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More Results on the Existence of Simple BIBDs with Number of Elements a

Prime Power

Hsin-Min Sun

Abstract. We study the existence of simple (q, k, λ) BIBDs when the number of

elements is a prime power q and {c1, c2}∩{1, 2} is not empty, where c1 = gcd(k, q−1)

and c2 = gcd(k− 1, q− 1). We show that in many situations the necessary conditions

λ(q − 1) ≡ 0 mod (k − 1), λq(q − 1) ≡ 0 mod k(k − 1), and λ ≤
(
q−2
k−2

)
are also

sufficient for the existence of a simple (q, k, λ) BIBD. These new results improve the

valid range of simple BIBDs.

1. Introduction

The existence problem for combinatorial structures is among the main issues in combi-

natorics. In this paper, we will obtain some existence theorems for simple BIBDs whose

number of elements is a prime power.

Let V be a finite set of symbols, and suppose B is a collection of subsets of V . Then

(V,B) is called a (v, k, λ) BIBD (balanced incomplete block design) if there are parameters

v, k, and λ with v > k ≥ 2 such that the following properties are satisfied:

(1) |V | = v;

(2) every block in B has exactly k symbols;

(3) every pair of distinct symbols appears in exactly λ blocks.

Suppose (V,B) is a (v, k, λ) BIBD, it holds that every symbol appears in exactly r blocks,

where r = λ(v − 1)/(k − 1), and b = |B| = vr/k. So sometimes a BIBD is described as a

(v, b, r, k, λ) design. A design without repeated blocks is called simple.

Let v, k, and λ with v > k ≥ 2 be positive integers. It is known that

(1) λ(v − 1) ≡ 0 mod (k − 1) and

(2) λv(v − 1) ≡ 0 mod k(k − 1) are necessary conditions for the existence of a BIBD

with parameters (v, k, λ).
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We fix v and k, then the smallest positive integer λ that satisfies these conditions is

denoted by λmin. It then follows that λmin divides λ whenever a (v, k, λ) BIBD exists.

Note that

λmin = lcm(λ1, λ2) =
k(k − 1)

gcd(k gcd(k − 1, v − 1), gcd(k(k − 1), v(v − 1)))

=
k(k − 1)

c1c2 gcd(k, v)

where λ1 = (k−1)/ gcd(k−1, v−1), λ2 = k(k−1)/ gcd(k(k−1), v(v−1)), c1 = gcd(k, v−1),

and c2 = gcd(k − 1, v − 1). When v is a prime power q = pα with p - k, we obtain

λmin = k(k−1)/(c1c2); especially, if {c1, c2}∩{1, 2} is not empty, then a simple (q, k, λmin)

BIBD always exists1.

Recent results [6,7] tell that, when the number of elements is a prime power q, in many

situations the necessary conditions

(1) λ(q − 1) ≡ 0 mod (k − 1),

(2) λq(q − 1) ≡ 0 mod k(k − 1), and

(3) λ ≤
(
q−2
k−2

)
are also sufficient for the existence of a simple (q, k, λ) BIBD. Here we continue the in-

vestigation, and the raised problem is: For which specific q and block size k, it happens

that all simple BIBDs whose parameters (q, k, λ) satisfy the necessary conditions exist?

We will introduce the new results (Theorems 2.1–2.8) in the next section, and give the

proofs in Section 3. For terminologies and previously known results, the reader is referred

to [1, 2, 5–7]. We review some facts in the rest part of this section.

BIBDs can be constructed by various ways. One of the methods uses difference families.

Suppose (V,+) is a group of order v. Let B = {b1, b2, . . . , bk} be a subset of V . The V -

stabilizer of B is the subgroup StabV (B) of V consisting of all elements g ∈ V such

that B + g = B. B is full or short according to whether StabV (B) is or is not trivial.

The V -orbit of B is the set OrbV (B) of all distinct translates of B, namely, OrbV (B) =

{B + s | s ∈ D} where D is a complete system of representatives for the cosets of StabV (B)

in V . The list of differences from B is the multiset ∆B = {bi − bj | i, j = 1, 2, . . . , k; i 6= j}.
The multiplicity in ∆B of an element g ∈ V is of the form µg| StabV (B)| for some integer

µg. The list of partial differences from B is the multiset ∂B where each g ∈ V appears

1This fact can be obtained directly from Theorem 1.2, according to the following situations:

(1) when {c1, c2} = {1, c}, at this time λmin = k(k − 1)/c;

(2) when p 6= 2 and {c1, c2} = {c, 2}, at this time λmin = k(k − 1)/(2c).
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exactly µg times. Note that ∆B = ∂B if and only if B is a full block. A collection

{B1, . . . , Bt} of k-subsets of V forms a (v, k, λ) difference family if every nonzero element

of V appears exactly λ times in ∂B1 ∪ · · · ∪ ∂Bt. The sets Bi are called base blocks. At

this time the collection of blocks OrbV (B1) ∪ · · · ∪ OrbV (Bt) forms a (v, k, λ) BIBD. A

difference family having at least one short block is further called a partial difference family.

Let (F,+, ·) be a finite field with |F | = q = pα. The action of the affine group Aff(F )

on the complete design
(
F
k

)
gives a partition of

(
F
k

)
, where

Aff(F ) = {τb,a : F → F | τb,a(x) = bx+ a, b ∈ F ∗, a ∈ F} ,

and
(
F
k

)
is the collection of all k-subsets of F . Each orbit is a simple BIBD. That is,

let S be any proper subset of F and |S| = k ≥ 2. We call S a generating block. Define

B = {bS + a | b ∈ F ∗, a ∈ F}, which is exactly the orbit OrbG(S) of S under the action

of the affine group G = Aff(F ). Define an equivalence relation ∼c on F ∗ by b1 ∼c b2 if

there is an a ∈ F such that b1S = b2S + a. Let n = |F ∗/ ∼c|, and denote the equivalence

class of b by b. Define an equivalence relation ∼r on F by a1 ∼r a2 if S + a1 = S + a2.

Let µ = |F/ ∼r|. We have the following result.

Theorem 1.1. [5, Theorem 2.7]

(1) (F,B) is a simple BIBD with parameters v = q, b = µn = |F/ ∼r|·|F ∗/ ∼c|, r = µnk
q ,

k = |S|, and λ = µnk(k−1)
q(q−1) .

(2) Let {b1, b2, . . . , bn} be a set of representatives of the equivalence classes induced by

∼c. Then {b1S, b2S, . . . , bnS} is a difference family if ∼r is trivial, and a partial

difference family if ∼r is nontrivial.

(3) If charF 6= 2 and |1| is odd, then the BIBD (F,B) can be partitioned into two

isomorphic simple BIBDs with parameters v = q, b = µn
2 , r = µnk

2q , k = |S|, and

λ = µnk(k−1)
2q(q−1) .

The idea of zero-sum generating blocks gives more detailed description for the struc-

tures of the constructions. If
∑

x∈S x = 0, we say that S is a zero-sum generating block

(abbreviated as ZSGB). Suppose S is a ZSGB. Then, it is of the first type if 0 /∈ S.

Otherwise, it is of the second type. A ZSGB containing 1 is abbreviated as ZSGBO.

For any nonempty subset S of F , define S to be a generating block of the first type if

there exist β ∈ F ∗ and α ∈ F such that βS + α is a ZSGB of the first type; if there exist

β ∈ F ∗ and α ∈ F such that βS + α is a ZSGB of the second type, we say that S is of

the second type. For any BIBD (F,B), we say B (or the BIBD) is of the first type if it is

generated by a first-type block; B (or the BIBD) is of the second type if it is generated by

a second-type block.
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Suppose p, i.e., charF , does not divide the block size k. Then∼r is trivial. At this time,

we have that a BIBD (or a generating block) with block size k is either of the first type or of

the second type [5, Theorem 2.8]. Let S be a ZSGB, then 1 = StabF ∗(S) [5, Theorem 2.10].

Therefore, |StabF ∗(S)| divides k if S is of the first type. Also, | StabF ∗(S)| divides (k−1)

if S is of the second type.

Theorem 1.2. [5, Theorem 3.5, Corollary 3.6] We assume that p is a prime and q = pα.

Let (F,+, ·) be the finite field with |F | = q. For 3 ≤ k ≤ q − 4, there is a first-type

ZSGBO S such that |S| = k and | StabF ∗(S)| = c where c is any divisor of gcd(k, q − 1).

The exceptions are when (q, k, c) = (7, 3, 1) or (9, 4, 1). For 4 ≤ k ≤ q − 3, there is a

second-type ZSGBO S such that |S| = k and | StabF ∗(S)| = c where c is any divisor of

gcd(k − 1, q − 1). The exceptions are when (q, k, c) = (7, 4, 1) or (9, 5, 1).

When p - k in any of these cases, we obtain that
{
S, γS, . . . , γ((q−1)/c−1)S

}
is a dif-

ference family, where γ is a generator of F ∗. The difference family produces a simple

(q, k, k(k − 1)/c) BIBD. Moreover, if p 6= 2 and c is an odd number in these construc-

tions, the BIBD can be partitioned into two isomorphic simple BIBDs with parameters

(q, k, k(k − 1)/(2c)).

Wilson gets the idea of blocks with evenly distributed differences [8]. Let (F,+, ·) be

a finite field with |F | = q. Let γ be a generator of F ∗. If e divides q− 1, let h = (q− 1)/e,

we write He for the subgroup of order h, i.e., He = 〈γe〉. Also let He
i = He · γi for

0 ≤ i ≤ e − 1. A list L of elements of F ∗ is called evenly distributed over the e-th power

cosets He
0 , H

e
1 , . . . ,H

e
e−1 if there is ` with `e = |L| and in each coset there are ` elements

of L, counting multiplicities.

Theorem 1.3. [8] As in the above settings. Let S be a k-set such that the differ-

ence list of S is evenly distributed over He
0 , H

e
1 , . . . ,H

e
e−1. Then `e = k(k − 1), and{

γieS | 0 ≤ i ≤ h− 1
}

is a (q, k, `) difference family. If 2e | (q − 1), then {γieS | 0 ≤ i ≤
h/2− 1} is a (q, k, `/2) difference family.

Theorem 1.4. [6, Theorem 5] Let (F,+, ·) be a finite field with |F | = q. Suppose e

divides q − 1; let h = (q − 1)/e. Suppose a k-subset S generates a BIBD (F,B) with

trivial ∼r, by the action of the affine group Aff(F ) on S. Let c = |1|. Suppose S also

generates a difference family by Wilson’s method, with respect to the subgroup He of order

h. Then, the BIBD constructed by Wilson’s method is simple if and only if gcd(c, h) = 1.

At this time (F,B) can be partitioned into d isomorphic BIBDs, where d = n/h = e/c and

n = (q − 1)/c.

For all (q, k, λi) BIBDs (1 ≤ i ≤ tk) obtained from the affine constructions, i.e., the

action of the affine group Aff(F ) on the complete design
(
F
k

)
, suppose
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(1) Bi can be further partitioned into di isomorphic BIBDs by Wilson’s method for

1 ≤ i ≤ w, according to Theorem 1.3;

(2) Bw+1,Bw+2, . . . ,Bw+h are distinct from the above BIBDs and each can be partitioned

into two isomorphic BIBDs, according to Theorem 1.1(3);

(3) Bw+h+1,Bw+h+2, . . . ,Btk are the rest of the BIBDs.

We then make a list Λ of numbers:

(1) first we put di copies of λi/di in Λ for 1 ≤ i ≤ w;

(2) next we put two copies of λw+i/2 in Λ for 1 ≤ i ≤ h;

(3) finally, we put one copy of λi in Λ for w + h+ 1 ≤ i ≤ tk.

We can also have a list (B′1,B′2, . . . ,B′t) of mutually disjoint simple BIBDs whose parame-

ters correspond to those numbers in the list Λ, where t = tk −w+ h+
∑w

i=1 di. Then any

simple (q, k, λ) BIBD exists whenever λ can be expressed as a sum of some numbers chosen

from the list Λ. The BIBD is formed by taking union of the BIBDs which correspond to

those selected numbers for the sum.

Theorem 1.5. [6, Theorem 10] Suppose 3 ≤ k ≤ q − 3 and p - k(k − 1). Suppose

Λ = (λ1, λ2, . . . , λt) is a list of parameters described above. Then, the necessary conditions

are also sufficient for the existence of a simple (q, k, λ) BIBD if there is a sublist Γ of Λ

with the following properties:

(1)
∑

τ∈Γ τ ≥ k(k − 1)− λmin;

(2) any iλmin with λmin ≤ iλmin ≤
∑

τ∈Γ τ can be expressed as a sum of numbers chosen

from Γ.

Using this theorem, we obtain several existence theorems for simple BIBDs. We quote

four results in the following.

Suppose c divides q − 1 and Φ is a subgroup of F ∗ with |Φ| = c. Let t1(k, c) denote

the number of distinct first-type BIBDs in the affine constructions with block size k and

|1| = c. Similarly, let t2(k, c) denote the number of distinct second-type BIBDs with block

size k and |1| = c. Let t(k, c) denote the number of distinct BIBDs with block size k and

|1| = c. Recall that when p - k, we have t(k, c) = t1(k, c) + t2(k, c).

In the remainder of this paper, we always let c1 = gcd(k, q−1) and c2 = gcd(k−1, q−1).

Theorem 1.6. [6, Theorem 14] Suppose 3 ≤ k ≤ q − 3 and p - k(k − 1). Suppose

{c1, c2} ∩ {1, 2} is not empty. Except when (k, c1, c2) = (3, 3, 2) or (q − 3, 2, 3), suppose

there exists a set D of some divisors of c1c2 with the following properties:
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(1)
∑

d∈D d ≥ c1c2 − 1, and

(2) every number i with 1 ≤ i ≤
∑

d∈D d can be expressed as a sum of distinct elements

chosen from D.

When k 6= 3, q−3 and {c1, c2}∩{1, 2} = {2}, let d1 be the odd value in {c1, c2}, we further

require that t(k, d1/d) ≥ 2 for any d such that both d and 2d are in D. Then, the necessary

conditions are also sufficient for the existence of a simple (q, k, λ) BIBD.

Theorem 1.7. [6, Theorem 15] Suppose 3 ≤ k ≤ q−3, p - k(k−1), and {c1, c2} = {2, βm},
where m ≥ 1 and β is odd. Then, the necessary conditions are also sufficient for the

existence of a simple (q, k, λ) BIBD if t(k, βm) ≥ β. In particular, this is the case if

q > βm(
√

6β + 1/4 + 3/2) and q − 3βm ≥ k ≥ 3βm.

Theorem 1.8. [6, Theorem 16] Suppose 3 ≤ k ≤ q−3, p - k(k−1), and {c1, c2} = {1, βm},
where m ≥ 1 and β is even. Then, the necessary conditions are also sufficient for the

existence of a simple (q, k, λ) BIBD if t(k, βm) ≥ β − 1. In particular, this is the case in

any of the following situations:

(1) q ≥ βm(2β − 1) + 1 and q − 2βm ≥ k ≥ 2βm;

(2) q > βm(
√

6β − 23/4 + 3/2) and q − 3βm ≥ k ≥ 3βm.

Theorem 1.9. [6, Theorem 17] [7] Suppose 3 ≤ k ≤ q − 3, p - k(k − 1), and {c1, c2} =

{1, 2βm} with m ≥ 1. Then, the necessary conditions are also sufficient for the existence

of a simple (q, k, λ) BIBD in the following cases:

(1) β is odd and t(k, βm) ≥ (β − 1)/2. In particular, this is the case in any of the

following situations:

(a) q ≥ βm+1 + βm + 1 and k = 2βm, 2βm + 1, q − 2βm, or q − 2βm − 1;

(b) q > βm(
√

3β − 11/4 + 3/2) and q − 3βm > k > 3βm.

(2) β is even and t(k, βm) ≥ (β − 2)/2. In particular, this is the case in any of the

following situations:

(a) q ≥ βm+1 + 1 and k = 2βm, 2βm + 1, q − 2βm, or q − 2βm − 1;

(b) q > βm(
√

3β − 23/4 + 3/2) and q − 3βm > k > 3βm.

Remark 1.10. Theorem 1.5 is still valid if the assumption “p - k” is used instead of

“p - k(k − 1)”. The interesting point about the condition “p - k(k − 1)” is that there is

a one to one correspondence between second-type BIBDs of block size k and first-type

BIBDs of block size k − 1 in the affine constructions [6, Theorem 7]. However, we do not
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use this property in the proofs of Theorems 1.5–1.9. That is, the assumption “p - k(k−1)”

is more restrictive. We find that Theorems 1.6–1.9 are still true if we use the condition

“p - k and p 6= 2” instead of “p - k(k − 1)”.

Note that when β and m are specified in Theorems 1.7–1.9, there are only a finite

number of unknown cases left, whose values q are below the valid bounds. Hence, in order

to reduce the amount of the unknown cases, it is reasonable to make the lower bounds for

q as small as possible.

In the next section, we will introduce more results, which can improve the valid range

of simple BIBDs.

2. More existence theorems for simple BIBDs

We state the results first, and we prove their correctness in the next section. With a

similar proof to that of Theorem 1.8, we obtain a result for q = 2α.

Theorem 2.1. Let q = 2α. Suppose 3 ≤ k ≤ q − 3 is odd, and {c1, c2} = {1, βm},
where m ≥ 1 and β ≥ 3. Then, the necessary conditions are also sufficient for the

existence of a simple (q, k, λ) BIBD if t(k, βm) ≥ β − 1. In particular, this is the case if

q > βm(
√

6β − 23/4 + 3/2) and q − 3βm ≥ k ≥ 3βm.

For example, a simple (256, 45, 132i) BIBD exists for any i with 1 ≤ i ≤
(

254
43

)
/132,

using β = 15.

Theorem 2.2. Let q be a power pα of an odd prime and let β ≥ 3. Suppose 3βm ≤ k ≤
q − 3βm, p - k, and {c1, c2} = {2, 3βm} with m ≥ 1. Then, the necessary conditions are

also sufficient for the existence of a simple (q, k, λ) BIBD if t(k, βm) ≥ (β − 1)/2. In

particular, this is the case in any of the following situations:

(1) q > βm(
√

3β − 3/4 + 3/2) and k = 3βm, 3βm + 1, q − 3βm, or q − 3βm − 1;

(2) q > βm(
√

3β − 11/4 + 3/2) and q − 9βm ≥ k ≥ 9βm.

For example, a simple (601, 75, 37i) BIBD exists for any i with 1 ≤ i ≤
(

599
73

)
/37.

Theorem 2.3. Let q be a prime power pα and let `, β ≥ 2. Suppose 3 ≤ k ≤ q − 3, p - k,

and {c1, c2} = {1, `βm} with m ≥ 1. Then, the necessary conditions are also sufficient

for the existence of a simple (q, k, λ) BIBD if t(k, `βm) ≥ `− 1 and t(k, βm) ≥ β − 1. In

particular, this is the case in the following situations:

(1) q > βm max
{

2`2 − `,
√

12β − 47/4 + 3/2
}

and q − 2`βm ≥ k ≥ 2`βm;

(2) q > βm max
{
`(
√

6`− 23/4 + 3/2),
√

12β − 47/4 + 3/2
}

and q−3`βm ≥ k ≥ 3`βm.
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Note that this result also applies to q = 2α and odd k. For example, a simple

(4096, 945, 2832i) BIBD exists for any i with 1 ≤ i ≤
(

4094
943

)
/2832, using ` = 9, β = 35,

and m = 1. This case is not covered within the scope of Theorem 2.1.

Theorem 2.4. Let q be a power pα of an odd prime, and let β ≥ 3 be odd. Suppose

3 ≤ k ≤ q − 3, p - k, and {c1, c2} = {1, `βm}, where ` ≥ 2 is even and m ≥ 1. Then,

the necessary conditions are also sufficient for the existence of a simple (q, k, λ) BIBD if

t(k, `βm) ≥ `/2−1 and t(k, βm) ≥ (β−1)/2. In particular, this is the case in the following

situations:

(1) q > βm max
{
`2 − `,

√
6β − 23/4 + 3/2

}
and q − 2`βm ≥ k ≥ 2`βm;

(2) q > βm max
{
`(
√

3`− 23/4 + 3/2),
√

6β − 23/4 + 3/2
}

and q − 3`βm ≥ k ≥ 3`βm.

For example, a simple (251, 100, 198i) BIBD exists for any i with 1 ≤ i ≤
(

249
98

)
/198,

using ` = 2, β = 5, and m = 2.

Theorem 2.5. Let q be a power pα of an odd prime, and let `, β ≥ 3 be odd. Sup-

pose 3`βm ≤ k ≤ q − 3`βm, p - k, and {c1, c2} = {2, `βm} with m ≥ 1. Then, the

necessary conditions are also sufficient for the existence of a simple (q, k, λ) BIBD if

t(k, `βm) ≥ (` − 1)/2 and t(k, βm) ≥ (β − 1)/2. In particular, this is the case when

q > βm max
{
`(
√

3`− 11/4 + 3/2),
√

6β − 23/4 + 3/2
}

.

For example, a simple (617, 231, 345i) BIBD exists for any i with 1 ≤ i ≤
(

615
229

)
/345,

using ` = 7, β = 11, and m = 1.

Next, we improve the result of Theorem 1.6.

Theorem 2.6. Let q be a power pα of an odd prime. Suppose 3 ≤ k ≤ q − 3 and p - k.

Suppose {c1, c2}∩{1, 2} is not empty, and there is a set D of some proper divisors of c1c2

such that2

(1)
∑

d∈D d ≥ c1c2 − 1;

(2) every number i with 1 ≤ i ≤
∑

d∈D d can be expressed as a sum of distinct elements

chosen from D.

Then the necessary conditions are also sufficient for the existence of a simple (q, k, λ)

BIBD.

For example, a simple (67, 33, 16i) BIBD exists for any i with 1 ≤ i ≤
(

65
31

)
/16. This

case is not covered within the scope of Theorem 2.2.

2As to which even number n (= c1c2) implies a set D with these properties, the reader is referred to the

remark after Theorem 14 [6].
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Theorem 2.7. Let q be a power pα of an odd prime, and let β ≥ 3 be odd. Suppose

`βm ≤ k ≤ q − `βm, p - k, and {c1, c2} = {1, `βm}, where m ≥ 1 and ` ≥ 4 is an even

number with the following property: there is a set D of some proper divisors of ` such that

(1)
∑

d∈D d ≥ `− 1;

(2) every number i with 1 ≤ i ≤
∑

d∈D d can be expressed as a sum of distinct elements

chosen from D.

Then, the necessary conditions are also sufficient for the existence of a simple (q, k, λ)

BIBD if t(k, βm) ≥ (β−1)/2. In particular, this is the case when q > βm(
√

3(β − 1)/δ + 1/4

+ 3/2), where δ = 1 −
∑

h|`
hprime

(hk/β
mh)−1. More specifically, this is the case when

q > βm(
√

6β − 23/4 + 3/2).

For example, a simple (601, 150, 149i) BIBD exists for any i with 1 ≤ i ≤
(

599
148

)
/149,

using ` = 6, β = 5, and m = 2.

Theorem 2.8. Let q be a power pα of an odd prime, and let `, β ≥ 3 be odd. Suppose

`βm ≤ k ≤ q − `βm, p - k, and {c1, c2} = {2, `βm}, where m ≥ 1 and 2` satisfies the

following property: there is a set D of some proper divisors of 2` such that

(1)
∑

d∈D d ≥ 2`− 1;

(2) every number i with 1 ≤ i ≤
∑

d∈D d can be expressed as a sum of distinct elements

chosen from D.

Then, the necessary conditions are also sufficient for the existence of a simple (q, k, λ)

BIBD if t(k, βm) ≥ (β−1)/2. In particular, this is the case when q > βm(
√

3(β − 1)/δ + 1/4

+ 3/2), where δ = 1 −
∑

h|`
hprime

(hk/β
mh)−1. More specifically, this is the case when

q > βm(
√

6β − 23/4 + 3/2).

For example, a simple (9001, 3375, 5061i) BIBD exists for any i with 1 ≤ i ≤
(

8999
3373

)
/5061,

using ` = 9, β = 5, and m = 3. This illustrates a case which is not covered within the

scope of Theorem 2.2.

3. Proofs of Theorem 2.1 to Theorem 2.8

First, we quote some known results, which are used in the proofs. Suppose c divides q− 1

and Φ is a subgroup of F ∗ with |Φ| = c.

(1) Let Z1(k, c) be the collection of first-type ZSGBs S with block size k and Φ ≤
StabF ∗(S); let Z1(k, c) denote the cardinality of Z1(k, c). Similarly, let Z2(k, c) be
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the collection of second-type ZSGBs S with block size k and Φ ≤ StabF ∗(S); let

Z2(k, c) denote the cardinality of Z2(k, c). Let Z(k, c) = Z1(k, c) ∪ Z2(k, c) and let

Z(k, c) denote its cardinality.

(2) Let N1(k, c) be the number of S in Z1(k, c) with StabF ∗(S) = Φ. Similarly, let

N2(k, c) be the number of S in Z2(k, c) with StabF ∗(S) = Φ. Let N(k, c) be the

number of S in Z(k, c) with StabF ∗(S) = Φ.

Theorem 3.1. [6, Theorem 9] Suppose p - k, then t(k, c) = cN(k, c)/(q−1), where N(k, c)

can be computed by the inclusion-exclusion formula with respect to distinct prime divisors

of gcd(k, q − 1)/c or gcd(k − 1, q − 1)/c stated in the following.

(1) When c > 1 and c divides gcd(k, q−1), let gcd(k, q−1)/c = pe11 p
e2
2 · · · pemm if gcd(k, q−

1)/c > 1. Then

N(k, c) = N1(k, c) = Z1(k, c)−
∑
i

Z1(k, cpi) +
∑
i 6=j

Z1(k, cpipj)− · · · .

(2) When c > 1 and c divides gcd(k − 1, q − 1), let gcd(k − 1, q − 1)/c = pe11 p
e2
2 · · · pemm

if gcd(k − 1, q − 1)/c > 1. Then

N(k, c) = N2(k, c) = Z2(k, c)−
∑
i

Z2(k, cpi) +
∑
i 6=j

Z2(k, cpipj)− · · · .

(3) When gcd(k, q−1) > 1, let gcd(k, q−1) = pe11 p
e2
2 · · · pemm ; when gcd(k−1, q−1) > 1,

let gcd(k − 1, q − 1) = qf11 q
f2
2 · · · q

f`
` . Then

N(k, 1) = Z(k, 1) +

−∑
i

Z1(k, pi) +
∑
i 6=j

Z1(k, pipj)− · · ·


+

−∑
i

Z2(k, qi) +
∑
i 6=j

Z2(k, qiqj)− · · ·

 .

Corollary 3.2. [6, Corollary 2] Suppose p - k, we have the following estimates on t1(k, c),

t2(k, c), and t(k, c).

(1)
[

c
q−1

((q−1)/c
k/c

)]
≥ t1(k, c) ≥ c

q−1

(((q−1)/c
k/c

)
−
∑

ch|gcd(k,q−1)
hprime

((q−1)/ch
k/ch

))
, and t(k, c) =

t1(k, c) if c divides gcd(k, q − 1) and c > 1.

(2)
[

c
q−1

((q−1)/c
(k−1)/c

)]
≥ t2(k, c) ≥ c

q−1

(((q−1)/c
(k−1)/c

)
−
∑

ch|gcd(k−1,q−1)
hprime

((q−1)/ch
(k−1)/ch

))
, and t(k, c)

= t2(k, c) if c divides gcd(k − 1, q − 1) and c > 1.
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(3)
[

1
q−1

((
q
k

)
/q − y

)]
≥ t(k, 1)

≥ 1
q−1

((
q
k

)
/q −

∑
h|gcd(k,q−1)
hprime

((q−1)/h
k/h

)
−
∑

h|gcd(k−1,q−1)
hprime

((q−1)/h
(k−1)/h

))
, where y = 0 if

p = 2; y =
((q−1)/2

k/2

)
if p 6= 2 and k is even; and y =

((q−1)/2
(k−1)/2

)
if p 6= 2 and k is odd.

When (1) c = gcd(k, q − 1) in the first expression, (2) c = gcd(k − 1, q − 1) in the second

expression, and (3) gcd(k(k − 1), q − 1) = 1 or 2 in the third expression, the equalities

hold, respectively. When (1) gcd(k, q − 1)/c does not have two distinct prime divisors in

the first expression, (2) gcd(k − 1, q − 1)/c does not have two distinct prime divisors in

the second expression, and (3) gcd(k, q− 1) and gcd(k− 1, q− 1) do not have two distinct

prime divisors in the third expression, the lower bounds are reached, respectively.

We need two lemmas in the proofs.

Lemma 3.3. Let q be a prime power pα. Suppose p - k, β > 1, k > βm, and `βm =

gcd(k, q − 1) (or `βm = gcd(k − 1, q − 1)). Then, t(k, β) ≥ t(k, β2) ≥ · · · ≥ t(k, βm).

Proof. We give the proof for `βm = gcd(k, q − 1). From Corollary 3.2, we know

[
βi

q − 1

(
(q − 1)/βi

k/βi

)]
≥ t(k, βi) ≥ βi

q − 1

((q − 1)/βi

k/βi

)
−
∑
h|`β

h prime

(
(q − 1)/βih

k/βih

)
for 1 ≤ i < m. We point out that the inequality(

(q − 1)/βi

k/βi

)
≥ β

(
(q − 1)/βi+1

k/βi+1

)
+
∑
h|`β

hprime

(
(q − 1)/βih

k/βih

)

implies t(k, βi) ≥ βi

q−1

[((q−1)/βi

k/βi

)
−
∑

h|`β
hprime

((q−1)/βih
k/βih

)]
≥ t(k, βi+1). We also need to

apply the following inequality:
((q−1)/ch

k/ch

)
≤
((q−1)/c

k/c

)
/hk/ch. Therefore t(k, βi) ≥ t(k, βi+1)

(1 ≤ i < m) holds as long as
β

β
k

βi+1

+
∑
h|`β

hprime

1

h
k

βih

is less than or equal to 1. This holds according to the following reasons. Since k > βm

and β > 1, we have
β

β
k

βi+1

≤ 1

β
≤ 1

2
, 1 ≤ i < m.

We claim that
∑

h|n
hprime

1/hn/h ≤ 1/2 for any number n ≥ 2. Let ω(n) denote the number

of distinct prime divisors of n, and let Ω(n) denote the number of prime divisors of n,
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counted with multiplicity. Then, ω(n) ≤ Ω(n) ≤ log2 n. Let η be the one among the prime

divisors of n such that ηn/η is the smallest. It is obvious that ηn/η ≥ 2 log2 n. Therefore,∑
h|n

h prime

1/hn/h ≤ (ηn/η)−1 log2 n ≤ 1/2. Hence we complete the proof.

Remark 3.4. In fact, Robin [4] obtains the upper bound of ω(n) for n ≥ 3:

ω(n) ≤ 1.3841
log n

log logn
; ω(n) ≤ log n

log logn
+ 1.45743

log n

(log log n)2
.

Lemma 3.5. Let q be a prime power pα and let c > 1. Suppose p - k and 3 ≤ k ≤ q − 3.

We have the following lower bounds for t1(k, c) and t2(k, c).

(1) t1(k, c) ≥ δ
((q−1)/c

k/c

)
c

q−1 if c | gcd(k, q − 1), where δ = 1−
∑

h|k/c
h prime

(hk/ch)−1.

(2) t2(k, c) ≥ δ
((q−1)/c

(k−1)/c

)
c

q−1 if c | gcd(k−1, q−1), where δ = 1−
∑

h|(k−1)/c
h prime

(h(k−1)/ch)−1.

In particular, when q > ξc+ 1, we have the following lower bounds in these situations.

(1) t(k, c) > (ξ − 1)/4 if q − 2c ≥ k ≥ 2c;

(2) t(k, c) > (ξ − 1)(ξ − 2)/12 if q − 3c ≥ k ≥ 3c.

Proof. We here give the proof for c | gcd(k, q − 1), q > ξc+ 1, and q − 3c ≥ k ≥ 3c. From

Corollary 3.2 we have

t(k, c) = t1(k, c) ≥ c

q − 1

((q − 1)/c

k/c

)
−

∑
ch|gcd(k,q−1)

hprime

(
(q − 1)/ch

k/ch

)

≥ c

q − 1

((q − 1)/c

k/c

)
−

∑
ch|gcd(k,q−1)

h prime

(
(q − 1)/c

k/c

)
(h

k
ch )−1



≥ c

q − 1

(
(q − 1)/c

k/c

)1−
∑
h| k
c

h prime

(h
k
ch )−1


= δ

(
(q − 1)/c

k/c

)
c

q − 1
≥ 1

2

(
(q − 1)/c

3

)
c

q − 1

=
1

2
· 1

6

(
q − 1

c
− 1

)(
q − 1

c
− 2

)
>

1

12
(ξ − 1)(ξ − 2).

Now, we give the proofs of Theorems 2.1–2.8.
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Proof of Theorem 2.1. Notice that λmin = k(k − 1)/βm. We here sketch the proof for

c1 = βm and c2 = 1. Without loss of generality, we assume that k < q/2 = 2(α−1). We

have t(k, βm) = t1(k, βm) =
((q−1)/βm

k/βm

)
βm/(q − 1). Now, we are going to find a list Γ

with the properties: (1)
∑

τ∈Γ τ = k(k − 1) − λmin; (2) any jλmin with 1 ≤ j ≤ βm − 1

can be expressed as a sum of numbers chosen from Γ. By the assumption on the value

of t(k, βm) and the fact t(k, β) ≥ t(k, β2) ≥ · · · ≥ t(k, βm), we have β − 1 disjoint simple

(q, k, βik(k − 1)/βm) BIBDs for each i with 0 ≤ i ≤ m − 1. So we put β − 1 copies of

βiλmin into Γ for each i with 0 ≤ i ≤ m−1. The numbers in Γ can represent the following

numbers: jλmin for 1 ≤ j ≤ βm − 1. Hence Γ meets the requirements of Theorem 1.5.

The particular case are derived for the following situation: q − 3βm ≥ k ≥ 3βm and

t(k, βm) ≥
(

(q−1)/βm

3

)
βm/(q − 1) ≥ β − 1.

Proof of Theorem 2.2. We have λmin = k(k − 1)/(6βm) and β is odd. The idea of the

proof is in essential on finding a sublist Γ mentioned in Theorem 1.5. We here give the

proof for c1 = 3βm and c2 = 2. We assume that k ≤ (q − 1)/2. First we have t(k, βm) =

t1(k, βm) =
(((q−1)/βm

k/βm

)
−
((q−1)/3βm

k/3βm

))
βm/(q − 1) from Theorem 3.1. We are going to

find a list Γ with the following properties: (1)
∑

τ∈Γ τ = (6βm− 1)λmin = k(k− 1)−λmin;

(2) any jλmin with 1 ≤ j ≤ 6βm − 1 can be expressed as a sum of numbers chosen from

Γ. Let us collect the following numbers to form the sublist Γ.

(1) Since t(k, 3βm) ≥ 1 we have a simple (q, k, 2λmin) BIBD from the affine construction;

this BIBD can be partitioned into two isomorphic BIBDs. Thus we put two copies

of λmin into Γ.

(2) By the assumption on the value of t(k, βm) and the fact t(k, β) ≥ t(k, β2) ≥ · · · ≥
t(k, βm) from Lemma 3.3, we have (β − 1)/2 disjoint simple (q, k, βik(k − 1)/βm)

BIBDs for each i with 0 ≤ i ≤ m − 1; moreover, each of these BIBDs can be

partitioned into two isomorphic BIBDs. So we can put β − 1 copies of 3βiλmin into

Γ for each i with 0 ≤ i ≤ m− 1.

(3) We further put one copy of 3βmλmin into Γ by the fact that t(k, 1) ≥ 1 and such

BIBD can be partitioned into two isomorphic BIBDs.

The resulting Γ then satisfies the specified conditions. Hence Γ meets the requirements of

Theorem 1.5 and we finish this part of the proof.

Now we derive the results for the particular situations.

(1) When k = 3βm, 3βm + 1, q − 3βm, or q − 3βm − 1, we require that t(k, βm) =((
(q−1)/βm

3

)
−
(

(q−1)/3βm

1

))
βm/(q − 1) ≥ (β − 1)/2. From this we obtain

q > βm(
√

3β − 3/4 + 3/2).
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(2) When q − 9βm ≥ k ≥ 9βm, let us consider the case when t(k, βm) = t1(k, βm).

t(k, βm) =
βm

q − 1

[(
(q − 1)/βm

k/βm

)
−
(

(q − 1)/3βm

k/3βm

)]
≥ βm

q − 1

(
1− 1

3k/3βm

)(
(q − 1)/βm

k/βm

)
≥ βm

q − 1

(
1− 1

32

)(
(q − 1)/βm

4

)
=

2

9

(
q − 1

βm
− 3

)
βm

q − 1

(
(q − 1)/βm

3

)
≥ βm

q − 1

(
(q − 1)/βm

3

)
.

Therefore, when q > βm(
√

3β − 11/4 + 3/2), the requirement t(k, βm) ≥ (β − 1)/2

is satisfied.

Proof of Theorem 2.3. Notice that λmin = k(k − 1)/`βm. We here give the proof for

c1 = `βm and c2 = 1. We assume that k ≤ [(q − 1)/2].

We have t(k, βm) = t1(k, βm) ≥

(((q−1)/βm

k/βm

)
−
∑

h|`
hprime

((q−1)/βmh
k/βmh

))
βm/(q − 1) from

Corollary 3.2. We are going to find a list Γ with the following properties: (1)
∑

τ∈Γ τ ≥
(`βm − 1)λmin = k(k − 1) − λmin; (2) any jλmin with λmin ≤ jλmin ≤

∑
τ∈Γ τ can be

expressed as a sum of numbers chosen from Γ. Let us collect the following numbers to

form the sublist Γ.

(1) Since t(k, `βm) ≥ ` − 1 we have ` − 1 disjoint simple (q, k, λmin) BIBDs from the

affine constructions. Thus we put `− 1 copies of λmin into Γ.

(2) By the assumption on the value of t(k, βm) and the fact t(k, β) ≥ t(k, β2) ≥ · · · ≥
t(k, βm), we have β − 1 disjoint simple (q, k, βik(k − 1)/βm) BIBDs for each i with

0 ≤ i ≤ m − 1. So we can put β − 1 copies of `βiλmin into Γ for each i with

0 ≤ i ≤ m− 1.

The resulting Γ then satisfies the specified conditions. Therefore, Γ meets the requirements

of Theorem 1.5. The particular situations are derived as follows.

(1) When q − 2`βm ≥ k ≥ 2`βm, we require the following two conditions.

Condition 1:

t(k, `βm) ≥
(

(q − 1)/`βm

2

)
`βm

q − 1
≥ `− 1.

This holds when q > βm(2`2 − `).

Condition 2:

t(k, βm) ≥

((q − 1)/βm

k/βm

)
−
∑
h|`

hprime

(
(q − 1)/βmh

k/βmh

) βm

q − 1

≥ δ
(

(q − 1)/βm

k/βm

)
βm

q − 1
≥ δ
(

(q − 1)/βm

3

)
βm

q − 1
≥ β − 1.
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Note that δ = 1 −
∑

h|`
hprime

(hk/β
mh)−1 ≥ 1 −

∑
h|`

hprime

(h`/h)−1 ≥ 1/2. This holds

when q > βm(
√

12β − 47/4 + 3/2).

(2) When q − 3`βm ≥ k ≥ 3`βm, we use the following similar conditions:

t(k, `βm) ≥
(

(q − 1)/`βm

3

)
`βm

q − 1
≥ `− 1,

t(k, βm) ≥ δ
(

(q − 1)/βm

3

)
βm

q − 1
≥ β − 1.

These hold when q > βm max
{
`(
√

6`− 23/4 + 3/2),
√

12β − 47/4 + 3/2
}

.

Proof of Theorem 2.4. The proof is similar to that of Theorem 2.3. The different part is

on collecting the following numbers to form the sublist Γ.

(1) Since t(k, `βm) ≥ `/2 − 1 we have `/2 − 1 disjoint simple (q, k, λmin) BIBDs from

the affine constructions. Thus we put `/2− 1 copies of λmin into Γ.

(2) We have (β − 1)/2 disjoint simple (q, k, βik(k − 1)/βm) BIBDs for each i with 0 ≤
i ≤ m − 1; moreover, each of these BIBDs can be partitioned into two isomorphic

BIBDs. So we can put β−1 copies of 1
2`β

iλmin into Γ for each i with 0 ≤ i ≤ m−1.

(3) We further put one copy of 1
2`β

mλmin into Γ by the fact that t(k, 1) ≥ 1 and such

BIBD can be partitioned into two isomorphic BIBDs.

The particular situations are derived as follows.

(1) When q − 2`βm ≥ k ≥ 2`βm, we require the following two conditions:

t(k, `βm) ≥
(

(q − 1)/`βm

2

)
`βm

q − 1
≥ `

2
− 1,

t(k, βm) ≥

((q − 1)/βm

k/βm

)
−
∑
h|`

h prime

(
(q − 1)/βmh

k/βmh

) βm

q − 1

≥ δ
(

(q − 1)/βm

k/βm

)
βm

q − 1
≥ 1

2

(
(q − 1)/βm

3

)
βm

q − 1
≥ β − 1

2
,

where δ = 1−
∑

h|`
hprime

(hk/β
mh)−1 ≥ 1−

∑
h|`

hprime

(h`/h)−1 ≥ 1/2.

(2) When q − 3`βm ≥ k ≥ 3`βm, we use the following similar conditions:

t(k, `βm) ≥
(

(q − 1)/`βm

3

)
`βm

q − 1
≥ `

2
− 1,

t(k, βm) ≥ 1

2

(
(q − 1)/βm

3

)
βm

q − 1
≥ β − 1

2
.
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Proof of Theorem 2.5. Notice that λmin = k(k − 1)/(2`βm). We here give the proof for

c1 = `βm and c2 = 2. We are going to find a list Γ with the following properties: (1)∑
τ∈Γ τ ≥ (2`βm − 1)λmin = k(k − 1)− λmin; (2) any jλmin with λmin ≤ jλmin ≤

∑
τ∈Γ τ

can be expressed as a sum of numbers chosen from Γ. Let us collect the following numbers

to form the sublist Γ.

(1) Since t(k, `βm) ≥ (`−1)/2 we have (`−1)/2 disjoint simple (q, k, 2λmin) BIBDs from

the affine constructions. Moreover, each of these BIBDs can be partitioned into two

isomorphic BIBDs. Thus we put `− 1 copies of λmin into Γ.

(2) We have (β − 1)/2 disjoint simple (q, k, βik(k − 1)/βm) BIBDs for each i with 0 ≤
i ≤ m − 1; moreover, each of these BIBDs can be partitioned into two isomorphic

BIBDs. So we can put β − 1 copies of `βiλmin into Γ for each i with 0 ≤ i ≤ m− 1.

(3) We further put one copy of `βmλmin into Γ by the fact that t(k, 1) ≥ 1 and such

BIBD can be partitioned into two isomorphic BIBDs.

The resulting Γ then satisfies the specified conditions. Therefore, Γ meets the requirements

of Theorem 1.5.

We require the following conditions for the particular case:

t(k, `βm) ≥
(

(q − 1)/`βm

3

)
`βm

q − 1
≥ `− 1

2
,

t(k, βm) ≥ 1

2

(
(q − 1)/βm

3

)
βm

q − 1
≥ β − 1

2
.

Proof of Theorem 2.6. This improvement to Theorem 1.6 is made for the situation when

{c1, c2} = {2, d1} with odd d1 > 1. We assume that k ≤ (q − 1)/2.

When q − 3d1 ≥ k ≥ 3d1, we need t(k, d1/d) ≥ 2 whenever d is a proper divisor of d1.

According to Lemma 3.5, it suffices to show that q > 5(d1/d) + 1. Since q > 2k ≥ 6d1 >

5(d1/d) + 1 it is clearly true. This part then follows.

When k = d1 (or k = d1 + 1), we still have t(k, d1/d) ≥ 2 for any proper divisor d of

d1 with d 6= 1, since q > 2k ≥ 2d1 = (2d)(d1/d) > 5(d1/d) + 1. Therefore, the problem

appears at d = 1, i.e., we can only have t(k, d1) = 1. Thus, we can not put λmin and 2λmin

into the list Γ at the same time.

We are going to make some adjustments in order to get a suitable list Γ. Note that it

is easy to see that 3 | d1, since 4 /∈ D and 4 = 1 + 3 is the unique expressed sum of 4 by

distinct numbers. Therefore, we obtain 1, 2, 3 ∈ D. We now make a list L = (1, 1, 3, 3, . . .)

where the rest part of L are exactly the elements of D \{1, 2, 3}—if there is any. We claim

that this list L has the properties:

(1)
∑

d∈L d =
(∑

d∈D d
)

+ 2 ≥ c1c2 + 1;
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(2) every number i with 1 ≤ i ≤
∑

d∈L d can be expressed as a sum of numbers chosen

from L.

Let i be expressed, in expression E1, as a sum of distinct elements chosen from D. We

express i, in expression E2, as a sum of numbers chosen from L in the following.

(1) If 2 is not used in E1, then E2 is the same as E1.

(2) If 2 is used and 1 is not used in E1, then E2 is formed by removing 2 and adding

two 1 in E1.

(3) If 2 and 1 are used in E1, no matter 3 is used or not, then E2 is formed by removing

1, 2 and adding one 3 in E1.

Also note that the expression for the number i =
(∑

d∈D d
)

+ 1 =
(∑

d∈L d
)
− 1 is formed

by removing 1 from the sum
∑

d∈L d. One can see that the two 1 and two 3 in L correspond

to BIBDs with parameters (q, k, 2λmin) and (q, k, 6λmin)3, respectively; each BIBD can be

partitioned into two isomorphic BIBDs. The list Γ is then formed by putting one copy

of dλmin into Γ for each number d in the list L. Hence Γ meets the requirements in

Theorem 1.5 and we complete the proof.

Proof of Theorem 2.7. Notice that λmin = k(k − 1)/`βm. We here give the proof for

c1 = `βm and c2 = 1. We assume that k ≤ (q − 1)/2.

We have t(k, βm) = t1(k, βm) ≥

(((q−1)/βm

k/βm

)
−
∑

h|`
hprime

((q−1)/βmh
k/βmh

))
βm/(q − 1) from

Corollary 3.2. We are going to find a list Γ with the following properties: (1)
∑

τ∈Γ τ ≥
(`βm − 1)λmin = k(k − 1) − λmin; (2) any jλmin with λmin ≤ jλmin ≤

∑
τ∈Γ τ can be

expressed as a sum of numbers chosen from Γ. Let us collect the following numbers to

form the sublist Γ.

(1) For each d ∈ D, we have a simple (q, k, dλmin) BIBD from the affine construction,

since t(k, (`/d)βm) ≥ 1. Then, a simple (q, k, iλmin) BIBD exists for any i with

1 ≤ i ≤
∑

d∈D d, by collecting the BIBDs corresponding to the distinct numbers

selected from D in the expressed sum for i. Thus we put one copy of dλmin into Γ

for d ∈ D.

(2) By the assumption on the value of t(k, βm) and the fact t(k, β) ≥ t(k, β2) ≥ · · · ≥
t(k, βm), we have (β − 1)/2 disjoint simple (q, k, βik(k − 1)/βm) BIBDs for each i

with 0 ≤ i ≤ m − 1; moreover, each of these BIBDs can be partitioned into two

isomorphic BIBDs. So we can put β − 1 copies of 1
2`β

iλmin into Γ for each i with

0 ≤ i ≤ m− 1.

3This argument does not apply to q = 7 and k = 3, since there is no simple (7, 3, 6) BIBD.
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(3) We further put one copy of 1
2`β

mλmin into Γ by the fact that t(k, 1) ≥ 1 and such

BIBD can be partitioned into two isomorphic BIBDs.

The resulting Γ then satisfies the specified conditions. Therefore, Γ meets the requirements

of Theorem 1.5.

The particular case is derived by requiring

t(k, βm) ≥

((q − 1)/βm

k/βm

)
−
∑
h|`

h prime

(
(q − 1)/βmh

k/βmh

) βm

q − 1

≥ δ
(

(q − 1)/βm

k/βm

)
βm

q − 1
≥ δ
(

(q − 1)/βm

3

)
βm

q − 1
≥ β − 1

2
.

Therefore, we have βm(
√

6β − 23/4 + 3/2) ≥ βm(
√

3(β − 1)/δ + 1/4 + 3/2). Note that

δ = 1 −
∑

h|`
h prime

(hk/β
mh)−1 ≥ 1 −

∑
h|`

hprime

(h`/h)−1 ≥ 1/2. Hence, we can require that(
(q−1)/βm

3

) βm
q−1 ≥ β − 1 for the special case.

Proof of Theorem 2.8. Notice that λmin = k(k − 1)/(2`βm). We here give the proof for

c1 = `βm and c2 = 2. We assume that k ≤ (q − 1)/2.

We are going to find a list Γ with the following properties: (1)
∑

τ∈Γ τ ≥ (2`βm −
1)λmin = k(k− 1)− λmin; (2) any jλmin with λmin ≤ jλmin ≤

∑
τ∈Γ τ can be expressed as

a sum of numbers chosen from Γ. Let us collect the following numbers to form the sublist

Γ.

(1) For each d ∈ D, we make the discussion according to the parity of d.

(a) When d is odd, we have a simple (q, k, 2dλmin) BIBD in the affine constructions,

since t(k, (`/d)βm) ≥ 1; this BIBD can be partitioned into two isomorphic

BIBDs. At this time we put one copy of dλmin into Γ.

(b) When d is even, we have a simple (q, k, dλmin) BIBD from the affine construc-

tion, since t(k, (2`/d)βm) ≥ 1. Therefore, we can put one copy of dλmin into

Γ.

Note that for any odd d ∈ D such that 2d is also in D, in order to have two disjoint

simple BIBDs, we need t(k, (`/d)βm) ≥ 2. According to Lemma 3.5, this happens

when q > 5(`/d)βm + 1. It is clearly true when q − 3`βm ≥ k ≥ 3`βm, since

q > 2k ≥ 6`βm. So we can put one copy of dλmin into Γ for each d ∈ D. Then,

a simple (q, k, iλmin) BIBD exists for any i with 1 ≤ i ≤
∑

d∈D d, by collecting the

BIBDs corresponding to the distinct numbers selected from D in the expressed sum

for i.
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When k = `βm (or k = `βm+1), we still have t(k, (`/d)βm) ≥ 2 for any proper divisor

d of ` with d 6= 1, since q > 2k ≥ 2`βm = (2d)(`/d)βm ≥ 6(`/d)βm. Therefore, the

problem appears at d = 1, i.e., we can only have t(k, `βm) = 1. Thus, we can not

put λmin and 2λmin into the list Γ at the same time. Note that we have 1, 2, 3 ∈ D.

The discussion is then similar to the late part of the proof of Theorem 2.6. So we

make a list L = (1, 1, 3, 3, . . .) where the rest part of L are exactly the elements of

D \ {1, 2, 3}—if there is any. We claim that this list L has the properties:

(a)
∑

d∈L d =
(∑

d∈D d
)

+ 2 ≥ 2`+ 1;

(b) every number i with 1 ≤ i ≤
∑

d∈L d can be expressed as a sum of numbers

chosen from L.

So we can put one copy of dλmin into Γ for each d ∈ L. Then, a simple (q, k, iλmin)

BIBD exists for any i with 1 ≤ i ≤
∑

d∈L d, by collecting the BIBDs corresponding

to the numbers selected from L in the expressed sum for i.

(2) We claim that t(k, βm) ≥ (β − 1)/2 when q > βm(
√

3(β − 1)/δ + 1/4 + 3/2), where

δ = 1 −
∑

h|`
hprime

(hk/β
mh)−1. This part of proof is exactly the same as that for

Theorem 2.7. Then, by the fact t(k, β) ≥ t(k, β2) ≥ · · · ≥ t(k, βm), we have (β−1)/2

disjoint simple (q, k, βik(k−1)/βm) BIBDs for each i with 0 ≤ i ≤ m−1; moreover,

each of these BIBDs can be partitioned into two isomorphic BIBDs. So we can put

β − 1 copies of `βiλmin into Γ for each i with 0 ≤ i ≤ m− 1.

(3) We further put one copy of `βmλmin into Γ by the fact that t(k, 1) ≥ 1 and such

BIBD can be partitioned into two isomorphic BIBDs.

The resulting Γ then satisfies the specified conditions. Therefore, Γ meets the requirements

of Theorem 1.5.

4. Conclusions and remarks

We give more results showing that, when the number of elements is a prime power, in

many situations the necessary conditions are also sufficient for the existence of a simple

BIBD.

We summarize the particular results as follows. Let q = pα, p 6= 2, 3 ≤ k ≤ q − 3

with p - k, c1 = gcd(k, q − 1), and c2 = gcd(k − 1, q − 1). Then, all simple BIBDs whose

parameters (q, k, λ) satisfy the necessary conditions exist in the following situations.

(1) {c1, c2} = {2, 3βm} with odd β ≥ 3, q > βm(
√

3β − 11/4+3/2), and q−9βm ≥ k ≥
9βm.
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(2) {c1, c2} = {1, `βm} with `, β ≥ 2, q > βm max
{

2`2 − `,
√

12β − 47/4 + 3/2
}

, and

q − 2`βm ≥ k ≥ 2`βm.

(3) {c1, c2} = {1, `βm} with even ` ≥ 2 and odd β ≥ 3, q > βm max{`2− `,
√

6β − 23/4

+ 3/2}, and q − 2`βm ≥ k ≥ 2`βm.

(4) {c1, c2} = {2, `βm} with odd `, β ≥ 3, q > βm max{`(
√

3`− 11/4+3/2),
√

6β − 23/4

+ 3/2}, and q − 3`βm ≥ k ≥ 3`βm.

(5) {c1, c2} ∩ {1, 2} is not empty, and there is a set D of some proper divisors of c1c2

such that (a)
∑

d∈D d ≥ c1c2 − 1; (b) every number i with 1 ≤ i ≤
∑

d∈D d can be

expressed as a sum of distinct elements chosen from D.

(6) {c1, c2} = {1, `βm} with odd β ≥ 3, q > βm(
√

6β − 23/4+3/2), q−`βm ≥ k ≥ `βm,

and there is a set D of some proper divisors of the even number ` ≥ 4 such that (a)∑
d∈D d ≥ `−1; (b) every number i with 1 ≤ i ≤

∑
d∈D d can be expressed as a sum

of distinct elements chosen from D.

(7) {c1, c2} = {2, `βm} with odd `, β ≥ 3, q > βm(
√

6β − 23/4 + 3/2), q − `βm ≥ k ≥
`βm, and there is a set D of some proper divisors of 2` such that (a)

∑
d∈D d ≥ 2`−1;

(b) every number i with 1 ≤ i ≤
∑

d∈D d can be expressed as a sum of distinct

elements chosen from D.

We also obtain particular results for q = 2α. Suppose 3 ≤ k ≤ q − 3 is odd; let

c1 = gcd(k, q − 1) and c2 = gcd(k − 1, q − 1). Then, all simple BIBDs whose parameters

(q = 2α, k, λ) satisfy the necessary conditions exist in the following situations.

(1) {c1, c2} = {1, βm} with odd β ≥ 3, q − 3βm ≥ k ≥ 3βm, and q > βm(
√

6β − 23/4 +

3/2).

(2) {c1, c2} = {1, `βm} with odd `, β ≥ 3, q − 3`βm ≥ k ≥ 3`βm, and

q > βm max
{
`(
√

6`− 23/4 + 3/2),
√

12β − 47/4 + 3/2
}

.

Note that when `, β, and m are specified in the above various situations, there are

only a finite number of unknown cases left, whose values q are below the valid bounds.

Thus, in order to reduce the amount of the remaining unknown cases, it is reasonable to

make the lower bounds as small as possible.

We are informed by a referee that Dehon in 1983 proved the following theorem: There

exists a simple (v, 3, λ) BIBD if and only if λ ≤ v−2, λv(v−1) ≡ 0 mod 6, and λ(v−1) ≡ 0

mod 2 [3].
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