TAIWANESE JOURNAL OF MATHEMATICS Vol. 19, No. 4, pp. 1261-1270, August 2015 DOI: 10.11650/tjm.19.2015.3460 This paper is available online at http://journal.taiwanmathsoc.org.tw

DECOMPOSITIONS OF MULTICROWNS INTO CYCLES AND STARS

Jenq-Jong Lin

Abstract. Let C_k (respectively, S_k) denote a cycle (respectively, a star) with k edges. For graphs F, G and H, a (G, H)-decomposition of F is a partition of the edge set of F into copies of G and copies of H with at least one copy of G and at least one copy of H. In this paper, necessary and sufficient conditions for the existence of the (C_k, S_k) -decomposition of multicrowns are given.

1. INTRODUCTION

Let F, G and H be graphs. A *G*-decomposition of F is a partition of the edge set of F into copies of G. If F has a *G*-decomposition, we say that F is *G*-decomposable. A (G, H)-decomposition of F is a partition of the edge set of F into copies of Gand copies of H with at least one copy of G and at least one copy of H. If F has a (G, H)-decomposition, we say that F is (G, H)-decomposable.

For positive integers m and n, $K_{m,n}$ denotes the complete bipartite graph with parts of sizes m and n. A k-star, denoted by S_k , is the complete bipartite graph $K_{1,k}$. For $k \ge 2$, the vertex of degree k in S_k is called the *center* of S_k . A kcycle, denoted by C_k , is a cycle of length k. Let $(v_1v_2...v_k)$ denote the k-cycle with edges $v_1v_2, v_2v_3, \ldots, v_{k-1}v_k, v_kv_1$. A k-path, denoted by P_k , is a path with k edges. A k-matching, denoted by M_k , is a matching with k edges. A spanning subgraph H of a graph G is a subgraph of G with V(H) = V(G). A 1-factor of G is a spanning subgraph of G with each vertex incident with exactly one edge. For positive integers ℓ and n with $1 \le \ell \le n$, the crown $C_{n,\ell}$ is a bipartite graph with bipartition (A, B) where $A = \{a_0, a_1, \ldots, a_{n-1}\}$ and $B = \{b_0, b_1, \ldots, b_{n-1}\}$, and edge set $\{a_ib_j: i = 0, 1, \ldots, n-1, j \equiv i+1, i+2, \ldots, i+\ell \pmod{n}\}$. Hereafter (A, B) always means the bipartition of $C_{n,\ell}$ defined here. Note that $C_{n,n}$ is isomorphic to $K_{n,n}$, and $C_{n,n-1}$ is the graph obtained from the complete bipartite graph $K_{n,n}$ with a 1-factor removed. For a graph G and a positive integer $\lambda \ge 2$, we use λG to denote

Received June 24, 2013, accepted January 20, 2015.

Communicated by Gerard Jennhwa Chang.

²⁰¹⁰ Mathematics Subject Classification: 05C51.

Key words and phrases: Decomposition, Multicrown, Cycle, Star.

the multigraph obtained from G by replacing each edge e by λ edges, each of which has the same ends as e.

The problem of k-star decomposition of graphs has been extensively studied; see [8, 16, 17, 18, 19]. There are several works about decompositions of graphs into k-cycles; see [4, 5, 9, 10, 15]. Around 2003, Abueida and Daven [1] proposed the problem of the (G, H)-decomposition. Shortly after, they [2] investigated the problem of the (K_k, S_k) -decomposition of the complete graph K_n . Abueida and O'Neil [3] focused on the existence problem of the (C_k, S_{k-1}) -decomposition of the complete multigraph λK_n for k = 3, 4 and 5. As for the existence of the (G, H)-decomposition of λK_n where $G, H \in \{C_n, P_{n-1}, S_{n-1}\}$, it was studied by Priyadharsini and Muthusamy [11]. Recently, Shyu [12] investigated the problem of decomposing K_n into paths and stars with k edges, giving a necessary and sufficient condition for k = 3. In [13], Shyu considered the existence of a decomposition of K_n into paths and cycles with k edges, giving a necessary and sufficient condition for k = 4. Shyu [14] investigated the problem of decomposing K_n into cycles and stars with k edges, settling the case k = 4. Lee [6] established necessary and sufficient conditions for the existence of the (C_k, S_k) -decomposition of a complete bipartite graph. Lee and Lin [7] investigated the problems of the (C_k, S_k) -decomposition of crowns $C_{n,n-1}$. It is natural to consider the problem of the (C_k, S_k) -decomposition of multicrowns $\lambda C_{n,n-1}$ for $\lambda \geq 2$. In this paper, the necessary and sufficient conditions for the existence of such decomposition are given.

2. Preliminaries

Let G be a multigraph, and let V(G) and E(G) denote the vertex set and the edge set of G, respectively. For sets $A \subseteq V(G)$ and $B \subseteq E(G)$, we use G[A] to denote the subgraph of G induced by A and G - B to denote the subgraph obtained from G by deleting the edges in B. Suppose that G_1, G_2, \ldots, G_t are edge disjoint subgraphs of a graph G. Then $G_1 + G_2 + \cdots + G_t$, or $\sum_{i=1}^t G_i$, denotes the graph G with vertex set $\bigcup_{i=1}^t V(G_i)$, and edge set $\bigcup_{i=1}^t E(G_i)$. Thus if a multigraph G can be decomposed into subgraphs G_1, G_2, \ldots, G_t , we write $G = G_1 + G_2 + \cdots + G_t$, or $G = \sum_{i=1}^t G_i$. For $x \in \mathbb{R}$, [x] denotes the smallest integer not less than x and |x| denotes the largest integer not greater than x. Let H be a subgraph of $C_{n,n-1}$ and let r be a positive integer. We use H_{+r} to denote the graph with vertex set $\{a_i : a_i \in V(H)\} \bigcup$ $\{b_{j+r}: b_j \in V(H)\}$ and edge set $\{a_i b_{j+r}: a_i b_j \in E(H)\}$ where the subscripts of b are taken modulo n. For any vertex x of a digraph G, the *outdegree* $\deg_G^+ x$ (respectively, *indegree* $\deg_G^{-} x$) of x is the number of arcs incident from (respectively, to) x. A *multistar* is a star with multiple edges allowed. We use S_k to denote a multistar with k edges. Let G be a multigraph. The *edge-multiplicity* of an edge in G is the number of edges joining the vertices of the edge. The *multiplicity* of G, denoted by m(G), is the maximum edge-multiplicity of G. We list some results we need in this paper.

Proposition 2.1. ([19]). Let $m \ge n \ge 1$ be integers. Then $K_{m,n}$ is S_k -decomposable if and only if $m \ge k$ and

$$\begin{cases} m \equiv 0 \pmod{k} & \text{if } n < k \\ mn \equiv 0 \pmod{k} & \text{if } n \ge k \end{cases}$$

Proposition 2.2. ([8]). $\lambda C_{n,\ell}$ is S_k -decomposable if and only if $k \leq \ell$ and $\lambda n \ell \equiv 0 \pmod{k}$.

Proposition 2.3. ([10]). Let k and n be positive integers and let I be a 1-factor of $K_{n,n}$. Then $K_{n,n} - I$ is C_k -decomposable if and only if $n \equiv 1 \pmod{2}$, $k \equiv 0 \pmod{2}$, $4 \leq k \leq 2n$ and $n(n-1) \equiv 0 \pmod{k}$.

Proposition 2.4. ([7]). $C_{n,n-1}$ is (C_k, S_k) -decomposable if and only if $4 \le k < n-1$, $k \equiv 0 \pmod{2}$ and $n(n-1) \equiv 0 \pmod{k}$.

Lemma 2.5. ([7]). Suppose that $k \ge 4$ is an even integer. Let G be the subgraph of $C_{n,n-1}$ induced by $\{a_0, a_1, \ldots, a_{k/2-1}\} \cup \{b_0, b_1, \ldots, b_{k-1}\}$. Then there exist k/2-1 edge-disjoint k-cycles in G.

The following corollary follows from Lemma 2.5.

Corollary 2.6. Suppose that $k \ge 4$ is an even integer. Let G be the subgraph of $\lambda C_{n,n-1}$ induced by $\{a_0, a_1, \ldots, a_{k/2-1}\} \cup \{b_0, b_1, \ldots, b_{k-1}\}$. Then there exist $\lambda(k/2-1)$ edge-disjoint k-cycles in G.

Lemma 2.7. ([8]). Suppose that $m(\overline{S}_{\lambda k}) \leq \lambda$. Then $\overline{S}_{\lambda k}$ is S_k -decomposable.

3. MAIN RESULT

The goal of this paper is to settle the (C_k, S_k) -decomposition problem for $\lambda C_{n,n-1}$. We prove the following theorem.

Main Theorem. For an integer $\lambda \ge 2$, $\lambda C_{n,n-1}$ is (C_k, S_k) -decomposable if and only if $k \equiv 0 \pmod{2}$, $4 \le k \le n-1$ and $\lambda n(n-1) \equiv 0 \pmod{k}$.

We first give the necessary conditions for the (C_k, S_k) -decomposition of $\lambda C_{n,n-1}$.

Lemma 3.1. Let λ be a positive integer with $\lambda \geq 2$. If $\lambda C_{n,n-1}$ is (C_k, S_k) decomposable, then $k \equiv 0 \pmod{2}$, $4 \leq k \leq n-1$ and $\lambda n(n-1) \equiv 0 \pmod{k}$.

Proof. Since bipartite graphs contain no odd cycle, $k \equiv 0 \pmod{2}$. In addition, since the minimum length of a cycle and the maximum size of a star in $\lambda C_{n,n-1}$ are 4 and n-1, respectively, we have $4 \leq k \leq n-1$. Finally, the size of each member in the decomposition is k and $|E(\lambda C_{n,n-1})| = \lambda n(n-1)$; thus $\lambda n(n-1) \equiv 0 \pmod{k}$.

We now show that the necessary conditions are also sufficient. The proof is divided into cases $n \le 2k$ and n > 2k, and consists of Lemmas 3.2 and 3.3, respectively.

Lemma 3.2. Let λ , k and n be integers with $\lambda \geq 2$, $k \equiv 0 \pmod{2}$, $k \geq 4$, $n/2 \leq k \leq n-1$. If $\lambda n(n-1) \equiv 0 \pmod{k}$, then $\lambda C_{n,n-1}$ is (C_k, S_k) -decomposable.

Proof. Suppose that n-1 = k+r. Then $0 \le r \le k-1$ from the assumption $n/2 \le k \le n-1$. If r = 0, then n = k+1. By Propositions 2.2 and 2.3, we have that $C_{k+1,k}$ has S_k -decomposition and C_k -decomposition. Hence $\lambda C_{k+1,k}$ is (C_k, S_k) -decomposable for $\lambda \ge 2$.

Consider the case $r \neq 0$. Since $k \mid \lambda n(n-1)$, it follows that $k \mid \lambda r(r+1)$, which implies $\lambda r(r+1)/k$ is a positive integer. Let $t = \lambda r(r+1)/k$. The proof is divided into three cases according to the values of t and λ .

Case 1. $t < \lambda$.

Let $F_1 = \lfloor \lambda/2 \rfloor C_{k+1,k}$ with bipartition $(\{a_0, a_1, \dots, a_k\}, \{b_0, b_1, \dots, b_k\}), F_2 = \lceil \lambda/2 \rceil C_{k+1,k}$ with bipartition $(\{a_0, a_1, \dots, a_k\}, \{b_0, b_1, \dots, b_k\}), H_1 = \lambda K_{k,r}$ with bipartition $(\{a_0, a_1, \dots, a_{k-1}\}, \{b_{k+1}, b_{k+2}, \dots, b_{k+r}\}), H_2 = \lambda K_{r,k}$ with bipartition $(\{a_{k+1}, a_{k+2}, \dots, a_{k+r}\}, \{b_0, b_1, \dots, b_{k-1}\}), G^{(1)}$ (respectively, $G^{(2)}$) be the bipartite graph with bipartition $(\{a_k, a_{k+1}, \dots, a_{k+r}\}, \{b_k, b_{k+1}, \dots, b_{k+r}\})$ and edge set $\{a_i b_j : i < j\}$ (respectively, $\{a_i b_j : i > j\}$). Then $\lambda C_{n,n-1} = F_1 + F_2 + H_1 + H_2 + \lambda G^{(1)} + \lambda G^{(2)}$.

Claim 1. Let $M' = \{a_i b_{i+\frac{k}{2}} : 0 \le i \le k/2 - 1\}$ and $M'' = \{a_{i+\frac{k}{2}} b_i : 0 \le i \le k/2 - 1\}$, which are matchings in F_1 . Then $F_1 + H_1$ can be decomposed into $\lceil t/2 \rceil$ copies of M', $\lfloor t/2 \rfloor$ copies of M'', several copies of S_k , and the following multistars: $\overline{S}_{\lambda(2k-j)}$ (with center at b_j), $j = k + 1, k + 2, \dots, k + r$.

Check. Since $t < \lambda$, we have $\lceil t/2 \rceil \leq \lfloor \lambda/2 \rfloor$. This assures us that there exist $\lceil t/2 \rceil$ copies of M' and $\lfloor t/2 \rfloor$ copies of M'' in F_1 .

Let \overline{F}_1 be the graph obtained from F_1 by deleting the edges in the $\lfloor t/2 \rfloor$ copies of M' and $\lfloor t/2 \rfloor$ copies of M''. We obtain that

$$\deg_{\overline{F}_1} a_i = \begin{cases} \lfloor \lambda/2 \rfloor k - \lceil t/2 \rceil, & 0 \le i \le k/2 - 1, \\ \lfloor \lambda/2 \rfloor k - \lfloor t/2 \rfloor, & k/2 \le i \le k - 1, \\ \lfloor \lambda/2 \rfloor k, & i = k. \end{cases}$$

Let $X_i = \overline{F}_1[\{a_i, b_0, b_1, \dots, b_k\}]$ for $i = 0, 1, \dots, k$. Then

$$X_{i} = \begin{cases} \overline{S}_{\lfloor \frac{\lambda}{2} \rfloor k - \lceil \frac{t}{2} \rceil}, & 0 \leq i \leq k/2 - 1, \\ \overline{S}_{\lfloor \frac{\lambda}{2} \rfloor k - \lfloor \frac{t}{2} \rfloor}, & k/2 \leq i \leq k - 1, \\ \overline{S}_{\lfloor \frac{\lambda}{2} \rfloor k}, & i = k \end{cases}$$

1264

with the center at a_i . Thus we decompose F_1 into $\lfloor t/2 \rfloor$ copies of M', $\lfloor t/2 \rfloor$ copies of M'' and X_0, X_1, \ldots, X_k .

Next we will show that H_1 can be decomposed into the following multistars: $\overline{S}_{\lambda(2k-j)}$ with b_j as the center for $j = k + 1, k + 2, \ldots, k + r$ and $\overline{S}_{\lceil t/2 \rceil}$ with center at each vertex in $\{a_0, a_1, \ldots, a_{k/2-1}\}$, $\overline{S}_{\lfloor t/2 \rfloor}$ with center at each vertex in $\{a_{k/2}, a_{k/2+1}, \ldots, a_{k-1}\}$. Equivalently, we show that there exists an orientation of H_1 such that

(1)
$$\deg_{H_1}^+ b_j = \lambda(2k-j),$$

where j = k + 1, k + 2, ..., k + r and

(2)
$$\deg_{H_1}^+ a_i = \begin{cases} [t/2], & 0 \le i \le k/2 - 1, \\ \lfloor t/2 \rfloor, & k/2 \le i \le k - 1. \end{cases}$$

We orient the edges in H_1 as follows. Let m = j - k, the edges $a_{\underline{\lambda m(m-1)}}b_j$, $a_{\underline{\lambda m(m-1)}} + b_j$ are all oriented to b_j for $j^2 = k + 1$, k + 2, ..., k + r, where the subscripts of a are taken modulo k. Since $\lambda r < \lambda k$, this assures us that there are enough edges for the above orientation. The edges which are not oriented yet are all oriented to $\{a_0, a_1, \ldots, a_{k-1}\}$.

Since $\deg_{H_1}^+ b_j + \deg_{H_1}^- b_j = \lambda k$, from the construction of the above orientation we have that $\deg_{H_1}^+ b_j = \lambda k - \deg_{H_1}^- b_j = \lambda k - \lambda m = \lambda k - \lambda (j-k) = \lambda (2k-j)$. Hence (1) is satisfied. On the other hand, we have

$$\sum_{i=0}^{k-1} \deg_{H_1}^+ a_i = \lambda + 2\lambda + \dots + r\lambda$$
$$= \lambda r(r+1)/2$$
$$= tk/2$$
$$= k/2 \cdot \lceil t/2 \rceil + k/2 \cdot \lfloor t/2 \rfloor.$$

Since $1 \ge \deg_{H_1}^+ a_i - \deg_{H_1}^+ a'_i \ge 0$ for $0 \le i \le i' \le k - 1$, we obtain (2). Hence there exists the required decomposition \mathscr{D} of H_1 . Let X'_i be the multistar with center at a_i in \mathscr{D} for $0 \le i \le k - 1$. Then

$$X_i' = \left\{ \begin{array}{ll} \overline{S}_{\lceil \frac{t}{2} \rceil}, & 0 \leq i \leq k/2 - 1, \\ \overline{S}_{\lfloor \frac{t}{2} \rfloor}, & k/2 \leq i \leq k - 1. \end{array} \right.$$

We have decomposed H_1 into $X'_0, X'_1, \ldots, X'_{k-1}$ and $\overline{S}_{\lambda(2k-j)}$ with center at b_j , $(j = k+1, k+2, \ldots, k+r)$. Treat the multistars X_0, X_1, \ldots, X_k in the decomposition of F_1 and $X'_0, X'_1, \ldots, X'_{k-1}$ in the decomposition of H_1 . For $0 \le i \le k-1$, $X_i + X'_i$ is

an $\overline{S}_{\lfloor \lambda/2 \rfloor k}$. We have $m(X_i) \leq \lfloor \lambda/2 \rfloor$ since X_i is contained in $F_1 = \lfloor \lambda/2 \rfloor C_{k+1,k}$. We also have $m(X'_i) \leq |E(X'_i)| \leq \lceil t/2 \rceil \leq \lfloor \lambda/2 \rfloor$. Thus $m(X_i + X'_i) \leq \lfloor \lambda/2 \rfloor$. Then, by Lemma 2.7, $X_i + X'_i$ has an S_k -decomposition for $0 \leq i \leq k - 1$. It is trivial that $X_k = \lfloor \lambda/2 \rfloor S_k$ has an S_k -decomposition. Now we have the required decomposition for $F_1 + H_1$. This completes the check of Claim 1.

By similar arguments as in the check of Claim 1, we have the following.

Claim 2. $F_2 + H_2$ can be decomposed into $\lceil t/2 \rceil$ copies of M'_{+1} , $\lfloor t/2 \rfloor$ copies of M''_{+1} , several copies of S_k , and the multistars: $\overline{S}_{\lambda(2k-i)}$ (with center at a_i), $i = k + 1, k + 2, \ldots, k + r$, where the subscripts of b in M'_{+1} (respectively, M''_{+1}) are taken modulo k/2 in the set of numbers $\{k/2, k/2 + 1, \ldots, k - 1\}$ (respectively, $\{0, 1, \ldots, k/2 - 1\}$).

Note that one copy of M' and one copy of M'_{+1} constitute a k-cycle; so do M''and M''_{+1} . Thus by Claims 1 and 2, there exists a decomposition \mathscr{F} of $F_1 + F_2 + H_1 + H_2$ into t copies of C_k , several copies of S_k , the multistar $\overline{S}_{\lambda(2k-j)}$ with b_j in $\{b_{k+1}, b_{k+2}, \ldots, b_{k+r}\}$ as the center and $\overline{S}_{\lambda(2k-i)}$ with a_i in $\{a_{k+1}, a_{k+2}, \ldots, a_{k+r}\}$ as the center for $k+1 \leq i, j \leq k+r$.

Let Y_i and Z_j be the $\lambda(2k-i)$ -multistar and $\lambda(2k-j)$ -multistar (in \mathscr{F}) with a_i and b_j as the center, respectively. Recall that $G^{(1)}$ (respectively, $G^{(2)}$) is the bipartite graph with bipartition ($\{a_k, a_{k+1}, \ldots, a_{k+r}\}, \{b_k, b_{k+1}, \ldots, b_{k+r}\}$) and edge set $\{a_i b_j : i < j\}$ (respectively, $\{a_i b_j : i > j\}$). Let $Y'_i = \lambda G^{(2)}[\{a_i, b_k, b_{k+1}, \ldots, b_{k+r}\}]$ and $Z'_j = \lambda G^{(1)}[\{a_k, a_{k+1}, \ldots, a_{k+r}, b_j\}]$ for $k + 1 \le i, j \le k + r$. Then $Y'_i = \overline{S}_{\lambda(i-k)}$ and $Z'_j = \overline{S}_{\lambda(j-k)}$. It follows that $Y_i + Y'_i = \overline{S}_{\lambda k}$, and $Z_j + Z'_j = \overline{S}_{\lambda k}$. Since $m(Y_i + Y'_i) \le \lambda$ and $m(Z_j + Z'_j) \le \lambda$, by Lemma 2.7 we have that $Y_i + Y'_i$ and $Z_j + Z'_j$ are S_k -decomposable. Hence $\lambda C_{n,n-1}$ is (C_k, S_k) -decomposable.

Case 2. $t = \lambda$.

Since $t = \lambda r(r+1)/k$, it follows that k = r(r+1). Then n(n-1) = (k+r+1)(k+r) = k(k+2r+1) + r(r+1), which implies that k|n(n-1). For the case k = n-1, by Propositions 2.2 and 2.3 $C_{n,n-1}$ has S_k -decomposition and C_k -decomposition. For the case $4 \le k < n-1$, by Proposition 2.4 $C_{n,n-1}$ is (C_k, S_k) -decomposable. Hence we have that $\lambda C_{n,n-1}$ is (C_k, S_k) -decomposable for $\lambda \ge 2$.

Case 3. $t > \lambda$.

Let $F = \lambda C_{k,k-1}$ with bipartition $(\{a_0, a_1, \dots, a_{k-1}\}, \{b_0, b_1, \dots, b_{k-1}\}), H = \lambda K_{k,r+1}$ with bipartition $(\{a_0, a_1, \dots, a_{k-1}\}, \{b_k, b_{k+1}, \dots, b_{k+r}\}), D_1 = \lambda K_{r+1,k}$ with bipartition $(\{a_k, a_{k+1}, \dots, a_{k+r}\}, \{b_0, b_1, \dots, b_{k-1}\})$ and $D_2 = \lambda C_{r+1,r}$ with bipartition $(\{a_k, a_{k+1}, \dots, a_{k+r}\}, \{b_k, b_{k+1}, \dots, b_{k+r}\})$. Then $\lambda C_{n,n-1} = F + H + D_1 + D_2$. It is trivial that D_1 is S_k -decomposable.

Claim 3. F + H can be decomposed into $t - \lambda$ copies of C_k , λk copies of S_k and the multistars: $\overline{S}_{\lambda(k-r)}$ (with center at b_j), $j = k, k + 1, \ldots, k + r$.

1266

Check. Let $p_0 = \lceil (t-\lambda)/2 \rceil$, $p_1 = \lfloor (t-\lambda)/2 \rfloor$ and $G_i = F[A_i \cup \{b_0, b_1, \ldots, b_{k-1}\}]$, where $A_i = \{a_{ik/2}, a_{ik/2+1}, \ldots, a_{(i+1)k/2-1}\}$ for i = 0, 1. Thus F is decomposed into G_0 and G_1 . In the following, we will show that, for each $i \in \{0, 1\}$, G_i can be decomposed into p_i copies of C_k and k/2 copies of $\overline{S}_{\lambda(k-1)-2p_i}$. Since $r \leq k-1$, we have $r+1 \leq k$ and in turn $t \leq \lambda r$. Thus $p_0 = \lceil (t-\lambda)/2 \rceil \leq (t-\lambda+1)/2 \leq (\lambda r-\lambda+1)/2 = (\lambda (r-1)+1)/2 \leq (\lambda (k-2)+1)/2$. Since p_0 is an integer and $p_1 \leq p_0$, it follows that $p_i \leq \lambda (k-2)/2 = \lambda (k/2-1)$ for i = 0, 1. Hence for i = 0, 1 there exist p_i edge-disjoint k-cycles in G_i by Corollary 2.6. Note that $p_0 + p_1 = t - \lambda$. Suppose that $C_{i,0}, C_{i,1}, \ldots, C_{i,p_i-1}$ are edge-disjoint k-cycles in G_i . For i = 0, 1, $j = 0, 1, \ldots, k/2 - 1$, let $U_i = G_i - E(\sum_{r=0}^{p_i-1} C_{i,r})$ and $X_{i,j} = U_i[\{a_{ik/2+j}\} \cup \{b_0, b_1, \ldots, b_{k-1}\}]$. Since $\deg_{G_i} a_{ik/2+j} = \lambda (k-1)$ and each $C_{i,r}$ uses two edges incident with $a_{ik/2+j}$ for each i and j, we have $\deg_{U_i} a_{ik/2+j} = \lambda (k-1) - 2p_i$. Hence $X_{i,j}$ is a $(\lambda (k-1) - 2p_i)$ -multistar with its center at $a_{ik/2+j}$. We have decomposed F into $X_{i,j}$ $(i = 0, 1, j = 0, 1, \ldots, k/2 - 1)$, and $t - \lambda$ copies of C_k .

Next we will show that H can be decomposed into the following multistars: $\overline{S}_{\lambda+2p_i}$ (with center at $a_{ik/2+j}$) $i = 0, 1, j = 0, 1, \dots, k/2 - 1$, and $\overline{S}_{\lambda(k-r)}$ (with center at b_w) $w = k, k + 1, \dots, k + r$. Equivalently, we need show that there exists an orientation of H such that, for $i = 0, 1, j = 0, 1, \dots, k/2 - 1$ and $w = k, k + 1, \dots, k + r$,

(3)
$$\deg_H^+ a_{ik/2+j} = \lambda + 2p_i$$

(4)
$$\deg_H^+ b_w = \lambda(k-r).$$

We begin the orientation. Let $\alpha = 1 + \lambda/2 + p_0$. For $j = 0, 1, \dots, k/2 - 1$, the edges

$$a_j b_{k+(\lambda+2p_0)j}, a_j b_{k+(\lambda+2p_0)j+1}, \dots, a_j b_{k+(\lambda+2p_0)j+\lambda+2p_0-1}$$

and

$$a_{k/2+j}b_{\alpha k+(\lambda+2p_1)j}, a_{k/2+j}b_{\alpha k+(\lambda+2p_1)j+1}, \dots, a_{k/2+j}b_{\alpha k+(\lambda+2p_1)j+\lambda+2p_1-1}$$

(where the subscripts of b are taken modulo r + 1 in the set $\{k, k + 1, \ldots, k + r\}$) are all oriented from $a_{ik/2+j}$. Note that from each $a_{ik/2+j}$, we orient $\lambda + 2p_i$ edges. Since $\lambda + 2p_1 \leq \lambda + 2p_0 \leq t + 1 < \lambda(r + 1)$, this assures us that there are enough edges for the above orientation. The edges which are not oriented yet are all oriented from $\{b_k, b_{k+1}, \ldots, b_{k+r}\}$ to $\{a_0, a_1, \ldots, a_{k-1}\}$.

From the construction of the orientation, it is easy to see that (3) is satisfied, and for all $w, w' \in \{k, k+1, \ldots, k+r\}$, we have

$$\left| \operatorname{deg}_{H}^{-} b_{w} - \operatorname{deg}_{H}^{-} b_{w'} \right| \leq 1.$$

We check (4).

Since $\deg_H^+ b_w + \deg_H^- b_w = \lambda k$ for $w \in \{k, k+1, \dots, k+r\}$, it follows from (5) that $|\deg_H^+ b_w - \deg_H^+ b_{w'}| \le 1$ for $w, w' \in \{k, k+1, \dots, k+r\}$. Furthermore,

$$\sum_{w=k}^{k+r} \deg_{H}^{+} b_{w} = |E(\lambda(K_{k,r+1})| - \sum_{i=0}^{1} \sum_{j=0}^{k/2-1} \deg_{H}^{+} a_{ik/2+j}$$
$$= \lambda k(r+1) - (2p_{0} + 2p_{1} + 2\lambda)(k/2)$$
$$= \lambda k(r+1) - tk$$
$$= \lambda k(r+1) - \lambda r(r+1)$$
$$= \lambda (k-r)(r+1).$$

Thus $\deg_H^+ b_w = \lambda(k-r)$ for $w \in \{k, k+1, \ldots, k+r\}$. This proves (4). Hence there exists the required decomposition, say \mathcal{G} , of H. Let $X'_{i,j}$ be the multistar with center at $a_{ik/2+j}$ in \mathcal{G} for $i = 0, 1, j = 0, 1, \ldots, k/2 - 1$. Hence we have decomposed H into X'_{ij} $i = 0, 1, j = 0, 1, \ldots, k/2 - 1$ and $\overline{S}_{\lambda(k-r)}$ (with center at b_w) $w = k, k+1 \ldots, k+r$. Note that $X'_{i,j} = \overline{S}_{\lambda+2p_i}$. Hence $X_{i,j} + X'_{i,j} = \overline{S}_{\lambda k}$. Since $m(X_{i,j} + X'_{i,j}) \leq \lambda$, by Lemma 2.7 we obtain that $X_{i,j} + X'_{i,j}$ can be decomposed into λ copies of S_k for $i = 0, 1, j = 0, 1, \ldots, k/2 - 1$. This completes the check of Claim 3.

Let W_j be the $\lambda(k-r)$ -multistar with center at b_j in \mathcal{G} for $j = k, k+1, \ldots, k+r$. Let $W'_j = D_2[\{a_k, a_{k+1}, \ldots, a_{k+r}, b_j\}]$ for $k \leq j \leq k+r$. Then D_2 is decomposed into $W'_k, W'_{k+1}, \ldots, W'_{k+r}$, and each $W'_j = \overline{S}_{\lambda r}$. It follows that $W_j + W'_j = \overline{S}_{\lambda k}$. Since $m(W_j + W'_j) \leq \lambda$, by Lemma 2.7 we obtain that $W_j + W'_j$ is S_k -decomposable. It follows from $\lambda C_{n,n-1} = F + H + D_1 + D_2$ and Claim 3, that $\lambda C_{n,n-1}$ is (C_k, S_k) -decomposable.

Lemma 3.3. Let λ , k and n be positive integers with $\lambda \geq 2$, $k \equiv 0 \pmod{2}$ and $4 \leq k \leq (n-1)/2$. If $\lambda n(n-1) \equiv 0 \pmod{k}$, then $\lambda C_{n,n-1}$ is (C_k, S_k) -decomposable.

Proof. Let n-1 = qk+r where q and r are integers with $0 \le r \le k-1$. Then $q \ge 2$ from the assumption $k \le (n-1)/2$. Note that

$$\lambda C_{n,n-1} = \lambda C_{qk+r+1,qk+r} = \lambda C_{(q-1)k+1,(q-1)k} + \lambda C_{k+r+1,k+r} + \lambda K_{(q-1)k,k+r} + \lambda K_{k+r,(q-1)k}.$$

Trivially, $|E(\lambda C_{(q-1)k+1,(q-1)k})|$, $|E(\lambda K_{(q-1)k,k+r})|$ and $|E(\lambda K_{k+r,(q-1)k})|$ are multiples of k. Thus $\lambda(k+r+1)(k+r) \equiv 0 \pmod{k}$ from the assumption $\lambda n(n-1) \equiv 0 \pmod{k}$. It is trivial that $\lambda K_{(q-1)k,k+r}$, $\lambda K_{k+r,(q-1)k}$, $\lambda C_{(q-1)k+1,(q-1)k}$ are S_k -decomposable. In addition, by Lemma 3.2, $\lambda C_{k+r+1,k+r}$ is (C_k, S_k) -decomposable for $0 \leq r \leq k-1$. Hence $\lambda C_{n,n-1}$ is (C_k, S_k) -decomposable.

Now Lemmas 3.1, 3.2 and 3.3 serve to prove the Main Theorem.

1268

REFERENCES

- 1. A. Abueida and M. Daven, Multidesigns for graph-pairs of order 4 and 5, *Graphs Combin.*, **19** (2003), 433-447.
- 2. A. Abueida and M. Daven, Mutidecompositons of the complete graph, *Ars Combin.*, **72** (2004), 17-22.
- 3. A. Abueida and T. O'Neil, Multidecomposition of λK_m into small cycles and claws, *Bull. Inst. Combin. Appl.*, **49** (2007), 32-40.
- D. Bryant, Cycle decompositions of complete graphs, Surveys in Combinatorics 2007, A. Hilton and J. Talbot (Editors), *London Mathematical Society Lecture Note Series 346*, Proceedings of the 21st British Combinatorial Conference, Cambridge University Press, 2007, 67-97.
- D. Bryant and C. A. Rodger, Cycle decompositions, In: *The CRC Handbook of Combinatorial Designs*, Second Edition, C. J. Colbourn and J. H. Dinitz (Editors), CRC Press, Boca Raton, 2007, 373-382.
- 6. H. C. Lee, Multidecompositions of complete bipartite graphs into cycles and stars, *Ars Combin.*, **108** (2013), 355-364.
- 7. H. C. Lee and J. J. Lin, Decomposition of the complete bipartite graph with a 1-factor removed into cycles and stars, *Discrete Math.*, **313** (2013), 2354-2358.
- 8. C. Lin, J. J. Lin and T. W. Shyu, Isomorphic star decomposition of multicrowns and the power of cycles, *Ars Combin.*, **53** (1999), 249-256.
- C. C. Lindner and C. A. Rodger, Decomposition in cycles II: Cycle systems, In: Contemporary Design Theory: A Collection of Surveys, J. H. Dinitz and D. R. Stinson (Editors), Wiley, New York, 1992, 325-369.
- 10. J. Ma, L. Pu and H. Shen, Cycle decompositions of $K_{n,n} I$, SIAM J. Discrete Math., **20** (2006), 603-609.
- 11. H. M. Priyadharsini and A. Muthusamy, (G_m, H_m) -multifactorization of λK_m , J. Combin. Math. Combin. Comput., **69** (2009), 145-150.
- 12. T. W. Shyu, Decomposition of complete graphs into paths and stars, *Discrete Math.*, **310** (2010), 2164-2169.
- 13. T. W. Shyu, Decompositions of complete graphs into paths and cycles, *Ars Combin.*, **97** (2010), 257-270.
- 14. T. W. Shyu, Decomposition of complete graphs into cycles and stars, *Graphs Combin.*, **29** (2013), 301-313.
- 15. D. Sotteau, Decomposition of $K_{m,n}$ ($K_{m,n}^*$) into cycles (circuits) of length 2k, J. Combin. Theory, Ser. B, **30** (1981), 75-81.
- 16. M. Tarsi, Decomposition of complete multigraphs into stars, *Discrete Math.*, **26** (1979), 273-278.

- 17. S. Tazawa, Decomposition of a complete multipartite graph into isomorphic claws, *SIAM J. Algebraic Discrete Methods*, **6** (1985), 413-417.
- 18. K. Ushio, S. Tazawa and S. Yamamoto, On claw-decomposition of complete multipartite graphs, *Hiroshima Math. J.*, **8** (1978), 207-210.
- 19. S. Yamamoto, H. Ikeda, S. Shige-ede, K. Ushio and N. Hamada, On claw decomposition of complete graphs and complete bipartie graphs, *Hiroshima Math. J.*, **5** (1975), 33-42.

Jenq-Jong Lin Ling Tung University Taichung 40852 Taiwan E-mail: jjlin@mail.ltu.edu.tw