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On a Third Order Flow of Convex Closed Plane Curves

Laiyuan Gao* and Dong-Ho Tsai

Abstract. We study a curve flow for convex closed plane curves. It is described by

a third order linear equation for the radius of curvature of the evolving curve. It is

shown that under the flow the evolving curve stays convex, bounds fixed area, length,

and has fixed center. However, its curvature may blow up in finite time.

If the curvature of this flow does not blow up before time 2π, then the flow will

exist smoothly for all time and is periodic in time with period 2π. In particular, the

flow does not have a limiting curve unless the initial curve is a circle.

1. Introduction: the flow and the equation

Many previous works of the curve flows investigated parabolic type geometric equations

and concerned the asymptotic behavior of the evolving curves, for example, the famous

curve shortening flow (see [7,9,12], etc.), the non-local flows (see [4,8,13,15,16], etc.) and

other relative works (see the references in the book [6]). In 1991, Goldstein-Petrich [11]

and in 1992, Nakayama-Segur-Wadati [17] introduced a different type of flow, which is an

initial value problem of the form:

(1.1)


∂X

∂t
(ϕ, t) = −∂k

∂s
(ϕ, t)Nin(ϕ, t) in S1 × (0, T )

X(ϕ, 0) = X0(ϕ) on S1.

Here X(ϕ, t) = (x(ϕ, t), y(ϕ, t)) : S1 × [0, T ) → R2 is a family of time-dependent smooth

counterclockwise oriented simple closed curves, with curvature k(ϕ, t), and ∂k(ϕ, t)/∂s is

the derivative of curvature with respect to its arc length parameter s. Here Nin(ϕ, t) is

the inward unit normal of X(ϕ, t) so that the frame {T(ϕ, t),Nin(ϕ, t)} gives a positive

orientation of R2 for all (ϕ, t).

It is known that the flow (1.1) preserves both the enclosed area and length of the

evolving curve X(ϕ, t). Hence each X(·, t) has the same enclosed area A(0) and length
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L(0) as the initial curve X0(·). By adding a suitable tangential component to the flow

(1.1), which will not affect the geometry of the flow and can allow us to use, instead of

ϕ, the arc length parameter s as variable, (1.1) can be reduced to the following modified

KdV equation of the curvature

(1.2)
∂k

∂t
+
∂3k

∂s3
+

3

2
k2
∂k

∂s
= 0, where k = k(s, t), (s, t) ∈ L(0)× (0, T )

with a periodic initial value k0(s). See the book [6] for details. One can obtain many

interesting results of the equation (1.2) by the theory of m-KdV equations (see [1, 3, 5]).

Inspired by this m-KdV flow (1.1), we consider a flow for convex closed plane curves1

of the form:

(1.3)


∂X

∂t
(ϕ, t) =

[
∂

∂s

(
1

2

1

k2(ϕ, t)

)]
Nin(ϕ, t) in S1 × (0, T ),

X(ϕ, 0) = X0(ϕ) on S1,

where X0(ϕ), ϕ ∈ S1, is a given initial smooth convex closed curve with enclosed area

A(0) and length L(0).

The flow (1.3) has a smooth solution X(ϕ, t) ∈ R2 defined on S1 × [0, T ) for some

short time T > 0, where each X(·, t) represents a convex closed curve. Moreover, since

the coefficient in front of the normal vector Nin is also a derivative, similar to (1.1), this

flow is both area-preserving and length-preserving.

Remark 1.1. To see that the flow (1.3) does have a smooth convex solution (by “convex

solution” we mean that each X(·, t) is a convex closed curve) X(ϕ, t) for some short time,

one can solve the linear equation (1.6) first, and then use the radius of curvature ρ(θ, t)

to construct a family of convex closed curves satisfying the flow (1.3). This is a standard

method.

In terms of the outward normal angle θ ∈ S1, the support function u(θ, t) (see below

for its definition) of X(ϕ, t) will satisfy the third order linear equation

(1.4)


∂u

∂t
(θ, t) = −∂

3u

∂θ3
(θ, t)− ∂u

∂θ
(θ, t), (θ, t) ∈ S1 × (0, T ),

u(θ, 0) = u0(θ), θ ∈ S1,

where u0(θ) is the support function of the initial curve X0(ϕ). Moreover, by the identity

between u(θ, t) and the positive curvature k(θ, t) of X(·, t)

(1.5)
1

k(θ, t)
= uθθ(θ, t) + u(θ, t), (θ, t) ∈ S1 × (0, T ),

1From now on, for a convex closed plane curve X0, we always assume that it is embedded, counterclockwise

oriented, and has positive curvature everywhere.
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the radius of curvature ρ(θ, t) := 1/k(θ, t) will also satisfy the third order linear equation

(1.6)


∂ρ

∂t
(θ, t) = −∂

3ρ

∂θ3
(θ, t)− ∂ρ

∂θ
(θ, t), (θ, t) ∈ S1 × (0, T ),

ρ(θ, 0) = ρ0(θ) > 0, θ ∈ S1,

where ρ0(θ) = 1/k0(θ) is the radius of curvature of the initial curve X0(ϕ). Note that

ρ0(θ) satisfies the closing condition

(1.7)

∫ 2π

0
ρ0(θ) cos θ dθ =

∫ 2π

0
ρ0(θ) sin θ dθ = 0,

due to the fact that X0 is a closed curve.

To derive (1.4), we note the following: since at each time t ∈ [0, T ) the curve X(ϕ, t) is

convex, one can also use its outward normal angle θ ∈ S1 to parametrize it (more precisely,

ϕ ←→ θ is a change of variables). Thus one can write X(ϕ, t) as X(ϕ(θ, t), t) := X̃(θ, t),

(θ, t) ∈ S1 × [0, T ), where at the point X̃(θ, t) its outward normal vector is given by

Nout(θ) = (cos θ, sin θ). Recall that the support function u(θ, t) of X̃(θ, t) is defined by

u(θ, t) :=
〈
X̃(θ, t),Nout(θ)

〉
=
〈
X̃(θ, t), (cos θ, sin θ)

〉
,

which gives

∂u

∂t
(θ, t) =

∂

∂t

〈
X̃(θ, t),Nout(θ)

〉
=

〈
∂X

∂ϕ
(ϕ, t)

∂ϕ

∂t
(θ, t) +

∂X

∂t
(ϕ, t),Nout(θ)

〉
.

Since ∂X
∂ϕ (ϕ, t) is perpendicular to Nout(θ), and by the relation ∂

∂s = k ∂
∂θ , which is valid

only for convex curves, the above becomes

∂u

∂t
(θ, t) =

〈
∂X

∂t
(ϕ, t),Nout(θ)

〉
=

〈[
∂

∂s

(
1

2

1

k2(ϕ, t)

)]
Nin(ϕ, t),Nout(θ)

〉
= − ∂

∂s

(
1

2

1

k2(ϕ, t)

)
= − ∂

∂θ

(
1

k(θ, t)

)
= −∂

3u

∂θ3
(θ, t)− ∂u

∂θ
(θ, t),

(1.8)

which verifies both (1.4) and (1.6).

Similar to the curve shortening flow [9] and other curve flows of convex closed curves,

the flow problem (1.3) is equivalent to the third order linear equation problem (1.4) (or

(1.6)). More precisely, given an initial smooth convex closed curve X0(ϕ) with support

function u0(θ), if the flow (1.3) has a smooth convex solution X(ϕ, t) defined on S1×[0, T ),

then its support function u(θ, t) will satisfy (1.4) on S1× [0, T ), which has been explained

in the above. Similarly, its radius of curvature ρ(θ, t) will also satisfy (1.6) on S1× [0, T ).

Conversely, if ρ(θ, t) satisfies (1.6) on S1 × [0, T ) and remains positive on S1 × [0, T ),

then one can easily check that the closing condition (1.7) is automatically preserved, i.e.,

(1.9)

∫ 2π

0
ρ(θ, t) cos θ dθ =

∫ 2π

0
ρ(θ, t) sin θ dθ = 0, ∀ t ∈ [0, T ),
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and so we can use ρ(θ, t) > 0 to construct a family of convex closed curves X(·, t) (with

curvature given by k(θ, t) = 1/ρ(θ, t)), which satisfies the flow (1.3) on S1 × [0, T ). As

this has been quite well-known, we will not go into details on this.

Also, if u(θ, t) satisfies (1.4) on S1 × [0, T ) with

(1.10) uθθ(θ, t) + u(θ, t) > 0 on S1 × [0, T ),

then the curve defined by

(1.11) X̃(θ, t) := u(θ, t)(cos θ, sin θ) + uθ(θ, t)(− sin θ, cos θ) ∈ R2, (θ, t) ∈ S1 × [0, T ),

is a convex closed curve with positive curvature k(θ, t) = 1/(uθθ(θ, t) + u(θ, t)), and after

suitable reparametrization, it will satisfy the flow (1.3). Again, we will not go into details

on this.

In view of the above equivalence, from now on, when we consider the flow (1.3) for

an initial convex closed curve X0(ϕ) with support function u0(θ) and radius of curvature

ρ0(θ), we can just focus on the initial value problem (1.4) or the initial value problem

(1.6), with the understanding that the solutions u(θ, t) and ρ(θ, t) represent respectively

the support function and the radius of curvature of the evolving convex curve X(·, t) at

the point with outward normal angle θ ∈ S1. They can describe the geometry of X(·, t)
completely.

Remark 1.2. Be careful about the distinction: the solution ρ(θ, t) to the linear equation

(1.6) is always defined on S1 × [0,∞). If 0 < Tmax ≤ ∞ is the first time such that

ρmin(t) := minθ∈S1 ρ(θ, t) is zero at Tmax, then one can construct the solutionX(ϕ, t) to

the flow (1.3) only on the domain S1 × [0, Tmax) where ρ(θ, t) is positive. The maximum

curvature kmax(t) = 1/ρmin(t) of X(·, t) blows up at time Tmax > 0.

The main theorem in this paper is to prove the following general behavior of the flow

(1.3):

Theorem 1.3 (The behavior of the flow (1.3)). Given an initial smooth convex closed

curve X0(ϕ), ϕ ∈ S1, and evolve it under the flow (1.3). Then the flow has a unique

smooth convex solution X(ϕ, t) defined on a maximal domain S1 × [0, Tmax), where Tmax

is the first curvature blow-up time of X(·, t), and we have either 0 < Tmax < 2π or

Tmax = ∞. Moreover, each X(·, t), t ∈ [0, Tmax), remains uniformly convex, and has the

same enclosed area, length, and center as the initial curve X0. In addition, its radius

of curvature ρ(θ, t) and support function u(θ, t) satisfy the estimates in Lemma 2.3 and

Corollary 2.4 on S1 × [0, Tmax). If Tmax = ∞, then the solution X(ϕ, t) is also periodic

in time with period 2π. In such a case, the flow cannot have a limiting curve unless the

initial curve X0 is a circle.
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Proof. Theorem 1.3 can be proved using Lemma 2.1, Lemma 2.3, Corollary 2.4, Lemma 2.5,

Lemma 2.6, and Corollary 2.8 in Section 2.1 and Section 2.2.

2. Estimates on the support function and the radius of curvature

2.1. Quantities independent of time

Given an initial convex closed curve X0(ϕ) with u0(θ) and ρ0(θ), the solutions u(θ, t) to

(1.4) and ρ(θ, t) to (1.6) are both defined on S1 × [0,∞). As long as X(·, t) is a smooth

convex closed curve (see Remark 1.2), its enclosed area A(t), length L(t), and position

center P (t) can be expressed as

(2.1) A(t) =
1

2

∫ 2π

0
u(θ, t)ρ(θ, t) dθ, L(t) =

∫ 2π

0
u(θ, t) dθ

and

(2.2) P (t) =
1

2π

∫ 2π

0
X̃(θ, t) dθ =

1

π

∫ 2π

0
u(θ, t)(cos θ, sin θ) dθ.

Using the evolution equations for u and ρ, one can easily prove the following:

Lemma 2.1 (Preserving area, length and center). The enclosed area A(t), length L(t),

and position center P (t) of X(·, t) are all independent of time.

Remark 2.2. By the above lemma, the isoperimetric ratio of L2(t)/(4πA(t)) of X(·, t) will

not improve. Hence X(·, t) will not become circular. This is because the flow (1.3) is not

parabolic.

As the equations (1.4) and (1.6) are not parabolic, the useful maximum principle

cannot be utilized. Instead, we do integral estimates. We have:

Lemma 2.3 (Conservation law). Let m ∈ N ∪ {0} be a non-negative integer. We have

(2.3)
d

dt

∫ 2π

0

(
∂mρ

∂θm

)2

(θ, t) dθ = 0, ∀ t ∈ [0,∞)

and

(2.4)
d

dt

∫ 2π

0

(
∂mρ

∂tm

)2

(θ, t) dθ = 0, ∀ t ∈ [0,∞).

The same result holds if we replace ρ(θ, t) by u(θ, t).

Proof. Note that each ρ(θ, t) is periodic in θ with period 2π. For t ∈ [0,∞), we have

d

dt

[
1

2

∫ 2π

0

(
∂mρ

∂θm

)2

dθ

]
= −

∫ 2π

0

(
∂mρ

∂θm

)(
∂m+3ρ

∂θm+3
+
∂m+1ρ

∂θm+1

)
dθ

=

∫ 2π

0

∂

∂θ

[
1

2

(
∂m+1ρ

∂θm+1

)2

− 1

2

(
∂mρ

∂θm

)2
]
dθ = 0.
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This proves the first identity. For the second, we have

d

dt

[
1

2

∫ 2π

0

(
∂mρ

∂tm

)2

dθ

]
=

∫ 2π

0

∂

∂θ

[
1

2

(
∂m(ρθ)

∂tm

)2

− 1

2

(
∂mρ

∂tm

)2
]
dθ = 0.

The proof is done.

There is an elementary Sobolev-type inequality saying that for any function f(x) de-

fined on interval [0, L], if there exists a constant C such that ‖f‖2 ≤ C and
∥∥∥ dfdx∥∥∥2 ≤ C,

then we have

(2.5) ‖f‖∞ ≤
(√

L+
1√
L

)
C.

Here ‖·‖2 is the L2 norm and ‖·‖∞ is the L∞ norm for functions on [0, L].

With the help of (2.5) and Lemma 2.3, we clearly have:

Corollary 2.4 (Uniform bound on space-time derivatives). Let ρ(θ, t) : S1 × [0,∞)→ R
be the smooth solution to (1.6). Then for any m ∈ N∪{0} there exists a positive constant

C(m, ρ0) depending only on m and ρ0 such that

(2.6) sup
S1×[0,∞)

∣∣∣∣∂mρ∂θm
(θ, t)

∣∣∣∣ ≤ C(m, ρ0).

The same result holds if we replace ∂mρ
∂θm (θ, t) by ∂mρ

∂tm (θ, t). Also, the same result holds if

we replace ρ(θ, t) by u(θ, t).

When m = 0 in (2.6), we obtain a uniform upper bound of |ρ(θ, t)| =
∣∣k−1(θ, t)∣∣. From

this, we infer the following:

Lemma 2.5 (Positive lower bound of the curvature; preserving the convexity). Under

the flow (1.3), as long as the curvature does not blow up, there is a positive constant C

depending only on X0 such that the curvature k has C as its positive lower bound.

2.2. Fourier series expansion and the periodic behavior of the flow (1.3)

As equation (1.6) is linear, one can use Fourier series expansion to express the solution

explicitly and study the behavior of the flow. See [10, 14] also. By (1.9), the equation

ρt = −ρθθθ − ρθ and the estimate (2.6) on ρ, it is easy to check that the Fourier series

expansion of ρ(θ, t) is given by

(2.7) ρ(θ, t) =
L(0)

2π
+

∞∑
n=2

{an(t) cos(nθ) + bn(t) sin(nθ)} , (θ, t) ∈ S1 × [0,∞),
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where

(2.8)

an(t) = an(0) cos((n3 − n)t) + bn(0) sin((n3 − n)t),

bn(t) = bn(0) cos((n3 − n)t)− an(0) sin((n3 − n)t), ∀ t ∈ [0,∞).

In the above, L(0) is the length of X0 and an(0), bn(0) are the Fourier series coefficients

of ρ0(θ). For convenience of later discussion, we can also write (2.7) as

(2.9) ρ(θ, t) =
L(0)

2π
+

∞∑
n=2

{
an(0) cos

[
nθ + (n3 − n)t

]
+ bn(0) sin

[
nθ + (n3 − n)t

]}
for all (θ, t) ∈ S1 × [0,∞).

By (2.9), we see that the behavior of ρ(θ, t) depending on the space variable θ is roughly

the same as the behavior of it depending on the time variable t. In particular, we have

the following useful property:

Lemma 2.6 (Periodicity of the solution). The solution ρ(θ, t) to (1.6) on S1 × [0,∞) is

periodic in both space and time with period 2π. The same result holds for u(θ, t).

Remark 2.7. Formula (2.9) also explains why we have the conservation law as in Lemma 2.3.

By Lemma 2.6, we have:

Corollary 2.8. If the curvature of the flow (1.3) does not blow up before time t = 2π,

then the flow is smoothly defined on S1 × [0,∞). Moreover, it is periodic in both space

and time with period 2π.

Proof. If the curvature does not blow up before time t = 2π, then ρ(θ, t) > 0 on S1×[0, 2π).

Since it is periodic in both space and time with period 2π, we also have ρ(θ, 2π) = ρ0(θ) > 0

on S1. Hence ρ(θ, t) > 0 on S1 × [0,∞) and the conclusion follows.

The following additional properties are all easy to verify:

Lemma 2.9. We have the following:

(1) The solution ρ(θ, t) to the initial value problem (1.6) is actually defined on S1 ×
(−∞,∞). This means that the flow (1.3) can be evolved backward in time (until its

curvature blows up).

(2) If ρ(θ, t) is a solution to (1.6), then ρ̃(θ, t) := ρ(−θ,−t) is also a solution to the same

equation with initial condition ρ0(−θ), θ ∈ S1. In particular, if the initial condition

ρ0(θ) satisfies the property ρ0(θ) = ρ0(−θ) (even function) for all θ ∈ S1, then we

have ρ(θ, t) = ρ(−θ,−t) on S1 × (−∞,∞).

(3) The only self-similar solutions to the flow (1.3) are circles.
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2.3. Parallel curves and the blow-up of the curvature

The Fourier series expansion allows us to find special solutions of the equation (1.6).

Moreover, one can prove the formation of a singularity under the flow (1.3), i.e., the

curvature blows up in finite time.

Lemma 2.10 (The formation of a singularity). There exists a convex closed curve X0

such that under the flow (1.3), its curvature blows up at time Tmax ∈ (0, 2π).

Proof. There are indeed many blow-up examples. We choose a 2π-periodic function ρ0(θ)

given by

(2.10) ρ0(θ) = 10− 3.3 cos(2θ)− 8 sin(3θ), θ ∈ S1.

The function satisfies the closing condition (1.7) and has a positive minimum value 0.1429 . . .

over S1, occurred at θ = 0.4510 . . . (we use Matlab 8.0 to compute it). Hence it is positive

everywhere and one can find a convex closed curve X0 whose radius of curvature, in terms

of its outward normal angle θ, is given by the above ρ0(θ). The solution ρ(θ, t) satisfying

(1.6) with (2.10) as the initial data is given by

(2.11) ρ(θ, t) = 10− 3.3 cos(2θ + 6t)− 8 sin(3θ + 24t), (θ, t) ∈ S1 × [0,∞).

Since we now have two degree of freedom, it is easy to find (θ, t) with ρ(θ, t) < 0. We

choose (θ, t) satisfying 2θ + 6t = 4π, 3θ + 24t = 6π + π/2, and get t = 0.10472 > 0,

θ = 2π−3t. Therefore, the minimum value of ρ(θ, t) over S1× [0,∞) is given by −1.3 < 0.

The curvature of the flow does blow up in finite time (see Figure 2.1).

Remark 2.11. At the first time Tmax > 0 such that ρ(θ0, Tmax) = 0 for some θ0 ∈ S1

(here ρ(θ, t) is given by (2.11)), by the three equations ρ(θ0, Tmax) = 0, ρθ(θ0, Tmax) = 0,

ρt(θ0, Tmax) ≤ 0, we can easily see that ρt(θ0, Tmax) < 0. Thus the behavior of ρ(θ0, t)

for t → Tmax is given by λ(Tmax − t), where λ = −ρt(θ0, Tmax) > 0. This says that the

blow-up rate of kmax(t), as t→ Tmax, is at least C(Tmax − t)−1 for some positive constant

C. See Lemma 2.15 also.

If the curvature blows up, then its integral also blows up. That is:

Lemma 2.12. Assume the curvature of the flow (1.3) blows up at time Tmax ∈ (0, 2π),

then we have

(2.12)

∫ 2π

0
k(θ, t) dθ →∞ as t→ Tmax.
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Proof. For any (p, t), (q, t) ∈ S1 × [0, Tmax), by (2.6), we have

log ρ(q, t)− log ρ(p, t) =

∫ q

p

(
1

ρ

∂ρ

∂θ

)
(θ, t) dθ

≤
∫ 2π

0

1

ρ(θ, t)

∣∣∣∣∂ρ∂θ (θ, t)

∣∣∣∣ dθ ≤ C ∫ 2π

0
k(θ, t) dθ,

(2.13)

where C is a positive constant independent of time. In particular, we get

log ρmax(t)− log ρmin(t) ≤ C
∫ 2π

0
k(θ, t) dθ, t ∈ [0, Tmax),

where by ρmin(t) ≤ L(0)
2π ≤ ρmax(t) for all time, we have

log
L(0)

2π
− log ρmin(t) ≤ C

∫ 2π

0
k(θ, t) dθ, t ∈ [0, Tmax).

The result follows since we have ρmin(t)→ 0 as t→ Tmax.

As for the gradient of the curvature, we have:

Lemma 2.13. Assume the curvature of the flow (1.3) blows up at time Tmax ∈ (0, 2π),

then we have

(2.14) sup
S1×[0,Tmax)

∣∣∣∣kθ(θ, t)k(θ, t)

∣∣∣∣ =∞.

Remark 2.14. On the other hand, by (2.6), we have

(2.15)

∣∣∣∣kθ(θ, t)k2(θ, t)

∣∣∣∣ = |ρθ(θ, t)| ≤ C, ∀ (θ, t) ∈ S1 × [0, Tmax)

for some constant C independent of time.

Proof. Assume that supS1×[0,Tmax)

∣∣∣kθ(θ,t)k(θ,t)

∣∣∣ = C <∞. Then, similar to (2.13), we will have

log

(
kmax(t)

kmin(t)

)
= log kmax(t)− log kmin(t) ≤ C,

which implies kmin(t)→∞ too, as t→ Tmax. But this is impossible since the flow is both

area-preserving and length-preserving.

Another method to ensure singularity is to use the idea of parallel curves (see the

book [2, p. 47]). Basically, it works out only for linear equations. We see that if ρ satisfies

the equation ρt = −ρθθθ − ρθ, so is ρ̃ = ρ ± c for any constant c. Moreover, ρ̃ also

satisfies the closing condition (1.7). Hence for each fixed time t, it represents the radius

of curvature of a convex closed curve if ρ̃(θ, t) > 0 on S1.
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We recall that if a convex closed curve X0 has radius of curvature ρ0(θ) > 0, then its

inward parallel curve X̃0, with parallel distance c > 0, has radius of curvature ρ̃0(θ) =

ρ0(θ) − c for all θ ∈ S1. Here we are assuming that c > 0 is not too big so that we still

have ρ̃0(θ) > 0 on S1 and then X̃0 is still a smooth curve. With this, we can state the

following:

Lemma 2.15 (The formation of a singularity using parallel curves). Let X0 be a smooth

convex closed curve and evolve it under the flow (1.3). Assume that the maximum cur-

vature kmax(t) of the evolving curve X(·, t) is strictly increasing on some time interval

[0, T1], T1 > 0, with 0 < kmax(T1) < ∞. If we let X̃0 be the convex closed curve which is

an inward parallel curve of X0 with parallel distance

(2.16) c =
1

kmax(T1)
> 0

and consider the flow (1.3) with initial curve X̃0, then the solution X̃(·, t) is smooth,

convex, enclosed by X(·, t) for all t ∈ [0, T1), and will develop a singularity at time T1,

i.e., k̃max(T1) = ∞. Moreover, the blow-up rate of k̃max(t), as t → T1, is no less than

k2max(T1) [∂tk(θ1, T1)(T1 − t)]−1, where k(θ1, T1) = kmax(T1).

Remark 2.16. In the above lemma, we can assume that ∂tk(θ1, T1) is a positive finite

number. Otherwise, we may shrink the interval [0, T1] a little bit to ensure it.

Proof. Let ρ(θ, t) be the radius of curvature of X(·, t) on S1 × [0, T1] By assumption,

ρmin(t) = 1/kmax(t) is strictly decreasing on [0, T1] with ρmin(T1) > 0. We know that the

flow solution X̃(·, t) has radius of curvature ρ̃ given by

(2.17) ρ̃(θ, t) = ρ(θ, t)− c = ρ(θ, t)− ρmin(T1), ∀ (θ, t) ∈ S1 × [0, T1).

Moreover, we have ρ̃(θ, t) > 0 on S1× [0, T1) and ρ̃(θ1, T1) = 0. This says that X̃(·, t) will

develop a singularity at time T1, i.e., k̃max(T1) =∞. Finally, by (2.17) we have

k̃max(t) ≥ k̃(θ1, t) = k(θ1, t)k(θ1, T1)

(
k(θ1, T1)− k(θ1, t)

T1 − t

)−1 1

T1 − t
, t ∈ [0, T1).

The proof is done.

2.4. Compare with the tangential component flow (rotational flow)

Recall that the position center P (t) of X(·, t) is independent of time (see Lemma 2.1) and

is given by

P (0) =
1

π

∫ 2π

0
u0(θ)(cos θ, sin θ) dθ,
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where u0(θ) is the initial support function. Without loss of generality, we may assume

that P (0) = (0, 0). By this, similar to (2.9), the Fourier series expansion of the support

function u(θ, t) is

(2.18) u(θ, t) =
L(0)

2π
+

∞∑
n=2

{
An(0) cos

[
nθ + (n3 − n)t

]
+Bn(0) sin

[
nθ + (n3 − n)t

]}
for all (θ, t) ∈ S1× [0,∞). Here L(0) is the length of X0 and An(0), Bn(0) are the Fourier

series coefficients of u0(θ).

It is easy to see that, without the 3rd-order term −uθθθ, the whole flow is just a

rotation. That is, if the flow is such that its equation of the support function is ut = −uθ
(with initial condition u0(θ)), then by (2.18) its Fourier series becomes

(2.19) u(θ, t) =
L(0)

2π
+
∞∑
n=2

{An(0) cos(n(θ − t)) +Bn(0) sin(n(θ − t))} ,

which gives the identity u(θ, t) = u0(θ − t) for all (θ, t). Now the position vectors X̃0(θ)

and X̃(θ, t) corresponding to u0(θ) and u(θ, t) are given by (see (1.11))

X̃0(θ) = u0(θ)(cos θ, sin θ) + u′0(θ)(− sin θ, cos θ)

and

X̃(θ, t) = u(θ, t)(cos θ, sin θ) + uθ(θ, t)(− sin θ, cos θ)

= u0(θ − t)(cos θ, sin θ) + u′0(θ − t)(− sin θ, cos θ)

= M(−t)X̃0(θ − t)

(2.20)

for all (θ, t) ∈ S1 × [0,∞), where M(−t) is the matrix given by (2.23) below. Thus for

fixed time t > 0, the whole curve X̃(·, t) is a counterclockwise rotation of X̃0(·) by angle

t. The point X̃(θ, t) on X̃(·, t) comes from the rotation of the point X̃0(θ− t) on X̃0(·) by

angle t.

We leave you to check that if we look at the “tangential component flow (rotational

flow)” given by

(2.21)


∂X

∂t
(ϕ, t) = 〈X(ϕ, t),T(ϕ, t)〉Nin(ϕ, t),

X(ϕ, 0) = X0(ϕ), ϕ ∈ S1,

where X0 : S1 → R2 is a smooth convex closed curve, then its support function u(θ, t), in

terms of its outward normal angle θ, will satisfy the equation ut(θ, t) = −uθ(θ, t). The

effect of the flow (2.21) is described by the above (2.20).
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Finally, to see the effect of the whole equation ut = −uθθθ − uθ on the initial data

u0(θ), one can write (2.18) as

(2.22) u(θ, t) =
L(0)

2π
+

∞∑
n=2

〈
M(n3t)

An(0)

Bn(0)

 ,M(nt)

cos(nθ)

sin(nθ)

〉 ,
where M is the clockwise rotation matrix given by

(2.23) M(ξ) =

 cos ξ sin ξ

− sin ξ cos ξ

 , ξ ∈ R.

The matrix M(n3t) in (2.22) is due to the term −uθθθ and the matrix M(nt) in (2.22) is

due to the term −uθ. Since one can also move M(n3t) to the right-hand side of the inner

product (or move M(nt) to the left-hand side of the inner product), roughly speaking,

both terms −uθθθ and −uθ have the same effect on the solution u(θ, t). This is unlike the

usual phenomena in parabolic equations.

2.5. Condition to ensure no singularity

If the initial curve X0 is circular enough (in the sense described by the inequality (2.24)

below), then the flow (1.3) will not produce any singularity and remains smooth for all

time. A simple criterion is the following:

Lemma 2.17. Let X0 be a smooth convex closed curve satisfying the condition

(2.24)
√

2π

(∫ 2π

0

(
dρ0
dθ

)2

(θ) dθ

)1/2

<
L(0)

2π
=

1

2π

∫ 2π

0
ρ0(θ) dθ.

Then under the flow (1.3), the evolving curve X(·, t) will remain convex and smooth for

all time.

Proof. For (p, t), (q, t) ∈ S1 × [0,∞), by (2.3) and the assumption, we have

ρ(q, t)− ρ(p, t) =

∫ q

p

∂ρ

∂θ
(θ, t) dθ ≤

∫ 2π

0

∣∣∣∣∂ρ∂θ (θ, t)

∣∣∣∣ dθ ≤ √2π

(∫ 2π

0

(
∂ρ

∂θ

)2

(θ, t) dθ

)1/2

=
√

2π

(∫ 2π

0

(
dρ0
dθ

)2

(θ) dθ

)1/2

<
L(0)

2π
,

which implies ρmax(t)− ρmin(t) < L(0)/2π. From it we obtain

ρmin(t) > ρmax(t)− L(0)

2π
= ρmax(t)− 1

2π

∫ 2π

0
ρ(θ, t) dθ ≥ 0, ∀ t ∈ [0,∞),

i.e., ρmin(t) = 1/kmax(t) > 0 for all time. This says that the curvature will not blow up in

finite time and the flow (1.3) is smoothly defined on S1 × [0,∞).
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2.6. Pictures

Below, we shall give several pictures to illustrate the behavior of the flow, including the

case of blowing up and the case of long time existence.

Figure 2.1: The Blow-up Case

Figure 2.2: The Case of Long Time Existence

In Figure 2.1, the flow develops a singularity after some short time Tmax, where 0 <

Tmax < 2π. The initial curve is smooth. In the second picture, the evolving curve looks

like to be going to have a singularity (but is still smooth) for t = 0.02. The third picture

presents a blow-up curve for t = 0.04. An enlarged picture of the singularity is given in

the last picture.

In Figure 2.2, the flow is periodic and remains smooth all the time. Let us choose an

initial curve with its support function given by p = 10+0.5 cos(3θ)+0.2 sin(5θ). Since the

support function of the evolving curve is p = 10+0.5 cos(3θ+24t)+0.2 sin(5θ+120t), this

long time existence flow has a time period equal to 1
12π. Figure 2.2 presents the evolving

process with time interval equal to 1
84π between each picture.
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