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PROPERTIES OF DUAL TOEPLITZ OPERATORS WITH APPLICATIONS
TO HAPLITZ PRODUCTS ON THE HARDY SPACE OF THE POLYDISK

Lakhdar Benaissa* and Hocine Guediri

Abstract. In this paper, we introduce dual Toeplitz operators on the orthogonal
complement of the Hardy space of the polydisk and establish their main algebraic
properties using an auxiliary transformation of operators. As a byproduct, we
exploit this mysterious transformation in the investigation of boundedness and
compactness of Hankel products and mixed Toeplitz-Hankel products on the Hardy
space of the polydisk.

1. INTRODUCTION

Dual Toeplitz operators on the orthogonal complements of various Hilbert spaces of
analytic functions become nowadays among the concrete classes of operators that attract
attention of operator theorists. Algebraic and spectral properties of these operators in
different contexts have been the subject of extensive studies in the last decade. For a
detailed account on this topic we refer to [4, 7, 9, 14, 17] and the references therein.
The purpose of this paper is two fold. First, to outline some basic algebraic prop-

erties of dual Toeplitz operators in the setting of the Hardy space of the polydisk. In
particular, in Section 3, we characterize commuting dual Toeplitz operators as well
as normal ones. The commutativity task in related contexts has been considered in
[2, 3, 6, 10, 12, 14, 16, 17].
Furthermore, in Section 4, we investigate products of dual Toeplitz operators. More

precisely, we establish Brown-Halmos type theorems and exploit them to characterize
the zero divisors among dual Toeplitz operators as well as symbols giving rise to
isometric, idempotent and unitary dual Toeplitz operators. These facts in related settings
can be found in [1, 3, 6, 10, 16, 17]; and our approach is similar to that used in [14].
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All the above results hinge on a crucial transformation of operators (which goes
back to Stroethoff & Zheng [17]), namely the operator Sw constructed in Section 2
(see formula (2.11)), which proves very suitable for such purposes. In the setting of
the Bergman space of the polydisk, an analog operator is already present in force in
the work of Y.F. Lu and S.X. Shang [14]. This transformation reveals an interesting
characterization of dual Toeplitz operators that is closely related to the intertwining
relations of such operators in one dimension, see [3, 7, 10]. For a brief history of this
powerful transformation we refer to [7].
Second, to study Hankel products and mixed Toeplitz-Hankel products on the Hardy

space of the polydisk. In particular, in Section 5, we make use of this pioneering
operator Sw in order to establish necessary conditions for boundedness and compactness
of these products. Products of merely Toeplitz operators in the present setting have
been considered by Ding in [5]; for the same problem in related contexts we refer to
[8, 11, 13] and the references therein.
First, let us start with setting up the framework of our study as well as the con-

struction and the main properties of the indispensable operator Sw.

2. PRELIMINARIES

Let D be the unit disk in the complex plane C, and let T = ∂D be its boundary
(the unit circle). For n ≥ 1, the polydisk Dn and its distinguished (or shilov) boundary
Tn, (the n-torus), are respectively the cartesian products of n copies of D and T; they
are defined respectively by

Dn := {z = (z1, z2, . . . , zn) ∈ Cn, |zj| < 1, j = 1, . . . , n} ,
Tn := {ζ = (ζ1, ζ2, . . . , ζn) ∈ Cn, |ζj| = 1, j = 1, . . . , n} .

Let dσ (ζ) be the normalized Haar measure on Tn; it is obtained as the product of
the normalized Lebesgue measure on T, i.e. dσ (ζ) = dθ1dθ2...dθn

(2π)n where ζj = eiθj , j =
1, . . . , n. Thus, the Lebesgue space L1 (Tn, dσ) is defined in the customary way, and
we have∫

Tn
f (ζ) dσ (ζ) =

1
(2π)n

∫ 2π

0
. . .

∫ 2π

0
f(eiθ1eiθ2 , . . . , eiθn) dθ1dθ2 . . .dθn.

The Hardy space of the polydiskH2 (Dn) is defined to be the set of all holomorphic
functions f : Dn → C satisfying:

‖f‖2 :=
(

sup
0<r<1

∫
Tn

|f(rζ)|2 dσ (ζ)
)1

2

<∞.

Recall that for every function f ∈ H2 (Dn), the radial limit limr→1− f (rζ) exists
for almost every ζ ∈ Tn. Denoting this radial limit again by f (ζ), the Hardy space
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H2 (Dn) can be regarded as a closed subspace of L2 (Tn, dσ)=L2 (Tn). In fact if
H2 (Tn) denotes the closure of analytic polynomials in L2 (Tn), then every function
in H2 (Tn) can be identified with its holomorphic extension to Dn via the poisson
extension; and hence we use the same notation for f ∈ H2 (Tn) and its holomorphic
extension f ∈ H2 (Dn) to Dn. For more details on the function theory in the polydisk
we refer to Rudin’s book [15]. Let us denote the orthogonal complement of the Hardy
space H2 (Tn) in L2 (Tn) by

(H2 (Tn)
)⊥. It is well-known that

H2(Tn) ∼= H2(T) ⊗H2(T) ⊗ . . . ⊗H2(T),

and that a similar factorization holds for L2 (Tn) as well. Thus clearly, for n > 1, we
would get

(H2(Tn)
)⊥

� H2
0(T

n), which motivates the study of dual Toeplitz operators
on this space, (see Sec.1 of [7] for an explanation). The Hilbert space H2 (Dn) is
readily seen to be a functional Hilbert space with reproducing kernel given for w =
(w1, . . . , wn) ∈ Dn by:

Kw (z) =
n∏
j=1

1
1 − wjzj

, z = (z1, . . . , zn) ∈ Dn.

Thus, the reproducing kernel of H2 (Tn) reads as:

Kw (ζ) =
n∏
j=1

1
1− wjζj

, ζ = (ζ1, . . . , ζn) ∈ Tn,

while the normalized reproducing kernel is given by

kw (ζ) =
n∏
j=1

√
1 − |wj|2

1 −wjζj
, ζ = (ζ1, . . . , ζn) ∈ Tn.

Let P denote the orthogonal projection from L2 (Tn) onto its closed subspaceH2 (Tn).
For a symbol ϕ ∈ L2 (Tn), the Toeplitz operator on H2(Tn) is defined as follows:

Tϕ : H2 (Tn) −→ H2 (Tn)

f 	−→ Tϕf = P (ϕf) .

Similarly, the ”big” Hankel operator is defined by

Hϕ : H2 (Tn) −→ (H2 (Tn)
)⊥

f 	−→ Hϕf = Q (ϕf) ,

where Q = I −P is the orthogonal projection from L2 (Tn) onto
(H2 (Tn)

)⊥.
A dual Toeplitz operator with symbol ϕ ∈ L∞ (Tn) is defined to be a multiplication
followed by a projection in the following way:
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Sϕ :
(H2 (Tn)

)⊥ −→ (H2 (Tn)
)⊥

f 	−→ Sϕf = Q (ϕf) .

Since the projection Q has norm 1, then ‖Sϕ (f)‖2 ≤ ‖ϕ‖∞‖f‖2, ∀f ∈ (H2 (Tn)
)⊥.

Using the decomposition L2 (Tn) = H2 (Tn) ⊕ (H2 (Tn)
)⊥, for f, g ∈ L∞ (Tn),

the product equation Mfg = MfMg can be written in matrix form as follows:(
Tfg H∗

fg

Hfg Sfg

)
=

(
Tf H∗

f

Hf Sf

)(
Tg H∗

g

Hg Sg

)
,

which yields the following algebraic equations:

Tfg = TfTg +H∗
f
Hg,

Sfg = HfH
∗
g + SfSg,(2.1)

Hfg = HfTg + SfHg.

It follows that the commutator [ Sf , Sg] = SfSg − Sg Sf can be written as
[ Sf , Sg] = HgH

∗
f
−HfH

∗
g .(2.2)

Since the ”big” Hankel operator is trivial if the symbol is analytic, such identities
reduce to:

Lemma 2.1. Let f ∈ H∞(Tn) and g ∈ L∞(Tn), then we have
(i) HgTf = SfHg.

(ii) TfH
∗
g = H∗

gSf .
(iii) Sfg = SfSg.
(iv) Sgf = SgSf .
For λ ∈ D, let ϕλ be the fractional linear transformation on D given by ϕλ(u) =

λ− u

1− λu
, u ∈ D. Each map ϕλ is a disk automorphism and satisfies ϕ−1

λ = ϕλ. For

τ ∈ T, the mapping ϕλ(τ) =
λ− τ

1− λτ
remains well-defined on the circle T, and

moreover one has |ϕλ(τ)| = 1. Thus, for w = (w1, . . . , wn) ∈ Dn, the mapping
ϕw(ζ) = (ϕw1(ζ1), . . . , ϕwn(ζn)), ζ = (ζ1, ..., ζn) ∈ Tn is still well-defined on the
n-torus Tn, and ϕw ◦ ϕw is the identity map; for more details we refer to [15].
For f and g in L2(Tn), consider the rank one operator defined by (f ⊗ g)h =<

h, g > f, ∀f ∈ L2(Tn); and note that ‖f ⊗ g‖ = ‖f‖ ‖g‖. Moreover, the unitary
operator Uw is defined on L2(Tn) by

(2.3) Uwf = (f ◦ ϕw)kw.
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Thus, for a Toeplitz operator on H2(Tn), we have

(2.4) UwTfUw = Tf◦ϕw.

For a multi-index α = (α1, ..., αn) ∈ Nn, recall that

|α| = α1 + . . . + αn ; α! = α1! . . . αn! ; zα = zα1
1 . . . zαn

n .

We know that
n∏
j=1

(1 − zjwj)m =
n∑
j=1

m∑
αj=0

Cm,αz
αwα,

where Cm,α = (−1)|α|
(
m
α1

)
. . .

(
m
αn

)
,

(
m
αj

)
=

m!
αj!(m− αj)!

.

In particular, we obtain

K−1
w (z) =

n∏
j=1

(1− zjwj) =
n∑

|α|=0

(−1)|α|zαwα.(2.5)

Finally, for operators T and S, we can easily verify that:

(2.6) T(f ⊗ g)S∗ = Tf ⊗ Sg.

Gluing all this stuff together, we arrive at the following crucial representation, whose
proof is similar to that of Lemma 1.2 in [14]:

Proposition 2.1. On the Hardy space of the polydisk H2(Tn), the following oper-
ator identity holds:

(2.7) kw ⊗ kw =
n∑

|α|=0

(−1)|α|Tϕα
w
Tϕw

α , ∀w ∈ Dn.

Proof. Let f be in H∞(Dn). The invariant mean value property implies that

f(0) =
∫
Dn

f(w)dA(w).

Inserting Kw(z)K−1
w (z) and observing that f(0) = (1 ⊗ 1)f , we get

(2.8) (1⊗ 1)f =
∫
Dn

K−1
w (z)Kw(z)f(w)dA(w).

Using (2.5), we obtain
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(1⊗ 1)f =
n∑

|α|=0

(−1)|α|zα
∫
Dn

wαKz(w)f(w)dA(w) =
n∑

|α|=0

(−1)|α|zα (Twαf) (z).

Thus, we arrive at the following operator identity in H∞(Dn):

(1 ⊗ 1) =
n∑

|α|=0

(−1)|α|TzαTzα .

Making appeal to the unitary operator Uw, we get

Uw(1 ⊗ 1)Uw =
n∑

|α|=0

(−1)|α| (UwTzαUw) (UwTzαUw) .(2.9)

By (2.3) and the fact that Uw1 = kw, we obtain

Uw(1⊗ 1)Uw = (Uw1) ⊗ (Uw1) = kw ⊗ kw.(2.10)

Now, (2.4), (2.9) and (2.10) yield the following operator identity on H2(Dn):

kw ⊗ kw =
n∑

|α|=0

(−1)|α|Tϕα
w
Tϕw

α , ∀w ∈ Dn,

which is valid also on H2(Tn) as well.

The latter key assertion gives rise to the following primordial operator transforma-
tion: for a bounded linear operator T on

(H2(Tn)
)⊥ and w ∈ Dn, define the linear

operator Sw(T ) by

(2.11) Sw(T ) =
n∑

|α|=0

(−1)|α| Sϕα
w
TSϕw

α .

For a brief history of such type of transformations, we refer to [7].

Remark 2.1. For n = 1 we recover the operator identity obtained in [10].

The operator Sw provides a nice characterization to our dual Toeplitz operators:

Proposition 2.2. If Sf is a dual Toeplitz operator on
(H2(Tn)

)⊥, then
Sw(Sf) = 0, for all w ∈ Dn.
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Proof. Let w ∈ Dn and consider a dual Toeplitz operator Sf on
(H2(Tn)

)⊥,
with symbol f ∈ L∞(Tn). Operating Sw on Sf yields

Sw(Sf) =
n∑

|α|=0

(−1)|α| Sϕα
w
SfSϕw

α =
n∑

|α|=0

(−1)|α| S|ϕα
w|2f = SΘ,

with

Θ = f
n∑

|α|=0

(−1)|α| |ϕαw|2.

Replacing both of z and w in Formula (2.5) by ϕw(ζ) with ζ ∈ Tn, we see that
n∑

|α|=0

(−1)|α||ϕαw(z)|2 =
n∏
j=1

(
1 − |ϕwj |2

)
= 0, as each |ϕwj | = 1 on the circle T.

Hence, we infer that Sw(Sf) = 0 for every dual Toeplitz operator Sf .
The following property of the operator Sw will be needed in the sequel:

Theorem 2.1. Let T be a compact operator on
(H2(Tn)

)⊥, then ‖Sw(T )‖ −→ 0
as w → Tn.

Proof. If α = (α1, α2, ..., αn), let us use the notation α′ = (α2, ..., αn), and
observe that:

(2.12)

Sw(T ) =
n∑

|α|=0

(−1)|α|Sϕα
w
TSϕw

α

=
1∑

α1,...,αn=0

(−1)|α|Sϕα1
w1

· · · Sϕαn
wn
TSϕα1

w1
· · · Sϕαn

wn

=
n−1∑
|α′|=0

(−1)|α
′|Sϕα2

w2
· · · Sϕαn

wn

(
T − Sϕw1

TSϕw1

)
Sϕα2

w2
· · · Sϕαn

wn
.

Hence, we only need to verify that for compact T , one has

(2.13)
∥∥∥T−Sϕw1

TSϕw1

∥∥∥−→0 as Dn�w=(w1,· · ·,wn)−→ζ=(ζ1,· · ·,ζn)∈Tn.

Since finite rank operators are dense in the set of compact operators, we only need to
verify the latter for rank one operators. For let f, g ∈ (H2(Tn)

)⊥; then by (2.6) we
get

(2.14)

∥∥∥f ⊗ g − Sϕw1
(f ⊗ g)Sϕw1

∥∥∥
=
∥∥(ζ1f) ⊗ (ζ1g)−

(Sϕw1
f
) ⊗ (Sϕw1

g
)∥∥

≤ ∥∥(ζ1f − Sϕw1
f
)⊗ (ζ1g)

∥∥+
∥∥(Sϕw1

f
)⊗ (ζ1g − Sϕw1

g
)∥∥ .
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Now, we know that, for w1 ∈ D and τ ∈ T, w1 − ϕw1(τ) −→ 0 a.e. as |w1| → 1−.
Making appeal to the dominated convergence theorem, we infer that for f ∈ (H2(Tn)

)⊥
one has

‖w1f − ϕw1f‖2
2 =

∫
Tn

|w1f(ξ)− ϕw1(ξ)f(ξ)|2 dσ(ξ) −→ 0 as |w1| −→ 1−.

Hence, we see that ‖ζ1f − ϕw1f‖2 −→ 0 as D � w1 −→ ζ1 ∈ T. Because of the
identity (I − P)(ζ1f(ξ)) = ζ1f(ξ), we see that
∥∥ζ1f − Sϕw1

f
∥∥

2
= ‖(I − P) (ζ1f − ϕw1f)‖2 −→ 0 as Dn � w −→ ζ ∈ Tn.

The latter together with Inequality (2.14) yield:∥∥f ⊗ g − Sϕw1
(f ⊗ g)Sϕw1

∥∥ −→ 0 as Dn � w −→ ζ ∈ Tn.

3. COMMUTATIVITY OF DUAL TOEPLITZ OPERATORS

Hermitian dual Toeplitz operators can be characterized quite easily, as the forth-
coming lemma shows. However, characterizing normal dual Toeplitz operators is not
an immediate task. It is in fact a consequence of our main result in this section as we
will see soon.

Lemma 3.1. Sf is self-adjoint if and only if f is real.

Proof. Sf is self-adjoint means that Sf = S∗
f , which is equivalent to f = f .

Thus, f must be real-valued.

Recall that Lemma 2.1 indicates that Sf and Sg commute if f and g are both
analytic or both conjugate analytic. If a non-trivial linear combination of f and g is
constant, they also commute. Thus, we are interested to see whether these are the only
cases where commutativity takes place. Using similar arguments as in [14, 17], we
arrive at:

Theorem 3.1. Let f, g be bounded functions on Tn. Then, the dual Toeplitz
operators Sf and Sg commute on

(H2(Tn)
)⊥, (i.e. SfSg = SgSf ), if and only if f

and g satisfy one of the following conditions:

(1) they are both analytic on Tn.

(2) they are both co-analytic on Tn.

(3) a non-trivial linear combination of them is constant on Tn.
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Proof. The if part is trivial due to Lemma 2.1. With regard to the only if part,
observe that by Proposition 2.1 and parts (i) and (ii) of Lemma 2.1 one has

(3.1) Hf(kw ⊗ kw)H∗
g =

n∑
|α|=0

(−1)|α|
(Sϕα

w
Hf

) (
H∗
gSϕw

α
)

= Sw(HfH
∗
g ).

In a similar wa, we obtain

(3.2) Hg(kw ⊗ kw)H∗
f

= Sw(HgH
∗
f
).

Combining Equations (2.2), (2.6), (3.1) and (3.2), we see that

(Hgkw)⊗ (Hfkw) − (Hfkw) ⊗ (Hgkw) = Sw([Sf , Sg]).
The assumption reduces the latter to

(Hgkw) ⊗ (Hfkw) = (Hfkw)⊗ (Hgkw) , ∀w ∈ Dn.

In particular, for w = 0 one has k0 = 1; whence Hg1 ⊗ Hf1 = Hf1 ⊗ Hg1, which
can be rewritten as

< h,Hf1 > Hg1 =< h,Hg1 > Hf1, ∀h ∈ (H2(Tn)
)⊥
.

Finally, we distinguish three cases:

(1) If Hg1 �= 0 and Hg1 �= 0, then there exists a complex number ρ �= 0 such that
Hf1 = ρHg1 and Hf1 = ρHg1. That is to say Q(f − ρg) = Q(f − ρg) = 0; whence
f − ρg and f − ρg are both analytic. Thus f − ρg is constant, which corresponds to
condition (3).

(2) If Hg1 = 0, then g is analytic. Also we must have either Hf1 = 0 or Hg1 = 0,
which means that either f is analytic, (which corresponds to condition (1)), or g is
co-analytic, (in this case g must be constant, which corresponds to condition (3)).

(3) If Hg1 = 0, then g is co-analytic. Also we see that either Hg1 = 0 or Hf1 = 0.
This means that either g is analytic, (which implies that g is constant and corresponds
to condition (3)), or f is co-analytic, (which agrees with condition (2)).

Now, thanks to Theorem 3.1 that normal dual Toeplitz operators can be easily
characterized:

Corollary 3.1. Suppose that f ∈ L∞(Tn). Then, the dual Toeplitz operator Sf is
normal if and only if the range of its symbol f lies on a line in the complex plane.

Proof. Because f and its conjugate f cannot be simultaneously analytic or co-
analytic unless f is constant, by Theorem 3.1 Sf and S∗

f = Sf commute if and only
if there are constants γ, β and μ not all zero such that γf + βf = μ. Thus, we infer
that Sf and S∗

f commute if and only if the range of f lies on a line.
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4. PRODUCTS OF DUAL TOEPLITZ OPERATORS

For dual Toeplitz operators on Bergman space of the polydisk, a Brown-Halmos
theorem has been proved by Y.F. Lu and S.X. Shang in [14]. Our aim in this section
is to establish a Brown-Halmos type theorem for our dual Toeplitz operators in an
analogous way. Before establishing it, let us first prove the following general form of
it. This generalization has been given in a related context first by K. Stroethoff [16]
and then also by C. Gu [6] and by Lee [12] as well as by Guediri [7].

Theorem 4.1. Let f, g, h and k be in L∞(Tn). Then SfSg + ShSk is a bounded
dual Toeplitz operator if and only if one of the following conditions holds

(1) f and h are both analytic.
(2) g and k are both co-analytic.
(3) f is analytic and k is co-analytic.
(4) h is analytic and g is co-analytic.
(5) there is a constant γ ∈ C\{0}, such that h − γf is analytic and g + γk is

co-analytic.

In all cases SfSg + ShSk = Sfg+hk.

Proof. The sufficiency of conditions 1, 2, 3 and 4 follows immediately from
Lemma 2.1. To prove the sufficiency of condition 5, suppose there exist an analytic
function ϕ and a co-analytic one ψ with h− γf = φ, and g + γk = ψ. Then, we see
that

SfSg + ShSk = SfS(ψ−γk) + S(ϕ+γf)Sk

= Sf (Sψ − γSk) + (Sϕ + γSf)Sk
= Sfψ + Skϕ = Sfg+γfk+hk−γfk = Sfg+hk,

which means that SfSg + ShSk is a dual Toeplitz operator.

To demonstrate the necessity, suppose that SfSg + ShSk = Sϑ, for some ϑ ∈
L∞(Tn). Using Identities (2.1) we obtain

(4.1) Sfg+hk−ϑ = HfH
∗
g +HhH

∗
k
.

So, introducing the operator Sw, by Proposition 2.1 and parts (i) and (ii) of Lemma
2.1 we observe that

(4.2) Hf(kw ⊗ kw)H∗
g =

n∑
|α|=0

(−1)|α|
(Sϕα

w
Hf

) (
H∗
gSϕw

α
)

= Sw(HfH
∗
g ).
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Similarly, we have

(4.3) Hh(kw ⊗ kw)H∗
k

= Sw(HhH
∗
k
).

Combining the three latter identities and owing to Identity (2.6), we see that

Sw(Sfg+hk−ϑ) = Sw(HfH
∗
g ) + Sw(HhH

∗
k
)

= Hf(kw ⊗ kw)H∗
g +Hh(kw ⊗ kw)H∗

k

= (Hf(kw))⊗ (Hg(kw)) + (Hh(kw)) ⊗ (Hk(kw)).(4.4)

Since Sfg+hk−ϑ is a dual Toeplitz operator, by Proposition 2.2 we infer therefore that:

Hf (kw)) ⊗ (Hg(kw)) + (Hh(kw))⊗ (Hk(kw)) = 0.

In particular, if w = 0 ∈ Tn one gets k0 = 1; so we obtain

(4.5) Hf1 ⊗Hg1 = −Hh1 ⊗Hk1.

Thus, we infer that

(4.6) 〈v, Hg1〉Hf1 = − 〈v, Hk1
〉
Hh1, ∀v ∈ (H2(Tn)

)⊥
.

Now, we distinguish several cases, (exactly we have 24=sixteen cases):

(1) If Hg1 = 0, then one of the following cases must be satisfied:

(a) Hf1 = 0, Hk1 = 0 and Hh1 = 0 (a possible case). This implies that f and
h are analytic and g and k are co-analytic. This corresponds to conditions
1, 2, 3 and 4.

(b) Hf1 = 0, Hk1 = 0 and Hh1 �= 0 (a possible case). This implies that f is
analytic and g and k are co-analytic; whence conditions 2 and 3 hold.

(c) Hf1 = 0, Hk1 �= 0 and Hh1 = 0 (a possible case). This implies that f
and h are analytic and g is co-analytic; whence conditions 1 and 4 hold.

(d) Hf1 = 0, Hk1 �= 0 and Hh1 �= 0 (an impossible case).
(e) Hf1 �= 0, Hk1 �= 0 and Hh1 �= 0 (an impossible case).
(f) Hf1 �= 0, Hk1 �= 0 and Hh1 = 0 (a possible case). This implies that h is
analytic and g is co-analytic; whence condition 4 holds.

(g) Hf1 �= 0, Hk1 = 0 and Hh1 �= 0 (a possible case). This means that g and
k are co-analytic; whence condition 2 holds.

(h) Hf1 �= 0, Hk1 = 0 and Hh1 = 0 (a possible case). This means that h is
analytic and g and k are co-analytic; whence conditions 2 and 4 hold.
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(2) If else Hg1 �= 0, then one of the following cases must be also satisfied:

(a) Hf1 = 0, Hk1 = 0 and Hh1 = 0 (a possible case). This means that f and
h are analytic and k is co-analytic; whence conditions 1 and 3 hold.

(b) Hf1 = 0, Hk1 = 0 and Hh1 �= 0 (a possible case). It implies that f is
analytic and k is co-analytic; whence condition 3 holds.

(c) Hf1 = 0, Hk1 �= 0 and Hh1 = 0 (a possible case). This implies that f is
analytic and h is analytic; this corresponds to condition 1.

(d) Hf1 = 0, Hk1 �= 0 and Hh1 �= 0 (an impossible case).

(e) Hf1 �= 0, Hk1 = 0 and Hh1 �= 0 (an impossible case).

(f) Hf1 �= 0, Hk1 = 0 and Hh1 = 0 (an impossible case).

(g) Hf1 �= 0, Hk1 �= 0 and Hh1 = 0 (an impossible case).

(h) Hf1 �= 0, Hk1 �= 0 and Hh1 �= 0 (a possible case). It is in fact the only
nontrivial case. We infer that, there is a constant ρ ∈ C\{0}, such that
ρ = − 〈v0, Hg1〉〈

v0, Hk1
〉 , for some v0 ∈ (H2(Tn)

)⊥. Thus Equation (4.6) for v0
yields Hh1 = λHf1. Substituting the latter in the RHS of Equation (4.6)
again, we get 〈v, Hg1〉Hf1 =

〈
v,−λHk1

〉
Hf1. Thus, we obtain Hg1 =

−λHk1; whence, we conclude that (h−λf) ∈ (H2(Tn)
)⊥ and g+λk ∈(H2(Tn)

)⊥
. So that, (h − λf) is analytic and (g + λk) is co-analytic;

which corresponds to condition 3.

This discussion completes the proof.

An immediate but interesting corollary about commutators can also be reported,
namely

Corollary 4.1. If f and g are in L∞(Tn). Then, the commutator [Sf , Sg] is a dual
Toeplitz operator if and only if Sf and Sg commute, i.e. [Sf , Sg] = 0.

Proof. Suppose that SfSg − SgSf is a dual Toeplitz operator. Then, from
Theorem 4.1 we see that one of the following conditions holds

(1) f and g are analytic.

(2) f and g are co-analytic.

(3) f is constant.

(4) g is constant.

(5) there is a constant γ ∈ C\{0}, such that g + γf is constant.
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Hence by Theorem 3.1 we see that Sf and Sg commute.
Conversely, if Sf and Sg commute, then SfSg − SgSf = 0 = S0; which is the

trivial dual Toeplitz operator.

Now, we are in the position to state our main result in this section, namely the
Brown-Halmos theorem; which can now be obtained as a corollary from Theorem 4.1
by taking h ≡ k ≡ 0:

Theorem 4.2. Let f and g be in L∞(Tn). Then, the dual Toeplitz product SfSg
is again a dual Toeplitz operator if and only if one of the following conditions holds:

(1) f is analytic.
(2) g is co-analytic.

In either cases SfSg = Sfg.
A first corollary is about the so-called zero product problem. It tells us that among

the class of dual Toeplitz operators on the orthogonal complement of the Hardy space
of the polydisk there are no zero divisors.

Corollary 4.2. The product SfSg of two dual Toeplitz operators on
(H2(Tn)

)⊥
is zero if and only if one of the symbols f or g is zero.

Proof. If Sf = 0 or Sg = 0, then immediately SfSg = 0. Conversely, assume
that SfSg = 0. Then SfSg is a dual Toeplitz operator with symbol zero. Theorem
4.2 implies that either f is analytic or g is co-analytic and moreover SfSg = Sfg = 0.
Thus fg = 0 a.e. on Tn. We then have two cases:

(1) If f is analytic. Then, in case g = 0 a.e., the result follows. But if g �= 0, then
f must vanish on a subset of positive measure; whence f ≡ 0 on Tn.

(2) If g is co-analytic. Then, in case f = 0 a.e., the result follows. But if f �≡ 0,
then the analytic function g must vanish on a subset of positive measure; whence
g ≡ 0, and thus g vanishes on Tn.

We conclude that either Sf = 0 or Sg = 0.

Corollary 4.3. Let f , g and h be in L∞(Tn) with f �≡ 0, such that SfSg = SfSh.
Then, we must have g = h.

Proof. Because SfSg = SfSh, we get Sf(Sg−h) = 0. Using Corollary 4.2, we
infer that f(g − h) = 0; whence g = h.

Corollary 4.4. The only idempotent dual Toeplitz operators are the trivial ones,
(0 or I).
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Proof. If S2
f = Sf , then S2

f − Sf = Sf(Sf − I) = Sf(Sf − S1) = SfSf−1 = 0.
By Corollary 4.2, we get Sf = 0 or Sf−1 = 0. Therefore Sf = 0 or Sf = S1 = I.

Corollary 4.5. A dual Toeplitz operator Sf is an isometry if and only if f is
co-analytic in Dn and unimodular on Tn.

Proof. If Sf is an isometry, then SfSf = S1. Thus, Theorem 4.2 implies that f
must be co-analytic. Moreover, we should have ff = |f |2 = 1 on Tn.
Conversely if f is a co-analytic function of boundary modulus 1 then it is clear that
S∗
fSf = SfSf = S|f |2 = I . Therefore, Sf is an isometry; and the proof is complete.
Corollary 4.6. A dual Toeplitz operator Sf is unitary if and only if f is a unimod-

ular constant function.

Proof. If Sf is unitary, then S∗
fSf = SfS∗

f = I, i.e. SfSf = SfSf = S1. Thus,
Theorem 4.2 implies that f must be simultaneously analytic and co-analytic; whence
constant in Dn. Besides, we should have ff = |f |2 = 1.
Conversely, if f is a constant function of modulus 1, then Sf = λI for some unimodular
complex constant λ; whence S∗

fSf = SfS∗
f = I . Therefore, Sf is unitary; which

completes the proof.

Corollary 4.7. Suppose that the dual Toeplitz operator Sf is invertible, and that
its inverse S−1

f is again a dual Toeplitz operator. Then, f must be either analytic or
co-analytic.

Proof. Suppose that S−1
f is a dual Toeplitz operator Sg for some bounded symbol

g say. Since S−1
f Sf = SgSf = I = S1, which is a dual Toeplitz operator, Theorem

4.2 implies, on the one hand, that either f is co-analytic or g is analytic. On the other
hand since we have SfS−1

f = SfSg = I = S1, so again by Theorem 4.2, we see that
either g is co-analytic or f is analytic. Now, if f is analytic then we are done. But if
f is not analytic, then g must be co-analytic and non-constant (because if g is constant
then Sg = S−1

f = λI which means that Sf = 1
λI , i.e. f = 1

λ which is analytic). Thus
g is not analytic and hence f must be co-analytic (by the first case), which completes
the proof.

5. HANKEL PRODUCTS AND MIXED TOEPLITZ-HANKEL PRODUCTS

In this section, we make use of the above pioneering operator Sw in order to
establish necessary conditions for boundedness and compactness of Hankel products
and mixed Toeplitz-Hankel products on the Hardy space of the polydisk. This problem
in the framework of the Bergman space has been studied by Y.F. Lu and S.X. Shang
in [13], which is in fact our main reference in this section; for the same problem in
related contexts we refer to [8, 11].
The following assertion provides a necessary condition for the boundedness of a

Hankel product HfH
∗
g :
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Theorem 5.1. Suppose that f, g ∈ L2(Tn). If the Hankel product HfH
∗
g is

bounded on
(H2(Tn)

)⊥, then
(5.1) sup

w∈Dn
‖f ◦ ϕw − P(f ◦ ϕw)‖2 ‖g ◦ ϕw −P(g ◦ ϕw)‖2 <∞.

Proof. Combining Proposition 1 of Stroethoff & Zheng [18] and the variable
change formula (Corollary 1.2) of Ding [5], we obtain

(5.2) ‖Hfkw‖2 ‖Hgkw‖2 = ‖f ◦ ϕw −P(f ◦ ϕw)‖2 ‖g ◦ ϕw − P(g ◦ ϕw)‖2 .

By the above norm formula of rank one operators and Equation (2.6), we have

(5.3) ‖Hfkw‖2 ‖Hgkw‖2 = ‖(Hfkw) ⊗ (Hgkw)‖ =
∥∥Hf(kw ⊗ kw)H∗

g

∥∥ .
Thus, it suffices to verify that the R.H.S. of the latter is bounded. Since ϕw ∈ H∞(Tn),
we see by Lemma 2.1 that HfTϕw = SϕwHf and TϕwH

∗
g = H∗

gSϕw . Thus in a similar
way to Identity (3.1), insertingHf and H∗

g into Formula (2.7), we obtain the following
formula

Hf (kw ⊗ kw)H∗
g =

n∑
|α|=0

(−1)|α|Sϕα
w

(
HfH

∗
g

)Sϕw
α .(5.4)

On the other hand, we have ‖Sϕw
α‖ =

∥∥Sϕα
w

∥∥ ≤ ‖ϕαw‖∞ ≤ 1. Thus, we infer that

(5.5)
∥∥Hf(kw ⊗ kw)H∗

g

∥∥ ≤
n∑

|α|=0

∥∥Sϕα
w

∥∥ ∥∥HfH
∗
g

∥∥ ‖Sϕw
α‖ ≤

n∑
|α|=0

∥∥HfH
∗
g

∥∥ <∞;

whence, the theorem is proved.

The following result gives a necessary condition for the compactness of a Hankel
product HfH

∗
g .

Theorem 5.2. Let f and g be in L2(Tn). If the Hankel product HfH
∗
g is compact,

then

(5.6) lim
w→Tn

‖f ◦ ϕw − P(f ◦ ϕw)‖2 ‖g ◦ ϕw −P(g ◦ ϕw)‖2 = 0.

Proof. By Equations (5.2), (5.3) and (5.4), we see that

(5.7) ‖f ◦ ϕw − P(f ◦ ϕw)‖2 ‖g ◦ ϕw −P(g ◦ ϕw)‖2 =
∥∥Sw (HfH

∗
g

)∥∥ .
Hence, if HfH

∗
g is compact, by Theorem 2.1 we infer that

lim
w→Tn

∥∥Sw (HfH
∗
g

)∥∥ = 0,

which completes the proof of the assertion.

Owing to the alternative representation (2.2) of the commutator of two dual Toeplitz
operators, we can characterize its compactness:
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Theorem 5.3. Let f and g be bounded measurable on Tn. If the commutator
[ Sf , Sg] is compact, then∥∥∥(Hgkw) ⊗

(
Hfkw

)
− (Hfkw) ⊗ (Hgkw)

∥∥∥ −→ 0 as |w| → 1−.

Proof. Making use of Formulas (2.2) and (5.4), we obtain:

Sw ([ Sf , Sg]) = (Hgkw)⊗
(
Hfkw

)
− (Hfkw) ⊗ (Hgkw) .

So, if the commutator is compact, then the result follows from Theorem 2.1.

Analog characterizations of bounded and compact mixed Toeplitz-Hankel products
TfH

∗
g and HgTf can also be obtained:

Theorem 5.4. Let f be inH2(Tn) and g be in L2(Tn). If one of the mixed Haplitz
products TfH∗

g or HgTf is bounded, then

sup
w∈Dn

‖f ◦ ϕw‖2 ‖g ◦ ϕw − P(g ◦ ϕw)‖2 <∞.

Proof. Relying on the fact that ϕw ∈ H∞(Tn) and owing to the analyticity of f ,
we see by Lemma 2.1 that TfTϕw = TϕwTf and TϕwH

∗
g = H∗

gSϕw . Thus, as in the
proof of Theorem 5.1, inserting Tf and H∗

g into Formula (2.7), we see that

Tf(kw ⊗ kw)H∗
g =

n∑
|α|=0

(−1)|α|Tϕα
w

(
TfH

∗
g

)Sϕw
α .(5.8)

Estimating the norms of Toeplitz and dual Toeplitz operators with automorphic symbols,
we get

∥∥Tϕm
w

∥∥ ≤ 1 and ‖Sϕw
m‖ ≤ 1. Thus, if TfH∗

g is bounded, we infer that

∥∥Tf(kw ⊗ kw)H∗
g

∥∥ ≤
n∑

|α|=0

∥∥TfH∗
g

∥∥ <∞.(5.9)

Hence, as in Equations (5.2) and (5.3), we obtain the claimed estimate. Similar argu-
ment can be used to handel the second case.

Compact mixed Haplitz products can also be characterized similarly:

Theorem 5.5. Let f ∈ H∞(Tn) and g ∈ L2(Tn). If one of the mixed Haplitz
products TfH∗

g or HgTf is compact, then

lim
w→Tn

‖f ◦ ϕw‖2 ‖g ◦ ϕw −P(g ◦ ϕw)‖2 = 0.
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Proof. As in the proof of Theorem 2.1, for any operator A :
(H2(Tn)

)⊥ −→
H2(Tn), we have

(5.10)

n∑
|α|=0

(−1)|α|Tϕα
w
ASϕw

α

=
n−1∑
|α′|=0

(−1)|α
′|Tϕα2

w2
· · · Tϕαn

wn

(
A− Tϕw1

ASϕw1

)
Sϕα2

w2
· · · Sϕαn

wn
.

We claim that if such a A is compact, then

lim
w→Tn

n∑
|α|=0

(−1)|α|Tϕα
w
ASϕw

α = 0.(5.11)

By Identity (5.10), we only need to verify that

(5.12)
∥∥A− Tϕw1

ASϕw1

∥∥ −→ 0 as |w1| −→ 1−.

Using the density of finite rank operators in the set of compact operators, we only need
to verify the latter for rank one operators acting from

(H2(Tn)
)⊥ into H2(Tn). For

let f ∈ H2(Tn) and g ∈ (H2(Tn)
)⊥. Then, one has

(5.13)

∥∥f ⊗ g − Tϕw1
(f ⊗ g)Sϕw1

∥∥
≤ ∥∥(ζ1f − Tϕw1

f
)⊗ (ζ1g)

∥∥+
∥∥(Tϕw1

f
)⊗ (ζ1g − Sϕw1

g
)∥∥ .

=
∥∥ζ1f − Tϕw1

f
∥∥

2
‖ζ1g‖2 +

∥∥Tϕw1
f
∥∥

2

∥∥ζ1g − Sϕw1
g
∥∥

2
.

Now, for τ ∈ T and w1 ∈ D, observe that w1 − ϕw1(τ) −→ 0 a.e. as |w1| → 1−.
Making use of the dominated convergence theorem, we infer that for f ∈ H2(Tn) and
g ∈ (H2(Tn)

)⊥ one has
‖w1f − ϕw1f‖2

2 =
∫
Tn

|w1f(ξ)− ϕw1(ξ)f(ξ)|2 dσ(ξ) −→ 0 as |w1| −→ 1−,

and

‖w1g − ϕw1g‖2
2 =

∫
Tn

|w1g(ξ)− ϕw1(ξ)g(ξ)|2 dσ(ξ) −→ 0 as |w1| −→ 1−.

Hence, we see that ‖ζ1f − ϕw1f‖2 −→ 0 and ‖ζ1g − ϕw1g‖2 −→ 0 as D � w1 −→
ζ1 ∈ T. Because of the identities P(ζ1f(ξ)) = ζ1f(ξ) and (I −P)(ζ1g(ξ)) = ζ1g(ξ),
we see that∥∥ζ1f − Tϕw1

f
∥∥

2
= ‖P (ζ1f − ϕw1f)‖2 −→ 0 as Dn � w −→ ζ ∈ Tn,
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and∥∥ζ1g − Sϕw1
g
∥∥

2
= ‖(I − P) (ζ1g − ϕw1g)‖2 −→ 0 as Dn � w −→ ζ ∈ Tn.

Combining the latter two limits together with Inequality (5.13), we infer that∥∥f ⊗ g − Tϕw1
(f ⊗ g)Sϕw1

∥∥ −→ 0 as Dn � w −→ ζ ∈ Tn;

which proves (5.11).

Next, suppose for instance that TfH∗
g is compact, (the other case related to HgTf ,

can be handled similarly), then by (5.8) and (5.11), we see that∥∥Tf(kw ⊗ kw)H∗
g

∥∥ −→ 0 as Dn � w −→ ζ ∈ Tn.

Thus, as in Equations (5.2) and (5.3), we obtain the claimed condition.
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