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Blow-up Analysis for a Nonlocal Reaction-diffusion Equation with Robin

Boundary Conditions

Lingwei Ma and Zhong Bo Fang*

Abstract. This work is concerned with the blow-up phenomena for a nonlocal reaction-

diffusion equation with null Robin boundary conditions. We establish sufficient con-

ditions to guarantee the solution exists globally or blows up at finite time under

appropriate measure sense. Moreover, upper and lower bounds for the blow-up time

are derived in higher dimensional spaces. Finally, some application examples are pre-

sented.

1. Introduction

Our main interest lies in the following reaction-diffusion equation with weighted nonlocal

sources

ut = ∆u+ a(x)f(u), (x, t) ∈ Ω× (0, t∗),(1.1)

subject to null Robin boundary and initial conditions

∂u

∂ν
+ σu = 0, (x, t) ∈ ∂Ω× (0, t∗),(1.2)

u(x, 0) = u0(x) ≥ 0, x ∈ Ω,(1.3)

where Ω ⊂ RN (N ≥ 2) is a bounded region with smooth boundary ∂Ω, ν is the unit

outward normal vector on ∂Ω, and t∗ represents the blow-up time when blow-up occurs,

otherwise t∗ = +∞. The nonlinearity f(u) is assumed to be nonnegative continuous func-

tion satisfies appropriate nonlocal conditions, which include the form of uk
(∫

Ω u
l+1 dx

)m
.

Moreover, the weight function a(x) ∈ C0(Ω) satisfies

(A1) a(x) > 0, x ∈ Ω and a(x) = 0, x ∈ ∂Ω, or

(A2) a(x) ≥ c > 0 for all x ∈ Ω,
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where c is a positive constant. Meanwhile, σ is a positive constant and the initial data

u0(x) is a positive C1-function which satisfies a compatibility condition. Therefore, by

the classical parabolic theory, one can deduce that the solution of problem (1.1)–(1.3) is

nonnegative and smooth, of maximal existence time t∗ ∈ (0,+∞]. Moreover, if t∗ < +∞,

then u blows up in finite time in L∞-norm. Our nonlocal model (1.1) can account for many

natural phenomena, such as blasting model, compressible reactant gas model, population

dynamics theories, some biological species with a human-controlled distribution model,

and the model of phase separation in binary alloys (see [1, 3, 5, 8] and the references

therein).

In the past decades, there have been many authors dealing with global existence and

blow-up phenomena of the solutions to the local or nonlocal reaction-diffusion equations,

and there have been many monographs as well as the survey paper (cf. [4,9,15]). Specially,

Quittner and Souplet [15, Chapter 5] introduced the qualitative properties of the solution

to nonlocal reaction-diffusion equation with Dirichlet boundary condition in detail. In

some sense, the nonlocal models are more close to the actual model than the local models,

but such nonlocal models do not seem to be so much investigated than local models, and

now many local theories are no longer holding. Hence this problem is challenging and

difficult. In this paper, we would like to investigate blow-up phenomena of the solution

for a class of nonlocal reaction-diffusion equation with Robin boundary condition, and our

main purpose is to derive the bounds of the blow-up time if the blow-up occurs in finite

time. As far as we know, a variety of methods have been used to study upper bounds

of the blow-up time to the parabolic equations (cf. [14]). However, due to the explosive

nature of the solutions, it is very important in applications to determine lower bounds on

the blow-up time. Presently, the research on the lower bound of the blow-up time for the

nonlocal problems with Dirichlet or Neumann boundary condition had some new progress.

We provide the reader to the literature [7,10,16,19] (constant coefficients case) and [2,12]

(time-dependent coefficients case), and the references therein. Moreover, the study on the

local parabolic equations with time-dependent coefficients and nonlinear boundary flux,

one can refer to [6]. For some recent interesting research on the local reaction-diffusion

equation with nonlocal boundary conditions see [13].

Specially, we are very concerned about the recent research works of Song and Lv [11,17].

They considered the semilinear parabolic equation with weighted local sources

ut = ∆u+ a(x)f(u), (x, t) ∈ Ω× (0, t∗),

where the weight function satisfied a(x) ∈ C2(Ω) ∩ C0(Ω) with

(A1) a(x) > 0, x ∈ Ω and a(x) = 0, x ∈ ∂Ω, or

(A2) a(x) ≥ c > 0 for all x ∈ Ω, or
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(A3) a(x) ≡ 0 for all x ∈ Ω, or

(A4) 0 < c1 < a(x) < c2 for all x ∈ Ω.

When the initial boundary value problem with nonlinear Neumann boundary condition,

and weight function a(x) satisfied (A1) or (A3) or (A4), they obtained the bounds for

the blow-up time of the solution in three-dimensional space (cf. [11]). In [17], the initial

boundary value problem with homogeneous Dirichlet or Neumann boundary condition,

and weight function a(x) satisfied (A1) or (A2) were considered, where they derived the

bounds for the blow-up rate and the blow-up time in any smooth bounded domain Ω ⊂ RN

(N ≥ 3). Notes that, their results involved the case that some nonlinearities f(u) satisfied

nonlocal condition.

By the above-mentioned works, the study on blow-up analysis for the reaction-diffusion

equations with weighted nonlocal inner source terms and Robin boundary condition has

not been proceeded yet in the higher dimensional spaces. At a glance, the main difficulty

lies in finding the influence of weight function a(x) and source terms to the blow-up

phenomena. We pay our attention to establish sufficient conditions to guarantee the

solution of problem (1.1)–(1.3) exists globally or blows up at finite time under appropriate

measure sense. Moreover, upper and lower bounds for the blow-up time are derived in

higher dimensional spaces.

The rest of the paper is organized as follows. In Section 2, we construct suitable super-

solution of problem (1.1)–(1.3) to get the solution exists globally. In Section 3, we impose

the sufficient conditions on weight function a(x) and nonlocal source terms f to guarantee

that the solution of problem (1.1)–(1.3) blows up at finite time, and obtain an upper

bound for the blow-up time. In Section 4, we will be devoted to drive lower bounds for

the blow-up time under two different measure in the higher dimensional spaces. Moreover,

a few examples are given to illustrate applications of our main results in Section 5.

2. The global existence

In this section, we seek a global super-solution to derive the solution of problem (1.1)–(1.3)

exists globally. More precisely, we obtain the following main results.

Theorem 2.1. Suppose that the nonnegative function f satisfies

(2.1) f(s(x, t)) ≤ (s(x, t))k
(∫

Ω
(s(x, t))l+1 dx

)m
, s(x, t) ≥ 0,

where the function s(x, t) ∈ C(Ω × (0, t∗)), and the positive constants k, l, m such that

k + (l + 1)m > 1. Meanwhile, the weight function a(x) ∈ C0(Ω) satisfies (A1) or (A2),

the initial data u0(x) ≤ A−δ11 φ1(x), where δ1 is an arbitrary positive constant, A1 > 1 is
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sufficiently large, and φ1(x) > 0 is the first eigenfunction which corresponding the first

eigenvalue λ1 of the following eigenvalue problem

∆φ1 + λ1φ1 = 0, x ∈ Ω,

∂φ1

∂ν
+ σφ1 = 0, x ∈ ∂Ω,

which is normalized by maxx∈Ω φ(x) = 1.

Then the nonnegative classical solution u(x, t) of problem (1.1)–(1.3) does not blow up;

that is, u(x, t) exists for all t > 0.

Proof. Setting w = (A1 +t)−δ1φ1(x), where δ1 > 0, A1 > 0 are constants to be determined

later. First, by virtue of maxx∈Ω φ(x) = 1, we can compute

wt −∆w − a(x)wk
(∫

Ω
wl+1 dx

)m
= −δ1(A1 + t)−δ1−1φ1 + λ1(A1 + t)−δ1φ1 − a(x)(A1 + t)−δ1(k+(l+1)m)φk1

(∫
Ω
φl+1

1 dx

)m
≥ φ1(A1 + t)−δ1

(
−δ1(A1 + t)−1 + λ1 − a(x)(A1 + t)−δ1(k+(l+1)m−1)

)
,

where the constant A1 is sufficiently large such that

(2.2) wt −∆w − a(x)wk
(∫

Ω
wl+1 dx

)m
≥ 0, x ∈ Ω, t > 0.

Next, we can derive the following equality on ∂Ω:

(2.3)
∂w

∂ν
+ σw = (A1 + t)−δ1

(
∂φ1

∂ν
+ σφ1

)
= 0, x ∈ ∂Ω, t > 0.

Finally, we require that the initial data satisfies

(2.4) w(x, 0) = A−δ11 φ1(x) ≥ u0(x), x ∈ Ω.

Therefore, the relations (2.2)–(2.4) show that w(x, t) is a super-solution of the prob-

lem (1.1)–(1.3). It can be easily seen that w(x, t) exists globally. Thus, by the comparison

principle and (2.2)–(2.4), u(x, t) is global. The proof of Theorem 2.1 is completed.

Remark 2.2. Indeed, if the nonnegative function f satisfies

(2.5) f(s(x, t)) ≥ (s(x, t))k
(∫

Ω
(s(x, t))l+1 dx

)m
, s(x, t) ≥ 0,

with the function s(x, t) ∈ C(Ω × (0, t∗)), and the positive constants k, l, m such that

k + (l + 1)m > 1. Meanwhile, the weight function a(x) ∈ C0(Ω) satisfies (A1) or (A2).

Moreover, the initial data u0(x) ≥ A2T
−δ2φ1(x), where A2 > 0 is sufficiently large, and

T, δ2 > 0. So it can be easily shown that w(x, t) = A2(T − t)−δ2φ1(x) is a sub-solution

of the solution u(x, t) for the problem of (1.1)–(1.3), which blows up at finite time t = T .

Hence, the solution u(x, t) of problem (1.1)–(1.3) blows up at some finite time t∗ ≤ T .
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3. Blow-up and upper bound of t∗

In this section, we assume certain nonlocal condition on nonlinearity to guarantee that

the solution of (1.1)–(1.3) blows up at finite time t∗ and derive an upper bound for t∗.

The result can be summarized as follows:

Theorem 3.1. Suppose that u(x, t) is a nonnegative solution of problem (1.1)–(1.3), and

the nonnegative and integrable function f satisfies the condition

(3.1) ξf(ξ) ≥ 2(1 + p)F (ξ), ξ(x, t) ≥ 0,

where the function ξ = ξ(x, t) ∈ C(Ω× (0, t∗)), and F (ξ) =
∫ ξ

0 f(η) dη, p ≥ 0. Moreover,

weight function a(x) ∈ C0(Ω) satisfies (A1) or (A2). Set

Θ(t) = −2(1 + p)

[∫
Ω
|∇u|2 dx+ σ

∫
∂Ω
u2 ds

]
+ 4(1 + p)

∫
Ω
a(x)F (u) dx

and let Θ(0) > 0. Then the solution u(x, t) of problem (1.1)–(1.3) blows up in a finite

time t∗ ≤ T0 with

T0 =
Ψ(0)

pΘ(0)
, p > 0,

where Ψ(0) =
∫

Ω u
2
0 dx. If p = 0, then u(x, t) blows up at infinite time.

Remark 3.2. In fact, we can choose

f(u) = uk
(∫

Ω
ul+1 dx

)m
, F (u) =

∫ u

0
ηk
(∫

Ω
ηl+1 dx

)m
dη,

k > 0, l + 1 > 0, m > 0, k +m(l + 1) > 1, which satisfies (3.1) in Theorem 3.1.

Proof. In order to prove that the solution blows up in finite time under the assumption

of Theorem 3.1 when p > 0, we first assume the solution u(x, t) is global to get a contra-

diction. In this way, the auxiliary function Ψ(t) is bounded for all t ≥ 0. We compute the

derivative of Ψ(t) and utilize hypotheses in Theorem 3.1, Green’s formula, we can get

Ψ′(t) = 2

∫
Ω
uut dx = 2

∫
Ω
u(∆u+ a(x)f(u)) dx

= −2σ

∫
∂Ω
u2 ds− 2

∫
Ω
|∇u|2 dx+ 2

∫
Ω
a(x)uf(u) dx

≥ −2(1 + p)

[∫
Ω
|∇u|2 dx+ σ

∫
∂Ω
u2 ds

]
+ 4(1 + p)

∫
Ω
a(x)F (u) dx

= Θ(t).

(3.2)
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Since the function Ψ(t) is bounded for all t ≥ 0, so is Θ(t). Now, differentiating Θ(t) and

using Green’s formula, we obtain

Θ′(t) = −4(1 + p)

∫
Ω
∇u · ∇ut dx− 4σ(1 + p)

∫
∂Ω
uut ds

+ 4(1 + p)

∫
Ω
a(x)f(u)ut dx

= 4(1 + p)

∫
Ω
ut(∆u+ a(x)f(u)) dx

= 4(1 + p)

∫
Ω
u2
t dx ≥ 0,

(3.3)

which implies Θ(t) > 0 for all t ≥ 0, since Θ(0) > 0. Moreover, applying the Schwarz’s

inequality, we have

Θ′(t)Ψ(t) = 4(1 + p)

∫
Ω
u2
t dx

∫
Ω
u2 dx ≥ (1 + p)(Ψ′(t))2 ≥ (1 + p)Ψ′(t)Θ(t),

which is equivalent to

(3.4) (ΘΨ−(1+p))′ ≥ 0.

Then integrating (3.4) from 0 to t, we can compute

(3.5) Θ(t)(Ψ(t))−(1+p) ≥ Θ(0)(Ψ(0))−(1+p).

Substituting (3.5) into (3.2), we yield the differential inequality

−1

p
(Ψ−p)′ = Ψ′(t)(Ψ(t))−(1+p) ≥ Θ(t)(Ψ(t))−(1+p) ≥ Θ(0)(Ψ(0))−(1+p).

We denote Γ = Θ(0)(Ψ(0))−(1+p), it turns to

(3.6) − 1

p
(Ψ−p)′ ≥ Γ.

Now, integrating again, we have the following inequality

(3.7) (Ψ(t))−p ≤ (Ψ(0))−p − pΓt.

Obviously, (3.7) cannot hold for all time, which is a contradiction. Hence the solution

u(x, t) blows up in finite time. Therefore, (3.7) leads to

(3.8) t∗ ≤ T0 =
Ψ(0)

pΘ(0)
,

valid for p > 0.

In particular, if p = 0, by a direct calculation, we can compute

Ψ(t) ≥ Ψ(0)eΘ(0)(Ψ(0))−1t,

which is valid for all t > 0, implying that the solution u(x, t) blows up at infinite time.

This completes the proof of Theorem 3.1.
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4. Lower bounds for t∗

4.1. In the sense of Ll+1-norm

In this subsection, we assume nonlinearity f satisfies the nonlocal condition (2.1), and

use the modified differential inequality to seek lower bounds for the blow-up time t∗ in

different cases.

Case 1: 0 ≤ k ≤ 1.

Theorem 4.1. Suppose that u(x, t) is the nonnegative classical solution of problem (1.1)–

(1.3), u(x, t) blows up at finite time t∗ in the Ll+1-norm, and the nonnegative function f

satisfies (2.1) with 0 ≤ k ≤ 1, l > 0, m > 0, k + (l + 1)m > 1. Meanwhile, the weight

function a(x) ∈ C0(Ω) satisfies (A1) or (A2). Then the blow-up time t∗ is bounded from

below by

t∗ ≥ T1 =
l + 1

I1(m(l + 1) + k − 1)(ϕ(0))[m(l+1)+k−1]/(l+1)
,

in the measure of ϕ(t) =
∫

Ω u
l+1 dx, where ϕ(0) =

∫
Ω u

l+1
0 dx, and I1 is a computable

positive constant.

Proof. First, differentiating ϕ(t) and using (1.1), (1.2), (2.1), and Green’s formula, we

have

ϕ′(t) = (l + 1)

∫
Ω
ul(∆u+ a(x)f(u)) dx

= −σ(l + 1)

∫
∂Ω
ul+1 ds− (l + 1)l

∫
Ω
ul−1 |∇u|2 dx+ (l + 1)

∫
Ω
a(x)ulf(u) dx

≤ −(l + 1)l

∫
Ω
ul−1 |∇u|2 dx+ (l + 1)

∫
Ω
a(x)ul+k dx

(∫
Ω
ul+1 dx

)m
.

(4.1)

Now, since 0 ≤ k ≤ 1, we can apply Hölder’s inequality to last term on the right-hand

side of (4.1), which yield

(l + 1)

∫
Ω
a(x)ul+k dx

(∫
Ω
ul+1 dx

)m
≤ (l + 1)

(∫
Ω

(a(x))(l+1)/(1−k) dx

)(1−k)/(l+1)(∫
Ω
ul+1 dx

)m+(l+k)/(l+1)

.

(4.2)

Next, inserting (4.2) into (4.1), we obtain

(4.3) ϕ′(t) ≤ I1(ϕ(t))m+(l+k)/(l+1),

where I1 = (l + 1)
(∫

Ω(a(x))(l+1)/(1−k) dx
)(1−k)/(l+1)

.

Since limt→t∗ ϕ(t) =∞, then integrating (4.3) from 0 to t∗, we can finally lead to

t∗ ≥ T1 =
l + 1

I1(m(l + 1) + k − 1)(ϕ(0))[m(l+1)+k−1]/(l+1)
.

Hence, the proof of Theorem 4.1 is completed.
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Case 2: k > 1.

We need Ω ⊂ RN (N ≥ 3) is a convex bounded domain with smooth boundary, since

we use the Sobolev type inequality in this case. More precisely, we state our results below.

Theorem 4.2. Suppose that u(x, t) is the nonnegative classical solution of problem (1.1)–

(1.3), u(x, t) blows up at finite time t∗ in the Ll+1-norm, and the nonnegative function f

satisfies (2.1) with

k > 1, l + 1 > max

{
1,

2(k − 1)(N − 2)

2N − 3− 2(N − 2)(m+ 1)

}
, 0 < m <

1

2N − 4
.

Meanwhile, weight function a(x) ∈ C0(Ω) satisfies (A1) or (A2). Then the blow-up time

t∗ is bounded from below by

t∗ ≥ T2 =

∫ ∞
ϕ(0)

dη

J1 + J2η
2N−3
2(N−2) + J3η

3(N−2)
3N−8

,

in the measure of ϕ(t), where J1, J2 and J3 are some computable positive constants.

Remark 4.3. Because of k > 1, l + 1 > max
{

1, 2(k−1)(N−2)
2N−3−2(N−2)(m+1)

}
, and 0 < m < 1

2N−4 ,

it can be easily seen that k + (l + 1)m > 1.

Proof. First, by using similar arguments as used in Theorem 4.1, we have

(4.4) ϕ′(t) ≤ − 4l

l + 1

∫
Ω

∣∣∣∇u(l+1)/2
∣∣∣2 dx+ (l + 1)

∫
Ω
a(x)ul+k dx

(∫
Ω
ul+1 dx

)m
.

Since k > 1, using Hölder’s inequality twice to the last term on the right-hand side of

(4.4), we can derive the following inequalities, respectively:(∫
Ω

ul+1 dx

)m

≤
(∫

Ω

(a(x))−
l+1
k−1 dx

) (k−1)m
l+k

(∫
Ω

a(x)ul+k dx

) (l+1)m
l+k

,(4.5)

∫
Ω

a(x)ul+k dx ≤
(∫

Ω

(a(x))
(l+1)m+l+k

(l+1)m dx

) (l+1)m
(l+1)m+l+k

(∫
Ω

u(l+1)m+l+k dx

) l+k
(l+1)m+l+k

.(4.6)

Now, substituting (4.5), (4.6) into the last term in (4.4), we obtain

(l + 1)

∫
Ω

a(x)ul+k dx

(∫
Ω

ul+1 dx

)m

≤ (l + 1)

(∫
Ω

(a(x))−
l+1
k−1 dx

) (k−1)m
l+k

(∫
Ω

(a(x))
(l+1)m+l+k

(l+1)m dx

) (l+1)m
l+k

∫
Ω

u(l+1)m+l+k dx.

(4.7)

Afterwards, applying Hölder’s and Young’s inequalities to (4.7), we can compute∫
Ω
u(l+1)m+l+k dx ≤

(∫
Ω
u

(l+1)(2N−3)
2(N−2) dx

)q1
|Ω|1−q1

≤ q1

∫
Ω
u

(l+1)(2N−3)
2(N−2) dx+ (1− q1) |Ω| ,

(4.8)
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where q1 = 2(N−2)((l+1)m+l+k)
(l+1)(2N−3) . Note that q1 ∈ (0, 1) in view of l+ 1 > 2(k−1)(N−2)

2N−3−2(N−2)(m+1) ,

and 0 < m < 1
2N−4 .

Next, by virtue of Hölder’s inequality again to the first term on the right-hand side of

(4.8), we get

(4.9)

∫
Ω
u

(l+1)(2N−3)
2(N−2) dx ≤

(∫
Ω

(
u

l+1
2

) 2N
N−2

dx

)1/4

(ϕ(t))3/4.

Then using Sobolev inequality with N ≥ 3 in [18], which show that∥∥∥u(l+1)/2
∥∥∥
L2N/(N−2)(Ω)

≤ Cs
∥∥∥u(l+1)/2

∥∥∥
W 1,2(Ω)

,

where Cs is the Sobolev optimal constant. Moreover, we apply Jensen’s inequality to

derive

(4.10)

(∫
Ω

(
u

l+1
2

) 2N
N−2

dx

)1/4

≤ Cb

[
(ϕ(t))

N
4(N−2) +

(∫
Ω

∣∣∣∇u(l+1)/2
∣∣∣2 dx) N

4(N−2)

]
,

where

(4.11) Cb =

21/2(Cs)
3/2 for N = 3,

(Cs)
N/[2(N−2)] for N > 3.

Now, inserting (4.8)–(4.10) into (4.7), meanwhile, using Young’s inequality, we obtain

(l + 1)

∫
Ω
a(x)ul+k dx

(∫
Ω
ul+1 dx

)m
≤ (l + 1)

(∫
Ω

(a(x))−
l+1
k−1 dx

) (k−1)m
l+k

(∫
Ω

(a(x))
(l+1)m+l+k

(l+1)m dx

) (l+1)m
l+k

×

[
(1− q1) |Ω|+ q1Cb(ϕ(t))

2N−3
2(N−2) +

q1Nς1
4(N − 2)

∫
Ω

∣∣∣∇u l+1
2

∣∣∣2 dx
+
q1(3N − 8)C

4(N−2)
3N−8

b

4(N − 2)ς
N

3N−8

1

(ϕ(t))
3(N−2)
3N−8

]
,

(4.12)

for arbitrary ς1 > 0 to be determined.

Finally, substituting (4.12) into (4.4), we can deduce

ϕ′(t) ≤ J1 + J2(ϕ(t))
2N−3
2(N−2) + J3(ϕ(t))

3(N−2)
3N−8 + J4

∫
Ω

∣∣∣∇u l+1
2

∣∣∣2 dx,
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where

J1 = (1− q1)J5 |Ω| ,

J2 = q1CbJ5,

J3 =
q1(3N − 8)C

4(N−2)
3N−8

b

4(N − 2)ς
N

3N−8

1

J5,

J4 =
q1NJ5ς1
4(N − 2)

− 4l

l + 1
,

J5 = (l + 1)

(∫
Ω

(a(x))−
l+1
k−1 dx

) (k−1)m
l+k

(∫
Ω

(a(x))
(l+1)m+l+k

(l+1)m dx

) (l+1)m
l+k

.

Thus, we can choose ς1 = 16l(N−2)
q1NJ5(l+1) > 0 such that J4 = 0. Therefore, it turns to

(4.13) ϕ′(t) ≤ J1 + J2(ϕ(t))
2N−3
2(N−2) + J3(ϕ(t))

3(N−2)
3N−8 .

Since limt→t∗ ϕ(t) =∞, then we integrate (4.13) from 0 to t∗ which can compute

t∗ ≥ T2 =

∫ ∞
ϕ(0)

dη

J1 + J2η
2N−3
2(N−2) + J3η

3(N−2)
3N−8

.

The proof of Theorem 4.2 is completed.

4.2. In the sense of weighted Ll+1-norm

In this subsection, we investigate the nonnegative classical solution of problem (1.1)–

(1.3) that blows up in weighted Ll+1-norm. Here, we assume nonlinearity f satisfies the

following nonlocal condition

(4.14) a(x)f(s(x, t)) ≤ (s(x, t))k
(∫

Ω
b(x)(s(x, t))l+1 dx

)m
, s(x, t) ≥ 0,

where the function s(x, t) ∈ C(Ω× (0, t∗)), and the weight function b(x) ∈ C1(Ω)∩C0(Ω)

satisfies

(4.15) b(x) > 0, x ∈ Ω and b(x) = 0, x ∈ ∂Ω,

or

(4.16) b(x) ≥ c0 > 0 for all x ∈ Ω,

with c0 is a positive constant, moreover,

(4.17) − b(x)B ≤ ∇b(x) ≤ b(x)B ⇐⇒
∣∣∣∣∂b(x)

∂xi

∣∣∣∣ ≤ Bib(x) for all x ∈ Ω,

where each B = (B1, B2, . . . , BN ) is a positive constant vector.

Case 1: 0 ≤ k ≤ 1.
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Theorem 4.4. Suppose that u(x, t) is the nonnegative classical solution of problem (1.1)–

(1.3), u(x, t) blows up at finite time t∗ in weighted Ll+1-norm, and the nonnegative function

f satisfies (4.14) with 0 ≤ k ≤ 1, l > 0, m > 0, k + (l + 1)m > 1. Meanwhile, the weight

function b(x) ∈ C1(Ω) ∩ C0(Ω) satisfies (4.15) or (4.16) and (4.17). Then the blow-up

time t∗ is bounded from below by

t∗ ≥ T3 =

∫ ∞
Φ(0)

dη

K1η +K2η
m+ l+k

l+1

,

in the measure of Φ(t) =
∫

Ω b(x)ul+1 dx, where Φ(0) =
∫

Ω b(x)ul+1
0 dx, and K1, K2 are

computable positive constants.

Proof. First, differentiating Φ(t) and utilizing (1.1), (1.2), (4.14), (4.17) and Green’s for-

mula, we have

Φ′(t) = (l + 1)

∫
Ω
b(x)ul(∆u+ a(x)f(u)) dx,

= −σ(l + 1)

∫
∂Ω
b(x)ul+1 ds− (l + 1)

∫
Ω
∇(b(x)ul) · ∇u dx

+ (l + 1)

∫
Ω
b(x)ula(x)f(u) dx

≤ (l + 1) |B|
∫

Ω
b(x)ul |∇u| dx− (l + 1)l

∫
Ω
b(x)ul−1 |∇u|2 dx

+ (l + 1)

∫
Ω
b(x)ul+k dx

(∫
Ω
b(x)ul+1 dx

)m
.

(4.18)

We now apply Schwarz’s and Young’s inequalities to the first term on the right-hand side

of (4.18) to yield

(l + 1) |B|
∫

Ω
b(x)ul |∇u| dx

≤ (l + 1) |B|
(∫

Ω
b(x)ul−1 |∇u|2 dx

)1/2(∫
Ω
b(x)ul+1 dx

)1/2

≤ (l + 1)2 |B|2 γ1

2

∫
Ω
b(x)ul−1 |∇u|2 dx+

1

2γ1

∫
Ω
b(x)ul+1 dx,

(4.19)

where γ1 is a positive constant to be chosen. Next, since 0 ≤ k ≤ 1, we can use Hölder’s

inequality to the last term on the right-hand side of (4.18) to obtain

(l + 1)

∫
Ω
b(x)ul+k dx

(∫
Ω
b(x)ul+1 dx

)m
≤ (l + 1)

(∫
Ω
b(x) dx

) 1−k
l+1
(∫

Ω
b(x)ul+1 dx

)m+ l+k
l+1

.

(4.20)
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Afterwards, inserting (4.19), (4.20) into (4.18), we can lead to

Φ′(t) ≤ 1

2γ1
Φ(t) +

[
(l + 1)2 |B|2 γ1

2
− (l + 1)l

]∫
Ω
b(x)ul−1 |∇u|2 dx

+ (l + 1)

(∫
Ω
b(x) dx

) 1−k
l+1

(Φ(t))m+ l+k
l+1 .

(4.21)

We can select γ1 = 2l
(l+1)|B|2 , then (4.21) turns into

(4.22) Φ′(t) ≤ K1Φ(t) +K2(Φ(t))m+ l+k
l+1 ,

where K1 = (l+1)|B|2
4l , K2 = (l + 1)

(∫
Ω b(x) dx

) 1−k
l+1 .

Finally, since limt→t∗ Φ(t) =∞, then we integrate (4.22) from 0 to t∗, which can derive

t∗ ≥ T3 =

∫ ∞
Φ(0)

dη

K1η +K2η
m+ l+k

l+1

.

The proof of Theorem 4.4 is completed.

Case 2: k > 1.

Similarly to the Case 2 in Subsection 4.1, here we assume Ω ⊂ RN (N ≥ 3) is a convex

bounded domain with smooth boundary. Our result can be summarized as follows:

Theorem 4.5. Suppose that u(x, t) is the nonnegative classical solution of problem (1.1)–

(1.3), u(x, t) blows up at finite time t∗ in weighted Ll+1-norm, and the nonnegative function

f satisfies (4.14) with

k > 1, l + 1 > max

{
1,

2(k − 1)(N − 2)

2N − 3− 2(N − 2)(m+ 1)

}
, 0 < m <

1

2N − 4
.

Meanwhile, the weighted function b(x) ∈ C1(Ω) ∩ C0(Ω) satisfies (4.15) or (4.16) and

(4.17). Then the blow-up time t∗ is bounded from below by

t∗ ≥ T4 =

∫ ∞
Φ(0)

dη

L1 + L2η + L3η
2N−3
2(N−2) + L4η

3(N−2)
3N−8

in the measure of weighted Ll+1-norm Φ(t), which is defined in Theorem 4.4. Here L1,

L2, L3 and L4 are some computable positive constants.

Proof. By virtue of the similar arguments as used in Theorem 4.4, we have

Φ′(t) ≤ µ1

2
Φ(t) +

[
2 |B|2 µ1 −

4l

l + 1

] ∫
Ω
b(x)

∣∣∣∇u(l+1)/2
∣∣∣2 dx

+ (l + 1)

∫
Ω
b(x)ul+k dx

(∫
Ω
b(x)ul+1 dx

)m(4.23)
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for an arbitrary µ1 > 0 to be specified later. Because of k > 1, we can use Hölder’s

inequality twice to derive

(4.24)

(∫
Ω
b(x)ul+1 dx

)m
≤
(∫

Ω
b(x) dx

) (k−1)m
l+k

(∫
Ω
b(x)ul+k dx

) (l+1)m
l+k

and

(4.25)

∫
Ω
b(x)ul+k dx ≤

(∫
Ω
b(x) dx

) (l+1)m
(l+1)m+l+k

(∫
Ω
b(x)u(l+1)m+l+k dx

) l+k
(l+1)m+l+k

.

Now, substituting (4.24), (4.25) into the last term of (4.23), we compute

(l + 1)

∫
Ω
b(x)ul+k dx

(∫
Ω
b(x)ul+1 dx

)m
≤ (l + 1)

(∫
Ω
b(x) dx

)m ∫
Ω
b(x)u(l+1)m+l+k dx.

(4.26)

Next, applying Hölder’s and Young’s inequalities to (4.26), we can obtain∫
Ω
b(x)u(l+1)m+l+k dx

≤
(∫

Ω
(b(x))

2N−3
2(N−2)u

(l+1)(2N−3)
2(N−2) dx

)q1 (∫
Ω

(b(x))
(l+1)(1−m)−l−k

(l+1)(1−q1) dx

)1−q1

≤ q1

∫
Ω

(b(x))
2N−3
2(N−2)u

(l+1)(2N−3)
2(N−2) dx+ (1− q1)

∫
Ω

(b(x))
(l+1)(1−m)−l−k

(l+1)(1−q1) dx,

(4.27)

where q1 is given in Theorem 4.2. Then using Hölder’s inequality again to the first term

on the right-hand side of (4.27), we get

(4.28)

∫
Ω

(b(x))
2N−3
2(N−2)u

(l+1)(2N−3)
2(N−2) dx ≤

(∫
Ω

(
(b(x))

1
2u

l+1
2

) 2N
N−2

dx

)1/4

(Φ(t))3/4.

We now introduce the weighted Sobolev inequality for N ≥ 3,∥∥∥(b(x))
1
2u

l+1
2

∥∥∥
L

2N
N−2 (Ω)

≤ Cs
∥∥∥(b(x))

1
2u

l+1
2

∥∥∥
W 1,2(Ω)

,

where Cs is the Sobolev optimal constant. Meanwhile, using (4.17) and Jensen’s inequality,

we can obtain

(4.29)

(∫
Ω

(
(b(x))

1
2u

l+1
2

) 2N
N−2

dx

) 1
4

≤ CB

[
Φ

N
4(N−2) +

(∫
Ω
b(x)

∣∣∣∇u l+1
2

∣∣∣2 dx) N
4(N−2)

]
,

where CB = max
{

(1 + (1
2 |B|

2)
N

4(N−2) )Cb, 2
N

4(N−2)Cb

}
, and Cb is the constant given in

(4.11).
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Inserting (4.27)–(4.29) into (4.26) and using Young’s inequality, we compute

(l + 1)

∫
Ω
b(x)ul+k dx

(∫
Ω
b(x)ul+1 dx

)m
≤ (l + 1)

(∫
Ω
b(x) dx

)m [
q1CBΦ

2N−3
2(N−2) +

q1Nµ2

4(N − 2)

∫
Ω
b(x)

∣∣∣∇u l+1
2

∣∣∣2 dx
+
q1(3N − 8)C

4(N−2)
3N−8

B

4(N − 2)µ
N

3N−8

2

Φ
3(N−2)
3N−8 + (1− q1)

∫
Ω

(b(x))
(l+1)(1−m)−l−k

(l+1)(1−q1) dx

]
,

(4.30)

where µ2 > 0 is a constant to be determined.

Afterwards, inserting (4.30) into (4.23), we obtain

Φ′(t) ≤ L1 + L2Φ(t) + L3(Φ(t))
2N−3
2(N−2) + L4(Φ(t))

3(N−2)
3N−8 + L5

∫
Ω
b(x)

∣∣∣∇u l+1
2

∣∣∣2 dx,
where

L1 = (l + 1)(1− q1)

(∫
Ω
b(x) dx

)m ∫
Ω

(b(x))
(l+1)(1−m)−l−k

(l+1)(1−q1) dx,

L2 =
µ1

2
,

L3 = (l + 1)q1CB

(∫
Ω
b(x) dx

)m
,

L4 = (l + 1)
q1(3N − 8)C

4(N−2)
3N−8

B

4(N − 2)µ
N

3N−8

2

(∫
Ω
b(x) dx

)m
,

L5 = 2 |B|2 µ1 + (l + 1)
q1Nµ2

4(N − 2)

(∫
Ω
b(x) dx

)m
− 4l

l + 1
.

For µ1 > 0 small enough, we select µ2 > 0 such that L5 = 0.

Finally, it turns into

(4.31) Φ′(t) ≤ L1 + L2Φ(t) + L3(Φ(t))
2N−3
2(N−2) + L4(Φ(t))

3(N−2)
3N−8 .

Since limt→t∗ Φ(t) =∞, then we integrate (4.31) from 0 to t∗, which can lead to

t∗ ≥ T4 =

∫ ∞
Φ(0)

dη

L1 + L2η + L3η
2N−3
2(N−2) + L4η

3(N−2)
3N−8

.

The proof of Theorem 4.5 is completed.

5. Applications

In this section, we present five illustrations to demonstrate the applications of Theo-

rems 3.1, 4.1, 4.2, 4.4 and 4.5.
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Example 5.1. Let u(x, t) be a nonnegative solution of the following problem:

ut = ∆u+ (1− |x|2)u2

∫
Ω
u dx, (x, t) ∈ Ω× (0, t∗),

∂u

∂ν
+ u = 0, (x, t) ∈ ∂Ω× (0, t∗),

u(x, 0) = e−|x| > 0, x ∈ Ω,

where Ω =
{
x = (x1, x2, x3)

∣∣ |x|2 =
∑3

i=1 x
2
i < 1

}
is the unit ball in R3, we then have

a(x) = 1− x2, f(u) = u2

∫
Ω
u dx, σ = 1, u0 = e−|x|.

Now we set p = 1/10, and then, it is easy to verify that, (A1) and (3.1) hold. By the

definition of Θ(t) in Theorem 3.1, we obtain

Θ(0) = −2

(
1 +

1

10

)[∫
Ω
|∇u0|2 dx+

∫
∂Ω
u2

0 ds

]
+ 4

(
1 +

1

10

)∫
Ω
u0 dx

∫
Ω

(1− x2)

∫ u0

0
η2 dηdx

= 59.76 > 0.

Thus, it follows from Theorem 3.1 that u(x, t) must blow up in finite time t∗, and we have

an upper bound for blow-up time that

t∗ ≤ T0 =
10Ψ(0)

Θ(0)
= 1.43,

where Ψ(0) =
∫

Ω u
2
0 dx = 8.53. If p = 0, then t∗ =∞. This shows that the solution blows

up at infinite time.

Example 5.2. Let u(x, t) be a nonnegative classical solution of the following problem:

ut = ∆u+

(
1√
10
− |x|

)
u1/3

∫
Ω
u2 dx, (x, t) ∈ Ω× (0, t∗),

∂u

∂ν
+

1√
10
u = 0, (x, t) ∈ ∂Ω× (0, t∗),

u(x, 0) =
1√
10
e−|x| > 0, x ∈ Ω,

where Ω =
{
x = (x1, x2, x3)

∣∣ |x|2 =
∑3

i=1 x
2
i < 1/10

}
is the ball with radius equal to

1/
√

10 in R3. We then have

a(x) =
1√
10
− |x| , f(u) = u1/3

∫
Ω
u2 dx, σ =

1√
10
, u0(x) =

1√
10
e−|x|.
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Setting k = 1/3, l = 1, m = 1, it can be easily seen that (A1), (2.1), and the constraints

on parameters in Theorem 4.1 are satisfied. Then substituting k, l, m into I1, we can

compute I1 = 0.73.

Therefore, by Theorem 4.1, we obtain a lower bound for the blow-up time t∗ as follows:

t∗ ≥ T1 =
3

2I1(ϕ(0))2/3
= 3.48,

where ϕ(0) =
∫

Ω u
2
0 dx = 0.45.

Example 5.3. Let u(x, t) be a nonnegative classical solution of the following problem:

ut = ∆u+
(
e|x|

2

+ 1
)
u3/2

(∫
Ω
u3 dx

)1/4

, (x, t) ∈ Ω× (0, t∗),

∂u

∂ν
+

2

9
u = 0, (x, t) ∈ ∂Ω× (0, t∗),

u(x, 0) =
1

10
− |x|2 × 10−2 > 0, x ∈ Ω,

where Ω =
{
x = (x1, x2, x3)

∣∣ |x|2 =
∑3

i=1 x
2
i < (1/10)2

}
is the ball with radius equal to

1/10 in R3. We then have

a(x) = e|x|
2

+ 1, f(u) = u3/2

(∫
Ω
u3 dx

)1/4

, σ =
2

9
, u0(x) =

1

10
− |x|2 .

Setting k = 3/2, l = 2, m = 1/4, it can be easy to know that (A2), (2.1), and the

constraints on parameters in Theorem 4.2 are satisfied. Meanwhile, the Sobolev optimal

constant Cs = 3−1/241/3π−2/3 in three-dimensional space, so Cb = 0.40 by (4.11).

Now, substituting k, l, m, into q1, we can compute q1 = 17/18. Next, we choose

ς1 = 0.53 such that J4 = 0. Inserting the above parameters into J1, J2, J3 and J5 we

derive

J1 = 1.66× 10−3, J2 = 2.69, J3 = 0.14, J5 = 7.12.

Therefore, by Theorem 4.2, we obtain a lower bound for the blow-up time t∗ as follows:

t∗ ≥ T2 =

∫ ∞
ϕ(0)

dη

J1 + J2η
3
2 + J3η3

= 9.10,

where ϕ(0) =
∫

Ω u
3
0 dx = 1.79× 10−3.

Example 5.4. Let u(x, t) be a nonnegative classical solution of the following problem:

ut = ∆u+ u1/2

∫
Ω
e|x|u3 dx, (x, t) ∈ Ω× (0, t∗),

∂u

∂ν
+ 2u = 0, (x, t) ∈ ∂Ω× (0, t∗),

u(x, 0) =
3

20
− |x| > 0, x ∈ Ω,
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where Ω =
{
x = (x1, x2, x3)

∣∣ |x|2 =
∑3

i=1 x
2
i < (1/10)2

}
is the ball with radius equal to

1/10 in R3. We then have

b(x) = e|x|, f(u) = u1/2

∫
Ω
u3 dx, σ = 2, u0(x) =

3

20
− |x| .

Setting k = 1/2, l = 2, m = 1, and choosing B = (1, 1, 1), it is easy to verify that (4.16),

(4.17), (4.14), and the constraints on the parameters in Theorem 4.4 are satisfied.

Then inserting the above parameters into K1 and K2, we derive

K1 =
9

8
, K2 = 3.39.

Therefore, by Theorem 4.4, we obtain

t∗ ≥ T3 =

∫ ∞
Φ(0)

dη

K1 +K2η
11
6

= 4.15,

where Φ(0) =
∫

Ω e
|x|u3

0 dx = 2.56× 10−3.

Example 5.5. Let u(x, t) be a nonnegative classical solution of the following problem:

ut = ∆u+ u3/2

(∫
Ω

(1 + |x|)u3 dx

)1/4

, (x, t) ∈ Ω× (0, t∗),

∂u

∂ν
+

1

10
u = 0, (x, t) ∈ ∂Ω× (0, t∗),

u(x, 0) =
1

10
e−|x| > 0, x ∈ Ω,

where Ω =
{
x = (x1, x2, x3)

∣∣ |x|2 =
∑3

i=1 x
2
i < (1/10)2

}
is the ball with radius equal to

1/10 in R3. We then have

b(x) = 1 + |x| , f(u) = u3/2

(∫
Ω
u3 dx

)1/4

, σ =
1

10
, u0(x) =

1

10
e−|x|.

Setting k = 3/2, l = 2, m = 1/4, B = (1, 1, 1), it is easy to verify that (4.16), (4.17),

(4.14), and the constraints on the parameters in Theorem 4.5 are satisfied. Meanwhile, q1

is similar to Example 5.3, and CB = 0.92.

Now, we select µ1 = 1/6 and µ2 = 1.96 so that L5 = 0. Inserting the above parameters

into L1, L2, L3 and L4, we compute

L1 = 0.13, L2 =
1

12
, L3 = 3.13, L4 = 0.08.

Therefore, by Theorem 4.5, we obtain

t∗ ≥ T4 =

∫ ∞
Φ(0)

dη

L1 + L2η + L3η
3
2 + L4η3

= 1.94,

where Φ(0) =
∫

Ω(1 + |x|)u3
0 dx = 1.78× 10−3.
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