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THE GROWTH OF THE SOLUTIONS OF CERTAIN TYPE OF
DIFFERENCE EQUATIONS

Xiaoguang Qi, Yong Liu and Lianzhong Yang

Abstract. In this paper, we investigate the growth of meromorphic solutions of
the equation: f(z + n) +

∑n−1
j=0 {Pj(eA(z)) + Qj(e−A(z))}f(z + j) = 0, where

A(z), Pj(z) and Qj(z) are polynomials in z. This article extends earlier results
by Li et al [7, 15].

1. INTRODUCTION

In this paper, we will assume that the reader is familiar with the fundamental results
and the standard notations of the value distribution theory of meromorphic functions(e.g.
see [11, 24]). In addition, we denote by σ(f), λ(f) and λ( 1

f ) the order, the exponent
of convergence of zeros and poles of f(z), respectively.

The foundation of the theory of complex difference equations was laid by Batchelder
[1], Nörlund [17], and Whittaker [20] in the early twentieth century. Later on, Shi-
momura [19] and Yanagihara [21, 22, 23] investigated nonlinear complex difference
equations from the viewpoint of Nevanlinna theory. Recently, difference counterparts
of Nevanlinna theory have been established. The key result is the difference analogue
of the lemma on the logarithmic derivative obtained by Halburd-Korhonen [10] and
Chiang-Feng [7], independently. Hence, there has been an increasing renewed interest
in complex difference equations and difference analogues of Nevanlinna theory, some
new results can be seen in [2, 5, 6, 12, 13, 18].

In a recent paper [15], Li et al. obtained results concerning the growth of solutions
of the following difference equation.
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Theorem A. Suppose that f(z) is a nonconstant entire solution of the difference
equation

(1.1) f(z + η)− a(z) = eP (z)(f(z)− a(z)),

where a(z) is an entire function such that δ(a) < δ(f), P (z) is a nonconstant poly-
nomial. If λ(f − a) < δ(f), then δ(f) = deg{P (z)}+ 1.

In fact, equation (1.1) can be changed into the following equation as a(z) is a
periodic function with the period η:

F (z + η)− eP (z)F (z) = 0.

where F (z) = f(z) − a(z). Noting Theorem A and the above equation, a natural
question is: what will happen if eP (z) is replaced with a polynomial of exponential
functions. Another reason that we consider this question is that we find a counterex-
ample related to the following theorem:

Theorem B. [7, Theorem 9.2]. Let A0(z), . . . , An(z) be entire functions such
that there exists an integer l(0 ≤ l ≤ n) that satisfies

(1.2) σ(Al) > max{σ(Aj)}, 0 ≤ l ≤ n and j �= l.

If f(z) is a meromorphic solution of the difference equation

An(z)y(z + n) + · · ·+ A1(z)y(z + 1) + A0(z)y(z) = 0,

then σ(f) ≥ σ(Al) + 1.

Example C. f(z) = ez2 is a solution of the difference equation

(1.3) f(z + 2) + (ez + e−z)f(z + 1) − (e4z+4 + e3z+1 + ez+1)f(z) = 0.

Denote P0(ζ) = −e4ζ4 − eζ3 − eζ and Q0(ζ−1) = 0; P1(ζ) = ζ and Q1(ζ−1) = ζ−1.
Clearly, the coefficients P1(ez) + Q1(e−z) = ez + e−z and P0(ez) + Q0(e−z) =
−(e4z+4 + e3z+1 + ez+1) of (1.3) are transcendental entire functions which do not
satisfy (1.2). Furthermore, we see degP0 > degP1, and σ(f) = λ(f −a) = 2 for every
nonzero value a ∈ C.

Due to above considerations, we investigate the following difference equation:

(1.4) f(z + n) +
n−1∑
j=0

{Pj(eA(z)) + Qj(e−A(z))}f(z + j) = 0,

where Pj(z) and Qj(z) (j = 0, 1, . . . , n− 1) are polynomials in z, A(z) is a polyno-
mial of degree k. We obtain the following results.
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Theorem 1.1. Let Pj(z) and Qj(z) (j = 0, 1, . . . , n− 1) be polynomials, A(z) =
akz

k + ak−1z
k−1 + . . . + a0, (ak �= 0 ) be a nonconstant polynomial. If

deg(P0) > deg(Pj) or deg(Q0) > deg(Qj), j = 1, . . . , n− 1.

Then, each nontrivial meromorphic solution f(z) with finite order of the equation (1.4)
satisfies σ(f) = λ(f − a) ≥ k + 1, and so f assumes every nonzero complex value
a ∈ C infinitely often.

Theorem 1.2. Suppose that the assumptions of Theorem 1.1 are satisfied. If f(z)
is a nontrivial entire solution with finite order of the equation (1.4) that satisfies
λ(f) ≤ k, then σ(f) = k + 1.

Remark. Example C shows that Theorem 1.1 is sharp. It is also shown that the
conclusion both in Theorem 1.1 and Theorem 1.2 may occur.

2. SOME LEMMAS

Lemma 2.1. [7, Theorem 8.1]. Let f(z) be a meromorphic function with finite
order σ, η be a nonzero complex number, and ε > 0 be given real constants. Then there
exits a subset E ⊂ (1,∞) of finite logarithmic measure, for all |z| = r /∈ [0, 1]∪ E ,
we have

exp{−rσ−1+ε} ≤
∣∣∣∣f(z + η)

f(z)

∣∣∣∣ ≤ exp{rσ−1+ε}.

Lemma 2.2. [10, Theorem 3.2]. Let w(z) be a nonconstant finite order meromor-
phic solution of P (z, w) = 0, where P (z, w) is a difference polynomial in w(z). If
P (z, a) �≡ 0 for a meromorphic function a(z) satisfying T (r, a) = S(r, w), then

m

(
r,

1
w − a

)
= S(r, w).

Lemma 2.3. [9, Lemma 5]. Let g : (0, +∞) → R, h : (0, +∞) → R be monotone
increasing functions such that g(r) ≤ h(r) outside of an exceptional set E of finite
logarithmic measure. Then, for any α > 1, there exists r0 > 0 such that g(r) ≤ h(αr)
hold for all r > r0.

Lemma 2.4. [8, Theorem 2.1]. Let f(z) be a meromorphic function with finite
order σ, η ∈ C. Then for any given ε > 0, there exists a set E ⊂ (1,∞) of |z| = r

of finite logarithmic measure, such that

f(z + η)
f(z)

= exp{η f ′(z)
f(z)

+ O(rβ+ε)},

holds for r /∈ [0, 1] ∪ E. If λ < 1, β = max{σ − 2, 2λ − 2}; and if λ ≥ 1,

β = max{σ − 2, λ − 1}, where λ = max{λ(f), λ( 1
f)}.
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Lemma 2.5. [3, Lemma 3.2]. Let f(z) be a meromorphic function with finite order
σ, then for any given ε > 0, there exists a set E ⊂ (1,∞) of finite linear measure,
such that for all |z| = r /∈ [0, 1]∪ E , and r sufficiently large,

exp{−rσ+ε} ≤ |f(z)| ≤ exp{rσ+ε}.
Using the similar proof as that of Remark 1 of [4], we can obtain the following

result:

Lemma 2.6. Suppose that f(z) is a transcendental entire function with finite order
σ, and a set E ⊂ (1,∞) has a finite logarithmic measure. Then there exists a sequence
of points such that rk /∈ E, and for any given ε > 0, as rk sufficiently large, we have

rσ−ε
k < v(rk, f) < rσ+ε

k ,

where v(r, f) is the central index of f(z).

Lemma 2.7. [16]. Let

Q(z) = anzn + an−1z
n−1 + · · ·+ a0,

where n is a positive integer and an = αneiθn , αn > 0, θn ∈ [0, 2π). For any given
0 < ε < π

4n , consider 2n open angles:

Sj : −θn

n
+ (2j − 1)

π

2n
+ ε < θ < −θn

n
+ (2j + 1)

π

2n
− ε, j = 0, . . . , 2n− 1.

Then there exists a positive number R = R(ε) such that for |z| = r > R, when z ∈ Sj

and j is even,
Re{Q(z)} > αn(1 − ε) sin(nε)rn,

when z ∈ Sj and j is odd,

Re{Q(z)} < −αn(1 − ε) sin(nε)rn.

3. PROOF OF THEOREM 1.1

Suppose that j = 0, 1, . . . , n− 1 and

Pj(z) = aj pjz
pj + aj pj−1z

pj−1 + . . . + aj 0,

Qj(z) = bj qjz
qj + bj qj−1z

qj−1 + . . . + bj 0.

Assume that f(z) �≡ 0 is a solution of the equation (1.4) such that σ(f) = σ < ∞.
From Lemma 2.1, we get that, for any given ε > 0, there exits a subset E ⊂ (1,∞)
with finite logarithmic measure such that for all |z| = r /∈ [0, 1]∪ E ,

(3.1) exp{−rσ−1+ε} ≤
∣∣∣∣f(z + i)

f(z)

∣∣∣∣ ≤ exp{rσ−1+ε}, i = 1, 2, . . . , n.
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Case 1. If deg(P0) > deg(Pj)(j = 1, 2, . . . , n − 1), then we take a suitable z

such that akz
k = |ak|rk. Combining (1.4) and (3.1), we have that for all sufficiently

large r and r /∈ [0, 1]∪ E , that∣∣P0(eA) + Q0(e−A)
∣∣ = |a0p0| ep0rk|ak|(1 + o(1))

≤
∣∣∣∣f(z + n)

f(z)

∣∣∣∣+ |Pn−1(eA) + Qn−1(e−A)|
∣∣∣∣f(z + n − 1)

f(z)

∣∣∣∣ + · · ·

+ |P1(eA) + Q1(e−A)|
∣∣∣∣f(z + 1)

f(z)

∣∣∣∣
≤ exp{rσ−1+ε} + |an−1pn−1|epn−1rk|ak| exp{rσ−1+ε}(1 + o(1))

+ · · ·+ |a1p1|ep1rk|ak| exp{rσ−1+ε}(1 + o(1))

≤ nM exp{rσ−1+ε}emax{p1,...,pn−1}rk|ak|(1 + o(1)),

and M = max{|an−1pn−1|, . . . , |a1p1|, 1}. Since p0 > max{p1, . . . , pn−1} = N, we
have

(3.2)
|a0p0|
nM

e(p0−N)|ak|rk
(1 + o(1)) ≤ erσ−1+ε

.

By Lemma 2.3 and (3.2), we have that σ−1+ε ≥ k, which implies σ(f) ≥ k+1.

Case 2. If deg Q0 > deg Qj , then taking a suitable z such that akzk = −|ak|rk.
Using the similar arguments mentioned above, we also get σ(f) ≥ k + 1.

In the following, we prove that σ(f) = λ(f − a) ≥ k + 1, where a ∈ C\{0}. Let

P (z, f) = f(z + n) +
n−1∑
j=0

[Pj(eA(z)) + Qj(e−A(z))]f(z + j).

Clearly,

(3.3)
P (z, a)=a[1+Pn−1(eA(z))+Qn−1(e−A(z))+· · ·+ P0(eA(z))+Q0(e−A(z))]

�≡0.

By (3.3) and Lemma 2.2, it follows that

m

(
r,

1
f − a

)
= S(r, f),

thus
N

(
r,

1
f − a

)
= T (r, f)+ S(r, f),

and we get that λ(f − a) = σ(f) ≥ k + 1, completing the proof of Theorem 1.1.
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4. PROOF OF THEOREM 1.2

By Lemma 2.4 and the condition that λ(f) ≤ k, we know that there exists a set
E1 ∈ (1,∞) of finite logarithmic measure, such that for all z satisfying |z| = r /∈
[0, 1]∪ E1, where r is sufficiently large, we have

(4.1)
f(z + j)

f(z)
= exp{j f ′(z)

f(z)
+ o(rσ−1−ε)}, j = 1, . . . , n,

for any given 0 < ε < 1
2 . From Wiman-Valiron theory, there exists a set E2 ⊂ (0,∞)

of finite logarithmic measure such that

(4.2)
f ′(z)
f(z)

= (1 + o(1))
v(r, f)

z

for |z| = r /∈ E2, as r → ∞.

Thus, by (1.4), (4.1) and (4.2), we see

(4.3)
n∑

j=1

Pj(eA(z)) + Qj(e−A(z))
P0(eA(z)) + Q0(e−A(z))

exp{j v(r, f)
z

(1 + o(1)) + o(rσ−1−ε)} = −1,

where Pn(eA(z)) + Qn(e−A(z)) = 1.

Let

H(z) =
Pj(eA(z)) + Qj(e−A(z))
P0(eA(z)) + Q0(e−A(z))

,

then we conclude that σ(H) = k. It follows from Lemma 2.5 that there exists a set
E3 ⊂ (1,∞) of finite linear measure, such that for all |z| = r /∈ [0, 1] ∪ E3 and r
sufficiently large

(4.4) exp{−rk+ε} ≤
∣∣∣∣∣Pj(eA(z)) + Qj(e−A(z))
P0(eA(z)) + Q0(e−A(z))

∣∣∣∣∣ ≤ exp{rk+ε}, j = 1, . . . , n.

In the following, we set E = E1 ∪ (E2 ∪ E3). By Lemma 2.6, there exists a
sequence of points such that rm /∈ E, for any given 0 < ε < 1

2 , as rm sufficiently
large, we have

(4.5) rσ−ε
m < v(rm, f) < rσ+ε

m .

In addition, we obtain that

(4.6) Re

{
v(rm, f)

zm

}
= Re

{
v(rm, f)z̄m

r2
m

}
=

v(rm, f)Re{zm}
r2
m

.
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From Lemma 2.7, for rm sufficiently large, we get

Re{zm} < −βmrm or Re{zm} > βmrm,

where βm > 0 is a constant. We discuss the following two cases:

Case 1. Suppose first that Re{zm} < −βmrm, the by (4.4)–(4.6), we get∣∣∣∣∣Pj(eA(zm)) + Qj(e−A(zm))
P0(eA(zm)) + Q0(e−A(zm))

exp{j v(rm, f)
zm

(1 + o(1)) + o(rσ−1−ε
m )}

∣∣∣∣∣
≤ exp{−jβmrσ−1+ε

m (1 + o(1)) + rk+ε
m }

≤ exp{−βmrσ−1+ε
m (1 + o(1)) + rk+ε

m }.
This, together with (4.3), yields

1 =

∣∣∣∣∣∣
n∑

j=1

Pj(eA(zm)) + Qj(e−A(zm))
P0(eA(zm)) + Q0(e−A(zm))

exp{j v(rm, f)
zm

(1 + o(1)) + o(rσ−1−ε
m )}

∣∣∣∣∣∣
≤

n∑
j=1

∣∣∣∣∣Pj(eA(zm)) + Qj(e−A(zm))
P0(eA(zm)) + Q0(e−A(zm))

exp{j v(rm, f)
zm

(1 + o(1)) + o(rσ−1−ε
m )}

∣∣∣∣∣
≤ n exp{−βmrσ−1+ε

m (1 + o(1)) + rk+ε
m }.

Thus, we have σ − 1 + ε ≤ k + ε, that is, σ ≤ k + 1. By Theorem 1.1, we have
σ(f) = k + 1.

Case 2. Suppose that Re{zm} > βmrm. In this case, we prove the theorem by
contradiction. Now we assume that σ(f) > k+1. Then, take 0 < ε < min{1

2 , σ−k−1
2 }.

From (4.4)–(4.6), by calculating carefully, we obtain∣∣∣∣∣Pj(eA(zm)) + Qj(e−A(zm))
P0(eA(zm)) + Q0(e−A(zm))

exp{j v(rm, f)
zm

(1 + o(1)) + o(rσ−1−ε
m )}

∣∣∣∣∣
= o

(∣∣∣∣∣Pn(eA(zm)) + Qn(e−A(zm))
P0(eA(zm)) + Q0(e−A(zm))

exp{nv(rm, f)
zm

(1 + o(1)) + o(rσ−1−ε
m )}

∣∣∣∣∣
)

,

for j = 1, . . . , n− 1. This, together with (4.3)–(4.6), yields that

1 =

∣∣∣∣∣∣
n∑

j=1

Pj(eA(zm)) + Qj(e−A(zm))
P0(eA(zm)) + Q0(e−A(zm))

exp{j v(rm, f)
zm

(1 + o(1)) + o(rσ−1−ε
m )}

∣∣∣∣∣∣
=

∣∣∣∣∣Pn(eA(zm)) + Qn(e−A(zm))
P0(eA(zm))+Q0(e−A(zm))

exp{nv(rm, f)
zm

(1+o(1))+o(rσ−1−ε
m )}

∣∣∣∣∣ (1+o(1))

≥ exp{nβmrσ−1−ε
m (1 + o(1))− rk+ε

m }.
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Hence, σ−1− ε ≤ k + ε, that is, σ ≤ k +1 which contradicts the assumption that
σ(f) > k + 1. Thus σ(f) ≤ k + 1, by Theorem 1.1 again, we have σ(f) = k + 1.
This proves Theorem 1.2.
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