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Improving Approximate Singular Triplets in Lanczos Bidiagonalization

Method

Datian Niu* and Jiana Meng

Abstract. Lanczos bidiagonalization method is the most popular method for com-

puting some largest singular triplets of large matrices. In this method, 2m + 1 base

vectors are generated from the m-step Lanczos bidiagonalization process, but only 2m

of them are used to form the approximate singular vectors and one of them is not used.

In this paper, we make two improvements on the classical Lanczos bidiagonalization

method. Firstly, following Jia and Elsner’s idea for eigenproblems [9], we form the

new approximate singular vectors by minimizing the corresponding residual norms in

subspaces generated by 2m + 1 base vectors to replace the old approximate singular

vectors. Secondly, in the process of implicit restarting, we replace the classical exact

shifts by new shifts based on the information of the new approximate singular vectors.

The total extra cost of the new method can be neglected. Numerical experiments

show that, after two improvements, the new method proposed in this paper performs

much better than the classical Lanczos bidiagonalization method. It uses less restarts

and CPU time to reach the desired convergence.

1. Introduction

The singular value decomposition (SVD) of a matrix A ∈ RM×N , M ≥ N (Otherwise, we

deal with AT, the transpose of A) is

A = U

Σ

0

V T,

where U = (u1, u2, . . . , uM ) and V = (v1, v2, . . . , vN ) are orthogonal matrices of order

M and N respectively, Σ is a diagonal matrix with nonnegative diagonal elements σi,

i = 1, 2, . . . , N . σi is called a singular value of A, ui and vi are the associate left and right

singular vectors, and (σi, ui, vi) is called a singular triplet. For convenience, the singular

values are labeled as σ1 ≥ σ2 ≥ · · · ≥ σN .
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Computing some largest or smallest singular triplets of large matrices arises in many

scientific and engineering applications, such as least squares problems, total least squares

problems, regression analysis, image processing, signal processing, information retrieval,

and so on.

Since M and N are assumed to be large, we can resort only to the projection methods.

The SVD of A is equivalent to the eigendecomposition of ATA, AAT and

Ã =

 0 A

AT 0

 .

ATA, AAT and Ã are symmetric matrices. The typical method for solving symmetric

eigenproblems is the symmetric Lanczos method [16]. However, if we apply the symmetric

Lanczos method directly to ATA, AAT and Ã, there are some drawbacks. Firstly, the

condition numbers of ATA and AAT are squared of A, which may cause some numerical

instability. Secondly, the eigenvalues of ATA and AAT are σ2i , i = 1, 2, . . . , N , so it is

generally difficult to compute the smallest singular triplets due to the clustering of them.

Finally, the eigenvalues of Ã are ±σi, and the associate eigenvectors are (uTi , v
T
i )T and

(uTi ,−vTi )T, respectively. The symmetric Lanczos method tends to use twice cost to obtain

the wanted singular triplets. Meanwhile, the symmetric Lanczos method can not preserve

the special structure of Ã.

Since the drawbacks mentioned before, the symmetric Lanczos method is impractical

for computing singular triplets. Until now, the Lanczos bidiagonalization method and its

variants are the popular used methods for computing the singular triplets of large matrices.

Golub et al. [6] firstly proposed a block Lanczos bidiagonalization method to compute the

largest singular triplets. Larsen [13], Simon and Zha [18] discussed the reorthogonalization

of the Lanczos bidiagonalization process. Jia and Niu [10] proposed a refined Lanczos bidi-

agonalization method to compute the largest and smallest singular triplets. Kokiopoulou

et al. [12] used the harmonic project technique in the Lanczos bidiagonalization method

to compute the smallest singular triplets, Niu and Yuan [15] improved their method.

Baglama and Reichel [1, 2] prosed an augmented Lanczos bidiagonalization method and

its block version to compute the largest and smallest singular triplets. Hernandez et al. [8]

provided a parallel implementation of the Lanczos bidiagonalization method. Stoll [20]

applied Krylov-Schur decomposition into the Lanczos bidiagonalization method. Jia and

Niu [11] proposed a refined harmonic Lanczos bidiagonalization method to compute some

smallest singular triplets. The above methods form two Krylov subspaces by Lanczos

bidiagonalization process and extract approximate singular triplets from them in different

ways.

Due to the storage requirements and computational cost, the Lanczos bidiagonalization

method must be restarted. The most commonly used restarting technique is the implicit
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restarting technique proposed by Sorensen [19]. The implicit restarting technique is orig-

inally designed for eigenproblems and has been applied to the Lanczos bidiagonalization

method. It heavily depends on the selection of the shifts. There are some shift selection

strategies for the Lanczos bidiagonalization method, such as exact shifts [14], harmonic

shifts [12], refined shifts [10], refined harmonic shifts [11], and Leja shifts [3].

In this paper, we analyze the Lanczos bidiagonalization method and find that, in each

restart, the Lanczos bidiagonalization method generates 2m+ 1 base vectors but extracts

approximate singular triplets from the subspace generated by 2m base vectors. So there

is one vector unused in the Lanczos bidiagonalization method. Following Jia and Elsner’s

idea [9] for eigenproblems, we extract new approximate singular triplets, where they are

the linear combination of the old approximate singular vectors and the unused base vector,

and minimize their residual norms from the subspace generated by all of the 2m+ 1 base

vectors. Then, using the information of the new singular triplets, we design a new shift

selection strategy. Numerical experiments show that the above two improvements greatly

improve the performance of the method.

In this paper, denote by ‖·‖ the spectral norm of a matrix and the 2-norm of a vector,

by em the m-th coordinate vector of dimension m, by IK the K-dimensional identity

matrix.

2. Review of Lanczos bidiagonalization method

For a given matrix A, an initial vector q1 and a positive integer m (� min(M,N)), the

m-step Lanczos bidiagonalization process is given by the following matrix form in the

absence of break-down:

AQm = PmBm,(2.1)

ATPm = QmB
T
m + βm+1qm+1e

T
m,(2.2)

where Pm = (p1, p2, . . . , pm), Qm = (q1, q2, . . . , qm), Pm and (Qm, qm+1) are column or-

thonormal matrices respectively, and

Bm =


α1 β2

α2
. . .

. . . βm

αm


with the positive αi and βi. This process is just the truncated version of the Golub-Kahan

standard SVD process [7]. It is also equivalent to the symmetric Lanczos process on Ã

with the initial vector (0T, qT1 )T [16].
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In finite precision arithmetic, Pm and Qm may loss orthogonality rapidly and must be

reorthogonalized. There are several reorthogonalization strategies, such as full reorthog-

onalization, partial reorthogonalization, and one-side reorthogonalization. The one-side

reorthogonalization reorthogonalizes Qm only when Bm is not very ill-conditioned, which

can reduce the computational cost considerably when M � N . See [18] for details.

Baglama and Reichel [1] provide a MATLAB code for Lanczos bidiagonalization pro-

cess with one-side reorthogonalization. We adopt their code, which save our work on

programming.

Let the singular triplets ofBm be (σ̃i, x̃i, ỹi), i = 1, 2, . . . ,m, where σ̃1 ≥ σ̃2 ≥ · · · ≥ σ̃m.

The Lanczos bidiagonalization method takes (σ̃i, ũi, ṽi), i = 1, 2, . . . , k, to be the k wanted

approximate singular triplets, where ũi = Pmx̃i, ṽi = Qmỹi. We also have

(2.3) Aṽi − σ̃iũi = AQmỹi − σ̃iPmx̃i = Pm(Bmỹi − σ̃ix̃i) = 0,

ATũi − σ̃iṽi = ATPmx̃i − σ̃Qmỹi

= Qm(BT
mx̃i − σ̃iỹi) + βm+1e

T
mx̃iqm+1

= βm+1e
T
mx̃iqm+1.

(2.4)

Therefore, the residual norm of (σ̃i, ũi, ṽi) is

r̃i =

√
‖Aṽi − σ̃iũi‖2 + ‖ATũi − σ̃iṽi‖2 = βm+1

∣∣eTmx̃i∣∣ .
When r̃i is less than tol, a prescribed tolerance, we stop the algorithm. This indicate that

we need not form ũi and ṽi before the algorithm converged, which can greatly decrease

the computational cost.

We see that qm+1 is already in hand, but it is not used to form the approximate

singular triplets. A natural question is “can we use qm+1 to improve the performance of

the approximate singular triplets?”

3. Using qm+1 to improve approximate singular triplets

Jia and Elsner [9] proposed a modified Arnoldi method for computing some largest eigen-

pairs of large matrices. They used the (m + 1)-th base vector generated by the m-step

Arnoldi procedure to improve the Ritz vectors. In this section, we apply this idea to SVD

problems.

According to the relation between the Lanzos bidiagonalization process of A and the

symmetric Lanczos process of Ã, we have

(3.1) r̃i =

∥∥∥∥∥∥
 0 A

AT 0

− σ̃i
IM 0

0 IN

ũi
ṽi

∥∥∥∥∥∥ .
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Consider

(3.2)

∥∥∥∥∥∥
 0 A

AT 0

− σ̃i
IM 0

0 IN

a
ũi
ṽi

+ b

 0

qm+1

∥∥∥∥∥∥ ,
such that

(3.3) a2 + b2 = 1.

Obviously, (3.1) is the special case of (3.2) when a = 1 and b = 0. If ai and bi minimize

(3.2) and (3.3), and r̂i is the corresponding value of (3.2), it can be easily seen that r̂i is

at least as small as r̃i and may be much smaller than r̃i. Therefore, if we take (σ̃i, ûi, v̂i)

be the approximate singular triplets, where ûi = ũi, v̂i = aiṽi+biqm+1

‖aiṽi+biqm+1‖ = aiṽi + biqm+1, it

is better and may be much better than (σ̃i, ũi, ṽi).

It seems that minimizing (3.2) and (3.3) is impractical since A is large. Fortunately,

according to (2.3) and (2.4), we have 0 A

AT 0

− σ̃i
IM 0

0 IN

a
ũi
ṽi

+ b

 0

qm+1


= a

 Aṽi − σ̃iũi
ATũi − σiṽi

− b
Aqm+1

σ̃iqm+1


=

 0 Aqm+1

βm+1e
T
mx̃iqm+1 −σ̃iqm+1

a
b

 .

If si is the smallest singular value of

B̃i =

 0 Aqm+1

βm+1e
T
mx̃iqm+1 −σ̃iqm+1


and (ai, bi)

T are the associate right singular vector, ai and bi minimize (3.2) and (3.3) and

r̂i = si. In fact, we only need to compute the SVD of a 2× 2 matrix

B̂i =

 0 ‖Aqm+1‖

βm+1e
T
mx̃i −σ̃i


since

B̃i =

Aqm+1/‖Aqm+1‖ 0

0 qm+1

 0 ‖Aqm+1‖

βm+1e
T
mx̃i −σ̃i

 ,

and the corresponding cost is negligible1.

1We thank one reviewer for suggesting us to compute si, ai, bi from the SVD of B̂i. In the first version,

we took si and (aT
i , b

T
i )T to be the smallest eigenpair of B̃T

i B̃i. The reviewer’s way is more accurate.
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4. Implicit restarting and shift selection

Due to the storage requirements and the computational cost, m, the number of Lanczos

bidiagonalization steps, can not be large and is limited to be relatively small. However, for

small m, there may be not enough information of the wanted singular triplets. Practically,

we must restart the algorithm and compute the wanted singular triplets iteratively. There

are two restarting techniques: explicit restarting [17] and implicit restarting [19]. The

implicit restarting technique was proposed by Sorensen for eigenproblems and has been

applied to SVD problems. It can save the matrix-vector products, which are the main cost

of the Lanczos bidiagonalization method for large matrices. So it becomes the commonly

used restarting technique.

The implicit restarting technique for the Lanczos bidiagonalization process proceeds

as follows: choose p (p ≤ m − k) shifts µ1, µ2, . . . , µp, run the implicit QR iteration with

the shifts, whose matrix form is(BT
mBm − µ21I)(BT

mBm − µ22I) · · · (BT
mBm − µ2pI) = P̃R,

P̃TBmQ̃ is still bidiagonal,

where P̃ and Q̃ are the accumulations of the left and right Givens rotation matrices applied

on Bm. It is just the Golub-Kahan standard SVD process, see [7] for details.

Define P+
m = PmP̃ , Q+

m = QmQ̃
+
m, B+

m = P̃TBmQ̃. Let l = m− p, P+
l and Q+

l be the

first l columns of P+
m and Q+

m, respectively, q+l+1 be the (l + 1)-th column of Q+
m, P̃m,l be

the (m, l)-element of P̃ , B+
l be the leading l × l submatrix of B+

m. Then

AQ+
l = P+

l B
+
l ,(4.1)

ATP+
m = Q+

l B
+
l
T

+ (βlP̃m,lqm+1 + β+l q
+
l+1)e

T
l .(4.2)

Since βlP̃m,lqm+1+β+l q
+
l+1 is orthogonal to Q+

l , (4.1) and (4.2) are the l-step Lanczos bidi-

agonalization process with the initial vector q+1 , which can extend to the m-step Lanczos

bidiagonalization process. Meanwhile,

(4.3) γq+1 =

p∏
j=1

(ATA− µ2jI)q1,

where γ is a factor such that
∥∥q+1 ∥∥ = 1.

Once the shifts µ1, µ2, . . . , µp are chosen, we can run the algorithm described above

iteratively until the corresponding residuals are less than tol. Mathematically, we can

choose any scalars to be the shifts. However, we can see from (4.3) that if the shifts

near the unwanted singular values, the components of the unwanted singular vectors are

damped significantly, and q+1 has the more components of the wanted singular vectors. As
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a result, the algorithm may converge faster. This phenomenon suggests us to select the

shifts as close as possible to the unwanted singular values.

For the classical implicit restarting technique, the exact shift strategy are used [14,19],

and the shifts are taken to be σ̃l+1, σ̃l+2, . . . , σ̃m, the p smallest approximate singular

values. In this paper, we obtain v̂i, i = 1, 2, . . . , k, which are better than ṽi, i = 1, 2, . . . , k.

Similar to the analysis of [10, 11], we can find the better shifts by using the information

of v̂i, i = 1, 2, . . . , k.

Make the following orthogonal direct sum decompositions

span {Qm, qm+1} = span
{
Ṽk

}
⊕ span

{
Ṽm−k

}
⊕ span {qm+1} ,

span {Qm, qm+1} = span
{
V̂k

}
⊕ span

{
V̂k

}⊥
,

where Ṽk = (ṽ1, ṽ2, . . . , ṽk), Ṽm−k = (ṽk+1, ṽk+2, . . . , ṽm), V̂k = (v̂1, v̂2, . . . , v̂k).

It can be easily verified that the wanted approximate singular values σ̃1, σ̃2, . . . , σ̃k are

the singular values of

PT
mAṼk

and the unwanted singular values σ̃k+1, σ̃k+2, . . . , σ̃m are the singular values of

PT
mAṼm−k.

Since span
{
V̂k

}
includes better information of the wanted singular vectors than span

{
Ṽk

}
,

span
{
V̂k

}⊥
includes better information of the unwanted singular vectors than span

{
Ṽm−k

}
⊕ span {qm+1}. Therefore, if we compute the singular values of PT

mAV̂
⊥
k , where V̂ ⊥k is the

orthonormal bases of span
{
V̂k

}⊥
, and choose p smallest of them to be shifts, the obtained

shifts may approximate the unwanted singular values better than the classical shifts. As

mentioned above, the algorithm may converge faster. Next, we propose a practical ap-

proach that can compute the new shifts cheaply and reliably.

It has been proved in [7, Theorem 5.2.2] that if C = QR is a full QR factorization of

C ∈ Rm×n, m < n, then the first m columns of Q are the orthonormal bases of span {C}
and the last n − m columns of Q are the orthonormal bases of span {C}⊥. From the

definitions of v̂i and ṽi, we see that

span
{
V̂k

}
= span

(Qm qm+1

)a1ỹ1 a2ỹ2 · · · akỹk

b1 b2 · · · bk

 .

If we compute the following full QR factorizationa1ỹ1 a2ỹ2 · · · akỹk

b1 b2 · · · bk

 = Q̂R̂
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and take Q̂m+1−k to be the last m + 1 − k columns of Q̂, obviously (Qm, qm+1)Q̂m+1−k

forms the orthonormal bases of span
{
V̂k

}⊥
. Meanwhile,

(4.4) PT
mAV̂

⊥
k = PT

mA(Qm, qm+1)Q̂m+1−k = (Bm, βm+1em)Q̂m+1−k.

As mentioned above, we can compute the singular values of (Bm, βm+1em)Q̂m+1−k and

take p smallest of them to be the new shifts. It is a small problem since (Bm, βm+1em) ·
Q̂m+1−k is a m× (m+ 1− k) matrix and m� N .

Now, we present the classical Lanczos bidiagonalization method and the modified

version of the paper, respectively.

irlb(old): the classical Lanczos bidiagonalization method

1. Given an initial vector q1 of order N , the Lanczos steps m, the number of the wanted

singular triplets k, the number of the shifts p (≤ m− k), the convergence tolerance

tol.

2. Run the m-step Lanczos bidiagonalization process (2.1) and (2.2).

3. Compute the singular triplets (σ̃i, x̃i, ỹi), i = 1, 2, . . . ,m of Bm.

4. Test if r̃i, i = 1, 2, . . . , k are less than tol×‖A‖. If yes, take (σ̃i, ũi = Pmx̃i, ṽi =

Qmỹi), i = 1, 2, . . . , k to be the approximate singular triplets and stop.

5. Take l = m − p. Use σ̃l+1, σ̃l+2, . . . , σ̃m as shifts and implicitly restart the Lanczos

bidiagonalization process.

irlb(new): the modified Lanczos bidiagonalization method

1. Given an initial vector q1 of order N , the Lanczos steps m, the number of the wanted

singular triplets k, the number of the shifts p (≤ m− k), the convergence tolerance

tol.

2. Run the m-step Lanczos bidiagonalization process (2.1) and (2.2).

3. Compute the singular triplets (σ̃i, x̃i, ỹi), i = 1, 2, . . . ,m of Bm.

4. Test if r̃i, i = 1, 2, . . . , k are less than tol×‖A‖. If yes, take (σ̃i, ũi = Pmx̃i, ṽi =

Qmỹi), i = 1, 2, . . . , k to be the approximate singular triplets and stop.

5. Form B̂i, take si and (aTi , b
T
i )T to be the smallest singular value and the associate

right singular vector of B̂i, respectively.

6. Test if si, i = 1, 2, . . . , k are less than tol×‖A‖. If yes, take (σ̃i, ûi = ũi, v̂i =

aiṽi + biqm+1), i = 1, 2, . . . , k to be the approximate singular triplets and stop.

7. Compute the singular values of (4.4). Use p smallest of them to be the shifts and

implicitly restart the Lanczos bidiagonalization process.
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5. Numerical experiments

We run irlb(old) and irlb(new) on the computational environment given by Table 5.1.

The convergence tolerance is taken to be tol = 10−6. Since ‖A‖ is hard to compute, we

replace it by the maximum the largest approximate singular value obtained in the current

restart and the last restart, which is a good approximation to ‖A‖. We also take p = m−k.

All the test matrices are from [5].

CPU Intel Xeon E3 1230V2 3.30Ghz

RAM 32 GB (Kinston DDR3 1600 Mhz)

Operating system Windows 7 Professional (64 bit)

Software MATLAB 2012B

Machine epsilon ≈ 2.22× 10−16

Stop criteria residual norms < ‖A‖ × 10−6

Table 5.1: Computational environment.

Figure 5.1: Computing ten largest singular triplets of bcsstk21.

Example 5.1. Compute the ten largest singular triplets of bcsstk21, a 3600×3600 matrix,

with k = 10, m = 20.

Figure 5.1 plots the maximum of the corresponding ten residual norms at each restart.

We see that, irlb(new) takes fewer restarts to reach the desired convergence than those of

irlb(old). Before the first restart, the residual norm of irlb(new) is smaller than that of

irlb(old), as mentioned in Section 3. With the increasing number of restarts, the former

descends faster than the latter.
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Example 5.2. Compute ten largest singular triplets of saylr4, a square matrix of order

3564, with k = 10, m = 20.

Figure 5.2 shows that, after 2000 restarts, irlb(old) does not converge. The curve

of the residual norm descends firstly and then is stagnant. This phenomenon has been

analyzed by Jia and Niu in [10, 11]. They point out that, as the cases of eigenproblems,

even the approximate singular values converge, the associate approximate singular vectors

may converge slowly and irregularly as the separation between the wanted and unwanted

approximate singular values is very small. Conversely, irlb(new) only takes 103 restarts

to reach the desired convergence. It shows that irlb(new) may be much better than

irlb(old).

Figure 5.2: Computing ten largest singular triplets of saylr4.

Example 5.3. Compute k largest singular triplets of olm5000 for different k and m. The

size of olm5000 is 5000× 5000.

Since in the new algorithm we need compute Aqm+1, we run irlb(new) with m-

step Lanczos bidiagonalization process and irlb(old) with m and m + 1 step Lanczos

bidiagonalization process, respectively. See Table 5.2 for the numerical results.

In Table 5.2, denote by “iter” the number of restarts, by “time” the CPU time in

second. When the number of restarts reaches 2000, we stop the algorithm.

From Table 5.2, it can be easily seen that, irlb(new) is more efficient than irlb(old).

It can save about 50% restarts and CPU time. Dividing “time” by “iter”, we find that the

CPU time of each restarts of irlb(new) are only a little more than those of irlb(old).

The reason is that the total extra cost of irlb(new) includes: (1) one extra matrix-vector

product (needs at most nonzero number of the elements of olm5000 multiplications), (2)

computing the SVD of B̂, a 2 × 2 matrix, (3) computing the new shifts (needs O((m +

1)2(m − k) multiplications). It is relatively small since olm5000 is a sparse matrix and

m� N . Even for dense matrices, the total CPU time of irlb(new) may be still smaller

since irlb(new) may converges faster than irlb(old). We also see that irlb(new) with
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parameter m is much better than irlb(old) with parameter m+ 1.

irlb(new)

k = 3 k = 5 k = 10

m iter time iter time iter time

20 627 64 522 46 1117 67

30 261 53 441 90 308 53

40 147 56 235 84 152 49

50 104 56 150 84 92 47

irlb(old)

k = 3 k = 5 k = 10

m iter time iter time iter time

20 1399 137 > 2000 - > 2000 -

30 585 118 873 176 578 99

40 327 124 461 164 276 87

50 206 119 291 162 164 83

irlb(old)

k = 3 k = 5 k = 10

m iter time iter time iter time

21 1255 137 > 2000 - 1792 127

31 549 126 817 166 535 100

41 313 126 439 167 261 87

51 198 120 278 165 150 79

Table 5.2: Computing the largest singular triplets of olm5000 with different k and m.

Figure 5.3: Computing ten largest singular triplets of s3dkq4m2.



954 Datian Niu and Jiana Meng

Example 5.4. The test matrix is s3dkq4m2, a square matrix of order 90449. We take

k = 10 and m = 20. Figure 5.3 reports the numerical results. The scale of s3dkq4m2 is

very large, but irlb(new) and irlb(old) still work well, and the former is much better. In

fact, the keypoint of computing singular triplets is the separation of the singular triplets

rather than the scale of the matrices.

6. Conclusions

In this paper, we analyze the classical Lanczos bidiagonalization method and find that it

generates 2m+ 1 base vectors but only uses 2m of them. We make two improvements on

the classical Lanczos bidiagonalization method. One is replacing the approximate singular

triplets by new ones, which are the linear combination of the old approximate singular

vectors and the unused base vector. The new approximate singular vectors minimize the

corresponding residual norms and can be computed from 2× 2 SVD problems. The other

is replacing the unwanted approximate singular values by new scalars as shifts. The new

shifts are superior and can be computed cheaply and reliably. Numerical experiments

show that, after two improvements, the modified method is much better than the classical

one.

The corresponding MATLAB code can be obtained from the authors upon request.
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