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DECOMPOSITIONS OF MULTICROWNS INTO CYCLES AND STARS

Jenq-Jong Lin

Abstract. Let Ck (respectively, Sk) denote a cycle (respectively, a star) with k
edges. For graphs F , G and H , a (G, H)-decomposition of F is a partition of
the edge set of F into copies of G and copies of H with at least one copy of G
and at least one copy of H . In this paper, necessary and sufficient conditions for
the existence of the (Ck, Sk)-decomposition of multicrowns are given.

1. INTRODUCTION

Let F , G and H be graphs. A G-decomposition of F is a partition of the edge set
of F into copies of G. If F has a G-decomposition, we say that F is G-decomposable.
A (G, H)-decomposition of F is a partition of the edge set of F into copies of G

and copies of H with at least one copy of G and at least one copy of H . If F has a
(G, H)-decomposition, we say that F is (G, H)-decomposable.

For positive integers m and n, Km,n denotes the complete bipartite graph with
parts of sizes m and n. A k-star, denoted by Sk, is the complete bipartite graph
K1,k. For k ≥ 2, the vertex of degree k in Sk is called the center of Sk. A k-
cycle, denoted by Ck , is a cycle of length k. Let (v1v2 . . . vk) denote the k-cycle
with edges v1v2, v2v3, . . . , vk−1vk, vkv1. A k-path, denoted by Pk , is a path with
k edges. A k-matching, denoted by Mk, is a matching with k edges. A spanning
subgraph H of a graph G is a subgraph of G with V (H) = V (G). A 1-factor of
G is a spanning subgraph of G with each vertex incident with exactly one edge. For
positive integers � and n with 1 ≤ � ≤ n, the crown Cn,� is a bipartite graph with
bipartition (A, B) where A = {a0, a1, . . . , an−1} and B = {b0, b1, . . . , bn−1}, and
edge set {aibj : i = 0, 1, . . . , n − 1, j ≡ i + 1, i + 2, . . . , i + � (mod n)}. Hereafter
(A, B) always means the bipartition of Cn,� defined here. Note that Cn,n is isomorphic
to Kn,n, and Cn,n−1 is the graph obtained from the complete bipartite graph Kn,n with
a 1-factor removed. For a graph G and a positive integer λ ≥ 2, we use λG to denote
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the multigraph obtained from G by replacing each edge e by λ edges, each of which
has the same ends as e.

The problem of k-star decomposition of graphs has been extensively studied; see [8,
16, 17, 18, 19]. There are several works about decompositions of graphs into k-cycles;
see [4, 5, 9, 10, 15]. Around 2003, Abueida and Daven [1] proposed the problem
of the (G, H)-decomposition. Shortly after, they [2] investigated the problem of the
(Kk, Sk)-decomposition of the complete graph Kn. Abueida and O’Neil [3] focused
on the existence problem of the (Ck, Sk−1)-decomposition of the complete multigraph
λKn for k = 3, 4 and 5. As for the existence of the (G, H)-decomposition of λKn

where G, H ∈ {Cn, Pn−1, Sn−1}, it was studied by Priyadharsini and Muthusamy [11].
Recently, Shyu [12] investigated the problem of decomposing Kn into paths and stars
with k edges, giving a necessary and sufficient condition for k = 3. In [13], Shyu
considered the existence of a decomposition of Kn into paths and cycles with k edges,
giving a necessary and sufficient condition for k = 4. Shyu [14] investigated the
problem of decomposing Kn into cycles and stars with k edges, settling the case
k = 4. Lee [6] established necessary and sufficient conditions for the existence of the
(Ck, Sk)-decomposition of a complete bipartite graph. Lee and Lin [7] investigated the
problems of the (Ck, Sk)-decomposition of crowns Cn,n−1. It is natural to consider
the problem of the (Ck, Sk)-decomposition of multicrowns λCn,n−1 for λ ≥ 2. In this
paper, the necessary and sufficient conditions for the existence of such decomposition
are given.

2. PRELIMINARIES

Let G be a multigraph, and let V (G) and E(G) denote the vertex set and the edge
set of G, respectively. For sets A ⊆ V (G) and B ⊆ E(G), we use G[A] to denote the
subgraph of G induced by A and G − B to denote the subgraph obtained from G by
deleting the edges in B. Suppose that G1, G2, . . . , Gt are edge disjoint subgraphs of a
graph G. Then G1 + G2 + · · ·+ Gt, or

∑t
i=1 Gi, denotes the graph G with vertex set⋃t

i=1 V (Gi), and edge set
⋃t

i=1 E(Gi). Thus if a multigraph G can be decomposed
into subgraphs G1, G2, . . . , Gt, we write G = G1 + G2 + · · ·+ Gt, or G =

∑t
i=1 Gi.

For x ∈ R, �x� denotes the smallest integer not less than x and 	x
 denotes the
largest integer not greater than x. Let H be a subgraph of Cn,n−1 and let r be a
positive integer. We use H+r to denote the graph with vertex set {ai : ai ∈ V (H)}⋃
{bj+r : bj ∈ V (H)} and edge set {aibj+r : aibj ∈ E(H)} where the subscripts of b are
taken modulo n. For any vertex x of a digraph G, the outdegree deg+

G x (respectively,
indegree deg−G x) of x is the number of arcs incident from (respectively, to) x. A
multistar is a star with multiple edges allowed. We use Sk to denote a multistar with
k edges. Let G be a multigraph. The edge-multiplicity of an edge in G is the number
of edges joining the vertices of the edge. The multiplicity of G, denoted by m(G), is
the maximum edge-multiplicity of G. We list some results we need in this paper.
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Proposition 2.1. ([19]). Let m ≥ n ≥ 1 be integers. Then Km,n is Sk-
decomposable if and only if m ≥ k and{

m ≡ 0 (mod k) if n < k

mn ≡ 0 (mod k) if n ≥ k.

Proposition 2.2. ([8]). λCn,� is Sk-decomposable if and only if k ≤ � and λn� ≡ 0
(mod k).

Proposition 2.3. ([10]). Let k and n be positive integers and let I be a 1-factor
of Kn,n. Then Kn,n − I is Ck-decomposable if and only if n ≡ 1 (mod 2), k ≡ 0
(mod 2), 4 ≤ k ≤ 2n and n(n − 1) ≡ 0 (mod k).

Proposition 2.4. ([7]). Cn,n−1 is (Ck, Sk)-decomposable if and only if 4 ≤ k <

n − 1, k ≡ 0 (mod 2) and n(n − 1) ≡ 0 (mod k).

Lemma 2.5. ([7]). Suppose that k ≥ 4 is an even integer. Let G be the subgraph of
Cn,n−1 induced by {a0, a1, . . . , ak/2−1}∪{b0, b1, . . . , bk−1}. Then there exist k/2−1
edge-disjoint k-cycles in G.

The following corollary follows from Lemma 2.5.

Corollary 2.6. Suppose that k ≥ 4 is an even integer. Let G be the subgraph
of λCn,n−1 induced by {a0, a1, . . . , ak/2−1} ∪ {b0, b1, . . . , bk−1}. Then there exist
λ(k/2− 1) edge-disjoint k-cycles in G.

Lemma 2.7. ([8]). Suppose that m(Sλk) ≤ λ. Then Sλk is Sk-decomposable.

3. MAIN RESULT

The goal of this paper is to settle the (Ck, Sk)-decomposition problem for λCn,n−1.
We prove the following theorem.

Main Theorem. For an integer λ ≥ 2, λCn,n−1 is (Ck, Sk)-decomposable if and
only if k ≡ 0 (mod 2), 4 ≤ k ≤ n − 1 and λn(n − 1) ≡ 0 (mod k).

We first give the necessary conditions for the (Ck, Sk)-decomposition of λCn,n−1.

Lemma 3.1. Let λ be a positive integer with λ ≥ 2. If λCn,n−1 is (Ck, Sk)-
decomposable, then k ≡ 0 (mod 2), 4 ≤ k ≤ n − 1 and λn(n − 1) ≡ 0 (mod k).

Proof. Since bipartite graphs contain no odd cycle, k ≡ 0 (mod 2). In addition,
since the minimum length of a cycle and the maximum size of a star in λCn,n−1 are
4 and n − 1, respectively, we have 4 ≤ k ≤ n − 1. Finally, the size of each member
in the decomposition is k and |E(λCn,n−1)| = λn(n − 1); thus λn(n − 1) ≡ 0
(mod k).

We now show that the necessary conditions are also sufficient. The proof is divided
into cases n ≤ 2k and n > 2k, and consists of Lemmas 3.2 and 3.3, respectively.
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Lemma 3.2. Let λ, k and n be integers with λ ≥ 2, k ≡ 0 (mod 2), k ≥ 4,
n/2 ≤ k ≤ n−1. If λn(n−1) ≡ 0 (mod k), then λCn,n−1 is (Ck, Sk)-decomposable.

Proof. Suppose that n − 1 = k + r. Then 0 ≤ r ≤ k − 1 from the assumption
n/2 ≤ k ≤ n − 1. If r = 0, then n = k + 1. By Propositions 2.2 and 2.3, we
have that Ck+1,k has Sk-decomposition and Ck-decomposition. Hence λCk+1,k is
(Ck, Sk)-decomposable for λ ≥ 2.

Consider the case r �= 0. Since k | λn(n− 1), it follows that k | λr(r + 1), which
implies λr(r + 1)/k is a positive integer. Let t = λr(r + 1)/k. The proof is divided
into three cases according to the values of t and λ.

Case 1. t < λ.
Let F1 = 	λ/2
Ck+1,k with bipartition ({a0, a1, . . . , ak}, {b0, b1, . . . , bk}), F2 =

�λ/2�Ck+1,k with bipartition ({a0, a1, . . . , ak}, {b0, b1, . . . , bk}), H1 = λKk,r with
bipartition ({a0, a1, . . . , ak−1}, {bk+1, bk+2, . . . , bk+r}), H2 = λKr,k with bipartition
({ak+1, ak+2, . . . , ak+r}, {b0, b1, . . . , bk−1}), G(1) (respectively, G(2)) be the bipartite
graph with bipartition ({ak, ak+1, . . . , ak+r}, {bk, bk+1, . . . , bk+r}) and edge set {aibj :
i < j} (respectively, {aibj : i > j}). Then λCn,n−1 = F1 + F2 + H1 + H2 + λG(1) +
λG(2).

Claim 1. Let M ′ = {aibi+k
2

: 0 ≤ i ≤ k/2 − 1} and M ′′ = {ai+k
2
bi : 0 ≤ i ≤

k/2 − 1}, which are matchings in F1. Then F1 + H1 can be decomposed into �t/2�
copies of M ′, 	t/2
 copies of M ′′, several copies of Sk , and the following multistars:
Sλ(2k−j) (with center at bj), j = k + 1, k + 2, . . . , k + r.

Check. Since t < λ, we have �t/2� ≤ 	λ/2
. This assures us that there exist
�t/2� copies of M ′ and 	t/2
 copies of M ′′ in F1.

Let F 1 be the graph obtained from F1 by deleting the edges in the �t/2� copies of
M ′ and 	t/2
 copies of M ′′. We obtain that

degF 1
ai =

⎧⎪⎪⎨
⎪⎪⎩

	λ/2
k − �t/2�, 0 ≤ i ≤ k/2 − 1,

	λ/2
k − 	t/2
, k/2 ≤ i ≤ k − 1,

	λ/2
k, i = k.

Let Xi = F 1[{ai, b0, b1, . . . , bk}] for i = 0, 1, . . . , k. Then

Xi =

⎧⎪⎪⎨
⎪⎪⎩

S�λ
2
�k−� t

2
�, 0 ≤ i ≤ k/2 − 1,

S�λ
2
�k−� t

2
�, k/2 ≤ i ≤ k − 1,

S�λ
2
�k, i = k
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with the center at ai. Thus we decompose F1 into �t/2� copies of M ′, 	t/2
 copies
of M ′′ and X0, X1, . . . , Xk.

Next we will show that H1 can be decomposed into the following multistars:
Sλ(2k−j) with bj as the center for j = k + 1, k + 2, . . . , k + r and S�t/2� with
center at each vertex in {a0, a1, . . . , ak/2−1}, S�t/2� with center at each vertex in
{ak/2, ak/2+1, . . . , ak−1}. Equivalently, we show that there exists an orientation of H1

such that

deg+
H1

bj = λ(2k − j),(1)

where j = k + 1, k + 2, . . . , k + r and

(2) deg+
H1

ai =

{
�t/2�, 0 ≤ i ≤ k/2− 1,

	t/2
, k/2 ≤ i ≤ k − 1.

We orient the edges in H1 as follows. Let m = j − k, the edges aλm(m−1)
2

bj,

aλm(m−1)
2

+1
bj, aλm(m−1)

2
+2

bj, . . . , aλm(m−1)
2

+λm−1
bj are all oriented to bj for j = k +

1, k+2, . . . , k + r, where the subscripts of a are taken modulo k. Since λr < λk, this
assures us that there are enough edges for the above orientation. The edges which are
not oriented yet are all oriented to {a0, a1, . . . , ak−1}.

Since deg+
H1

bj + deg−H1
bj = λk, from the construction of the above orientation

we have that deg+
H1

bj = λk − deg−H1
bj = λk − λm = λk − λ(j − k) = λ(2k − j).

Hence (1) is satisfied. On the other hand, we have

k−1∑
i=0

deg+
H1

ai = λ + 2λ + · · ·+ rλ

= λr(r + 1)/2
= tk/2
= k/2 · �t/2� + k/2 · 	t/2
.

Since 1 ≥ deg+
H1

ai − deg+
H1

a′i ≥ 0 for 0 ≤ i ≤ i′ ≤ k − 1, we obtain (2). Hence
there exists the required decomposition D of H1. Let X ′

i be the multistar with center
at ai in D for 0 ≤ i ≤ k − 1. Then

X ′
i =

{
S� t

2
�, 0 ≤ i ≤ k/2 − 1,

S� t
2
�, k/2 ≤ i ≤ k − 1.

We have decomposed H1 into X ′
0, X

′
1, . . . , X

′
k−1 and Sλ(2k−j) with center at bj , (j =

k + 1, k + 2, . . . , k + r). Treat the multistars X0, X1, . . . , Xk in the decomposition of
F1 and X ′

0, X
′
1, . . . , X

′
k−1 in the decomposition of H1. For 0 ≤ i ≤ k− 1, Xi + X ′

i is
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an S�λ/2�k. We have m(Xi) ≤ 	λ/2
 since Xi is contained in F1 = 	λ/2
Ck+1,k . We
also have m(X ′

i) ≤ |E(X ′
i)| ≤ �t/2� ≤ 	λ/2
. Thus m(Xi + X ′

i) ≤ 	λ/2
. Then,
by Lemma 2.7, Xi + X ′

i has an Sk-decomposition for 0 ≤ i ≤ k − 1. It is trivial that
Xk = 	λ/2
Sk has an Sk-decomposition. Now we have the required decomposition
for F1 + H1. This completes the check of Claim 1.

By similar arguments as in the check of Claim 1, we have the following.

Claim 2. F2 + H2 can be decomposed into �t/2� copies of M ′
+1, 	t/2
 copies

of M ′′
+1, several copies of Sk, and the multistars: Sλ(2k−i) (with center at ai), i =

k + 1, k + 2, . . . , k + r, where the subscripts of b in M ′
+1 (respectively, M ′′

+1) are
taken modulo k/2 in the set of numbers {k/2, k/2 + 1, . . . , k − 1} (respectively,
{0, 1, . . . , k/2− 1}).

Note that one copy of M ′ and one copy of M ′
+1 constitute a k-cycle; so do M ′′

and M ′′
+1. Thus by Claims 1 and 2, there exists a decomposition F of F1 + F2 +

H1 + H2 into t copies of Ck , several copies of Sk , the multistar Sλ(2k−j) with bj in
{bk+1, bk+2, . . . , bk+r} as the center and Sλ(2k−i) with ai in {ak+1, ak+2, . . . , ak+r}
as the center for k + 1 ≤ i, j ≤ k + r.

Let Yi and Zj be the λ(2k − i)-multistar and λ(2k − j)-multistar (in F ) with ai

and bj as the center, respectively. Recall that G(1) (respectively, G(2)) is the bipartite
graph with bipartition ({ak, ak+1, . . . , ak+r}, {bk, bk+1, . . . , bk+r}) and edge set {aibj :
i < j} (respectively, {aibj : i > j}). Let Y ′

i = λG(2)[{ai, bk, bk+1, . . . , bk+r}] and
Z ′

j = λG(1)[{ak, ak+1, . . . , ak+r, bj}] for k + 1 ≤ i, j ≤ k + r. Then Y ′
i = Sλ(i−k)

and Z ′
j = Sλ(j−k). It follows that Yi + Y ′

i = Sλk, and Zj + Z ′
j = Sλk. Since

m(Yi + Y ′
i ) ≤ λ and m(Zj + Z ′

j) ≤ λ, by Lemma 2.7 we have that Yi + Y ′
i and

Zj + Z ′
j are Sk-decomposable. Hence λCn,n−1 is (Ck, Sk)-decomposable.

Case 2. t = λ.
Since t = λr(r+1)/k, it follows that k = r(r+1). Then n(n−1) = (k+r+1)(k+

r) = k(k +2r +1)+ r(r+1), which implies that k|n(n−1). For the case k = n−1,
by Propositions 2.2 and 2.3 Cn,n−1 has Sk-decomposition and Ck-decomposition. For
the case 4 ≤ k < n − 1, by Proposition 2.4 Cn,n−1 is (Ck, Sk)-decomposable. Hence
we have that λCn,n−1 is (Ck, Sk)-decomposable for λ ≥ 2.

Case 3. t > λ.
Let F = λCk,k−1 with bipartition ({a0, a1, . . . , ak−1}, {b0, b1, . . . , bk−1}), H =

λKk,r+1 with bipartition ({a0, a1, . . . , ak−1}, {bk, bk+1, . . . , bk+r}), D1 = λKr+1,k

with bipartition ({ak, ak+1, . . . , ak+r}, {b0, b1, . . . , bk−1}) and D2 = λCr+1,r with
bipartition ({ak, ak+1, . . . , ak+r}, {bk, bk+1, . . . , bk+r}). Then λCn,n−1 = F + H +
D1 + D2. It is trivial that D1 is Sk-decomposable.

Claim 3. F + H can be decomposed into t−λ copies of Ck, λk copies of Sk and
the multistars: Sλ(k−r) (with center at bj), j = k, k + 1, . . . , k + r.
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Check. Let p0 = �(t−λ)/2�, p1 = 	(t−λ)/2
 and Gi = F [Ai∪{b0, b1, . . . , bk−1}],
where Ai = {aik/2, aik/2+1, . . . , a(i+1)k/2−1} for i = 0, 1. Thus F is decomposed into
G0 and G1. In the following, we will show that, for each i ∈ {0, 1}, Gi can be
decomposed into pi copies of Ck and k/2 copies of Sλ(k−1)−2pi

. Since r ≤ k − 1,
we have r + 1 ≤ k and in turn t ≤ λr. Thus p0 = �(t − λ)/2� ≤ (t − λ + 1)/2 ≤
(λr − λ + 1)/2 = (λ(r − 1) + 1)/2 ≤ (λ(k − 2) + 1)/2. Since p0 is an integer and
p1 ≤ p0, it follows that pi ≤ λ(k−2)/2 = λ(k/2−1) for i = 0, 1. Hence for i = 0, 1
there exist pi edge-disjoint k-cycles in Gi by Corollary 2.6. Note that p0 +p1 = t−λ.
Suppose that Ci,0, Ci,1, . . . , Ci,pi−1 are edge-disjoint k-cycles in Gi. For i = 0, 1,
j = 0, 1, . . . , k/2 − 1, let Ui = Gi − E(

∑pi−1
r=0 Ci,r) and Xi,j = Ui[{aik/2+j} ∪

{b0, b1, . . . , bk−1}]. Since degGi
aik/2+j = λ(k − 1) and each Ci,r uses two edges

incident with aik/2+j for each i and j, we have degUi
aik/2+j = λ(k−1)−2pi. Hence

Xi,j is a (λ(k − 1) − 2pi)-multistar with its center at aik/2+j . We have decomposed
F into Xi,j (i = 0, 1, j = 0, 1, . . . , k/2− 1), and t − λ copies of Ck.

Next we will show that H can be decomposed into the following multistars: Sλ+2pi

(with center at aik/2+j ) i = 0, 1, j = 0, 1, . . . , k/2−1, and Sλ(k−r) (with center at bw)
w = k, k + 1, . . . , k + r. Equivalently, we need show that there exists an orientation
of H such that, for i = 0, 1, j = 0, 1, . . . , k/2− 1 and w = k, k + 1, . . . , k + r,

(3) deg+
H aik/2+j = λ + 2pi

(4) deg+
H bw = λ(k − r).

We begin the orientation. Let α = 1 + λ/2 + p0. For j = 0, 1, . . . , k/2 − 1, the
edges

ajbk+(λ+2p0)j, ajbk+(λ+2p0)j+1, . . . , ajbk+(λ+2p0)j+λ+2p0−1

and

ak/2+jbαk+(λ+2p1)j, ak/2+jbαk+(λ+2p1)j+1, . . . , ak/2+jbαk+(λ+2p1)j+λ+2p1−1

(where the subscripts of b are taken modulo r + 1 in the set {k, k + 1, . . . , k + r}) are
all oriented from aik/2+j . Note that from each aik/2+j , we orient λ+2pi edges. Since
λ + 2p1 ≤ λ + 2p0 ≤ t + 1 < λ(r + 1), this assures us that there are enough edges
for the above orientation. The edges which are not oriented yet are all oriented from
{bk, bk+1, . . . , bk+r} to {a0, a1, . . . , ak−1}.

From the construction of the orientation, it is easy to see that (3) is satisfied, and
for all w, w′ ∈ {k, k + 1, . . . , k + r}, we have

| deg−H bw − deg−H bw′ | ≤ 1.(5)

We check (4).
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Since deg+
H bw + deg−H bw = λk for w ∈ {k, k + 1, . . . , k + r}, it follows from (5)

that | deg+
H bw − deg+

H bw′ | ≤ 1 for w, w′ ∈ {k, k + 1, . . . , k + r}. Furthermore,
k+r∑
w=k

deg+
H bw = |E(λ(Kk,r+1)| −

1∑
i=0

k/2−1∑
j=0

deg+
H aik/2+j

= λk(r + 1)− (2p0 + 2p1 + 2λ)(k/2)
= λk(r + 1)− tk

= λk(r + 1)− λr(r + 1)
= λ(k − r)(r + 1).

Thus deg+
H bw = λ(k − r) for w ∈ {k, k + 1, . . . , k + r}. This proves (4). Hence

there exists the required decomposition, say G , of H . Let X ′
i,j be the multistar

with center at aik/2+j in G for i = 0, 1, j = 0, 1, . . . , k/2 − 1. Hence we have
decomposed H into X ′

ij i = 0, 1, j = 0, 1, . . . , k/2 − 1 and Sλ(k−r) (with center at
bw) w = k, k+1 . . . , k+r. Note that X ′

i,j = Sλ+2pi . Hence Xi,j +X ′
i,j = Sλk. Since

m(Xi,j + X ′
i,j) ≤ λ, by Lemma 2.7 we obtain that Xi,j + X ′

i,j can be decomposed
into λ copies of Sk for i = 0, 1, j = 0, 1, . . . , k/2 − 1. This completes the check of
Claim 3.

Let Wj be the λ(k−r)-multistar with center at bj inG for j = k, k+1, . . . , k+r.
Let W ′

j = D2[{ak, ak+1, . . . , ak+r, bj}] for k ≤ j ≤ k + r. Then D2 is decomposed
into W ′

k, W ′
k+1, . . . , W

′
k+r, and each W ′

j = Sλr. It follows that Wj + W ′
j = Sλk.

Since m(Wj + W ′
j) ≤ λ, by Lemma 2.7 we obtain that Wj + W ′

j is Sk-decomposable.
It follows from λCn,n−1 = F + H + D1 + D2 and Claim 3, that λCn,n−1 is (Ck, Sk)-
decomposable.

Lemma 3.3. Let λ, k and n be positive integers with λ ≥ 2, k ≡ 0 (mod 2)
and 4 ≤ k ≤ (n − 1)/2. If λn(n − 1) ≡ 0 (mod k), then λCn,n−1 is (Ck, Sk)-
decomposable.

Proof. Let n− 1 = qk + r where q and r are integers with 0 ≤ r ≤ k− 1. Then
q ≥ 2 from the assumption k ≤ (n − 1)/2. Note that

λCn,n−1 = λCqk+r+1,qk+r

= λC(q−1)k+1,(q−1)k + λCk+r+1,k+r + λK(q−1)k,k+r + λKk+r,(q−1)k.

Trivially, |E(λC(q−1)k+1,(q−1)k)|, |E(λK(q−1)k,k+r)| and |E(λKk+r,(q−1)k)| are multi-
ples of k. Thus λ(k+r +1)(k +r) ≡ 0 (mod k) from the assumption λn(n−1) ≡ 0
(mod k). It is trivial that λK(q−1)k,k+r, λKk+r,(q−1)k, λC(q−1)k+1,(q−1)k are Sk-
decomposable. In addition, by Lemma 3.2, λCk+r+1,k+r is (Ck, Sk)-decomposable for
0 ≤ r ≤ k − 1. Hence λCn,n−1 is (Ck, Sk)-decomposable.

Now Lemmas 3.1, 3.2 and 3.3 serve to prove the Main Theorem.
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