗|| = 1}. In particular,

(3.4) ∂•d(x̄; Ω) ⊂
⋂

ω̄∈Π(x̄;Ω)

∂•d(tω̄ + (1− t)x̄; Ω) ∩ S∗.

Proof. We need to justify (3.3) only for ∂• = ∂−, since it has been proved in
Proposition 3.2 for Fréchet subgradients as ε = 0 and can be derived by the same
arguments for the case of proximal subgradients.

To proceed for ∂•ρ = ∂−ρ, fix any ω̄ ∈ Π(x̄; F (z̄)) and t ∈ (0, 1]. First
consider the Dini-Hadamard directional derivative and show that

(3.5)
ρ−((z̄, x̄); (h̄, k̄)) ≤ ρ−((z̄, tω̄ + (1 − t)x̄); (h̄, k̄))

whenever (h̄, k̄) ∈ Z × X.

Suppose without loss of generality that ρ−((z̄, x̄); (h̄, k̄)) > −∞, since other-
wise one obviously has ∂−ρ(z̄, x̄) = ∅ and (3.3) holds trivially. Putting α :=
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ρ−((z̄, x̄); (h̄, k̄)) and taking into account that ρ(z̄, ·) is Lipschitz continuous, we
get

ρ−((z̄, x̄); (h̄, k̄)) = lim inf
h→h̄,λ↓0

ρ(z̄ + λh, x̄ + λk̄)− ρ(z̄, x̄)
λ

.

Then for any ε > 0, find δ > 0 such that

ρ(z̄ + λh, x̄ + λk̄) − ρ(z̄, x̄) ≥ λ(α − ε) whenever ||h − h̄|| < δ, 0 < λ < δ.

Furthermore, for such h and λ one has

ρ(z̄ + λh, x̃ + λk̄) − ρ(z̄, x̃) = ρ(z̄ + λh, x̄ + t(ω̄ − x̄) + λk̄) − (1 − t)ρ(z̄, x̄)
≥ ρ(z̄ + λh, x̄ + λk̄) − t||ω̄ − x̄|| − (1 − t)ρ(z̄, x̄)
= ρ(z̄ + λh, x̄ + λk̄) − ρ(z̄, x̄)
≥ λ(α − ε).

Since ε > 0 is arbitrary, this gives (3.5) while dividing by λ > 0 and taking
“lim inf” in both sides of the latter inequality. To complete the proof of (3.3), pick
any (z∗, x∗) ∈ ∂−ρ(z̄, x̄) and get the estimates

〈(z∗, x∗), (h̄, k̄)〉 ≤ ρ−((z̄, x̄); (h̄, k̄)) ≤ ρ−((z̄, tω̄ + (1 − t)x̄); (h̄, k̄))

for all (h̄, k̄) ∈ Z × X.

Thus, by definition of Dini-Hadamard subgradients, we arrive at the inclusion

∂−ρ(z̄, x̄) ⊂ ∂−ρ(z̄, tω̄ + (1− t)x̄).

The last part (z∗, x∗) ∈ C∗ follows from [4, Proposition 3.2].

It is easy to observe the following consequence of Theorem 3,3 involving sub-
gradient estimates for distance functions via corresponding normals at intermediate
points.

Corollary 1.1. (upper estimates for Fréchet, proximal, and Dini-Hadamard sub-
gradients of distance functions via normals at intermediate points) Let in the setting
of Proposition 3.2 the symbols ∂ • and N • stand for the Fréchet subdifferential and
normal cone as well as for proximal subdifferential and normal cone, respectively.
Given any t ∈ (0, 1] and ω̄ ∈ Π(x̄; F (z̄)), consider the set-valued mapping

Ft,ω̄(z) :=
{
x ∈ X

∣∣ d(F (z); x) ≤ tω̄
}

with tω̄ := d(F (z̄); tω̄ + (1 − t)x̄).

Then one has the inclusion

(3.6) ∂•ρ(z̄, x̄) ⊂
⋂

ω̄∈Π(x̄;F (z̄))

N •((z̄, tω̄ + (1 − t)x̄); gphFt,ω̄) ∩ C∗,
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where C∗ := {(z∗, x∗) ∈ Z∗ × X∗∣∣ ||x∗|| = 1}. In particular,

∂•d(x̄; Ω) ⊂
⋂

ω̄∈Π(x̄;Ω)

N •(tω̄ + (1− t)x̄; Ωt,ω̄) ∩ S∗,

where Ωt,ω̄ := {x ∈ X
∣∣ d(x; Ω) ≤ tω̄} with tω̄ := d(tω̄ + (1 − t)x̄; Ω).

Proof. We need only proving (3.6). Fix arbitrary ω̄ ∈ Π(x̄; F (z̄)) and t ∈ (0, 1].
Put x̃ := tω̄+(1−t)x̄. It follows from Theorem 3.3 that ∂•ρ(z̄, x̄) ⊂ ∂•ρ(z̄, x̃)∩C∗.
Using the definition of Fréchet (resp. proximal) subdifferential, we have

∂̂ρ(z̄, x̃) ⊂ N̂ ((z̄, x̃); gphFt,ω̄).

This directly implies (3.6) due to (3.3).

Observe that for t = 1 one obviously has

Ft,ω̄ ≡ F and Ωt,ω̄ ≡ Ω

provided that F is closed-graph and that Ω is closed. Thus

∂•ρ(z̄, x̄) ⊂ ⋂
ω̄∈Π(x̄;F (z̄)) N •((z̄, ω̄); gphF ) ∩ C∗ and ∂•d(x̄; Ω)

⊂ ⋂
ω̄∈Π(x̄;Ω) N •(ω̄; Ω) ∩ S∗.

It immediately follows from Theorem 3.3 that estimates (3.3) and (3.4) therein
hold for the basic/limiting and Clarke subdifferentials provided that the correspond-
ing lower regularity and directional regularity assumptions from Section 2 are ful-
filled. However, such regularity assumptions for distance functions are very restric-
tive at out-of-set points. In particular, for the standard distance function in finite
dimensions they are equivalent to its smoothness; see [15, Subsection 1.3.3].

The following natural question arises. Would it be possible to keep inclusions
(3.3) and (3.4) with ∂• stands for either the limiting subdifferential or for the Clarke
subdifferential with no regularity assumptions? The answer happens to be no even
for the standard distance functions in finite-dimensional spaces.

Example 3.5. (Failure of the intermediate subdifferential estimates for limiting
and Clarke subgradients). There is a closed subset of IR2 such that the inclusion

∂•d(x̄; Ω) ⊂
⋂

ω̄∈Π(x̄;Ω)

∂•d(tω̄ + (1 − t)x̄; Ω) ∩ S∗

does not hold for some x̄ /∈ Ω and t ∈ (0, 1], where ∂• stands for either the limiting
subdifferential or for the Clarke subdifferential of the distance function.
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Proof. Consider the set

Ω :=
{
(x, y) ∈ IR2

∣∣ x2 + y2 ≥ 1
}

and the point x̄ = (0, 0) /∈ Ω. Then

∂d(x̄; Ω) = S and ∂Cd(x̄; Ω) = IB,

while for ω̄ = (1, 0) and t = 1/2 we have

∂d(tω̄ + (1− t)x̄; Ω) = ∂Cd(tω̄ + (1 − t)x̄; Ω) = {(1, 0)},
which justifies the conclusions of this example.

Observe also that the estimates of Theorem 3.3 essentially improve known results
even for the case of convex sets in finite dimensions when all the subdifferentials
considered in Section 2 reduce to the subdifferential of convex analysis.

Example 3.6. (Improvement of known results for convex sets). There is a
closed convex set Ω ⊂ IR2 and a point x̄ /∈ Ω such that, for some ω̄ ∈ Π(x̄; Ω) and
t ∈ (0, 1), the subgradient sets ∂•d(tω̄ + (1 − t)x̄; Ω) reduce to the same singleton
for all the subdifferentials ∂• under consideration being strictly smaller than

⋂
ω̄∈Π(x̄;Ω)

N (ω̄; Ω) ∩ S∗ ⊂
⋂

ω̄∈Π(x̄;Ω)

N (ω̄; Ω)∩ B∗,

where N stands for the normal cone of convex analysis.

Proof. It follows from Theorem 12 in Burke et al. [6] that

∂d(x̄; Ω) ⊂
⋂

ω̄∈Π(x̄;Ω)

N (ω̄; Ω) ∩ IB∗(3.7)

for convex sets in Banach spaces. Consider the case of Ω and x̄ given by

Ω := epi | · | ⊂ IR2 and x̄ := (0,−1) /∈ Ω.

It is easy to check that ∂•d(x̄; Ω) = {(0,−1)} for all the mentioned subdifferentials
∂• reduced of course to the classical subdifferential ∂ of convex analysis. One also
easily gets {ω̄} = {(0, 0)} = Π(x̄; Ω) and

N (ω̄; Ω) ∩ S∗ =
{
(u, v) ∈ IR2

∣∣ u2 + v2 = 1, v ≤ −|u|}.

On the other hand, for t = 1/2 and tω̄ +(1− t)x̄ = (0,−1/2) we directly compute
that ∂d(tω̄ + (1 − t)x̄; Ω) = {(0,−1)}, and the upper estimate of Theorem 3.3 is
exact in this case being much sharper than (3.7) in general.
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Observe also that the counterpart of the inclusion (3.7) formulated in [6, The-
orem 12] for the Clarke subdifferential and normal cone requires the directional
regularity assumption that was missing therein. Otherwise, one has⋂

ω̄∈Π(x̄;Ω)

NC(ω̄; Ω) ∩ B∗ =
{
(0, 0)

}

in the setting of Example 3.6, and the Clarke counterpart of inclusion (3.7) is
violated.

Nevertheless, the next two interrelated theorems show that certain natural analogs
of (3.7) for the standard distance function d(·; Ω) and its extensions ρ hold in terms
of our basic limiting subgradients with no regularity assumptions but under some
well-posedness requirements, which are automatic in many important settings (e.g.,
in reflexive spaces with equivalent Kadec norms); see [16] for more details. First
let us derive upper estimates for limiting subgradients of the distance functions at
out-of-set points via those at intermediate points built as above.

Theorem 3.7. (Upper estimates for limiting subgradients of distance functions
via limiting subgradients at intermediate points). Let F : Z →→ X be a closed-graph
multifunction between Banach spaces. Assume that Π(x̄; F (z̄)) �= ∅ and that the
following well-posed conditions hold: for any sequences ε k ↓ 0 and (zk, xk)

ρ→
(z̄, x̄) with ∂̂εk

ρ(zk, xk) �= ∅ there is a sequence of ωk ∈ Π(xk; F (zk)) containing
a convergent subsequence. Then for any t ∈ (0, 1] one has

(3.8) ∂ρ(z̄, x̄) ⊂
⋃

ω̄∈Π(x̄;F (z̄))

∂ρ(z̄, tω̄ + (1− t)x̄) ∩ D∗,

where D∗ := {(z∗, x∗) ∈ Z∗ × X∗∣∣ ||x∗|| ≤ 1}. In particular,

(3.9) ∂d(x̄; Ω) ⊂
⋃

ω̄∈Π(x̄;Ω)

∂d(tω̄ + (1 − t)x̄; Ω) ∩ IB∗ as t ∈ (0, 1]

for every closed set Ω ⊂ X and x̄ /∈ Ω with Π(x̄; Ω) �= ∅ provided the following
well-posedness: for any sequences εk ↓ 0, xk → x̄ with ∂̂εk

d(xk; Ω) �= ∅ there is a
sequence ωk ∈ Π(xk; Ω) containing a convergent subsequence.

Proof. Fix (z∗, x∗) ∈ ∂ρ(z̄, x̄) and find by definition sequences

εk ↓ 0, (zk, xk)
ρ−→ (z̄, x̄), and (z∗k, x∗

k)
w∗−−→ (z∗, x∗) as k → ∞

satisfying (x∗
k, z

∗
k) ∈ ∂̂εk

ρ(zk, xk) for all k ∈ IN . Employing the well-posedness and
closed-graph assumptions, we have a subsequence of ωk ∈ Π(xk; F (zk)) converging
to some point ω̄ ∈ F (z̄). By the relations

||xk − ωk|| = ρ(zk, xk) → ρ(z̄, x̄) = ||x̄− ω̄||
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we have ω̄ ∈ Π(x̄; F (z̄)). Given any t ∈ (0, 1], it follows from Proposition 3.2 that

(z∗k, x
∗
k) ∈ ∂̂εk

ρ(zk, tωk + (1 − t)xk) and ||x∗
k|| ≤ 1 + εk, k ∈ IN.

Taking into account that

(zk, tωk + (1 − t)xk) → (z̄, tω̄ + (1− t)x̄) and ||x∗|| ≤ lim inf ||x∗
k|| ≤ 1 as k → ∞,

we get by Lemma 3.1 that

ρ(zk, tωk + (1− t)xk) = (1− t)ρ(zk, xk) → (1− t)ρ(z̄, x̄) = ρ(z̄, tω̄ + (1− t)x̄).

Thus (zk, tωk+(1−t)xk)
ρ−→ (z̄, tω̄+(1−t)x̄), which implies (z∗, x∗) ∈ ∂ρ(z̄, tω̄+

(1− t)x̄) and hence justifies (3.8). As usual, inclusion (3.9) follows from (3.8) by
considering the constant mapping F (·) ≡ Ω.

Note that one can equivalently put εk = 0 in the well-posedness requirements of
Theorem 3.7 when the spaces X and Z are Asplund and when the general distance
function ρ is lower semicontinuous. Assuming in addition that the graph of Ft,ω̄

is closed that obviously holds when ρ is l.s.c. (of course, it is redundant for the
standard one d(·; Ω)), we arrive at the following estimates involving limiting normals
at intermediate points. We refer the reader to the formulation of Corollary 3.4 for
the symbols Ft,ω̄ and Ωt,ω̄ and to [16, Section 5] for general conditions ensuring
the lower semicontinuity of ρ. Observe that Theorem 3.8 essentially improves our
previous results [16] of the projection type corresponding to the case of t = 1.

Theorem 3.8. (Upper estimates for limiting subgradients of distance functions
via limiting normals at intermediate points). Suppose that all the assumptions of
Theorem 3.7 hold. For any fixed t ∈ (0, 1] assume in addition that gph F tω̄ is
closed whenever ω̄ ∈ Π(x̄; F (z̄)). Then one has

(3.10) ∂ρ(z̄, x̄) ⊂
⋃

ω̄∈Π(x̄;F (z̄))

N ((z̄, tω̄ + (1 − t)x̄); gphFt,ω̄) ∩ D∗

with D∗ = {(z∗, x∗) ∈ Z∗ × X∗∣∣ ||x∗|| ≤ 1}. If, in particular, Ω ⊂ X is a closed
set and x̄ /∈ Ω with Π(x̄; Ω) �= ∅, then

∂d(x̄; Ω) ⊂
⋃

ω̄∈Π(x̄;Ω)

N (tω̄ + (1 − t)x̄; Ωt,ω̄) ∩ IB∗ whevever 0 < t ≤ 1.

Proof. To justify (3.10), fix any t ∈ (0, 1] and (z∗, x∗) ∈ ∂ρ(z̄, x̄). As in the
proof of Theorem 3.7, find sequences

εk ↓ 0, (zk, xk)
ρ−→ (z̄, x̄), (z∗k, x

∗
k)

w∗−−→ (z∗, x∗), and ωk → ω̄ as k → ∞
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satisfying (z∗k, x
∗
k) ∈ ∂̂εk

ρ(zk, xk), ωk ∈ Π(xk; F (zk)), and ω̄ ∈ Π(x̄; F (z̄)). Since
the graph of Ft,ω̄ is closed while (z̄, x̄) /∈ gph Ft,ω̄, we use result of [5, Lemma 3.1]
and find a neighborhood V of (z̄, x̄) such that for any (z, x) ∈ V one has

(3.11)
ρ(z, x) = ρt,ω̄(z, x) + tω̄ with ρt,ω̄(z, x) := d(Ft,ω̄(z); x)

and tω̄ := d(F (z̄); x̃),

where x̃ := tω̄ + (1 − t)x̄. Hence

tω̄ =(1 − t)||x̄−ω̄||, d(Ft,ω̄(z̄); x̄)=t||x̄ − ω̄||= ||x̄− x̃||, and x̃∈Π(x̄; Ft,ω̄(z̄)).

Now for any fixed k ∈ IN consider a continuous function ϕ : [0, 1] → IR defined
by

ϕ(λ) := d(F (zk); λωk + (1 − λ)xk)− (1− t)||x̄− ω̄||.
Since ϕ(1) = −(1− t)||x̄− ω̄|| ≤ 0 and ϕ(0) = ||xk − ωk|| − (1− t)||x̄− ω̄|| > 0
for large k, we find, by the classical intermediate value theorem, such λk ∈ (0, 1]
that

d(F (zk); λkωk + (1− λk)xk) = tω̄ = (1− t)||x̄− ω̄||.
Suppose without loss of generality that λk → λ ∈ [0, 1] as k → ∞. Then Lemma 3.1
gives

d(F (zk); λkωk +(1−λk)xk) = (1−λk)||xk−ωk|| → (1−λ)||x̄− ω̄|| as k → ∞.

The latter implies that λ = t and λkωk + (1 − λk)xk ∈ Ft,ω̄(zk) converges to
tω̄ + (1 − t)x̄. Then employing (3.11) with large k, we get

ρt,ω̄(zk, xk) = ρ(zk, xk) − tω̄ = ||xk − ωk|| − tω̄

= ||xk − ωk|| − d(F (zk); λkωk + (1− λkxk))

= ||xk − ωk|| − (1− λk)||xk − ωk||
= λk||xk − ωk||
= ||xk − (λkωk + (1 − λk)xk)||,

which implies that λkωk + (1 − λk)xk ∈ Π(xk; Ft,ω̄(zk)). Using again (3.11)
together with Proposition 3.2, we justify the inclusions

(z∗k, x∗
k) ∈ ∂̂εk

ρ(zk, xk) = ∂̂εk
ρt,ω̄(zk, xk) ⊂ ∂̂εk

ρt,ω̄(zk, λkωk + (1 − λk)xk) ∩ C∗

⊂ N̂εk
((zk, λkωk + (1− λk)xk); gphFt,ω̄) ∩ C∗.
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for large k. Hence (z∗, x∗) ∈ N ((z̄, tω̄ + (1− t)x̄); gphFt,ω̄) and ||x∗|| ≤ lim inf
||x∗

k|| ≤ 1, which completes the proof of the theorem.

4. RIGHT-SIDED LIMITING SUBGRADIENTS OF DISTANCE FUNCTIONS

As mentioned, some of the developments in Section 3 can be treated as exten-
sions of our previous results of the projection type obtained in [16]. Observe that it
is very essential that t > 0 in all the “intermediate” results of Section 2. Actually
the main theorems obtained above simply are not valid when t = 0; see the example
below. The passage to the limit as t ↓ 0 requires involving new constructions and
arguments that are actually equivalent to those presented in this section that follows
the corresponding developments in [16].

In this section we always assume that F : Z →→ X is a closed-graph mapping
between Banach spaces. Fix any point (z̄, x̄) ∈ Z × X and put r := d(F (z̄); x̄).
Recall that the enlargement mapping Fr : Z →→ X is defined by

(4.1) Fr(z) := {x ∈ X | d(F (z); x) ≤ r}
and observe that Fr ≡ F if only if r = 0, which corresponds to the case of
(z̄, x̄) ∈ gph F . We have the following relationship

N ((z̄, x̄); gphF ) =
⋃
λ≥0

λ∂ρ(z̄, x̄), (z̄, x̄) ∈ gph F,(4.2)

between our basic/limiting subdifferential (2.4) of the general distance function at
in-set points and the basic normal cone (2.2) to gphF for an arbitrary closed-graph
mapping F : Z →→ X established by Thibault [20]. However, we cannot keep
such a relationship between ∂ρ(z̄, x̄) at out-of-set points and the basic normal to
the graph of the enlargement, even for the case of standard distance functions in
finite-dimensional spaces. Indeed, consider the set

Ω :=
{
(x, y) ∈ IR2

∣∣ x2 + y2 ≥ 1
}

and the point (0, 0) /∈ Ω. Then Ωr = IR2 with r = 1, N (x̄; Ωr) = {0} while
∂d(x̄; Ω) is the whole unit sphere of IR2.

To establish a counterpart of (4.2) in out-of-set points, we need the new limiting
modification of the basic subdifferentials, which gives a smaller set of subgradients;
namely, those which are obtained as limits of ε-subgradients at point xk, where the
function values are on the right side of f(x̄), i.e., f(xk) ≥ f(x̄).

Definition 4.1. (Right-sided limiting subgradients). Let f : X → IR be finite at
x̄. Then the (limiting) right-sided subdifferential of f at x̄ is

∂≥f(x̄) := Lim sup
x

f+→x̄
ε↓0

∂̂εf(x),
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where x
f+→ x̄ means that x → x̄ with f(x) → f(x̄) and f(x) ≥ f(x̄).

The right-sided limiting subdifferential first appeared in our previous paper [16]
devoted to the study and applications of distance functions. While reading it, Lionel
Thibault drew our attention that a different but somehow related sided subdifferential
of the standard distance function, involving limits of Clarke normals, was introduced
by Cornet and Czarnecki [8] in finite dimensions to establish existence theorems
for generalized equilibria.

Observe that it is possible to put equivalently ε = 0 in the above limiting
constructions if X is Asplund, if f is l.s.c. around x̄, and if ∂̂f(x) = ∅ whenever
f(x) = f(x̄) and x near x̄. One obviously has

∂̂f(x̄) ⊂ ∂≥f(x̄) ⊂ ∂f(x̄).(4.3)

Observe that the equalities hold in both inclusions of (4.3) when ϕ is lower regular
at x̄, in particular, when f is convex. In general both inclusions in (4.3) may be
strict even for the standard distance function in finite dimensions; see [16].

Using the Ekeland variational principle, we can prove the following auxiliary
result establishing the relationship between Fr échet ε-subgradients of distance func-
tions in term of (nonempty) perturbed projections; cf. [16, Theorem 3.6].

Lemma 4.2. (Estimates of ε-subgradients for distance functions via normal at
perturbed projections.) Let F : Z →→ X with (z̄, x̄) /∈ gph F . Then for any ε ≥ 0,
for any (z∗, x∗) ∈ ∂̂ερ(z̄, x̄), and for any η > 0 there exists (v, u) ∈ gph F such
that

||v − z̄|| ≤ η, ||u− x̄|| ≤ ρ(z̄, x̄) + η, and (z∗, x∗) ∈ N̂ε+η((v, u); gphF ).

The next theorem, presented here for completeness (cf. [16]), gives appropri-
ate analogs of representation (4.2) at out-of-set points with using of enlargement
mapping (4.1) and replacing the limiting subdifferential ∂ρ(z̄, x̄) by its right-sided
counterpart.

Theorem 4.3. (relationships between right-sided subgradients of distance func-
tions and limiting normals to enlargements). Let F : Z →→ X with (z̄, x̄) /∈ gph F ,
and let r := ρ(z̄, x̄). Assume that gph Fr is closed. Then one has the inclusion

(4.4) ∂≥ρ(z̄, x̄) ⊂ N ((z̄, x̄); gphFr) ∩ (Z∗ × IB∗),

which admits the stronger form

(4.5) ∂≥ρ(z̄, x̄) ⊂ N ((z̄, x̄); gphFr) ∩
[
Z∗ × (IB∗ \ {0})]

if the set gph Fr ⊂ Z × X is SNC at (z̄, x̄) with respect to X . Moreover,

∂≥ρ(z̄, x̄) ⊂ N ((z̄, x̄); gphFr) ∩ (Z∗ × S∗)(4.6)
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if X is finite-dimensional.

Proof. To justify (4.4), pick (z∗, x∗) ∈ ∂≥ρ(z̄, x̄) and Definition 4.1 find
sequences εk ↓ 0, (zk, xk)

ρ→ (z̄, x̄), and (z∗k, x∗
k)

w∗−−→ (z∗, x∗) satisfying

ρ(zk, xk) ≥ ρ(z̄, x̄) > 0 and (z∗k, x∗
k) ∈ ∂̂ρεk

(zk, xk) for all k ∈ IN.

Since (z̄, x̄) /∈ gph F , we have (zk, xk) /∈ gph F for all large k ∈ IN . It is not
difficult to check that

(4.7) (z∗k, x
∗
k) ∈ N̂εk

((zk, xk); gphFr), 1 − εk ≤ ‖x∗
k‖ ≤ 1 + εk

provided that there is a subsequence (zk, xk) such that ρ(zk, xk) = r = ρ(x̄, z̄). If
the opposite holds, we use the result by Bounkhel and Thibault [5, Lemma 3.1] to
ensure the representation

ρ(z, x) = r + ρr(z; x) for all (z, x) /∈ gph Fr with ρr(z, x) := d(x; Fr(z)).

This directly implies that

(z∗k, x
∗
k) ∈ ∂̂εk

ρ(zk, xk) = ∂̂εk
(r + ρr)(zk, xk) = ∂̂εk

ρr(zk, xk), k ∈ IN.

Denote ηk := ρr(zk, xk) = ρ(zk, xk) − r ↓ 0 as k → ∞ and, by Lemma 4.2, find
(vk, uk) ∈ gph Fr satisfying

(4.8)
‖zk − vk‖ ≤ ηk, ‖xk − uk‖ ≤ ρr(zk, xk) + ηk ≤ 2ηk, and

(z∗k, x
∗
k) ∈ N̂εk+ηk

((vk, uk); gphFr), 1 − εk ≤ ‖x∗
k‖ ≤ 1 + εk.

Passing to the limit as k → ∞ in both relations (4.7) and (4.8), we arrive at

(z∗, x∗) ∈ N ((z̄, x̄); gphFr) with ‖x∗‖ ≤ 1,

which justifies (4.4). Moreover, ‖x∗‖ �= 0 under the SNC requirement on the graph
of Fr with respect to X by the above constructions. This gives (4.5). When X is
finite dimensional, we get ‖x∗‖ ≥ 1 by passing to the limit in the lower estimate
‖x∗

k‖ ≥ 1 − εk of (4.7) and (4.8). This gives (4.6) and completes the proof of the
theorem.

The next result deals with the standard distance function d(·; Ω). Its first part
is a direct consequence of Theorem 4.3, with the notation

Ωr :=
{
x ∈ X

∣∣ d(x; Ω) ≤ r
}

as r := d(x̄; Ω)

standing for the corresponding enlargement of Ω at x̄ /∈ Ω. The second part is
certainly of independent interest.

Theorem 4.4. (Relationships between right-sided subgradients of the standard
distance function and basic normals to the set enlargement). Let Ω be a closed subset
in a Banach space X , and let x̄ /∈ Ω with r = d(x̄; Ω). Then the following hold:
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(i) One has the inclusion

∂≥d(x̄; Ω) ⊂ N (x̄; Ωr) ∩ IB∗,

where the stronger inclusion

∂≥d(x̄; Ω) ⊂ [
N (x̄; Ωr) ∩ IB∗] \ {0}

is fulfilled if Ωr is SNC at x̄. Moreover,

∂≥d(x̄; Ω) ⊂ N (x̄; Ωr) ∩ S∗

if the space X is finite-dimensional.
(ii) One always has the equality

(4.9) N (x̄; Ωr) =
⋃
λ≥0

λ∂≥d(x̄; Ω).

Proof. We need to justify assertion (ii). The inclusion “⊃” in (4.9) follows
from (4.4). To proof the opposite inclusion, we first verify that

N (x̄; Ωr) \ {0} ⊂
⋃
λ>0

λ∂≥d(x̄; Ω).(4.10)

To proceed, pick any normal x∗ ∈ N (x̄; Ωr) \ {0} and find sequences εk ↓ 0,
xk

Ωr→ x̄, and x∗
k ∈ N̂εk

(xk; Ωr) with x∗
k

w∗→ x∗ as k → ∞. Since 0 < ‖x∗‖ ≤
lim infk→∞ ‖x∗

k‖, there is m > 0 and a subsequence of {x∗
k} (with no relabeling)

such that ‖x∗
k‖ ≥ m for all k ∈ IN . One has d(xk; Ω) ≤ r by xk ∈ Ωr and the

closedness of Ω. Observe that d(xk; Ω) = r for all k ∈ IN , since x∗
k = 0 otherwise.

Thus
x∗

‖x∗
k‖

∈
{
x∗

k ∈ N̂εk/m(xk; Ωr)
∣∣∣ ‖x∗‖ = 1

}
.

Then modifying slightly the proof of Theorem 3.6 in Bounkhel and Thibault 3.6,
we find a bounded sequence of positive numbers αk such that

x∗
k

‖x∗
k‖

∈ ∂̂αkεk/md(xk; Ω), k ∈ IN.

Due to the boundedness of {‖x∗
k‖}, we assume with no loss of generality that

‖x∗
k‖ → λ̃ as k → ∞ for some number λ̃ > 0. Therefore

x∗ ∈ λ̃∂≥d(x̄; Ω) ⊂
⋃
λ≥0

∂≥d(x̄; Ω)
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by definition of the right-sided subdifferential. Adding λ = 0 to the union on the
right-hand side of (4.10), we see that x∗ = 0 belongs to this set due to our con-
vention 0 · ∅ = 0. Thus we arrive at (4.9) and complete the proof of the theorem.

5. RELATIONSHIP BETWEEN SINGULAR SUBGRADIENTS OF DISTANCE FUNCTIONS AND

CODERIVATIVES OF GENERATING MAPPINGS

The primary goal of this section is to establish relationships between the singu-
lar subdifferential (2.6) of the distance function ρ defined in (1.2) and the mixed
coderivative (2.9) of the generating mapping F : Z →→ X in (1.2). Note that this
question does not make sense for the standard distance function (1.1), which is
always globally Lipschitz continuous with therefore ∂∞d(x̄; Ω) = {0}.

Observe that the distance function (1.2) belongs to the class of the so-called
marginal functions given generally by

(5.1) µ(x) := inf
{
ϕ(x, y)

∣∣ y ∈ G(x)
}
,

where ϕ : X ×Y → IR is a l.s.c. function and where G : X →→ Y is a closed-graph
multifunction around the reference points. Marginal functions of type (5.1) play
indeed a crucial role in variational analysis and optimization; see, e.g., [15, 19] and
the references therein. In particular, they describe optimal values in minimization
problems being often called for this reason by value functions.

We associate with the marginal function (5.1) the solution map

(5.2) S(x) :=
{
y ∈ G(x)

∣∣ ϕ(x, y) = µ(x)
}
,

which is assumed to be nonempty in what follows. We say that S is µ-inner
semicontinuous at (x̄, ȳ) ∈ gph S if for any sequences εk ↓ 0 and xk

µ−→ x̄ such
that ∂̂εk

µ(xk) �= ∅, there is a sequence yk ∈ S(xk) containing a subsequence that
converges to ȳ. The mapping S is said to be µ-inner semicompact at x̄ if for any
sequences εk ↓ 0 and xk

µ−→ x̄ with ∂̂εk
µ(xk) �= ∅ there is a sequence yk ∈ S(xk)

containing a subsequence that converges to some ȳ ∈ S(x̄). Observe as usual that
we can equivalently put εk = 0 if both spaces X and Y are Asplund and if µ is
lower semicontinuous.

The following theorem establishes important relationships between the singular
subdifferential of the marginal function (5.1) and the mixed coderivative of the
generating mapping G that essentially improve the previously known ones [17]
obtained in terms of the bigger normal coderivative (2.8).

Theorem 5.1. (Singular subgradients of marginal functions). Let X and Y

be Asplund. The following assertions hold:
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(i) Assume that ϕ is locally Lipschitzian around (x̄, ȳ) and the solution map S

is µ-inner semicontinuous at (x̄, ȳ). Then

(5.3) ∂∞µ(x̄) ⊂ D∗
MG(x̄, ȳ)(0).

(ii) Assume that S is µ-inner semicompact at x̄ and ϕ is locally Lipschitzian
around (x̄, ȳ) for all ȳ ∈ S(x̄). Then

∂∞µ(x̄) ⊂
⋃

ȳ∈S(x̄)

D∗
MG(x̄, ȳ)(0).

Proof. To justify (5.3), fix any x∗ ∈ ∂∞µ(x̄) and have by definition that

x∗ ∈ Lim sup
x

µ−→x̄
ε↓0, λ↓0

λ∂̂εµ(x),

i.e., there are sequences εk ↓ 0, λk ↓ 0, xk
µ−→ x̄, and x∗

k ∈ ∂̂εk
µ(xk) such that

λkx
∗
k

w∗−−→ x∗ as k → ∞. Since S is µ-inner semicontinuous at (x̄, ȳ), we can find
yk ∈ S(xk) whose subsequence, with no relabeling, converges to ȳ. It follows by
definition from x∗

k ∈ ∂̂εk
µ(xk) that for any η > 0 there is γ > 0 such that

〈x∗
k, x − xk〉 ≤ µ(x) − µ(xk) + (εk + η)||x− xk|| whenever x ∈ xk + γIB.

Considering the function

φ(x, y) := ϕ(x, y) + δ((x, y); gphG),

we easily conclude that

〈(x∗
k, 0), (x−xk, y− yk)〉 ≤ φ(x, y)− φ(xk, yk) + (εk + η)(||x− xk||+ ||y− yk||)

whenever (x, y) ∈ (xk, yk) + γIB, which gives (x∗
k, 0) ∈ ∂̂εk

φ(xk, yk).
Fix now any sequence ηk ↓ 0. Since ϕ is locally Lipschitzian around (x̄, ȳ)

while X and Y are Asplund, we apply the “fuzzy” sum rule for ε-subgradients of
φ (see, e.g., [15, 17]) and find sequences

(x1k, y1k)
ϕ−→ (x̄, ȳ), (x2k, y2k)

gphG→ (x̄, ȳ),

(x∗
1k, y

∗
1k) ∈ ∂̂ϕ(x1k, y1k), and (x∗

2k, y
∗
2k) ∈ N̂((x2k, y2k); gphG)

satisfying the estimate

||(x∗
k, 0)− (x∗

1k, y
∗
1k) − (x∗

2k, y
∗
2k)|| ≤ εk + ηk
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or, equivalently, the following ones:

(5.4) ||x∗
k − x∗

1k − x∗
2k|| ≤ εk + ηk and ||y∗1k + y∗2k|| ≤ εk + ηk.

It follows from the Lipschitz continuity of ϕ with some modulus 	 > 0 that
||(x∗

1k, y
∗
1k)|| ≤ 	, which implies that λk‖(x∗

1k, y
∗
1k)‖ → 0 as k → ∞. By (5.4) we

therefore have

(5.5) λk‖y∗2k‖ → 0 and λkx
∗
2k

w∗−−→ x∗ as k → ∞.

Taking into account that

λk(x∗
2k, y

∗
2k) ∈ N̂((x2k, y2k); gphG) for all k ∈ IN

and using the definition of the mixed coderivative (2.9), we derive from the con-
vergence relations (5.5) that x∗ ∈ D∗

MG(x̄, ȳ)(0), which gives (5.3) and completes
the proof of (i).

The proof of assertion (ii) is similar with using the µ-inner semicontinuity con-
dition for S instead of the µ-inner semicompactness one in (i).

To include the distance function (1.2) into framework of Theorem 5.1, we need to
consider a slightly more general class of marginal functions related to minimization
problems with the so-called moving sets of feasible solutions. Namely, consider
marginal functions in the form

(5.6) µ(x, y) := inf
{
ϕ(y, z)

∣∣ z ∈ G(x)},
where ϕ : Y ×Z → IR and G : X →→ Z. The corresponding solution sets are given
by

(5.7) S(x, y) :=
{
z ∈ G(x)

∣∣ ϕ(y, z) = µ(x, y)
}
.

We impose the standing assumptions on ϕ and G as for the case of (5.1) and (5.2).
In fact, the following results for the more general class of marginal functions (5.6)
are easily derived from Theorem 5.1.

Corollary 5.2. (singular subgradients of marginal functions over moving sets).
Let µ and S be given in (5.6) and (5.7), and let the spaces X, Y, Z be Asplund.
The following assertions hold.

(i) Assume that S is µ-inner semicontinuous at ((x̄, ȳ), z̄) and that ϕ is locally
Lipschitzian around (ȳ, z̄). Then

∂∞µ(x̄, ȳ) ⊂ {
(x∗, 0)

∣∣ x∗ ∈ D∗
MG(x̄, z̄)(0)

}
.
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(ii) If S is µ-inner semicompact at (x̄, ȳ) and ϕ is locally Lipschitzian around
(ȳ, z̄) for all z̄ ∈ S(x̄, ȳ), then

∂∞µ(x̄, ȳ) ⊂
⋃

z̄∈S(x̄,ȳ)

{
(x∗, 0)

∣∣ x∗ ∈ D∗
MG(x̄, z̄)(0)

}
.

Proof. To proof (i), put u = (x, y) and define

G̃(u) = G̃(x, y) := G(x), ϕ̃(u, z) := ϕ(y, z).

Then we have the representation

µ(x, y) = µ(u) = inf
{
ϕ̃(u, z)

∣∣ z ∈ G̃(u)
}
.

Applying Theorem 5.1 with (x̄, ȳ) replaced by (ū, z̄) = (x̄, ȳ, z̄), we get

∂∞µ(x̄, ȳ) = ∂∞µ(ū) ⊂ {
(x∗, y∗)

∣∣ (x∗, y∗) ∈ D∗
MG̃((x̄, ȳ), z̄)(0)}.

It is easy to observe the inclusion

D∗
MG̃((x̄, ȳ), z̄)(0) ⊂ {

(x∗, 0)
∣∣ x∗ ∈ D∗

MG(x̄, z̄)(0)
}
.

Summarizing all the above, we arrive at

∂∞µ(x̄, ȳ) ⊂ {
(x∗, 0)

∣∣ x∗ ∈ D∗
MG(x̄, z̄)(0)

}
and complete the proof of (i). The proof of (ii) is similar.

Finally in this section, we establish relationships between the singular subdiffer-
ential of the distance function (1.2) and the mixed coderivative of the mapping Ft,ω̄

from Corollary 3.4 of Section 3 that depends on intermediate projection points.

Theorem 5.3. (Singular subgradients of distance functions at out-of-set points
via intermediate projections). Let F : Z →→ X be a closed-graph mapping between
Asplund spaces, and let (x̄, ȳ) /∈ gph F with Π(x̄; F (z̄)) �= ∅. Assume that the well-
posed condition of Theorem 3.7 holds. For any fixed t ∈ (0, 1] suppose in addition
that gph Ft,ω̄ is closed whenever ω̄ ∈ Π(x̄; F (z̄)). Then we have the inclusion

(5.8) ∂∞ρ(z̄, x̄) ⊂
⋃

ω̄∈Π(x̄;F (z̄))

{
(x∗, 0)

∣∣∣ x∗ ∈ D∗
MFt,ω̄(x̄, tw̄ + (1 − t)x̄)(0)

}
.

In particular, one has (as t = 1) that

(5.9) ∂∞ρ(z̄, x̄) ⊂
⋃

w̄∈Π(x̄;F (z̄))

{
(x∗, 0)

∣∣∣ x∗ ∈ D∗
MF (z̄, w̄)(0)

}
.
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Proof. Clearly the inclusion (5.9) follows directly from Corollary 5.2. It remains
to justify (5.8). Fix ω̄ ∈ Π(x̄; F (z̄)), t ∈ (0, 1], and (z∗, x∗) ∈ ∂∞ρ(z̄, x̄). Then
find sequences εk ↓ 0, λk ↓ 0, (zk, xk)

ρ−→ (z̄, x̄), and (z∗k, x∗
k) ∈ ∂̂εk

ρ(zk, xk)
satisfying

λk(z∗k, x
∗
k)

w∗−−→ (z∗, x∗) as k → ∞.

Repeating the proof of Theorem 3.8, we get sequences ωk ∈ Π(xk; F (zk)) and
ω̄ ∈ Π(x̄; F (z̄)) satisfying the relations

tkωk + (1 − tk)xk → tω̄ + (1− t)x̄ with tkωk + (1− tk)xk ∈ Ft,ω̄(zk), and

(z∗k, x∗
k)∈N̂εk

((zk, tkωk + (1−tk)xk); gphFt,ω̄) with 1−εk ≤ ||x∗
k|| ≤ 1 + εk.

Hence λk(z∗k, x∗
k) ∈ N̂λkεk

((zk, tkωk + (1− tk)xk); gphFt,ω̄) and

λk‖x∗
k‖ → 0, λkz

∗
k

w∗−−→ z∗ as k → ∞.

Thus x∗ = 0 and z∗ ∈ D∗
MFt,ω̄(z̄, tω̄ + (1 − t)x̄)(0), which completes the proof.

6. SOME APPLICATIONS

There are a great many of possible applications of generalized differentiation
results for both distance functions (1.1) and (1.2) under consideration; see, e.g.,
[2, 3-8, 15, 16, 19] and the references therein for some applications of previously
known results in this direction. In this section we choose to present two new
applications of the results obtained above. The first one gives new conditions for
the projection nonemptiness in infinite dimensions; the second applications ensures
the Lipschitz continuity of the general distance function ρ from (1.2), which strongly
relates to Lipschitzian stability of constraint and variational systems; cf. [16]. The
next theorem provides, besides efficient conditions for the projection nonemptiness,
refined upper estimates for the limiting subdifferential of distance functions (1.1)
and (1.2) in the (range) Hilbert space setting.

Theorem 6.1. (Sufficient conditions for the projection nonemptiness via limit-
ing subgradients).Let F : Z →→ X be a closed-graph mapping from Asplund space
Z to a Hilbert space X , and let (z̄, x̄) /∈ gph F . Assume that ρ is l.s.c. around
(z̄, x̄) and that

∂ρ(z̄, x̄) ∩ {
(z∗, x∗) ∈ Z∗ × X∗∣∣ ||x∗|| = 1

} �= ∅.
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Then Π(x̄; F (z̄)) is nonempty. Moreover,

∂ρ(z̄, x̄)
⋂ {

(z∗, x∗) ∈ Z∗ × X∗
∣∣∣ ||x∗|| = 1

}

⊂
⋃

ω̄∈Π(x̄;F (z̄))

{
(z∗, x∗) ∈ N ((z̄, ω̄); gphF )

∣∣∣ x∗ =
x̄ − Π(x̄; F (z̄))

ρ(z̄, x̄)

}
.

In particular, Π(x̄; Ω) �= ∅ for any closed subset Ω ⊂ X of a Hilbert space with
x̄ /∈ Ω and ∂d(x̄; Ω) ∩ S∗ �= ∅. Furthermore, in the latter case one has

∂d(x̄; Ω) ∩ S∗ ⊂ x̄ − Π(x̄; Ω)
d(x̄; Ω)

.

Proof. Fix any (z∗, x∗) ∈ ∂ρ(z̄, x̄) with ||x∗|| = 1. By definition there are
sequences

(zk, xk)
ρ−→ (z̄, x̄) and (z∗k, x∗

k)
w∗−−→ (z∗, x∗) such that (z∗k, x∗

k) ∈ ∂̂ρ(zk, xk).

Then x∗
k ∈ ∂̂d(·; F (zk)) at x = xk with xk /∈ F (zk) when k is sufficiently large.

It follows from [21, Theorem 5.3] that Π(xk; F (zk)) is a singleton {ωk} and that

x∗
k =

xk − ωk

ρ(zk, xk)
.

Using now Corollary 3.4 for the case of Fŕechet normals and subgradients, we
conclude that (z∗k, x

∗
k) ∈ N̂ ((zk, ωk); gphF ). Since ||x∗

k|| = 1 → 1 = ||x∗||,
x∗

k
w−→ x∗, and the norm in Hilbert space is Kadec, one has x∗

k

||.||−−→ x∗. This
implies that

ωk → x̄ − x∗ρ(z̄, x̄) as k → ∞.

Putting ω̄ := x̄ − x∗ρ(z̄, x̄), we obtain

||x̄− ω̄|| = ||x∗ρ(z̄, x̄)|| = ρ(z̄, x̄).

Hence Π(x̄; F (z̄)) �= ∅, (z∗, x∗) ∈ N ((z̄, ω̄); gphF ), and

x∗ =
x̄ − ω̄

ρ(z̄, x̄)
∈ x̄ − Π(x̄; F (z̄))

ρ(z̄, x̄)
,

which complete the proof of the theorem.

The last theorem gives efficient conditions ensuring the Lipschitz continuity of
the general distance function (1.2) at out-of-set points.
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Theorem 6.2. (Sufficient conditions for Lipschitzian continuity of the general
distance function at out-of-set points).Let F : Z →→ X be a closed-graph mapping
between Asplund spaces, and let (z̄, x̄) /∈ gph F . Assume that Π(x̄; F (z̄)) �= ∅,
that ρ is l.s.c., and that the well-posedness condition Theorem 3.7 holds. Suppose
also that there is t ∈ (0, 1] such that the mapping F t,ω̄ defined in Corollary 3.4 is
Lipschitz-like around (z̄; tω̄ + (1 − t)x̄) for all ω̄ ∈ Π(x̄; F (z̄)). Then ρ is locally
Lipschitzian around (z̄, x̄).

In particular, if the well-posedness condition Theorem 3.7 holds and the original
mapping F is Lipschitz-like around (x̄, ω̄) for any ω̄ ∈ Π(x̄; F (z̄)), then ρ is locally
Lipschitzian around (z̄, x̄).

Proof. Using [15, Lemma 2.36], it is not hard to prove that a necessary and
sufficient condition for a l.s.c. function f : X → IR defined on an Asplund space X

to be SNEC is as follows: for any sequences λk ↓ 0, xk
f→ x̄, and x∗

k ∈ λk∂̂f(xk)
one has [

x∗
k

w∗→ 0
]

=⇒ [‖x∗
k‖ → 0

]
as k → ∞.(6.2)

Now fix any ω̄ ∈ Π(x̄; F (z̄)) and also fix t ∈ (0, 1] from in the assumptions of the
theorem. Since Ft,ω̄ is assumed to be Lipschitz-like around (z̄; tω̄ + (1 − t)x̄), we
have

D∗
MFt,ω̄(z̄, tω̄ + (1 − t)x̄)(0) = {0} for all ω̄ ∈ Π(x̄; F (z̄))

due to the coderivative criterion from [14, Theorem 4.3]. Then the singular sub-
differential inclusion from Theorem 5.3 valid under the well-posedness condition
implies that ∂∞ρ(z̄, x̄) = {0}. To ensure the Lipschitz continuity of ρ around
(z̄, x̄), it remains, by [15, Theorem 3.49], to show that ρ is SNEC at (z̄, x̄).

To proceed, let us employ the above characterization of the SNEC property and
consider arbitrary sequences

λk ↓ 0, (zk, xk)
ρ−→ (z̄, x̄), and (z∗k, x

∗
k) ∈ λk∂̂ρ(zk, xk)

with (z∗k, x∗
k)

w∗−−→ 0 as k → ∞. We need to prove that ‖(z∗k, x∗
k)‖ → 0. Take

a sequence (z̃∗k, x̃∗
k) ∈ ∂̂ρ(zk, xk) satisfying (z∗k, x

∗
k) = λk(z̃∗k, x̃

∗
k). Then, by the

assumed well-posedness condition, find a sequence {ωk} ∈ Π(xk; F (zk)) which has
a subsequence (without relabeling) converging to some ω̄ ∈ Π(x̄; F (z̄)). Using the
argument in the proof of Theorem 3.8, one can find a sequence ω̃k ∈ Π(xk; Ft,ω̄(zk))
such that ω̃k → ω̃ ∈ Π(x̄; Ft,ω̄(z̄)) and

(z̃∗k, x̃
∗
k) ∈ N̂ ((zk, ω̃k); gphFt,ω̄) with ‖x̃∗

k‖ = 1,

which implies that ‖x∗
k‖ = λk‖x̃∗

k‖ → 0 as k → ∞. Taking into account that

(z∗k, x
∗
k) = λk(z̃∗k, x̃∗

k) ∈ N̂ ((zk, ω̃k); gphFt,ω̄) with ‖x∗
k‖ → 0
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and using again [14, Theorem 3.3], we ensure that Ft,ω̄ is PSNC at (z̄, ω̃), and
hence ‖z∗k‖ → 0 as k → ∞. This completes the proof of the theorem.
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