DECOMPOSITIONS OF MULTICROWNS INTO CYCLES AND STARS

Jenq-Jong Lin

Abstract

Let C_{k} (respectively, S_{k}) denote a cycle (respectively, a star) with k edges. For graphs F, G and H, a (G, H)-decomposition of F is a partition of the edge set of F into copies of G and copies of H with at least one copy of G and at least one copy of H. In this paper, necessary and sufficient conditions for the existence of the (C_{k}, S_{k})-decomposition of multicrowns are given.

1. Introduction

Let F, G and H be graphs. A G-decomposition of F is a partition of the edge set of F into copies of G. If F has a G-decomposition, we say that F is G-decomposable. A (G, H)-decomposition of F is a partition of the edge set of F into copies of G and copies of H with at least one copy of G and at least one copy of H. If F has a (G, H)-decomposition, we say that F is (G, H)-decomposable.

For positive integers m and $n, K_{m, n}$ denotes the complete bipartite graph with parts of sizes m and n. A k-star, denoted by S_{k}, is the complete bipartite graph $K_{1, k}$. For $k \geq 2$, the vertex of degree k in S_{k} is called the center of S_{k}. A k cycle, denoted by C_{k}, is a cycle of length k. Let $\left(v_{1} v_{2} \ldots v_{k}\right)$ denote the k-cycle with edges $v_{1} v_{2}, v_{2} v_{3}, \ldots, v_{k-1} v_{k}, v_{k} v_{1}$. A k-path, denoted by P_{k}, is a path with k edges. A k-matching, denoted by M_{k}, is a matching with k edges. A spanning subgraph H of a graph G is a subgraph of G with $V(H)=V(G)$. A 1-factor of G is a spanning subgraph of G with each vertex incident with exactly one edge. For positive integers ℓ and n with $1 \leq \ell \leq n$, the crown $C_{n, \ell}$ is a bipartite graph with bipartition (A, B) where $A=\left\{a_{0}, a_{1}, \ldots, a_{n-1}\right\}$ and $B=\left\{b_{0}, b_{1}, \ldots, b_{n-1}\right\}$, and edge set $\left\{a_{i} b_{j}: i=0,1, \ldots, n-1, j \equiv i+1, i+2, \ldots, i+\ell(\bmod n)\right\}$. Hereafter (A, B) always means the bipartition of $C_{n, \ell}$ defined here. Note that $C_{n, n}$ is isomorphic to $K_{n, n}$, and $C_{n, n-1}$ is the graph obtained from the complete bipartite graph $K_{n, n}$ with a 1 -factor removed. For a graph G and a positive integer $\lambda \geq 2$, we use λG to denote

Received June 24, 2013, accepted January 20, 2015.
Communicated by Gerard Jennhwa Chang.
2010 Mathematics Subject Classification: 05C51.
Key words and phrases: Decomposition, Multicrown, Cycle, Star.
the multigraph obtained from G by replacing each edge e by λ edges, each of which has the same ends as e.

The problem of k-star decomposition of graphs has been extensively studied; see [8, $16,17,18,19]$. There are several works about decompositions of graphs into k-cycles; see [4, 5, 9, 10, 15]. Around 2003, Abueida and Daven [1] proposed the problem of the (G, H)-decomposition. Shortly after, they [2] investigated the problem of the $\left(K_{k}, S_{k}\right)$-decomposition of the complete graph K_{n}. Abueida and O'Neil [3] focused on the existence problem of the $\left(C_{k}, S_{k-1}\right)$-decomposition of the complete multigraph λK_{n} for $k=3,4$ and 5 . As for the existence of the (G, H)-decomposition of λK_{n} where $G, H \in\left\{C_{n}, P_{n-1}, S_{n-1}\right\}$, it was studied by Priyadharsini and Muthusamy [11]. Recently, Shyu [12] investigated the problem of decomposing K_{n} into paths and stars with k edges, giving a necessary and sufficient condition for $k=3$. In [13], Shyu considered the existence of a decomposition of K_{n} into paths and cycles with k edges, giving a necessary and sufficient condition for $k=4$. Shyu [14] investigated the problem of decomposing K_{n} into cycles and stars with k edges, settling the case $k=4$. Lee [6] established necessary and sufficient conditions for the existence of the $\left(C_{k}, S_{k}\right)$-decomposition of a complete bipartite graph. Lee and Lin [7] investigated the problems of the (C_{k}, S_{k})-decomposition of crowns $C_{n, n-1}$. It is natural to consider the problem of the (C_{k}, S_{k})-decomposition of multicrowns $\lambda C_{n, n-1}$ for $\lambda \geq 2$. In this paper, the necessary and sufficient conditions for the existence of such decomposition are given.

2. Preliminaries

Let G be a multigraph, and let $V(G)$ and $E(G)$ denote the vertex set and the edge set of G, respectively. For sets $A \subseteq V(G)$ and $B \subseteq E(G)$, we use $G[A]$ to denote the subgraph of G induced by A and $G-B$ to denote the subgraph obtained from G by deleting the edges in B. Suppose that $G_{1}, G_{2}, \ldots, G_{t}$ are edge disjoint subgraphs of a graph G. Then $G_{1}+G_{2}+\cdots+G_{t}$, or $\sum_{i=1}^{t} G_{i}$, denotes the graph G with vertex set $\bigcup_{i=1}^{t} V\left(G_{i}\right)$, and edge set $\bigcup_{i=1}^{t} E\left(G_{i}\right)$. Thus if a multigraph G can be decomposed into subgraphs $G_{1}, G_{2}, \ldots, G_{t}$, we write $G=G_{1}+G_{2}+\cdots+G_{t}$, or $G=\sum_{i=1}^{t} G_{i}$. For $x \in \mathbb{R},\lceil x\rceil$ denotes the smallest integer not less than x and $\lfloor x\rfloor$ denotes the largest integer not greater than x. Let H be a subgraph of $C_{n, n-1}$ and let r be a positive integer. We use H_{+r} to denote the graph with vertex set $\left\{a_{i}: a_{i} \in V(H)\right\} \bigcup$ $\left\{b_{j+r}: b_{j} \in V(H)\right\}$ and edge set $\left\{a_{i} b_{j+r}: a_{i} b_{j} \in E(H)\right\}$ where the subscripts of b are taken modulo n. For any vertex x of a digraph G, the outdegree $\operatorname{deg}_{G}^{+} x$ (respectively, indegree $\operatorname{deg}_{G}^{-} x$) of x is the number of arcs incident from (respectively, to) x. A multistar is a star with multiple edges allowed. We use \bar{S}_{k} to denote a multistar with k edges. Let G be a multigraph. The edge-multiplicity of an edge in G is the number of edges joining the vertices of the edge. The multiplicity of G, denoted by $m(G)$, is the maximum edge-multiplicity of G. We list some results we need in this paper.

Proposition 2.1. ([19]). Let $m \geq n \geq 1$ be integers. Then $K_{m, n}$ is $S_{k^{-}}$ decomposable if and only if $m \geq k$ and

$$
\begin{cases}m \equiv 0 \quad(\bmod k) & \text { if } n<k \\ m n \equiv 0 \quad(\bmod k) & \text { if } n \geq k\end{cases}
$$

Proposition 2.2. ([8]). $\lambda C_{n, \ell}$ is S_{k}-decomposable if and only if $k \leq \ell$ and $\lambda n \ell \equiv 0$ $(\bmod k)$.

Proposition 2.3. ([10]). Let k and n be positive integers and let I be a 1-factor of $K_{n, n}$. Then $K_{n, n}-I$ is C_{k}-decomposable if and only if $n \equiv 1(\bmod 2), k \equiv 0$ $(\bmod 2), 4 \leq k \leq 2 n$ and $n(n-1) \equiv 0(\bmod k)$.

Proposition 2.4. ([7]). $C_{n, n-1}$ is $\left(C_{k}, S_{k}\right)$-decomposable if and only if $4 \leq k<$ $n-1, k \equiv 0(\bmod 2)$ and $n(n-1) \equiv 0(\bmod k)$.

Lemma 2.5. ([7]). Suppose that $k \geq 4$ is an even integer. Let G be the subgraph of $C_{n, n-1}$ induced by $\left\{a_{0}, a_{1}, \ldots, a_{k / 2-1}\right\} \cup\left\{b_{0}, b_{1}, \ldots, b_{k-1}\right\}$. Then there exist $k / 2-1$ edge-disjoint k-cycles in G.

The following corollary follows from Lemma 2.5.
Corollary 2.6. Suppose that $k \geq 4$ is an even integer. Let G be the subgraph of $\lambda C_{n, n-1}$ induced by $\left\{a_{0}, a_{1}, \ldots, a_{k / 2-1}\right\} \cup\left\{b_{0}, b_{1}, \ldots, b_{k-1}\right\}$. Then there exist $\lambda(k / 2-1)$ edge-disjoint k-cycles in G.

Lemma 2.7. ([8]). Suppose that $m\left(\bar{S}_{\lambda k}\right) \leq \lambda$. Then $\bar{S}_{\lambda k}$ is S_{k}-decomposable.

3. Main Result

The goal of this paper is to settle the $\left(C_{k}, S_{k}\right)$-decomposition problem for $\lambda C_{n, n-1}$. We prove the following theorem.

Main Theorem. For an integer $\lambda \geq 2, \lambda C_{n, n-1}$ is $\left(C_{k}, S_{k}\right)$-decomposable if and only if $k \equiv 0(\bmod 2), 4 \leq k \leq n-1$ and $\lambda n(n-1) \equiv 0(\bmod k)$.

We first give the necessary conditions for the $\left(C_{k}, S_{k}\right)$-decomposition of $\lambda C_{n, n-1}$.
Lemma 3.1. Let λ be a positive integer with $\lambda \geq 2$. If $\lambda C_{n, n-1}$ is $\left(C_{k}, S_{k}\right)$ decomposable, then $k \equiv 0(\bmod 2), 4 \leq k \leq n-1$ and $\lambda n(n-1) \equiv 0(\bmod k)$.

Proof. Since bipartite graphs contain no odd cycle, $k \equiv 0(\bmod 2)$. In addition, since the minimum length of a cycle and the maximum size of a star in $\lambda C_{n, n-1}$ are 4 and $n-1$, respectively, we have $4 \leq k \leq n-1$. Finally, the size of each member in the decomposition is k and $\left|E\left(\lambda C_{n, n-1}\right)\right|=\lambda n(n-1)$; thus $\lambda n(n-1) \equiv 0$ $(\bmod k)$.

We now show that the necessary conditions are also sufficient. The proof is divided into cases $n \leq 2 k$ and $n>2 k$, and consists of Lemmas 3.2 and 3.3, respectively.

Lemma 3.2. Let λ, k and n be integers with $\lambda \geq 2, k \equiv 0(\bmod 2), k \geq 4$, $n / 2 \leq k \leq n-1$. If $\lambda n(n-1) \equiv 0(\bmod k)$, then $\lambda C_{n, n-1}$ is $\left(C_{k}, S_{k}\right)$-decomposable.

Proof. Suppose that $n-1=k+r$. Then $0 \leq r \leq k-1$ from the assumption $n / 2 \leq k \leq n-1$. If $r=0$, then $n=k+1$. By Propositions 2.2 and 2.3 , we have that $C_{k+1, k}$ has S_{k}-decomposition and C_{k}-decomposition. Hence $\lambda C_{k+1, k}$ is (C_{k}, S_{k})-decomposable for $\lambda \geq 2$.

Consider the case $r \neq 0$. Since $k \mid \lambda n(n-1)$, it follows that $k \mid \lambda r(r+1)$, which implies $\lambda r(r+1) / k$ is a positive integer. Let $t=\lambda r(r+1) / k$. The proof is divided into three cases according to the values of t and λ.

Case 1. $t<\lambda$.
Let $F_{1}=\lfloor\lambda / 2\rfloor C_{k+1, k}$ with bipartition $\left(\left\{a_{0}, a_{1}, \ldots, a_{k}\right\},\left\{b_{0}, b_{1}, \ldots, b_{k}\right\}\right), F_{2}=$ $\lceil\lambda / 2\rceil C_{k+1, k}$ with bipartition $\left(\left\{a_{0}, a_{1}, \ldots, a_{k}\right\},\left\{b_{0}, b_{1}, \ldots, b_{k}\right\}\right), H_{1}=\lambda K_{k, r}$ with bipartition $\left(\left\{a_{0}, a_{1}, \ldots, a_{k-1}\right\},\left\{b_{k+1}, b_{k+2}, \ldots, b_{k+r}\right\}\right), H_{2}=\lambda K_{r, k}$ with bipartition $\left(\left\{a_{k+1}, a_{k+2}, \ldots, a_{k+r}\right\},\left\{b_{0}, b_{1}, \ldots, b_{k-1}\right\}\right), G^{(1)}$ (respectively, $G^{(2)}$) be the bipartite graph with bipartition $\left(\left\{a_{k}, a_{k+1}, \ldots, a_{k+r}\right\},\left\{b_{k}, b_{k+1}, \ldots, b_{k+r}\right\}\right)$ and edge set $\left\{a_{i} b_{j}\right.$: $i<j\}$ (respectively, $\left\{a_{i} b_{j}: i>j\right\}$). Then $\lambda C_{n, n-1}=F_{1}+F_{2}+H_{1}+H_{2}+\lambda G^{(1)}+$ $\lambda G^{(2)}$.

Claim 1. Let $M^{\prime}=\left\{a_{i} b_{i+\frac{k}{2}}: 0 \leq i \leq k / 2-1\right\}$ and $M^{\prime \prime}=\left\{a_{i+\frac{k}{2}} b_{i}: 0 \leq i \leq\right.$ $k / 2-1\}$, which are matchings in F_{1}. Then $F_{1}+H_{1}$ can be decomposed into $\lceil t / 2\rceil$ copies of $M^{\prime},\lfloor t / 2\rfloor$ copies of $M^{\prime \prime}$, several copies of S_{k}, and the following multistars: $\bar{S}_{\lambda(2 k-j)}$ (with center at b_{j}), $j=k+1, k+2, \ldots, k+r$.

Check. Since $t<\lambda$, we have $\lceil t / 2\rceil \leq\lfloor\lambda / 2\rfloor$. This assures us that there exist $\lceil t / 2\rceil$ copies of M^{\prime} and $\lfloor t / 2\rfloor$ copies of $M^{\prime \prime}$ in F_{1}.

Let \bar{F}_{1} be the graph obtained from F_{1} by deleting the edges in the $\lceil t / 2\rceil$ copies of M^{\prime} and $\lfloor t / 2\rfloor$ copies of $M^{\prime \prime}$. We obtain that

$$
\operatorname{deg}_{\bar{F}_{1}} a_{i}= \begin{cases}\lfloor\lambda / 2\rfloor k-\lceil t / 2\rceil, & 0 \leq i \leq k / 2-1 \\ \lfloor\lambda / 2\rfloor k-\lfloor t / 2\rfloor, & k / 2 \leq i \leq k-1 \\ \lfloor\lambda / 2\rfloor k, & i=k\end{cases}
$$

Let $X_{i}=\bar{F}_{1}\left[\left\{a_{i}, b_{0}, b_{1}, \ldots, b_{k}\right\}\right]$ for $i=0,1, \ldots, k$. Then

$$
X_{i}= \begin{cases}\bar{S}_{\left\lfloor\frac{\lambda}{2}\right\rfloor k-\left\lceil\frac{t}{2}\right\rceil}, & 0 \leq i \leq k / 2-1 \\ \bar{S}_{\left\lfloor\frac{\lambda}{2}\right\rfloor k-\left\lfloor\frac{t}{2}\right\rfloor}, & k / 2 \leq i \leq k-1 \\ \bar{S}_{\left\lfloor\frac{\lambda}{2}\right\rfloor k}, & i=k\end{cases}
$$

with the center at a_{i}. Thus we decompose F_{1} into $\lceil t / 2\rceil$ copies of $M^{\prime},\lfloor t / 2\rfloor$ copies of $M^{\prime \prime}$ and $X_{0}, X_{1}, \ldots, X_{k}$.

Next we will show that H_{1} can be decomposed into the following multistars: $\bar{S}_{\lambda(2 k-j)}$ with b_{j} as the center for $j=k+1, k+2, \ldots, k+r$ and $\bar{S}_{\lceil t / 2\rceil}$ with center at each vertex in $\left\{a_{0}, a_{1}, \ldots, a_{k / 2-1}\right\}, \bar{S}_{\lfloor t / 2\rfloor}$ with center at each vertex in $\left\{a_{k / 2}, a_{k / 2+1}, \ldots, a_{k-1}\right\}$. Equivalently, we show that there exists an orientation of H_{1} such that

$$
\begin{equation*}
\operatorname{deg}_{H_{1}}^{+} b_{j}=\lambda(2 k-j) \tag{1}
\end{equation*}
$$

where $j=k+1, k+2, \ldots, k+r$ and

$$
\operatorname{deg}_{H_{1}}^{+} a_{i}= \begin{cases}\lceil t / 2\rceil, & 0 \leq i \leq k / 2-1 \tag{2}\\ \lfloor t / 2\rfloor, & k / 2 \leq i \leq k-1\end{cases}
$$

We orient the edges in H_{1} as follows. Let $m=j-k$, the edges $a_{\frac{\lambda m(m-1)}{2}} b_{j}$, $a_{\frac{\lambda m(m-1)}{2}+1} b_{j}, a_{\frac{\lambda m(m-1)}{2}+2} b_{j}, \ldots, a_{\frac{\lambda m(m-1)}{2}+\lambda m-1} b_{j}$ are all oriented to b_{j} for $j^{2}=k+$ $1, k+2, \ldots, k+r$, where the subscripts of a are taken modulo k. Since $\lambda r<\lambda k$, this assures us that there are enough edges for the above orientation. The edges which are not oriented yet are all oriented to $\left\{a_{0}, a_{1}, \ldots, a_{k-1}\right\}$.

Since $\operatorname{deg}_{H_{1}}^{+} b_{j}+\operatorname{deg}_{H_{1}}^{-} b_{j}=\lambda k$, from the construction of the above orientation we have that $\operatorname{deg}_{H_{1}}^{+} b_{j}=\lambda k-\operatorname{deg}_{H_{1}}^{-} b_{j}=\lambda k-\lambda m=\lambda k-\lambda(j-k)=\lambda(2 k-j)$. Hence (1) is satisfied. On the other hand, we have

$$
\begin{aligned}
\sum_{i=0}^{k-1} \operatorname{deg}_{H_{1}}^{+} a_{i} & =\lambda+2 \lambda+\cdots+r \lambda \\
& =\lambda r(r+1) / 2 \\
& =t k / 2 \\
& =k / 2 \cdot\lceil t / 2\rceil+k / 2 \cdot\lfloor t / 2\rfloor
\end{aligned}
$$

Since $1 \geq \operatorname{deg}_{H_{1}}^{+} a_{i}-\operatorname{deg}_{H_{1}}^{+} a_{i}^{\prime} \geq 0$ for $0 \leq i \leq i^{\prime} \leq k-1$, we obtain (2). Hence there exists the required decomposition \mathscr{F} of H_{1}. Let X_{i}^{\prime} be the multistar with center at a_{i} in $\mathscr{\mathscr { V }}$ for $0 \leq i \leq k-1$. Then

$$
X_{i}^{\prime}= \begin{cases}\bar{S}_{\left\lceil\frac{t}{2}\right\rceil}, & 0 \leq i \leq k / 2-1 \\ \bar{S}_{\left\lfloor\frac{t}{2}\right\rfloor}, & k / 2 \leq i \leq k-1\end{cases}
$$

We have decomposed H_{1} into $X_{0}^{\prime}, X_{1}^{\prime}, \ldots, X_{k-1}^{\prime}$ and $\bar{S}_{\lambda(2 k-j)}$ with center at b_{j}, $(j=$ $k+1, k+2, \ldots, k+r)$. Treat the multistars $X_{0}, X_{1}, \ldots, X_{k}$ in the decomposition of F_{1} and $X_{0}^{\prime}, X_{1}^{\prime}, \ldots, X_{k-1}^{\prime}$ in the decomposition of H_{1}. For $0 \leq i \leq k-1, X_{i}+X_{i}^{\prime}$ is
an $\bar{S}_{\lfloor\lambda / 2\rfloor k}$. We have $m\left(X_{i}\right) \leq\lfloor\lambda / 2\rfloor$ since X_{i} is contained in $F_{1}=\lfloor\lambda / 2\rfloor C_{k+1, k}$. We also have $m\left(X_{i}^{\prime}\right) \leq\left|E\left(X_{i}^{\prime}\right)\right| \leq\lceil t / 2\rceil \leq\lfloor\lambda / 2\rfloor$. Thus $m\left(X_{i}+X_{i}^{\prime}\right) \leq\lfloor\lambda / 2\rfloor$. Then, by Lemma 2.7, $X_{i}+X_{i}^{\prime}$ has an S_{k}-decomposition for $0 \leq i \leq k-1$. It is trivial that $X_{k}=\lfloor\lambda / 2\rfloor S_{k}$ has an S_{k}-decomposition. Now we have the required decomposition for $F_{1}+H_{1}$. This completes the check of Claim 1.

By similar arguments as in the check of Claim 1, we have the following.
Claim 2. $F_{2}+H_{2}$ can be decomposed into $\lceil t / 2\rceil$ copies of $M_{+1}^{\prime},\lfloor t / 2\rfloor$ copies of $M_{+1}^{\prime \prime}$, several copies of S_{k}, and the multistars: $\bar{S}_{\lambda(2 k-i)}$ (with center at a_{i}), $i=$ $k+1, k+2, \ldots, k+r$, where the subscripts of b in M_{+1}^{\prime} (respectively, $M_{+1}^{\prime \prime}$) are taken modulo $k / 2$ in the set of numbers $\{k / 2, k / 2+1, \ldots, k-1\}$ (respectively, $\{0,1, \ldots, k / 2-1\}$).

Note that one copy of M^{\prime} and one copy of M_{+1}^{\prime} constitute a k-cycle; so do $M^{\prime \prime}$ and $M_{+1}^{\prime \prime}$. Thus by Claims 1 and 2, there exists a decomposition \mathscr{F} of $F_{1}+F_{2}+$ $H_{1}+H_{2}$ into t copies of C_{k}, several copies of S_{k}, the multistar $\bar{S}_{\lambda(2 k-j)}$ with b_{j} in $\left\{b_{k+1}, b_{k+2}, \ldots, b_{k+r}\right\}$ as the center and $\bar{S}_{\lambda(2 k-i)}$ with a_{i} in $\left\{a_{k+1}, a_{k+2}, \ldots, a_{k+r}\right\}$ as the center for $k+1 \leq i, j \leq k+r$.

Let Y_{i} and Z_{j} be the $\lambda(2 k-i)$-multistar and $\lambda(2 k-j)$-multistar (in \mathscr{F}) with a_{i} and b_{j} as the center, respectively. Recall that $G^{(1)}$ (respectively, $G^{(2)}$) is the bipartite graph with bipartition $\left(\left\{a_{k}, a_{k+1}, \ldots, a_{k+r}\right\},\left\{b_{k}, b_{k+1}, \ldots, b_{k+r}\right\}\right)$ and edge set $\left\{a_{i} b_{j}\right.$: $i<j\}$ (respectively, $\left\{a_{i} b_{j}: i>j\right\}$). Let $Y_{i}^{\prime}=\lambda G^{(2)}\left[\left\{a_{i}, b_{k}, b_{k+1}, \ldots, b_{k+r}\right\}\right]$ and $Z_{j}^{\prime}=\lambda G^{(1)}\left[\left\{a_{k}, a_{k+1}, \ldots, a_{k+r}, b_{j}\right\}\right]$ for $k+1 \leq i, j \leq k+r$. Then $Y_{i}^{\prime}=\bar{S}_{\lambda(i-k)}$ and $Z_{j}^{\prime}=\bar{S}_{\lambda(j-k)}$. It follows that $Y_{i}+Y_{i}^{\prime}=\bar{S}_{\lambda k}$, and $Z_{j}+Z_{j}^{\prime}=\bar{S}_{\lambda k}$. Since $m\left(Y_{i}+Y_{i}^{\prime}\right) \leq \lambda$ and $m\left(Z_{j}+Z_{j}^{\prime}\right) \leq \lambda$, by Lemma 2.7 we have that $Y_{i}+Y_{i}^{\prime}$ and $Z_{j}+Z_{j}^{\prime}$ are S_{k}-decomposable. Hence $\lambda C_{n, n-1}$ is $\left(C_{k}, S_{k}\right)$-decomposable.

Case 2. $t=\lambda$.
Since $t=\lambda r(r+1) / k$, it follows that $k=r(r+1)$. Then $n(n-1)=(k+r+1)(k+$ $r)=k(k+2 r+1)+r(r+1)$, which implies that $k \mid n(n-1)$. For the case $k=n-1$, by Propositions 2.2 and $2.3 C_{n, n-1}$ has S_{k}-decomposition and C_{k}-decomposition. For the case $4 \leq k<n-1$, by Proposition $2.4 C_{n, n-1}$ is (C_{k}, S_{k})-decomposable. Hence we have that $\lambda C_{n, n-1}$ is $\left(C_{k}, S_{k}\right)$-decomposable for $\lambda \geq 2$.

Case 3. $t>\lambda$.
Let $F=\lambda C_{k, k-1}$ with bipartition $\left(\left\{a_{0}, a_{1}, \ldots, a_{k-1}\right\},\left\{b_{0}, b_{1}, \ldots, b_{k-1}\right\}\right), H=$ $\lambda K_{k, r+1}$ with bipartition $\left(\left\{a_{0}, a_{1}, \ldots, a_{k-1}\right\},\left\{b_{k}, b_{k+1}, \ldots, b_{k+r}\right\}\right), D_{1}=\lambda K_{r+1, k}$ with bipartition $\left(\left\{a_{k}, a_{k+1}, \ldots, a_{k+r}\right\},\left\{b_{0}, b_{1}, \ldots, b_{k-1}\right\}\right)$ and $D_{2}=\lambda C_{r+1, r}$ with bipartition $\left(\left\{a_{k}, a_{k+1}, \ldots, a_{k+r}\right\},\left\{b_{k}, b_{k+1}, \ldots, b_{k+r}\right\}\right)$. Then $\lambda C_{n, n-1}=F+H+$ $D_{1}+D_{2}$. It is trivial that D_{1} is S_{k}-decomposable.

Claim 3. $F+H$ can be decomposed into $t-\lambda$ copies of $C_{k}, \lambda k$ copies of S_{k} and the multistars: $\bar{S}_{\lambda(k-r)}$ (with center at b_{j}), $j=k, k+1, \ldots, k+r$.

Check. Let $p_{0}=\lceil(t-\lambda) / 2\rceil, p_{1}=\lfloor(t-\lambda) / 2\rfloor$ and $G_{i}=F\left[A_{i} \cup\left\{b_{0}, b_{1}, \ldots, b_{k-1}\right\}\right]$, where $A_{i}=\left\{a_{i k / 2}, a_{i k / 2+1}, \ldots, a_{(i+1) k / 2-1}\right\}$ for $i=0,1$. Thus F is decomposed into G_{0} and G_{1}. In the following, we will show that, for each $i \in\{0,1\}, G_{i}$ can be decomposed into p_{i} copies of C_{k} and $k / 2$ copies of $\bar{S}_{\lambda(k-1)-2 p_{i}}$. Since $r \leq k-1$, we have $r+1 \leq k$ and in turn $t \leq \lambda r$. Thus $p_{0}=\lceil(t-\lambda) / 2\rceil \leq(t-\lambda+1) / 2 \leq$ $(\lambda r-\lambda+1) / 2=(\lambda(r-1)+1) / 2 \leq(\lambda(k-2)+1) / 2$. Since p_{0} is an integer and $p_{1} \leq p_{0}$, it follows that $p_{i} \leq \lambda(k-2) / 2=\lambda(k / 2-1)$ for $i=0,1$. Hence for $i=0,1$ there exist p_{i} edge-disjoint k-cycles in G_{i} by Corollary 2.6. Note that $p_{0}+p_{1}=t-\lambda$. Suppose that $C_{i, 0}, C_{i, 1}, \ldots, C_{i, p_{i}-1}$ are edge-disjoint k-cycles in G_{i}. For $i=0,1$, $j=0,1, \ldots, k / 2-1$, let $U_{i}=G_{i}-E\left(\sum_{r=0}^{p_{i}-1} C_{i, r}\right)$ and $X_{i, j}=U_{i}\left[\left\{a_{i k / 2+j}\right\} \cup\right.$ $\left.\left\{b_{0}, b_{1}, \ldots, b_{k-1}\right\}\right]$. Since $\operatorname{deg}_{G_{i}} a_{i k / 2+j}=\lambda(k-1)$ and each $C_{i, r}$ uses two edges incident with $a_{i k / 2+j}$ for each i and j, we have $\operatorname{deg}_{U_{i}} a_{i k / 2+j}=\lambda(k-1)-2 p_{i}$. Hence $X_{i, j}$ is a $\left(\lambda(k-1)-2 p_{i}\right)$-multistar with its center at $a_{i k / 2+j}$. We have decomposed F into $X_{i, j}(i=0,1, j=0,1, \ldots, k / 2-1)$, and $t-\lambda$ copies of C_{k}.

Next we will show that H can be decomposed into the following multistars: $\bar{S}_{\lambda+2 p_{i}}$ (with center at $a_{i k / 2+j}$) $i=0,1, j=0,1, \ldots, k / 2-1$, and $\bar{S}_{\lambda(k-r)}$ (with center at b_{w}) $w=k, k+1, \ldots, k+r$. Equivalently, we need show that there exists an orientation of H such that, for $i=0,1, j=0,1, \ldots, k / 2-1$ and $w=k, k+1, \ldots, k+r$,

$$
\begin{equation*}
\operatorname{deg}_{H}^{+} a_{i k / 2+j}=\lambda+2 p_{i} \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
\operatorname{deg}_{H}^{+} b_{w}=\lambda(k-r) \tag{4}
\end{equation*}
$$

We begin the orientation. Let $\alpha=1+\lambda / 2+p_{0}$. For $j=0,1, \ldots, k / 2-1$, the edges

$$
a_{j} b_{k+\left(\lambda+2 p_{0}\right) j}, a_{j} b_{k+\left(\lambda+2 p_{0}\right) j+1}, \ldots, a_{j} b_{k+\left(\lambda+2 p_{0}\right) j+\lambda+2 p_{0}-1}
$$

and

$$
a_{k / 2+j} b_{\alpha k+\left(\lambda+2 p_{1}\right) j}, a_{k / 2+j} b_{\alpha k+\left(\lambda+2 p_{1}\right) j+1}, \ldots, a_{k / 2+j} b_{\alpha k+\left(\lambda+2 p_{1}\right) j+\lambda+2 p_{1}-1}
$$

(where the subscripts of b are taken modulo $r+1$ in the set $\{k, k+1, \ldots, k+r\}$) are all oriented from $a_{i k / 2+j}$. Note that from each $a_{i k / 2+j}$, we orient $\lambda+2 p_{i}$ edges. Since $\lambda+2 p_{1} \leq \lambda+2 p_{0} \leq t+1<\lambda(r+1)$, this assures us that there are enough edges for the above orientation. The edges which are not oriented yet are all oriented from $\left\{b_{k}, b_{k+1}, \ldots, b_{k+r}\right\}$ to $\left\{a_{0}, a_{1}, \ldots, a_{k-1}\right\}$.

From the construction of the orientation, it is easy to see that (3) is satisfied, and for all $w, w^{\prime} \in\{k, k+1, \ldots, k+r\}$, we have

$$
\begin{equation*}
\left|\operatorname{deg}_{H}^{-} b_{w}-\operatorname{deg}_{H}^{-} b_{w^{\prime}}\right| \leq 1 \tag{5}
\end{equation*}
$$

We check (4).

Since $\operatorname{deg}_{H}^{+} b_{w}+\operatorname{deg}_{H}^{-} b_{w}=\lambda k$ for $w \in\{k, k+1, \ldots, k+r\}$, it follows from (5) that $\left|\operatorname{deg}_{H}^{+} b_{w}-\operatorname{deg}_{H}^{+} b_{w^{\prime}}\right| \leq 1$ for $w, w^{\prime} \in\{k, k+1, \ldots, k+r\}$. Furthermore,

$$
\begin{aligned}
\sum_{w=k}^{k+r} \operatorname{deg}_{H}^{+} b_{w} & =\mid E\left(\lambda\left(K_{k, r+1}\right) \mid-\sum_{i=0}^{1} \sum_{j=0}^{k / 2-1} \operatorname{deg}_{H}^{+} a_{i k / 2+j}\right. \\
& =\lambda k(r+1)-\left(2 p_{0}+2 p_{1}+2 \lambda\right)(k / 2) \\
& =\lambda k(r+1)-t k \\
& =\lambda k(r+1)-\lambda r(r+1) \\
& =\lambda(k-r)(r+1) .
\end{aligned}
$$

Thus $\operatorname{deg}_{H}^{+} b_{w}=\lambda(k-r)$ for $w \in\{k, k+1, \ldots, k+r\}$. This proves (4). Hence there exists the required decomposition, say \mathscr{G}, of H. Let $X_{i, j}^{\prime}$ be the multistar with center at $a_{i k / 2+j}$ in \mathscr{G} for $i=0,1, j=0,1, \ldots, k / 2-1$. Hence we have decomposed H into $X_{i j}^{\prime} i=0,1, j=0,1, \ldots, k / 2-1$ and $\bar{S}_{\lambda(k-r)}$ (with center at $\left.b_{w}\right) w=k, k+1 \ldots, k+r$. Note that $X_{i, j}^{\prime}=\bar{S}_{\lambda+2 p_{i}}$. Hence $X_{i, j}+X_{i, j}^{\prime}=\bar{S}_{\lambda k}$. Since $m\left(X_{i, j}+X_{i, j}^{\prime}\right) \leq \lambda$, by Lemma 2.7 we obtain that $X_{i, j}+X_{i, j}^{\prime}$ can be decomposed into λ copies of S_{k} for $i=0,1, j=0,1, \ldots, k / 2-1$. This completes the check of Claim 3.

Let W_{j} be the $\lambda(k-r)$-multistar with center at b_{j} in \mathscr{G} for $j=k, k+1, \ldots, k+r$. Let $W_{j}^{\prime}=D_{2}\left[\left\{a_{k}, a_{k+1}, \ldots, a_{k+r}, b_{j}\right\}\right]$ for $k \leq j \leq k+r$. Then D_{2} is decomposed into $W_{k}^{\prime}, W_{k+1}^{\prime}, \ldots, W_{k+r}^{\prime}$, and each $W_{j}^{\prime}=\bar{S}_{\lambda r}$. It follows that $W_{j}+W_{j}^{\prime}=\bar{S}_{\lambda k}$. Since $m\left(W_{j}+W_{j}^{\prime}\right) \leq \lambda$, by Lemma 2.7 we obtain that $W_{j}+W_{j}^{\prime}$ is S_{k}-decomposable. It follows from $\lambda C_{n, n-1}=F+H+D_{1}+D_{2}$ and Claim 3, that $\lambda C_{n, n-1}$ is $\left(C_{k}, S_{k}\right)$ decomposable.

Lemma 3.3. Let λ, k and n be positive integers with $\lambda \geq 2, k \equiv 0(\bmod 2)$ and $4 \leq k \leq(n-1) / 2$. If $\lambda n(n-1) \equiv 0(\bmod k)$, then $\lambda C_{n, n-1}$ is $\left(C_{k}, S_{k}\right)$ decomposable.

Proof. Let $n-1=q k+r$ where q and r are integers with $0 \leq r \leq k-1$. Then $q \geq 2$ from the assumption $k \leq(n-1) / 2$. Note that

$$
\begin{aligned}
\lambda C_{n, n-1} & =\lambda C_{q k+r+1, q k+r} \\
& =\lambda C_{(q-1) k+1,(q-1) k}+\lambda C_{k+r+1, k+r}+\lambda K_{(q-1) k, k+r}+\lambda K_{k+r,(q-1) k} .
\end{aligned}
$$

Trivially, $\left|E\left(\lambda C_{(q-1) k+1,(q-1) k}\right)\right|,\left|E\left(\lambda K_{(q-1) k, k+r}\right)\right|$ and $\left|E\left(\lambda K_{k+r,(q-1) k}\right)\right|$ are multiples of k. Thus $\lambda(k+r+1)(k+r) \equiv 0(\bmod k)$ from the assumption $\lambda n(n-1) \equiv 0$ $(\bmod k)$. It is trivial that $\lambda K_{(q-1) k, k+r}, \lambda K_{k+r,(q-1) k}, \lambda C_{(q-1) k+1,(q-1) k}$ are $S_{k^{-}}$ decomposable. In addition, by Lemma 3.2, $\lambda C_{k+r+1, k+r}$ is (C_{k}, S_{k})-decomposable for $0 \leq r \leq k-1$. Hence $\lambda C_{n, n-1}$ is (C_{k}, S_{k})-decomposable.

Now Lemmas 3.1, 3.2 and 3.3 serve to prove the Main Theorem.

References

1. A. Abueida and M. Daven, Multidesigns for graph-pairs of order 4 and 5, Graphs Combin., 19 (2003), 433-447.
2. A. Abueida and M. Daven, Mutidecompositons of the complete graph, Ars Combin., 72 (2004), 17-22 .
3. A. Abueida and T. O'Neil, Multidecomposition of λK_{m} into small cycles and claws, Bull. Inst. Combin. Appl., 49 (2007), 32-40.
4. D. Bryant, Cycle decompositions of complete graphs, Surveys in Combinatorics 2007, A. Hilton and J. Talbot (Editors), London Mathematical Society Lecture Note Series 346, Proceedings of the 21st British Combinatorial Conference, Cambridge University Press, 2007, 67-97.
5. D. Bryant and C. A. Rodger, Cycle decompositions, In: The CRC Handbook of Combinatorial Designs, Second Edition, C. J. Colbourn and J. H. Dinitz (Editors), CRC Press, Boca Raton, 2007, 373-382.
6. H. C. Lee, Multidecompositions of complete bipartite graphs into cycles and stars, Ars Combin., 108 (2013), 355-364.
7. H. C. Lee and J. J. Lin, Decomposition of the complete bipartite graph with a 1 -factor removed into cycles and stars, Discrete Math., 313 (2013), 2354-2358.
8. C. Lin, J. J. Lin and T. W. Shyu, Isomorphic star decomposition of multicrowns and the power of cycles, Ars Combin., 53 (1999), 249-256.
9. C. C. Lindner and C. A. Rodger, Decomposition in cycles II: Cycle systems, In: Contemporary Design Theory: A Collection of Surveys, J. H. Dinitz and D. R. Stinson (Editors), Wiley, New York, 1992, 325-369.
10. J. Ma, L. Pu and H. Shen, Cycle decompositions of $K_{n, n}-I$, SIAM J. Discrete Math., 20 (2006), 603-609.
11. H. M. Priyadharsini and A. Muthusamy, $\left(G_{m}, H_{m}\right)$-multifactorization of λK_{m}, J. Combin. Math. Combin. Comput., 69 (2009), 145-150.
12. T. W. Shyu, Decomposition of complete graphs into paths and stars, Discrete Math., $\mathbf{3 1 0}$ (2010), 2164-2169.
13. T. W. Shyu, Decompositions of complete graphs into paths and cycles, Ars Combin., 97 (2010), 257-270.
14. T. W. Shyu, Decomposition of complete graphs into cycles and stars, Graphs Combin., 29 (2013), 301-313.
15. D. Sotteau, Decomposition of $K_{m, n}\left(K_{m, n}^{*}\right)$ into cycles (circuits) of length $2 k$, J. Combin. Theory, Ser. B, 30 (1981), 75-81.
16. M. Tarsi, Decomposition of complete multigraphs into stars, Discrete Math., 26 (1979), 273-278.
17. S. Tazawa, Decomposition of a complete multipartite graph into isomorphic claws, SIAM J. Algebraic Discrete Methods, 6 (1985), 413-417.
18. K. Ushio, S. Tazawa and S. Yamamoto, On claw-decomposition of complete multipartite graphs, Hiroshima Math. J., 8 (1978), 207-210.
19. S. Yamamoto, H. Ikeda, S. Shige-ede, K. Ushio and N. Hamada, On claw decomposition of complete graphs and complete bipartie graphs, Hiroshima Math. J., 5 (1975), 33-42.

Jenq-Jong Lin
Ling Tung University
Taichung 40852
Taiwan
E-mail: jjlin@mail.ltu.edu.tw

