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Lk-BIHARMONIC HYPERSURFACES IN THE EUCLIDEAN SPACE

M. Aminian and S. M. B. Kashani

Abstract. Chen conjecture states that every Euclidean biharmonic submanifold is
minimal. In this paper we consider the Chen conjecture for Lk-operators. The new
conjecture (Lk-conjecture) is formulated as follows: If L2

kx = 0 then Hk+1 = 0
where x : Mn → R

n+1 is an isometric immersion of a Riemannian manifold Mn

into the Euclidean space R
n+1, Hk+1 is the (k +1)-th mean curvature of M , and

Lk is the linearized operator of the (k + 1)-th mean curvature of the Euclidean
hypersurface M . We prove the Lk-conjecture for the hypersurface M with at
most two principal curvatures.

1. INTRODUCTION

Let x : Mn → Rm be an isometric immersion from a Riemannian manifold M

into the Euclidean space R
m, by the Beltrami formula Δx = n �H , x is harmonic if

and only if M is minimal, i.e., �H = 0 , where Δ is the Laplace operator on M , and
�H is the mean curvature vector field of M . Inspired by this nice result, B.Y. Chen
in [7, 8] made a conjecture, known as Chen conjecture, saying that every biharmonic
Riemannian submanifold Mn ⊂ Rm (i.e., any isometric immersion x : Mn → Rm

satisfying the condition Δ2x = 0) is minimal. That is the mean curvature vector field
of the submanifold M is zero.

Chen himself proved his conjecture for Euclidean surfaces, (cf. [7, 8, 11]). Follow-
ing him, I. Dimitrić in [14, 15] generalized Chen result and proved the Chen conjecture
for the following submanifolds: (a) curves; in this case a biharmonic curve is an open
part of a straight line; (b) submanifolds with constant mean curvature; (c) Euclidean
hypersurfaces with at most two principal curvatures. As it is known, Euclidean confor-
mally flat submanifolds with dimension n �= 3 have at most two principal curvatures.
Thus an immediate consequence of this result is that every Euclidean biharmonic con-
formally flat submanifold of dimension n �= 3 is minimal; (d) finite type submanifolds,
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see [9] for a general good reference on finite type submanifolds; (e) pseudo-umblical
submanifolds of dimension n �= 4. After that T. Hasanis and T. Vlachos in [16]
classified H-hypersurfaces in R4 which are hypersurfaces having the gradient of the
mean curvature function as a principal vector field and a constant multiple of the mean
curvature function as its corresponding principal curvature. So every biharmonic Eu-
clidean hypersurface is an H-hypersurface. Afterwards, via computer calculation they
have shown that the Chen conjecture is true for every hypersurface of R4. Also F.
Defever in [13] proves the same result by a different and purely analytical proof. K.
Akutagawa and S. Maeta investigate the Chen conjecture and prove that every complete
biharmonic properly immersed Euclidean submanifold is minimal, [1]. Recently B.Y.
Chen and M.I. Munteanu have proved that every δ(2)-ideal and δ(3)-ideal biharmonic
hypersurface of a Euclidean space is minimal, [12].

Also some authors have investigated the Chen conjecture for indefinite metrics.
Chen and Ishikawa in [10, 11] proved that every biharmonic isometric immersion of
a pseudo-Riemannian surface M into R

3
s(s = 1, 2) is minimal. In [11] they have

constructed many examples of non-minimal space-like biharmonic surfaces in R4
s(s =

1, 2). A. Arvanitoyeorgos et al. in [6] have shown the conjecture is true for Lorentzian
hypersurfaces of R4

1 .
At the same time, Chen conjecture has been studied when x : (M, g) → (N, h)

is an isometric immersion of a Riemannian manifold (M, g) into a Riemannian man-
ifold (N, h) of non positive sectional curvature. Several authors have considered the
conjecture in this case. Recently, N. Nakauchi and H. Urakawa have shown that when
M is complete and

∫
M | �H |2dM < ∞ , M is minimal, [19]. In [3], Al´as et al.

have considered the same problem when λL
1 (M) ≥ 0 (spectral radius of the operator

L = Δ + RicN) and they got some interesting results. In general this version of Chen
conjecture turned out to be false. Ou, Tang in [21] got counter examples to Chen
conjecture in this case. But the original Chen conjecture is still open.

As it is known the natural generalization of the Laplace operator is the Lk-operator,
[22, 23], which is the linearized operator of (k+1)-th mean curvature of a hypersurface
for k = 0, . . . , n − 1 . Recently Al´as, Gürbüz and following him, Kashani, et al.
[4, 5, 17], have used the Lk-operators to study some hypersurfaces such as hypersurfaces
satisfying Lkx = Ax+ b and Lk-finite type hypersurfaces, and got nice results. Hence
it is interesting to consider the Chen conjecture for Euclidean hypersurfaces, replacing
Δ by Lk. Here we restate the Chen conjecture for operators Lk . Let x : Mn → Rn+1

be an isometric immersion from a connected orientable Riemannian hypersurface into
the Euclidean space Rn+1 with N as the unit normal direction. In [4] it’s proved that

(1) Lkx = (k + 1)
(

n
k + 1

)
Hk+1N,

where 0 ≤ k ≤ n− 1 and Hk+1 is (k + 1)-th mean curvature of M . When k = 0, (1)
reduces to the equation Δx = nH1N = n �H which is the Beltrami equation. So we
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state the following conjecture.

Lk-Conjecture. Every Euclidean hypersurface x : Mn → R
n+1 satisfying the

condition L2
kx = 0 for some k, 0 ≤ k ≤ n − 1, has zero (k + 1)-th mean curvature,

namely it is k-minimal.
When the Euclidean hypersurface M satisfies the equation L2

kx = 0, we call it,
Lk-biharmonic hypersurface. In this paper we prove that the Lk-conjecture is true
for Euclidean hypersufaces with at most two principal curvatures. Also we prove the
Lk-conjecture for Lk-finite type hypersurfaces. Our main results are Theorems 5, 7, 8
and Corollary 6. We should mention that although in the proofs we follow the papers
[11, 14, 15] on Chen conjecture, but our computations and somehow methods are
totally different from the ones’ used in those papers. This is because of the definition
of the operators Lk in which one replaces the identity of X (M) by the much more
complicated Newton transformations Pk (0 ≤ k ≤ n − 1), see page 4.

2. PRELIMINARIES

We recall the prerequisites from [4, 17, 20]. Throughout the paper we denote
by x : Mn → R

n+1(n ≥ 2) an isometric immersion from a connected orientable
Riemannian manifold M into the Euclidean space Rn+1 with N as a unit normal
vector field, ∇ and ∇ as the Levi-Civita connections on R

n+1 and M , respectively.
For every tangent vector fields X and Y on M , the Gauss formula is given by

∇XY = ∇XY + 〈SX, Y 〉N,

where the shape operator S is defined by

SX = −∇XN .

The covariant derivative of the shape operator is symmetric, by the Codazzi equation,
i.e.,

(2) (∇XS)Y = (∇Y S)X .

From the Gauss formula it can be seen that,

(3) R(X, Y )Z = 〈SY, Z〉SX − 〈SX, Z〉SY ∀X, Y, Z ∈ X (M) .

As it is known, the shape operator S : X (M) → X (M) is a self-adjoint linear operator.
Let k1, . . . , kn be its eigenvalues which are called principal curvatures of M . Define
s0 = 1 and

sk =
∑

1≤i1<···<ik≤n

ki1 · · ·kik .
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Now the k-th mean curvature of M is defined by(
n

k

)
Hk = sk .

For k = 1, H1 = 1
n tr(S) = H is the mean curvature of M . For k = 2, the scalar

curvature of M is s = n(n−1)H2 . In general, when k is odd, the sign of Hk depends
on the chosen orientation and when k is even, Hk is an intrinsic geometric quantity.

The Newton transformations Pk : X (M) → X (M) are defined inductively by
P0 = I and

Pk = skI − S ◦ Pk−1 , 1 ≤ k ≤ n.

Therefore

(4) Pk =
k∑

l=0

(−1)lsk−lS
l .

So from the Cayley-Hamilton theorem, one gets that Pn = 0. Each Pk is a self adjoint
linear operator which commutes with S and the eigenvalues of Pk are given by

(5) μk,i =
∑

1≤i1<···<ik≤n, ij �=i

ki1 · · ·kik .

For 0 ≤ k ≤ n − 1, the second order linear differential operator Lk : C∞(M) →
C∞(M) as the natural generalization of the Laplace operator for Euclidean hypersur-
faces M , is defined by

Lkf = tr(Pk ◦ ∇2f) ,

where ∇2f is metrically equivalent to the Hessian of f and is defined by
〈
(∇2f)X, Y

〉
= 〈∇X(∇f), Y 〉 for all vector fields X, Y ∈ X (M), and ∇f is the gradient vector
field of f . When k = 0, L0 = Δ.

Now we assume that M has two principal curvatures and denote them by

k1 = · · · = km = f, km+1 = · · · = kn = g .

Notation. We let
(

N

L

)
= 0 if L > N or L < 0. Therefore we get

sk =
n∑

i=0

(
m

i

)(
n − m

k − i

)
f igk−i ,

which we write it as

(6) sk =
(

m

i

)(
n − m

k − i

)
f igk−i .
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By formulae in [4] page 122, we have

(7)
L2

kx = − (k + 1)(sk+1∇sk+1 + 2(S ◦ Pk)∇sk+1)

− (k + 1)(sk+1(s1sk+1 − (k + 2)sk+2)− Lksk+1)N .

Here we consider the following standard examples in this context to be used later.

Example 1. Let x : Sn(r) → Rn+1 be the standard isometric embedding with
r > 0. Its shape operator is S = (1/r)I and its (k + 1)-th mean curvature is Hk+1 =
(1/r)k+1. Then formulas (1) and (7) gives that for 0 ≤ k ≤ n − 1,

Lkx �= 0, L2
kx �= 0 .

Example 2. Let x : Sm(r)×Rn−m → Rn+1 be the standard isometric embedding
with r > 0 and 1 ≤ m < n. The shape operator of M = Sm(r) × R

n−m is
S =

[
(1/r)Im 0

0 0

]
, with respect to a local orthonormal frame {e1, . . . , en} on M , where

{ei}m
i=1 and {ei}n

i=m+1 are tangent to Sm(r) and R
n−m, respectively. So

sk+1 =

⎧⎪⎨
⎪⎩

0 k + 1 > m(
m

k + 1

)
1

rk+1
k + 1 ≤ m

Therefore from (1) and (7),{
Lkx = L2

kx = 0 k + 1 > m

Lkx �= 0, L2
kx �= 0 k + 1 ≤ m

We recall the definition of Lk-finite type hypersurfaces from [17].

Definition 3. A Euclidean hypersurface x : Mn → R
n+1 is called an Lk-finite

type hypersurface if x satisfies a finite decomposition x = x0 + · · · + xp for some
integer p > 0 such that x0 is a constant vector and for 1 ≤ i ≤ p, xi’s are smooth
maps and Lkxi = λixi where λi’s are real numbers. If all λi’s are mutually distinct,
Mn is said to be of p-type.

An Lk-finite type hypersurface is called null if for some i > 0, λi = 0.

3. MAIN RESULTS

In this section we prove our main theorems. We consider Euclidean hypersurfaces
with at most two principal curvatures. When the hypersurface has just one principal
curvature the case reduces to the following remark.
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Remark 1. Let x : Mn → Rn+1 be a totally umbilic hypersurface. The clas-
sification of totally umbilic hypersurfaces in R

n+1, [20], states that M is an open
piece of a hypersphere or a hyperplane. Example 1 shows that hyperspheres are not
Lk-biharmonic, but every Euclidean hyperplane is totally geodesic, So all principal cur-
vatures vanish. Hence both L2

kx and Hk+1 are zero. That is Euclidean hyperplanes are
Lk-biharmonic and k-minimal, thus in the following we assume that the hypersurfaces
have two principal curvatures.

Since Pn = 0, (n = dimM); S ◦ Pn−1 = snI , by equation (7), hence one leads
to consider the Lk-conjecture for k = n − 1, at first. Here we prove the following
auxiliary proposition and lemma.

Proposition 2. Let x : Mn → Rn+1 be an isometrically immersed connected
hypersurface. If x satisfies L2

n−1x = 0, then Hn is constant.
Proof. By (7) we have

sn∇sn + 2(S ◦ Pn−1)∇sn = 0 .

We know that Pn = 0, hence S ◦ Pn−1 = snI . So

3
2
∇s2

n = 0 .

Therefore s2
n is constant, as the result sn is constant.

The proposition motivates us to consider the Lk-conjecture when the (k+1)-th mean
curvature is constant. As we observed in the introduction, also the Chen conjecture
has been proved when the mean curvature is constant. So we consider the analogous
case on our context in the following lemma.

Lemma 3. Let x : Mn → R
n+1 be an isometrically immersed connected hyper-

surface and let M has at most two principal curvatures. If L2
kx = 0 for some k,

1 ≤ k ≤ n − 1, and sk+1 is constant then sk+1 = 0.

Proof. By using the hypothesis and equation (7), we show that the ratio of
the principal curvatures of M should satisfy a polynomial equation with constant co-
efficients, from that we obtain that the principal curvatures are constant and by the
classification of isoparametric Euclidean hypersurfaces we get the result. The detailed
proof is as follows.

From (7) we have that either sk+1 = 0 or

s1sk+1 = (k + 2)sk+2 .

Let k1 = · · · = km = f, km+1 = · · · = kn = g be principal curvatures of M . By
formulae (6), we get
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(8)
(mf + (n − m)g)

(
m

i

)(
n − m

k + 1 − i

)
f igk+1−i

= (k + 2)
(

m

i

)(
n − m

k + 2 − i

)
f igk+2−i .

If for some p0 ∈ M , g(p0) = 0, then equation (8) at p0 becomes

(9) m

(
m

k + 1

)
fk+2(p0) = (k + 2)

(
m

k + 2

)
fk+2(p0) .

So if k + 1 > m,

sk+1 =
(

m

k + 1

)
fk+1(p0) = 0 .

If k + 1 ≤ m, then by (9) we have f(p0) = 0. Thus sk+1 = 0. Now assume that
g �= 0 on M . Equation (8) can be written as

m

(
m

i

)(
n − m

k + 1 − i

)(
f

g

)i+1

+ (n − m)
(

m

i

)(
n − m

k + 1 − i

)(
f

g

)i

= (k + 2)
(

m

i

)(
n − m

k + 2 − i

)(
f

g

)i

.

Therefore f/g is a root of the above polynomial. So f/g is a constant α . Now
formulae (6) gives that

sk+1 =
(

m

i

)(
n − m

k + 1 − i

)
αigk+1 .

As the result we get that g, hence f is constant. Thus M is an isoparametric hypersur-
face in R

n+1. So by the classification of such hypersurfaces, [18, 24], M is an open
piece of a hyperplane or of a hypersphere or of a generalized right spherical cylinder.
By Example 1, hyperspheres are not Lk-biharmonic and by Remark 1 and Example 2,
hyperplanes and generalized right spherical cylinders have sk+1 = 0.

Now we get the following corollary easily.

Corollary 4. Let x : M2 → R
3 be an isometrically immersed surface and let

L2
1x = 0 then H2 = 0. Proof. Proposition 2 implies that s2 is constant, then Lemma

3 gives that s2 = 0.

As we mentioned, Chen himself has proved his conjecture for Euclidean surfaces,
[11], so the Corollary shows that the Lk-conjecture is also true for Euclidean surfaces.

In the following theorems, We prove the main results of the paper, that is we
show that the Lk-conjecture is true when the Euclidean hypersurface has at most two
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principal curvatures. In Theorem 5, we consider Euclidean hypersurfaces with two
principal curvatures, such that both multiplicities are greater than one . The hypothesis
on multiplicities is a key assumption in the proof of the theorem. For the case that one
of the multiplicities is one, we use a different proof in Theorem 7.

Theorem 5. Let x : Mn → Rn+1 be an isometrically immersed Euclidean hyper-
surface and let L2

kx = 0 for some k, 1 ≤ k ≤ n−1, Suppose that M has two principle
curvatures with both multiplicities greater than one. Then Hk+1 = 0.

Proof. By using equation (7), we get that either sk+1 is constant, from which by
Lemma 3 we get that sk+1 = 0, or sk+1 is non constant. In this case, we consider the
possibility that one of the principal curvatures be zero at some point(s) of M , this leads
us to a contradiction. So, the principal curvatures are non zero on M , then we get
that they have to be constant. In this case the restriction on multiplicities is essential.
From the fact that principal curvatures are constant, we conclude the result. here is the
detailed proof.

By using (7) one gets that

sk+1∇sk+1 + 2(S ◦ Pk)∇sk+1 = 0 .

Then the equation Pk+1 = sk+1I − S ◦ Pk gives that Pk+1∇sk+1 =
3
2
sk+1∇sk+1.

Now let {e1, . . . , en} be a local orthonormal frame of eigenvectors of S and k1, . . . , kn

as their eigenvalues, respectively. Then Pk+1ei = μk+1,iei and

Pk+1 〈∇sk+1, ei〉 ei =
3
2
sk+1 〈∇sk+1, ei〉 ei .

Therefore
〈∇sk+1, ei〉 (μk+1,i − 3

2
sk+1) = 0 .

If for every i, 〈∇sk+1, ei〉 = 0, then sk+1 is constant. So Lemma 3 implies that

sk+1 = 0. If for some j0, 〈∇sk+1, ej0〉 �= 0, then μk+1,j0 =
3
2
sk+1. We show that

this case does not occur. We have Pk+1 =
∑k+1

l=0 (−1)lsk+1−lS
l, so

μk+1,j0 =
k+1∑
l=0

(−1)lsk+1−lk
l
j0 .

Let k1 = · · · = km = f, km+1 = · · · = kn = g with both m, n − m greater than one.
We consider the following two cases.

Case 1. If j0 ≤ m, then μk+1,j0 =
∑k+1

l=0 (−1)lsk+1−lf
l =

3
2
sk+1 . Thus

(10) (−1)l

(
m

i

)(
n − m

k + 1 − l − i

)
f i+lgk+1−l−i =

3
2

(
m

i

)(
n − m

k + 1 − i

)
f igk+1−i .
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If for some p0 ∈ M , f(p0) = 0 then by (10) we have(
n − m

k + 1

)
gk+1(p0) =

3
2

(
n − m

k + 1

)
gk+1(p0) .

Now we look at two subcases.

Subcase 1. If k + 1 ≤ n − m, then g(p0) = 0. By (6),

∇sk+1 =
(

m

i

)(
n − m

k + 1 − i

)
gk+1−i∇f i +

(
m

i

)(
n − m

k + 1− i

)
f i∇gk+1−i .

Therefore ∇sk+1(p0) = 0. Hence 〈∇sk+1, ej0〉 (p0) = 0 which is a contradiction.

Subcase 2. If k + 1 > n − m, then

∇sk+1(p0) =
(

m

1

)(
n − m

k

)
gk(p0)∇f(p0) .

If k > n−m, then ∇sk+1(p0) = 0. Therefore 〈∇sk+1, ej0〉 (p0) = 0 that is a contra-
diction.

If k = n − m, then

〈∇sk+1, ej0〉 (p0) = mgk(p0) 〈∇f, ej0〉 (p0) .

So g(p0) �= 0. Since g is continuous, on some neighborhood Up0 of p0, g �= 0. Now
dividing (10) by gk+1, we have

(−1)l

(
m

i

)(
n − m

k + 1 − l − i

)(
f

g

)i+l

=
3
2

(
m

i

)(
n − m

k + 1 − i

)(
f

g

)i

.

Thus f/g is a root of the above polynomial. So f/g is a constant α, hence f = αg.
Since f(p0) = 0, f ≡ 0 on Up0 . Thus 〈∇sk+1, ej0〉 (p0) = 0 which is a contradiction.
Subcases 1 and 2 give that f �= 0. By (10) we have

(11) (−1)l

(
m

k+1−l−i

)(
n−m

i

)
fk+1−igi=

3
2

(
m

k+1−i

)(
n−m

i

)
fk+1−igi .

So by dividing (11) by fk+1, we have

(−1)l

(
m

k + 1 − l − i

)(
n − m

i

)(
g

f

)i

=
3
2

(
m

k + 1 − i

)(
n − m

i

)(
g

f

)i

.

Thus g/f is a root of the above polynomial. Therefore g/f is a constant α. So
sk+1 = βfk+1, where β is some constant. Since both multiplicities are greater than
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one, the Codazzi equation (2), (∇eiS)ej = (∇ejS)ei implies that for every i, ∇eif = 0.
Therefore we have

〈∇sk+1, ej0〉 = β
〈
(k + 1)fk∇f, ej0

〉
= 0 ,

which is not possible.

Case 2. If j0 > m . By choosing the frame e′1 = em+1, . . . , e
′
n−m = en, e′n−m+1 =

e1, . . . , e
′
n = em one can prove this case exactly similar to the previous case.

As a consequence of Theorem 5, we can give the following uniqueness result.

Corollary 6. The only Lk-biharmonic hypersurfaces in Euclidean space R
n+1 hav-

ing two principal curvatures, both with multiplicities greater than one, are the standard
product embeddings S

m(r)× R
n−m ⊂ R

n+1 with r > 0 and m ≤ k.

Proof. Observe that since both principal curvatures have multiplicities greater
than one, then the distributions of the space of principal vectors corresponding to each
principal curvature are completely integrable and each principal curvature is constant on
each of the integral leaves of the corresponding distribution. By Theorem 5, the (k+1)-
th mean curvature Hk+1 is constant and by a suitable variant of the proof of Lemma
6 in [2] one can see that the principal curvatures are constant. So the hypersurface
is an isoparametric hypersurface with exactly two constant principal curvatures, with
multiplicities m and n − m, and 1 < m < n − 1. Then, by the classical results
on isoparametric hypersurfaces in Euclidean space the hypersurface must be an open
piece of standard product embeddings S

m(r) × R
n−m ⊂ R

n+1 with r > 0. Once we
know that the hypersurface is an open piece of a standard product Sm(r)× Rn−m, by
Example 2 it follows that m ≤ k.

As we already mentioned, In the following theorem we prove the Lk-conjecture,
when one of the multiplicities of principal curvatures is one. To prove the theorem, by
the use of equation (3) and formulas, (2, 4, 5, 6), we show that the principal curvatures
should satisfy some equation and by using it, we get the result.

Theorem 7. Let x : Mn → Rn+1 be an isometric immersed Euclidean hypersur-
face. If L2

kx = 0 for some k, 1 ≤ k ≤ n−1, and M has two principle curvatures with
multiplicities 1 and n − 1, then Hk+1 = 0.

Proof. Let {e1, . . . , en} be a local orthonormal frame of eigenvectors of S and
k1, . . . , kn be their principal eigenvalues, respectively. Let k1 = f, k2 = · · · = kn = g.
First we compute μk,i. By using (4) and (5), we get that

(12)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

μk,2 = · · · = μk,n

μk,2 =
(

n − 2
k − 1

)
fgk−1 +

(
n − 2

k

)
gk

μk,1 =
(

n − 1
k

)
gk
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If sk+1 is constant, Lemma 3 gives that sk+1 = 0. Otherwise, as in the proof of
Theorem 5, for some j0, 〈∇sk+1, ej0〉 �= 0 and μk+1,j0 = 3

2sk+1. If j0 = 1, then
(

n − 1
k + 1

)
gk+1 =

3
2

(
n − 1
k + 1

)
gk+1 +

3
2

(
n − 1

k

)
fgk .

So similar to the proof of Theorem 5, we get that g = −3k−3
n−k−1f . Since f �= 0, we assume

that f > 0 . Let α = −3k−3
n−k−1 . The Codazzi equation (2), (∇eiS)ej = (∇ejS)ei gives

that

(13)

{
(a) i > 1 ∇eif = 0, ω1

1i = 0, α∇e1f = (1− α)f ωi
i1, ω

k>1, k �=i
i1 = 0,

(b) i, j > 1, i �= j ω1
ij = ω1

ji ,

where ∇eiej =
∑

k ωk
ijek and the symbol ωk>1, k �=i

i1 denotes ωk
i1 when k > 1 and k �= i.

Now by (13)-(a),for every i > 1, ∇eif = 0. So let f be a function of s where the
integral curve of e1 is parametrized by s. Thus e1 = ∂

∂s , ∇e1f = f ′. The equation
(13) and (3) yield the following equation

(14) 〈R(e1, e2)e2, e1〉 = ∇e1ω
1
22 − (ω1

22)
2 = αf2 .

From (13)-(a),(14) one gets that

ω1
22 =

αf ′

(α − 1)f
,

(
αf ′

(α − 1)f

)′
−

(
αf ′

(α − 1)f

)2

= αf2 .

Therefore

(15) ff ′′ = (α − 1)f4 +
(

2α − 1
α − 1

)
f ′2 .

Define f ′ = P . So

f ′′ =
(

dP

df

)(
df

ds

)
=

(
dP

df

)
P .

Replacing in (15), we get that

1
2
f

d

df

(
P 2

) − (
2α − 1
α − 1

)
P 2 = (α − 1)f4 .

Let Q = P 2, then the above equation yields

dQ

df
− 2

f

(
2α − 1
α − 1

)
Q = 2(α − 1)f3 .



872 M. Aminian and S. M. B. Kashani

By multiplying both sides of the above equation by f−( 4α−2
α−1 ) and then integrating we

obtain that

(16) f ′2 = −(α − 1)2f4 + c0 f ( 4α−2
α−1

) ,

where c0 is a constant. Since f �= 0, then c0 �= 0. By equation (15) and (16), we get

(17) ff ′′ = −2(α − 1)2f4 + c0

(
2α − 1
α − 1

)
f ( 4α−2

α−1
) .

Now we compute Lkf
k+1. We have

∇f = 〈∇f, ei〉 ei = f ′e1 .

Therefore we get

Lkf
k+1 = tr

(
Pk ◦ ∇2(fk+1)

)
= (k + 1)

〈
(∇eif

k)f ′e1 + fk
(
(∇eif

′)e1 + f ′∇eie1

)
, Pkei

〉
= (k + 1)

(
k(f ′)2fk−1μk,1 + fkf ′′μk,1 + fkf ′ωi

i1μk,i

)
.

By replacing formulas (12) for μk,i in the above equation, it yields that

(18)

1
k + 1

Lkfk+1 =k

(
n − 1

k

)
αkf2k−1(f ′)2 +

(
n − 1

k

)
αkf2kf ′′

+
(n − 1)(2k + 3)

k(α − 1)

(
n − 2
k − 1

)
αkf2k−1(f ′)2 .

We have L2
kx = 0. Thus from (7),

(19) sk+1(s1sk+1 − (k + 2)sk+2)− Lksk+1 = 0 .

Since g = αf , we have

(20)
sr+1 =

((
n − 1
r + 1

)
αr+1 +

(
n − 1

r

)
αr

)
fr+1

=
(

n − 1
r

)((
n − r − 1

r + 1

)
α + 1

)
αr fr+1 .

So using equations (16), (17), (18), (19) and (20) and substituting α = −3k−3
n−k−1 gives

that

(21)
2 α

(
αn + (α2 − 1)k2 + (3α2 − 4α + 1)k + 2α2 − 5α + 3

)
f2k+3

−2 c0 α(k + 1)(k + 2)
(

α + 1
α − 1

)
f( 2kα+3α−2k−1

α−1 ) = 0 .
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Now equation (21) implies that f and thus sk+1 are constant which is a contradiction.
If j0 �= 1, the proof is similar to the argument in Theorem 5.

As we mentioned in the introduction, Chen conjecture has been proved for finite
type hypersurfaces. With Definition 3 in the preliminaries, we can prove the Lk-
conjecture for Lk-finite type hypersurfaces as well.

Theorem 8. Let x : Mn → R
n+1 be an Lk-finite type hypersurface and L2

kx = 0,
then M is of null one type and especially sk+1 = 0 .

Proof. x = x0 + · · ·+ xp with x0 is a constant and for every 1 ≤ i ≤ p, Lkxi =
λixi. So

Lkx = λ1x1 + · · ·+ λpxp .

Thus for every s ≥ 2,
λs

1x1 + · · ·+ λs
pxp = 0 .

So we get that for every i, λi = 0. Therefore M is a null one-type hypersurface. Hence
L2

kx = Lkx = 0 and by (1), sk+1 = 0.
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