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GENERAL Lp-INTERSECTION BODIES

Weidong Wang and Yanan Li

Abstract. For 0 < p < 1, Haberl and Ludwig defined symmetric and asymmetric
Lp-intersection bodies. In this paper, we introduce general Lp-intersection bodies
and study their properties. In particular, we obtain the extremal values of their
volume and establish a Brunn-Minkowski type inequality for them.

1. INTRODUCTION

Classical intersection bodies of star bodies were defined by Lutwak (see [23]). Dur-
ing the past two decades, they and their Lp generalizations have received considerable
attention (see [5, 6, 14, 15, 16, 20, 22, 23, 28]).

An Lp generalization of intersection bodies was first defined by Haberl and Ludwig.
For 0 < p < 1, Haberl and Ludwig ([8]) defined asymmetric Lp-intersection bodies
and gave a characterization using the notion of valuation. They also pointed out that
the classical intersection bodies may be obtained as a limit of Lp-intersection bodies
as p → 1. Recently, Haberl ([7]) obtained a series of results for Lp-intersection bodies
and Berck ([2]) investigated the convexity of Lp-intersection bodies. Lp-intersection
bodies are an important concept in the dual Lp Brunn-Minkowski theory. For further
results on Lp-intersection bodies, see also [13, 33, 38, 39].

The main aim of this paper is to introduce general Lp-intersection bodies and
to determine the extremal values of their volume. Moreover, we establish a Brunn-
Minkowski type inequality for them.

If K is a compact star-shaped (about the origin) set in R
n, its radial function,

ρK = ρ(K, ·) : R
n\{0} −→ [0, +∞), is defined by (see [5])

ρ(K, x) = max{λ ≥ 0 : λx ∈ K}, x ∈ R
n\{0}.
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If ρK is positive and continuous, K will be called a star body (about the origin). Let
Sn

o denote the set of star bodies (about the origin) in R
n. Two star bodies K and L are

said to be dilates (of one another) if ρK(u)/ρL(u) is independent of u ∈ Sn−1, where
Sn−1 denotes the unit sphere in R

n.
If c > 0 and K ∈ Sn

o , then ρ(cK, ·) = cρ(K, ·).
For K, L ∈ Sn

o , p > 0 and λ, μ ≥ 0 (not both zero), the Lp-radial combination,
λ ◦ K+̃pμ ◦L ∈ Sn

o , of K and L is defined by (see [7])

(1.1) ρ(λ ◦ K+̃pμ ◦L, · )p = λρ(K, ·)p + μρ(L, ·)p.

It follows that λ ◦ K = λ1/pK. For p = 1, λ ◦ K+̃pμ ◦ L is just the radial linear
combination, λK+̃μL, of K and L.

Lutwak introduced the following notion of an intersection body of a star body (see
[23]): For K ∈ Sn

o , the intersection body, IK, of K is the star body whose radial
function in the direction u ∈ Sn−1 is equal to the (n − 1)-dimensional volume of the
section of K by u⊥, the hyperplane orthogonal to u, i.e., for all u ∈ Sn−1,

ρ(IK, u) = Vn−1(K ∩ u⊥),

where Vn−1 denotes (n − 1)-dimensional volume.
In 2006, Haberl and Ludwig ([8]) defined the asymmetric Lp-intersection body

I+
p K as follows: For K ∈ Sn

o , 0 < p < 1, define

(1.2) ρp

I+
p K

(u) =
∫

K∩u+

|u · x|−pdx

for all u ∈ Sn−1, where u+ = {x : u · x ≥ 0, x ∈ R
n} and u · x denotes the standard

inner product of u and x. They also define

(1.3) I−p K = I+
p (−K).

From definitions (1.2) and (1.3), we see that

(1.4) ρ
p

I−p K
(u) = ρ

p

I+
p (−K)

(u) =
∫
−K∩u+

|u · x|−pdx =
∫

K∩(−u)+
|u · x|−pdx.

Moreover, Haberl and Ludwig ([8]) defined the (symmetric) Lp-intersection body
as follows: For K ∈ Sn

o , 0 < p < 1, the Lp-intersection body, IpK , of K is the
origin-symmetric star body whose radial function is given by

(1.5) ρp
IpK(u) =

1
2

∫
K
|u · x|−pdx

for all u ∈ Sn−1. Here for convenience, we add a coefficient 1/2 in definition (1.5).
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Haberl and Ludwig ([8]) pointed out that the classical intersection body, IK, of
K is obtained as a limit of the Lp-intersection body of K , more precisely, for all
u ∈ Sn−1,

ρ(IK, u) = lim
p−→1−

2(1− p)ρ(IpK, u)p.

In [22], Ludwig introduced a function ϕτ : R −→ [0, +∞) by

(1.6) ϕτ (t) = |t| − τt,

for τ ∈ [−1, 1]. Using (1.6), we define the general Lp-intersection body with parameter
τ as follows: For K ∈ Sn

o , 0 < p < 1 and τ ∈ (−1, 1), the general Lp-intersection
body, Iτ

p K ∈ Sn
o , of K is defined by

(1.7) ρp
Iτ
p K(u) = i(τ)

∫
K

ϕ−p
τ (u · x)dx

for all u ∈ Sn−1, where

(1.8) i(τ) =
(1 + τ)p(1− τ)p

(1 + τ)p + (1− τ)p
.

From (1.6), (1.7) and (1.8), together with (1.2) and (1.4), we have that for all
u ∈ Sn−1,

ρp
Iτ
p K(u) = i(τ)

∫
K

[|u · x| − τ(u · x)]−pdx

= i(τ)

[∫
K∩u+

(1−τ)−p(u · x)−pdx+
∫

K∩(−u)+
(1+τ)−p(−u · x)−pdx

]

=
i(τ)

(1 − τ)p

∫
K∩u+

|u · x|−pdx +
i(τ)

(1 + τ)p

∫
K∩(−u)+

|u · x|−pdx

=
(1 + τ)p

(1 + τ)p + (1 − τ)p
ρ

p

I+
p K

(u) +
(1− τ)p

(1 + τ)p + (1− τ)p
ρ

p

I−p K
(u).

Now denote by

(1.9) f1(τ) =
(1 + τ)p

(1 + τ)p + (1− τ)p
, f2(τ) =

(1− τ)p

(1 + τ)p + (1− τ)p
,

where τ ∈ [−1, 1], then

(1.10) ρp
Iτ
p K(u) = f1(τ)ρp

I+
p K

(u) + f2(τ)ρp

I−p K
(u)

for all u ∈ Sn−1. By (1.2), we see that for all u ∈ Sn−1,

(1.11) ρp

I+1
p K

= lim
τ−→1

ρp
Iτ
p K(u) = ρp

I+
p K

(u)
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and

(1.12) ρp

I−1
p K

= lim
τ−→−1

ρp
Iτ
p K(u) = ρp

I−p K
(u).

By (1.10), for K ∈ Sn
o , 0 < p < 1 and τ ∈ [−1, 1], the general Lp-intersection

body, Iτ
p K, of K is given by

(1.13) Iτ
p K = f1(τ) ◦ I+

p K+̃pf2(τ) ◦ I−p K.

From (1.13), it also follows that

(1.14) I0
pK =

1
2
◦ I+

p K+̃p
1
2
◦ I−p K = IpK.

Our first main result is the determination of the extremal values of the volume of
general Lp-intersection bodies:

Theorem 1.1. If K ∈ Sn
o , 0 < p < 1, τ ∈ [−1, 1], then

(1.15) V (IpK) ≤ V (Iτ
p K) ≤ V (I±p K).

If K is not origin-symmetric, there is equality in the left inequality if and only if τ = 0
and equality in the right inequality if and only if τ = ±1.

Theorem 1.1 is a dual analogue of a volume inequality of Haberl and Schuster
(see [9]) for polars of general Lp projection bodies which in turn is part of a new and
rapidly evolving asymmetric Lp Brunn-Minkowski theory that has its origins in the
work of Ludwig, Haberl and Schuster (see [3, 4, 7, 8, 9, 10, 11, 21, 22, 25, 26, 30,
31, 32, 33, 34, 35, 36, 37]).

We also establish the following Brunn-Minkowski type inequality for general Lp-
intersection bodies with respect to Lq (q > 0) radial combinations of star bodies.

Theorem 1.2. If K, L ∈ Sn
o , 0 < p < 1, q > 0 and n−p > q, then for τ ∈ [−1, 1],

(1.16) V (Iτ
p (K+̃qL))

pq
n(n−p) ≤ V (Iτ

p K)
pq

n(n−p) + V (Iτ
pL)

pq
n(n−p) ,

with equality if and only if K and L are dilates.
Brunn-Minkowski type inequalities for intersection bodies and related operators

have been the focus of recent interest. We refer to [1, 17, 18, 19, 27, 29, 41, 40, 42]
for further information.

We give the proofs of Theorems 1.1-1.2 in Section 4. In addition, in the Section 3
we prove several properties of general Lp-intersection bodies.

2. Lp-DUAL MIXED VOLUMES

For p > 0, the Lp-dual mixed volume is defined as follows (see e.g., [7, 38]): For
K, L ∈ Sn

o ,
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n

p
Ṽp(K, L) = lim

ε→0+

V (K+̃pε ◦L) − V (K)
ε

.

From this definition, Haberl [7] obtained the following integral representation of
Lp-dual mixed volumes. If K, L ∈ Sn

o , p > 0, then

(2.1) Ṽp(K, L) =
1
n

∫
Sn−1

ρn−p
K (u)ρp

L(u)dS(u).

Notice that

(2.2) V (K) =
1
n

∫
Sn−1

ρn
K(u)dS(u),

thus, by (2.1) and (2.2), we have

(2.3) Ṽp(K, K) = V (K).

The Minkowski inequality for Lp-dual mixed volumes can be stated as follows (see
e.g., [7]):

Theorem 2.1. If K, L ∈ Sn
o , p > 0, then for n > p,

(2.4) Ṽp(K, L) ≤ V (K)
n−p

n V (L)
p
n ;

for n < p,

(2.5) Ṽp(K, L) ≥ V (K)
n−p

n V (L)
p
n .

In each case, equality holds if and only if K and L are dilates.

The Brunn-Minkowski inequality with respect to Lp-radial combinations (1.1) can
be stated as follows:

Theorem 2.2. If K, L ∈ Sn
o , p > 0 and λ, μ ≥ 0 (not both zero), then for n > p,

(2.6) V (λ ◦ K+̃pμ ◦ L)
p
n ≤ λV (K)

p
n + μV (L)

p
n ,

with equality if and only if K and L are dilates; for n < p, (2.6) is reversed.

Proof. For n > p, by (1.1) and (2.1), we have that for any Q ∈ Sn
o ,

Ṽp(Q, λ ◦ K+̃pμ ◦L) = λṼp(Q, K) + μṼp(Q, L).

Combining this with inequality (2.4), yields

Ṽp(Q, λ ◦ K+̃pμ ◦ L) ≤ V (Q)
n−p

n [λV (K)
p
n + μV (L)

p
n ].

Take Q = λ◦K+̃pμ◦L and use (2.3), to get (2.6). According to the equality condition
of (2.4), we see that equality holds in (2.6) if and only if K and L are dilates.
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Similarly, if n < p, using (2.5), we obtain the reverse form of (2.6).

3. PROPERTIES OF GENERAL Lp-INTERSECTION BODIES

In this section, we establish several properties of general Lp-intersection bodies.

Theorem 3.1. If K ∈ Sn
o , 0 < p < 1, then for τ ∈ [−1, 1],

(3.1) I−τ
p K = Iτ

p (−K) = −Iτ
p K.

Proof. By (1.2) we have for u ∈ Sn−1,

ρp

−I+
p K

(u) = ρp

I+
p K

(−u) =
∫

K∩(−u)+
| − u · x|−pdx

=
∫

K∩(−u)+
|u · x|−pdx = ρp

I−p K
(u).

Thus, by (1.3),

(3.2) I−p K = I+
p (−K) = −I+

p K

and

(3.3) I+
p K = I−p (−K) = −I−p K.

But by (1.9), we have that

(3.4) f1(τ) + f2(τ) = 1;

(3.5) f1(−τ) = f2(τ), f2(−τ) = f1(τ).

This together with (3.2), (3.3), (3.5) and (1.13), yields

(3.6)
I−τ
p K = f1(−τ) ◦ I+

p K+̃pf2(−τ) ◦ I−p K

= f2(τ) ◦ I−p (−K)+̃pf1(τ) ◦ I+
p (−K) = Iτ

p (−K)

and

(3.7)
Iτ
p (−K) = f2(τ) ◦ I−p (−K)+̃pf1(τ) ◦ I+

p (−K)

= f1(τ) ◦ [−I+
p K]+̃pf2(τ) ◦ [−I−p K] = −Iτ

p K.

Hence, from (3.6) and (3.7), we obtain (3.1).
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Theorem 3.2. If K ∈ Sn
o , 0 < p < 1, then I+

p K = I−p K if and only if K is
origin-symmetric.

Proof. If I+
p K = I−p K, then by (3.2) we know that for all u ∈ Sn−1,

(3.8) ρp

I+
p K

(u) = ρp

I−p K
(u) = ρp

I+
p (−K)

(u).

But (1.2) gives that

ρp

I+
p K

(u) =
1

n − p

∫
Sn−1∩u+

|u · v|−pρn−p
K (v)dS(v)

and
ρp

I+
p (−K)

(u) =
1

n − p

∫
Sn−1∩u+

|u · v|−pρn−p
−K (v)dS(v).

From this and (3.8) we obtain

(3.9)
∫

Sn−1∩u+

|u · v|−p[ρn−p
K (v)− ρn−p

K (−v)]dS(v) = 0.

Since K ∈ Sn
o , ρn−p

K (v)− ρn−p
K (−v) is continuous on Sn−1 ∩ u+. Hence, if (3.9)

holds for all u ∈ Sn−1, then (see [7])

ρn−p
K (v) − ρn−p

K (−v) = 0,

i.e., ρK(v) = ρ−K(v). This means that K is origin-symmetric.
Conversely, if K is origin-symmetric, i.e., K = −K, then by (3.2), we get

I+
p K = I+

p (−K) = I−p K.

Theorem 3.3. If K ∈ Sn
o , 0 < p < 1, τ ∈ [−1, 1] and τ 	= 0, then

(3.10) Iτ
p K = I−τ

p K ⇐⇒ I+
p K = I−p K.

Proof. From (1.10) and (3.5), we have that for all u ∈ Sn−1,

(3.11)
ρp

I−τ
p K

(u) = f1(−τ)ρp

I+
p K

(u) + f2(−τ)ρp

I−p K
(u)

= f2(τ)ρp

I+
p K

(u) + f1(τ)ρp

I−p K
(u).

Hence, by (3.4) and (3.11), if I+
p K = I−p K, then for all u ∈ Sn−1,

ρp
Iτ
p K(u) = ρp

I−τ
p K

(u).
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This gives Iτ
p K = I−τ

p K.
Conversely, if Iτ

p K = I−τ
p K, then (1.10) and (3.11) yield that

[f1(τ)− f2(τ)]ρp

I+
p K

(u) = [f1(τ) − f2(τ)]ρp

I−p K
(u),

for all u ∈ Sn−1. Since f1(τ) − f2(τ) 	= 0 when τ 	= 0, we conclude that
I+
p K = I−p K.

From Theorem 3.2 and (3.10), we obtain that

Corollary 3.1. If K ∈ Sn
o , 0 < p < 1, τ ∈ [−1, 1] and τ 	= 0, then Iτ

p K = I−τ
p K

if and only if K is origin-symmetric.
In addition, using (1.10), (1.14) and Theorem 3.2, we have the following result.

Theorem 3.4. If K ∈ Sn
o , 0 < p < 1, τ ∈ [−1, 1] and τ 	= 0, then K is origin-

symmetric if and only if Iτ
p K = IpK .

Proof. From (1.14), we know that for all u ∈ Sn−1,

(3.12) ρp
IpK(u) =

1
2
ρp

I+
p K

(u) +
1
2
ρp

I−p K
(u).

If K is origin-symmetric, then according to Theorem 3.2 and (3.12), we have

IpK = I+
p K = I−p K.

Similarly, for origin-symmetric star bodies, from (1.10), (3.4) and Theorem 3.2, we
know that

Iτ
p K = I+

p K = I−p K.

From this, if K is origin-symmetric, then Iτ
p K = IpK .

Conversely, if Iτ
p K = IpK, then from (1.10) and (3.12) we have that for all

u ∈ Sn−1,

f1(τ)ρp

I+
p K

(u) + f2(τ)ρp

I−p K
(u) =

1
2
ρ

p

I+
p K

(u) +
1
2
ρ

p

I−p K
(u).

This together with (3.4), yields

(3.13)
[
f1(τ) − 1

2

]
ρp

I+
p K

(u) =
[
f1(τ) − 1

2

]
ρp

I−p K
(u).

But τ 	= 0 gives f1(τ)− 1
2 	= 0. Thus, from (3.13), we obtain for all u ∈ Sn−1,

ρ
p

I+
p K

(u) = ρ
p

I−p K
(u),

that is, I+
p K = I−p K. This and Theorem 3.2 yield that K is an origin-symmetric star

body.
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4. PROOFS OF THEOREMS 1.1-1.2

We first give the proof of Theorem 1.1:

Proof of Theorem 1.1. By (3.1), we have that for K ∈ Sn
o , 0 < p < 1 and

τ ∈ [−1, 1],
V (Iτ

p K) = V (I−τ
p K).

This together with inequality (2.6), yields that for τ ∈ [−1, 1], the function V (Iτ
pK) is

convex and symmetric. Therefore,

V (IpK) ≤ V (Iτ
p K) ≤ V (I±p K).

This yields inequalities (1.15).
From the equality condition of (2.6), we see that equality holds in the right inequality

of (1.15) if and only if I+
p K and I−p K are dilates. Hence, I+

p K = cI−p K for some
c > 0. Using V (I+

p K) = V (I−p K), we see that c = 1. This gives I+
p K = I−p K.

Thus, from Theorem 3.2, we see that if K is not origin-symmetric, then equality holds
in the right inequality of (3.1) if and only if τ = ±1.

From Theorem 3.4, we see that if K is not origin-symmetric, then equality holds
in the left inequality of (1.15) if and only if τ = 0.

In order to complete the proof of Theorem 1.2, we require the following lemma:

Lemma 4.1. If K, L ∈ Sn
o , 0 < p < 1, q > 0, n− p > q and τ ∈ [−1, 1], then for

all u ∈ Sn−1,

(4.1) ρ
pq

n−p

Iτ
p (K+̃qL)

(u) ≤ ρ
pq

n−p

Iτ
p K(u) + ρ

pq
n−p

Iτ
p L (u),

with equality if and only if K and L are dilates.

Proof. Since q > 0 and n−p > q, we have (n−p)/q > 1. From definition (1.7), a
transformation to polar coordinates, and the Minkowski integral inequality (see [12]),
we obtain for τ ∈ (−1, 1),

ρ
pq

n−p

Iτ
p (K+̃qL)

(u) =

[
i(τ)

∫
K+̃qL

ϕ−p
τ (u · x)dx

] q
n−p

=

[
i(τ)

∫
K+̃qL

[|u · x| − τ(u · x)]−pdx

] q
n−p

=
[

i(τ)
n − p

∫
Sn−1

[|u · v| − τ(u · v)]−pρ
n−p

K+̃qL
(v)dS(v)

] q
n−p
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=
[

i(τ)
n − p

∫
Sn−1

[|u · v| − τ(u · v)]−p(ρq
K(v) + ρq

L(v))
n−p

q dS(v)
] q

n−p

≤
[

i(τ)
n − p

∫
Sn−1

[|u · v| − τ(u · v)]−pρn−p
K (v)dS(v)

] q
n−p

+
[

i(τ)
n − p

∫
Sn−1

[|u · v| − τ(u · v)]−pρn−p
L (v)dS(v)

] q
n−p

= ρ
pq

n−p

Iτ
p K(u) + ρ

pq
n−p

Iτ
p L (u)

for all u ∈ Sn−1. This gives (4.1). From the equality condition of the Minkowski
integral inequality, we see that equality holds in (4.1) if and only if K and L are dilates.

If τ = ±1, then by (1.11) and (1.12), (4.1) is also true.

Proof of Theorem 1.2. From 0 < p < 1, q > 0 and n − p > q, we see that
n(n − p)/pq > 1. Using (4.1) and the Minkowski integral inequality (see [12]), we
obtain

V (Iτ
p (K+̃qL))

pq
n(n−p) =

[
1
n

∫
Sn−1

ρn
Iτ
p (K+̃qL)

(u)dS(u)
] pq

n(n−p)

=
[

1
n

∫
Sn−1

[ρ
pq

n−p

Iτ
p (K+̃qL)

(u)]
n(n−p)

pq dS(u)
] pq

n(n−p)

≤
[

1
n

∫
Sn−1

[ρ
pq

n−p

Iτ
p K(u) + ρ

pq
n−p

Iτ
p L (u)]

n(n−p)
pq dS(u)

] pq
n(n−p)

≤
[

1
n

∫
Sn−1

ρn
Iτ
p K(u)dS(u)

] pq
n(n−p)

+
[

1
n

∫
Sn−1

ρn
Iτ
p L(u)dS(u)

] pq
n(n−p)

= V (Iτ
p K)

pq
n(n−p) + V (Iτ

p L)
pq

n(n−p) .

Hence, we obtain (1.16), and equality holds in (1.16) if and only if K and L are
dilates.

If τ = 0 in Theorem 1.2, then the following Brunn-Minkowski inequality for
Lp-intersection bodies follows.

Corollary 4.1. If K, L ∈ Sn
o , 0 < p < 1, q > 0 and n − p > q, then

V (Ip(K+̃qL))
pq

n(n−p) ≤ V (IpK)
pq

n(n−p) + V (IpL)
pq

n(n−p) ,

with equality if and only if K and L are dilates.
Taking q = 1 in Corollary 4.1, and noting that n ≥ 2 and 0 < p < 1 imply that

n − p > 1, we also have
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Corollary 4.2. If K, L ∈ Sn
o , 0 < p < 1 and n ≥ 2, then

(4.2) V (Ip(K+̃L))
p

n(n−p) ≤ V (IpK)
p

n(n−p) + V (IpL)
p

n(n−p) ,

with equality if and only if K and L are dilates.
Inequality (4.2) is due to Yuan and Sum (see [39]). Since

ρ(IK, u) = lim
p→1−

2(1 − p)ρ(IpK, u)p,

we can let p → 1 in (4.2), to obtain

Corollary 4.3. If K, L ∈ Sn
o , n ≥ 2, then

(4.3) V (I(K+̃L))
1

n(n−1) ≤ V (IK)
1

n(n−1) + V (IL)
1

n(n−1) ,

with equality if and only if K and L are dilates.
Inequality (4.3) can be found in [38, 39] and is the Brunn-Minkowski inequality

for the classical intersection bodies.
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12. G. H. Hardy, J. E. Littlewood and G. Pólya, Inequalities, Cambridge University Press,
Cambridge, 1959.

13. N. J. Kalton and A. Koldobsky, Intersection bodies and Lp spaces, Adv. Math., 196
(2005), 257-275.

14. A. Koldobsky, Intersection bodies in R4, Adv. Math., 136(1) (1998), 1-14.

15. A. Koldobsky, Second derivative test for intersection bodies, Adv. Math., 136(1) (1998),
15-25.

16. A. Koldobsky, A functional analytic approach to intersection bodies, Geom. Funct.
Anal., 10 (2000), 1507-1526.

17. A. Koldobsky and D. Ma, Stability and slicing inequalities for intersection bodies, Geom.
Dedicata, 162 (2013), 325-335.

18. L. Liu, W. Wang and B. W. He, Brunn-Minkowski inequalities for star duals of inter-
section bodies and two additions, J. Shanghai Univ., 14 (2010), 201-205.

19. F. H. Lu and W. H. Mao, Affine isoperimetric inequalities for Lp-intersection bodies,
Rocky Mountain J. Math., 40 (2010), 489-500.

20. F. H. Lu, W. H. Mao and G. S. Leng, On star duality of mixed intersection bodies, J.
Inequal. Appl., 2007 (2007), 39345.

21. M. Ludwig, Minkowski valuations, Trans. Amer. Math. Soc., 357 (2005), 4191-4213.

22. M. Ludwig, Intersection bodies and valuations, Amer. J. Math., 128 (2006), 1409-1428.

23. E. Lutwak, Intersection bodies and dual mixed volumes, Adv. Math., 71 (1988), 232-261.

24. E. Lutwak, Inequalities for mixed projection bodies, Trans. Amer. Math. Soc., 339(2)
(1993), 901-916.

25. L. Parapatits, SL(n)-covariant Lp-Minkowski valuations, J. Lond. Math. Soc., 89
(2014), 397-414.

26. L. Parapatits, SL(n)-contravariant Lp-Minkowski valuations, Trans. Amer. Math. Soc.,
366 (2014), 1195-1211.

27. L. Parapatits and F. E. Schuster, The Steiner formula for Minkowski valuations, Adv.
Math., 230 (2012), 978-994.

28. R. Schneider, Convex Bodies: The Brunn-Minkowski Theory, 2nd edn, Cambridge Uni-
versity Press, Cambridge, 2014.



General Lp-Intersection Bodies 1259

29. F. E. Schuster, Crofton measures and Minkowski valuations, Duke Math. J., 154 (2010),
1-30.

30. F. E. Schuster and T. Wannerer, GL(n) contravariant Minkowski valuations, Trans.
Amer. Math. Soc., 364 (2012), 815-826.

31. F. E. Schuster and M. Weberndorfer, Volume inequalities for asymmetric Wulff shapes,
J. Differential Geom., 92 (2012), 263-283.

32. W. D. Wang and Y. B. Feng, A general Lp-version of Petty’s affine projection inequality,
Taiwan J. Math., 17(2) (2013), 517-528.

33. W. D. Wang and Y. N. Li, Busemann-Petty problems for general Lp-intersection bodies,
Acta Math. Sin. (English Series), accepted.

34. W. D. Wang and T. Y. Ma, Asymmetric Lp-difference bodies, Proc. Amer. Math. Soc.,
142(7) (2014), 2517-2527.

35. W. D. Wang and X. Y. Wan, Shephard type problems for general Lp-projection bodies,
Taiwan J. Math., 16(5) (2012), 1749-1762.

36. T. Wannerer, GL(n) equivariant Minkowski valuations, Indiana Univ. Math. J., 60
(2011), 1655-1672.

37. M. Weberndorfer, Shadow systems of asymmetric Lp zonotopes, Adv. Math., 240 (2013),
613-635.

38. W. Y. Yu, D. H. Wu and G. S. Leng, Quasi Lp-intersection bodies, Acta Math. Sinica,
23(11) (2007), 1937-1948.

39. J. Yuan and C. Wing-Sum, Lp-intersection bodies, J. Math. Anal. Appl., 339(2) (2008),
1431-1439.

40. J. Yuan, H. Zhu and G. S. Leng, Inequalities for star duals of intersection bodies, J.
Korean Math. Soc., 44 (2007), 297-306.

41. S. F. Yuan, J. Yuan and G. S. Leng, The dual Brunn-Minkowski inequalities for inter-
section bodies and two additions, Taiwanese J. Math., 10 (2006), 905-915.

42. C. J. Zhao and G. S. Leng, Brunn-Minkowski inequality for mixed intersection bodies,
J. Math. Anal. Appl., 301 (2005), 115-123.

Weidong Wang and Yanan Li
Department of Mathematics
China Three Gorges University
Yichang, 443002
P. R. China
E-mail: wdwxh722@163.com

1719118938@qq.com


