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NULL BOUNDARY CONTROLLABILITY FOR A FOURTH
ORDER SEMILINEAR EQUATION

Hsiao-Fang Chou and Yung-Jen Lin Guo

Abstract. We consider the null boundary controllability for a one-dimensional
fourth order semilinear equation. We show that if the initial data is continuous
and sufficiently small, then the fourth order semilinear equation is controllable.

1. INTRODUCTION

We consider the following initial boundary value problem for a one-dimensional
fourth order semilinear equation

(1.1) wt + wxxxx = f(w, x) on (0, 1)× (0,∞),

(1.2) w(0, t) = 0, wx(0, t) = 0 for t ≥ 0,

(1.3) w(x, 0) = w0(x) for x ∈ [0, 1],

(1.4) w(1, t) = g(t), wx(1, t) = h(t) for t ≥ 0,

where f(s, x) is a function defined in N×[0, 1] where N is a neighborhood of the
origin, satisfying

| f(s1, x1) − f(s2, x2) |≤ K[ | s1 − s2 | + | x1 − x2 |α]

for s1, s2 ∈N , x1, x2 ∈ [0, 1] for some constants K > 0, 0 < α < 1, is analytic
in both arguments in a neighborhood of the origin, belongs to Gevrey class 2 in s,
varying contionuously with respect to x, and satisfies f(0, x) = 0, D1f(0, x) = 0
for all x ∈ [0, 1]. This work is devoted to syudying the null boundary controllability
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problem for (1.1)-(1.4); that is, given T > 0, is it possible, for every initial data w0

which is small enough and in an appropriate space, to find corresponding controllers
g(t) and h(t) so that the solution of the resulting problem (1.1)-(1.4) vanishes at
time T for all x ∈ [0, 1]?

Here we use the method based on the work of Y. -J. L. Guo and W. Littman [5,
6], in which the control problem is transformed to two well-posed problems. For
our case, the method proceeds roughly as follows:

(1) Extend the domain of f to be N×[0, 2] and the initial data w0 to be [0,2] so
that all properties of the extended f and w0 are preserved and w0(x) ≡ 0 in
a neighborhood of 2.

(2) With the modified function f and the initial data w 0, solve the initial boundary-
value problem:

(1.5) vt + vxxxx = f(v, x) on (0, 2)× (0,∞),

(1.6) v(0, t) = 0, vx(0, t) = 0 for t ≥ 0,

(1.7) v(2, t) = 0, vx(2, t) = 0 for t ≥ 0,

(1.8) v(x, 0) = w0(x) for x ∈ (0, 2),

(3) Choose a cut-off function ψ satisfying ψ(t) = 1 for t ≤ T/2 and ψ(t) = 0
for t ≥ T . Let

ξ(t) = vxx(0, t) · ψ(t), ζ(t) = vxxx(0, t) · ψ(t),

where v is the solution of problem (1.5)-(1.8) in step (2).
(4) Solve the Cauchy problem

(1.9) uxxxx = −ut + f(u, x) for t ≥ T0, x > 0,

(1.10)
u(0, t) = 0, ux(0, t) = 0, uxx(0, t) = ξ(t), uxxx(0, t)

= ζ(t) for t ≥ T0,

in the x-direction to obtain a solution which vanishes for t ≥ T and equals
the solution v for t ≤ T/2, where T0 is a positive constant.

(5) Setting g(t) = u(1, t) and h(t) = ux(1, t), we acquire the desired boundary
control functions.

We can conduct our study with the standard measures except step 4, in which we
use the nonlinear Cauchy-Kowalevski Theorem to solve the problem (1.9)-(1.10).
To apply this theorem, we need ξ and ζ to be of Gevrey class 2 in t for t > 0; that
is, there exist four positive constants Ci, Hi, i = 1, 2 such that
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In addition, we have to estimate the length of the x-interval of existence for the
solution u(x, t) of (1.9)-(1.10) by rechecking the constants in the proof of the
nonlinear Cauchy-Kowalevski Theorem. If the solution u(x, t) exists beyond x = 1,
then the controllers are obtained simply by reading the values of the derivatives of
v(x, t) and u(x, t) at x = 1, where v(x, t) and u(x, t) are solutions of (1.5)-
(1.8) and (1.9)-(1.10) respectively. In [6], the authors consider the null boundary
controllability for second order semilinear heat equations and acquire the results
when the initial data is bounded continuous and sufficiently small. To guarantee the
existence in the whole unit x-interval for the problem similar to problem (1.9)-(1.10),
the smallness condition on the initial data cannot be eliminated in general. In [4],
the author consider the exact boundary controllability for a second order linear heat
equation with coefficients depending on the space variable and the time variable.
With the aid of the Gevrey Class 2 properties for the coefficients, the linearity of
the differential equation and the continuity of the initial data, one can show that
the x-interval of existence for the problem similar to problem (1.9)-(1.10) is greater
than 1 and the equation is controllable without the “sufficiently small” assumption
on the initial data. In [5], the author consider the null boundary controllability for a
linear fourth order parabolic equation and assume that the initial data is continuous.
The linearity and the simplicity of the coefficients of the equation will ensure that
the existence in the entire unit x-interval for the problem similar to problem (1.9)-
(1.10). In this work, we consider a fourth order semilinear equation. The assumption
that the initial data is continuously differentiable and small enough will help us to
show that the x-interval of existence for problem (1.9)-(1.10) is greater than 1 and
therefore the equation is controllable.

We remark that the controllers g(t) and h(t) one can seek are not necessarily
unique. Null boundary controllability may also be secured by other continuous
controllers.

The controllability theory of the linear heat equation has been considerably
studied for several decades. Fattorini and Russell have, for example, initiated lots
of decisive developments and presented them in numerous articles (see, e.g. [1,
2]). Most pieces of the research are dedicated to acquiring controllable results for
parabolic equations. For the null boundary controllability of second order semilinear
parabolic equations and a fourth order parabolic equation, see [5] and [6]. The case
we consider here is a fourth order semilinear equation.

The paper is organized as follows. Section 2 contains the detailed restatement
of the nonlinear Cauchy-Kowalevski Theorem, which is used to solve the Cauchy
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problem (1.9)-(1.10) and estimate the interval of existence. At last we obtain the
null boundary controllability result for (1.1)-(1.4) in Section 3.

2. SOLUTINS OF THE CAUCHY PROBLEM IN THE x-DIRECTION

In this section, we shall solve the following Cauchy problem by using the non-
linear Cauchy-Kowalevski Theorem:

(2.1) uxxxx = −ut + f(u, x) for x > 0, t ≥ T0,

(2.2) u(0, t)=0, ux(0, t)=0, uxx(0, t)=ξ(t), uxxx(0, t)=ζ(t) for t ≥ T0,

where ξ(t) and ζ(t) are Gevrey class 2 functions in t for t > 0 and T0 is a positive
constant. We will prove that the solution exists and the x-interval of existence is
greater than 1, provided that ξ(t) and ζ(t) are sufficiently small.

A generalization of the well-known Cauchy-Kowalevski Theorem, the nonlinear
Cauchy-Kowalevski Theorem attributed to Ovcyannikov has been exploited var-
iously to obtain existence results in the study of the nonlinear abstract Cauchy
problem

du

dx
= F (u, x), |x| < η, η > 0,

u(0) = u0.

Here the solutions are sought, as functions of the variable x, in a scale of Banach
space {Xs}. The nonlinear Cauchy-Kowalevski Theorem is reduced to the Cauchy-
Kowalevski Theorem when all data are real analytic. To solve problem (2.1)-(2.2),
the method used in [6] is again employed here. We begin by considering a 1-
parameter family of Banach spaces {Xs} where the parameter s is allowed to vary
in [0,1].

Definition 2.1. {Xs}0≤s≤1 is a scale of Banach spaces if for any s ∈ [0, 1],
Xs is a linear subspace of X0 and if s′ ≤ s then Xs ⊂ Xs′ and the natural injection
of Xs into Xs′ has norm less than or equal to 1.

We denote by ‖ · ‖Xs the norm of Xs.
Since it is necessary to estimate the parameters in the nonlinear Cauchy-Kowalevski

Theorem to obtain the interval of existence, we shall restate the Theorem here.
For each i, i = 1, · · · , m, let

{
X i

s

}
0≤s≤1

be a scale of Banach spaces with
norm ‖ · ‖Xi

s
. Consider the system of differential equations

(2.3) dui

dx
= Fi(u1, u2, · · · , um, x), |x| < η, η > 0, i = 1, · · · , m,
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(2.4) ui(0) = ui,0, i = 1, · · · , m,

where the ui, as functions of the variable x, are in X i
s, i = 1, · · · , m.

We need the following hypotheses.
(H1) ui,0 ∈ X i

s for every s ∈ [0, 1] and satisfies

‖ui,0‖Xi
s
≤ Ri,0,

for some Ri,0 <∞ and for i = 1, · · · , m.

(H2) There are Ri > Ri,0 ≥ 0, i = 1, · · · , m, η > 0, such that for every pair
of numbers s, s′ with 0 ≤ s′ < s ≤ 1, the mapping Fi(u1, · · · , um, x), i =
1, · · · , m, is continuous from the set
{
u1∈X1

s | ‖u1‖X1
s
< R1

}
×· · ·×

{
um∈ Xm

s | ‖um‖Xm
s
<Rm

}
×{x| |x|< η}

into X i
s′ .

(H3) There are constants Ci, i = 1, · · · , m, such that for every pair of numbers
s, s′ with 0 ≤ s′ < s ≤ 1, for all ‖uj‖Xj

s
< Rj , ‖vj‖Xj

s
< Rj , j = 1, · · · , m,

and for all x, |x| < η, we have

‖Fi(u1, u2, · · · , um, x)− Fi(v1, v2, · · · , vm, x)‖Xi
s′

≤ Ci

(s− s′)αi

[
ϑ1

i ‖u1−v1‖X1
s

+ · · ·+ ϑm
i ‖um−vm‖Xm

s

]
, i = 1, · · · , m,

where the number ϑj
i is set to be zero if Fi is independent of uj and to be

one otherwise, for some parameters αi ≥ 0, i = 1, · · · , m, such that for any
collection of m2 numbers cji , the degree of P (λ, µ) with respect to λ, µ is at
most m, where the expression P (λ, µ) of two variables λ, µ is defined by

P (λ, µ) = det
(
λI −

[
µα

i ϑ
j
i c

j
i

])
,

with I the m×m identity matrix and the degree is defined to be the highest
degree among all monomials in P (λ, µ).

(H4) Fi(0, · · · , 0, x) is a continuous function of x, |x| < η, with values in X i
s for

every s < 1 and satisfies

‖Fi(0, · · · , 0, x)‖Xi
s
≤ Ki

(1− s)αi
, 0 ≤ s < 1,

for some constants Ki, i = 1, · · · , m, with αi defined in (H3).
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Then we have the following existence and uniqueness theorem for solutions of
(2.3)-(2.4).

Theorem 1.1 [6]. Under the preceding hypotheses (H1)-(H4) there is a
positive constant ρ such that the Cauchy problem (2.3)-(2.4) has a unique solu-
tion {ui(x), i = 1, · · · , m}, which are continuously differentiable functions of x,
|x| < ρ(1−s), with values in X i

s such that ‖ui(x)‖Xi
s
< Ri for every s < 1/2.

Remark 2.1. The proof of Theorem 2.1 [6] offers us an estimate of the
interval of existence. For m = 5, which is the case we will consider, the constant
ρ in Theorem 2.1 is any positive constant satisfying

ρ <
1

8 4
√

2(4C5 +N )
,

8(2ρ)2(R3,0 + 8ρR4,0) <
R1

2
,

4ρ(R3,0 + 8ρR4,0) <
R2

2
,

4ρ[R4,0 + 64(4C5 +N )(2ρ)3R3,0] <
R3 − R3,0

2
,

32(4C5 +N )(2ρ)3(R3,0 + 8ρR4,0) <
R4 − R4,0

2
,

16C5(2ρ)3(R3,0 + 8ρR4,0) <
R5

2
,

where Ci, Ri, Ri,0 are constants in the hypotheses (H1)-(H4), for i = 1, 2, · · · , 5
and N is a constant depending on R1. We note that the interval [0, ρ) is not
necessary the largest length of the interval of existence because we have not always
chosen the best possible constants here.

To apply Theorem 2.1 to solve the Cauchy problem (2.1)-(2.2), we choose the
following scale of Banach spaces.

Definition 2.2. Let K be a compact interval and let θ0 and θ1 be two positive
constants such that θ0 < θ1 < ∞. Given s ∈ [0, 1], we define the space Bs(K)
to be the set of all C∞(K) functions φ satisfying

(2.5) ‖φ‖Bs
≡ sup

n≥0
max
t∈K

ñ4θ(s)n

λ(2n)!

∣∣∣φ(n)(t)
∣∣∣ <∞,

where 1/θ(s) = (1 − s)/θ0 + s/θ1, ñ = max(n, 1), and λ is any positive constant
satisfying

λ ≤ 1/[2 + 24
∞∑

k=1

(1/k)4].
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It is easy to see that ‖ · ‖Bs in (2.5) is a norm on Bs(K) which makes
{Bs(K)}0≤s≤1 a scale of Banach spaces.

The Gevrey class 2 functions which play an important role in this work are
defined as follows.

Definition 2.3. Let Ω be a subset of Rn and δ > 0. A C∞ function f in
Ω is said to be of Gevrey class δ in Ω (in short, f ∈ γδ(Ω)) if there exist positive
constants C and H such that

|Dα
xf(x)| ≤ CH |α|(δ|α|)!

for all multi-indices α and for all x ∈ Ω, where α! = Γ(α + 1) and Γ is the usual
gamma function.

It is obvious that a function of Gevrey class δ in Ω is bounded.
Now we can easily deduce (a) and (b) of the following proposition which de-

scribe the relationship between the space Bs(K) and the Gevrey class 2 functions.
We also have (c) by [6, Proposition 4.5].

Proposition 2.1. Let K be a compact intervel. Then
(a) The space Bs(K) is contained in γ 2 for all s ∈ [0, 1].
(b) Suppose φ : R → R is an infinitely differentiable function defined in K and

there are positive constants C and H such that

|φ(j)(t)| ≤ CHj(2j)!,

for all t and for all j = 1, 2, · · · . If the constant θ 1 in definig Bs(K) satisfies
θ1 < 1/H , then φ ∈ Bs(K) for all s ∈ [0, 1].

(c) Suppose that f(z, x) is a real-valued function on R 2 which is of Gevrey class
2 in its first argument for all (z, x) ∈ I × {x ∈ R||x| ≤ ω}, where I is
any compact z-intervel and ω is some positive number. Define a map F on
Bs(K)× {x ∈ R||x| ≤ ω} by

F (u, x)(t) = f(u(t), x).

Then F is a map fromBs(K)×{x ∈ R||x| ≤ ω} intoBs′(K), 0 ≤ s′ ≤ s ≤ 1.

According to [6,position 4.2], the partial differentiation ∂/∂t defines a bounded
linear operator from Bs(K) into Bs′(K) for 0 ≤ s′ < s ≤ 1 with norm less than
or equal to C/(s − s′)2, where C is a positive constant which can be taken as
(4/e)2θ0/(θ1 − θ0)2. Note that we can make the constant C as small as we desire
by taking the constant θ0 sufficiently small while keeping the constant θ1 fixed in
the definiton of Bs(K).
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Following is the main result of this section.

Theorem 2.2. Let the function f(u, x) belong to Gevrey class 2 locally in
its first argument, varying continuously with respect to x, and satisfy f(0, x) = 0
and D1f(0, x) = 0 for all x ∈ [0, 2]. Suppose that ξ(t), ζ(t) ∈ γ 2([T0,∞)) with
support [T0, T ] for some T > T0. Then a classical solution u(x, t) of (2.1),(2.2)
exists and the x-interval of existence will be greater than 1 when ξ(t) and ζ(t) are
small enough.

Proof. To apply Theorem 2.1, let

v1 = u, v2 = ux, v3 = uxx, v4 = uxxx and v5 = ut

so that the problem (2.1)-(2.2) is converted to a first-order system of differential
equations

(2.6) dv1
dx

(x, ·) = v2(x, ·),

(2.7) dv2
dx

(x, ·) = v3(x, ·),

(2.8) dv3
dx

(x, ·) = v4(x, ·),

(2.9) dv4
dx

(x, ·) = −v5(x, ·) + f(v1(x, ·), x),

(2.10) dv5
dx

(x, ·) =
∂

∂t
v2(x, ·),

with the Cauchy data

(2.11) v1(0, ·) = 0, v2(0, ·) = 0, v3(0, ·) = ξ(·), v4(0, ·)=ζ(·), v5(0, ·) = 0.

For any finite positive number ε, let

K = [T0, T + ε] and D = [0, 2]×K.

Since ξ(t), ζ(t) ∈ γ2(D) and f(u, x) belong to Gevrey class 2 locally in its first
argument, there exist positive constants Mi, Hi, i = 1, 2, 3 such that∣∣∣∂j

t ξ(t)
∣∣∣ ≤M1H

j
1(2j)!,

∣∣∣∂j
t ζ(t)

∣∣∣ ≤M2H
j
2(2j)!,

∣∣∂j
uf(u, x)

∣∣ ≤M3H
j
3(2j)!,
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for all t ∈ K and any nonnegative integers j. Choose two constants θ0, θ1 satisfying
0 < θ0 < θ1 < min(1/H1, 1/H2, 1/H3). We use the same notation as in Theorem
2.1. Let X i

s = Bs(K), i = 1, 2, · · · , 5, where {Bs(K)}0≤s≤1 is the scale of
Banach spaces as defined in Definition 2.2 with constants θ0 and θ1 and R1,0 =
R2,0 = R5,0 = 0, R3,0 = ‖ξ‖B1, R4,0 = ‖ζ‖B1 . Then by Proposition 2.1 it is easy
to check that ξ(t), ζ(t) ∈ Bs(K) for all s ∈ [0, 1] and assumptions (H1)-(H4) of
Theorem 2.1 are all satisfied with Ci = 1, for i = 1, 2, 3, some positive constant
C4 and C5 = (4/e)2θ0/(θ1 − θ0)2 which can be chosen as small as we wish by
taking the constant θ0 sufficiently small while keeping the constant θ1 fixed in the
definition of Bs(K). By Theorem 2.1, a constant ρ > 0 exists and the Cauchy
problem (2.6)-(2.11) has a unique solution {vi(x, ·), i= 1, 2, · · · , 5}. So (2.1)-(2.2)
has a C4 solution u(x, ·) ∈ B0(K) for |x| < ρ.

According to the proof of the nonlinear Cauchy-Kowalevski Theorem in [6],
since for any constants R1 > 0, R5 > 0 and for vi, ṽi ∈ Bs(K), i = 1, 5, s ∈ [0, 1]
with ‖vi‖Bs < Ri, ‖ṽi‖Bs < Ri, and |x| < η, where η can be any large number for
our problem, we have, for 0 ≤ s′ < s ≤ 1,

‖[−v5 +f(v1, x)]− [−ṽ5 + f(ṽ1, x)]‖Bs′
≤‖v5 − ṽ5‖Bs+ ‖f(v1, x)−f(ṽ1, x)‖Bs

≤‖v5 − ṽ5‖Bs+N‖v1 − ṽ1‖Bs,

where N depending on R1 is a constant which can become small enough when
R1 → 0 by the assumption D1f(0, x) = 0, the length of the x-interval of existence
ρ is any positive constant satisfying

ρ <
1

8 4
√

2(4C5 +N )
,

8(2ρ)2(R3,0 + 8ρR4,0) <
R1

2
,

4ρ(R3,0 + 8ρR4,0) <
R2

2
,

4ρ[R4,0 + 64(4C5 +N )(2ρ)3R3,0] <
R3 −R3,0

2
,

32(4C5 +N )(2ρ)3(R3,0 + 8ρR4,0) <
R4 −R4,0

2
,

16C5(2ρ)3(R3,0 + 8ρR4,0) <
R5

2
.

By choosing Ri large enough for i = 2, 3, 4, 5 and, under the assumptions that
R3,0 = ‖ξ‖B1, R4,0 = ‖ζ‖B1 are both sufficiently small, taking R1 and the constant
C5 small enough, the x-interval of existence ρ can be greater than 1.
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3. EXISTENCE OF BOUNDARY CONTROLLERS

The final goal of this work to prove the existence of the boundary controllers
g(t) and h(t) will be achieved in this section. In Theorem 3.2 we acquire the
continuously differentiable controllers g(t) and h(t) that lead a prescribed initial
data w0 to zero within a finte time for the problem (1.1)-(1.4). To accomplish
our purpose, we need theorem 3.1 beforehand, whose proof is similar to the proof
of Theorem 2.1 in the paper of D. Kinderlehrer and L. Nirenberg [8] with some
modification. We omit the proof here. See also [10] for more details for a second
order parabolic equation.

Theorem 3.1. Let v(x, t) ∈ C∞([0, 1]× [0, 1]) be a solution of the problem

vt + vxxxx − f(v, x) = 0 on 0 < x < 1, t > 0,

v(0, t) = 0, vx(0, t) = 0 for t ≥ 0,

where f(v, x) is a Gevrey calss 2 function of v and x in the range of these two
arguments for 0 ≤ x ≤ 1, t ≥ 0.
Then for each σ, 0 < σ < 1

2 , v(x, t) is of Gevrey class 2 in x and t in

{(x, t) : 0 ≤ x < 1 − σ, σ < t < 1};

that is, the derivatives of v satisfy

|∂k
x∂

j
t v| ≤ CH2k+2j(2k + 2j)!

for some positive constants C, H and for all k = 0, 1, 2, · · · , and j = 0, 1, 2, · · · .
Now, we are ready to prove the principal result of this paper.

Theorem 3.2. Suppose f(s, x) defined in N×[0, 1], where N is a neighbor-
hood of the origin, is an analytic function in both arguments in a neighborhood of
the origin satisfying

| f(s1, x1) − f(s2, x2) |≤ K[ | s1 − s2 | + | x1 − x2 |α]

for s1, s2 ∈N , x1, x2 ∈ [0, 1] for some constants K > 0, 0 < α < 1, belonging
to Gevrey class 2 in s, and varying contionuously with respect to x. Let f(0, x) =
0, D1f(0, x) = 0 for all x ∈ [0, 1] and let the initial data w 0(x) be a continuous
sufficiently small function in [0, 1] and vanish at zero. Then, for any finite time
T > 0, there exist controllers g(t), h(t) ∈ C∞((0,∞) ∩ C([0,∞)) such that the
solution w(x, t) of (1.1)-(1.4) satisfies w(x, T ) ≡ 0 for x ∈ [0, 1].

Proof. We organize the proof in a series of steps.
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Step 1. Extend the domain of the initial data w0(x) to be [0,2] so that w0(x) re-
mains continuous, w0(x) ≡ 0 in a neighboorhood of 2 and ‖w0‖L∞([1,2]) ≤
‖w0‖L∞([0,1]). We also extend the domain of f to be N×[0, 2] such that all
properties of f are retained.

Step 2. With the modified initial condition, we solve the initial boundary-value prob-
lem

(3.1) wt +wxxxx = f(w, x) on (0, 2)× (0,∞),

(3.2) w(0, t) = 0, wx(0, t) = 0 for t ≥ 0,

(3.3) w(2, t) = 0, wx(2, t) = 0 for t ≥ 0,

(3.4) w(x, 0) = w0(x) for x ∈ (0, 2).

It is well-known that the solution w(x, t) exists locally and is bounded, cf.
[1, 3]. Let T1 be any given finite time and ε < T1/2 be any small positive
number so that f(w, x) is analytic in the range of values assumed by w, x
for x ∈ [0, 2ε]. Then clearly w(x, t) belongs to C∞ for x ∈ [0, 2ε] and
t ∈ [ε, T1].

Step 3. Firstly, we claim that wxx(0, t) and wxxx(0, t) are both γ2 functions in t for
2ε ≤ t ≤ T1, where w(x, t) is the solution obtained in Step 2. Next, for
small T < T1, choosing a cut-off function ψ satisfying ψ(t) = 1 for t ≤ T/2
and ψ(t) = 0 for t ≥ T , we modify wxx(0, t) and wxxx(0, t) to be functions
wxx(0, t)ψ(t) and wxxx(0, t)ψ(t) with support in [0, T ].
Let u0(x) = w(x, ε), where ε < T1/2 is any small positive number as in
Step 2. Since w(x, t) is a C∞([0, 1]× [ε, T1]) solution of the problem

wt + wxxxx = f(w, x) on (0, 2ε)× (ε, T1],

w(0, t) = 0, wx(0, t) = 0 for ε ≤ t ≤ T1,

w(x, ε) = u0(x) for x ∈ (0, 2ε),

w(x, t) is of Gevrey class 2 in t for 0 ≤ x ≤ ε and 2ε ≤ t ≤ T1 by Theorem
3.1. Hence wxx(0, t) and wxxx(0, t) belong to γ2 in t for 2ε ≤ t ≤ T1.
Moreover, it can be easily seen that small initial data w0(x) in sup norm
implies ‖wxx(0, t)‖B1 and ‖wxxx(0, t)‖B1 will be sufficiently small for t ∈
[2ε, T ] when T < T1 is small enough.

Let ψ(t) ∈ C∞ on [0,∞) satisfying
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0 ≤ ψ(t) ≤ 1,

ψ(t) = 0 for t ≥ T,

ψ(t) = 1 for 0 ≤ t ≤ T + 2ε
2

.

We can take ψ(t) to be of Gevrey class 2 with some care (see [7]).
Set

ξ(t) =




wxx(0, t)ψ(t) for 2ε ≤ t ≤ T,

0 for t ≥ T,

and

ζ(t) =




wxxx(0, t)ψ(t) for 2ε ≤ t ≤ T,

0 for t ≥ T.

Since the Gevrey class of functions forms an algebra which is closed un-
der multiplication, ξ(t), ζ(t) ∈ γ2 in t for t ≥ 2ε and vanish for t ≥ T .
When T is small, ξ(t), ζ(t) will be small enough because ‖wxx(0, t)‖B1 and
‖wxxx(0, t)‖B1 are sufficiently small.

Step 4. Now we solve the Cauchy problem

(3.5) uxxxx= −ut + f(u, x) on (0, 2)× (2ε,∞),

(3.6) u(0, t)=0, ux(0, t)=0, uxx(0, t)=(t), uxxx(0, t)=ζ(t), for t ≥ 2ε.

Since ξ(t), ζ(t) are small, according to Theorem 2.2 there exist a constant
ρ > 1 and a classical solution u(x, t) of (3.5)-(3.6) for 0 < x < ρ, t ≥ 2ε.
Before moving to the final step, we shall derive that w(x, t) and u(x, t) agree
in [2ε, (T + 2ε)/2]. Let z(x, t) = w(x, t) − u(x, t). Then it is easy to see
that z ≡ 0 on [0, 1]× [2ε, (T + 2ε)/2] by L. Nirenberg’s Theorem [11], so
w(x, t) and u(x, t) are identical on [0, 1]× [2ε, (T + 2ε)/2].

Step 5. Consequently, the required boundary controllers g(t) and h(t) can be read off
through w(x, t) and u(x, t) by defining g(t) = w(1, t), h(t) = wx(1, t) for
0 ≤ t ≤ 2ε and g(t) = u(1, t), h(t) = ux(1, t) for t ≥ 2ε.

The proof of Theorem 3.2 is complete.
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