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SUZUKI-WARDOWSKI TYPE FIXED POINT THEOREMS
FOR α-GF-CONTRACTIONS

N. Hussain and P. Salimi

Abstract. Recently, Wardowski [Fixed Point Theory Appl. 2012:94, 2012]
introduced and studied a new contraction called F-contraction to prove a fixed
point result as a generalization of the Banach contraction principle. Abbas et
al. [2] further generalized the concept of F-contraction and proved certain fixed
and common fixed point results. In this paper, we introduce an α-GF-contraction
with respect to a general family of functions G and establish Wardowski type
fixed point results in metric and ordered metric spaces. As an application of our
results we deduce Suzuki type fixed point results for GF-contractions. We also
derive certain fixed and periodic point results for orbitally continuous generalized
F-contractions. Moreover, we discuss some illustrative examples to highlight the
realized improvements.

1. INTRODUCTION AND PRELIMINARIES

The Banach contraction principle is a popular tool in solving existence problems
in many branches of mathematics. This result has been extended in many directions
(see [1-18]). In 2008, in order to characterize the completeness of underlying metric
spaces, Suzuki [17] introduced a weaker notion of contraction. Recently, Wardowski
[19] introduced a new contraction called F-contraction and proved a fixed point result
as a generalization of the Banach contraction principle. Abbas et al. [2] further
generalized the concept of F-contraction and proved certain fixed and common fixed
point results. In this paper, we introduce an α-GF-contraction with respect to a more
general family of functionsG and obtain fixed point results in metric space and partially
ordered metric space. As an application of our results we deduce Suzuki type results
for GF-contractions. In the last section, we derive fixed and periodic point results for
orbitally continuous generalized F-contractions. We begin with some basic definitions
and results which will be used in the sequel.
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In 2012, Samet et al. [13] introduced the concepts of α-ψ-contractive and α-
admissible mappings and established various fixed point theorems for such mappings
defined on complete metric spaces. Afterwards Salimi et al. [12] and Hussain et
al. [6, 8, 9] modified the notions of α-ψ-contractive and α-admissible mappings and
established certain fixed point theorems.

Definition 1.1. [13]. Let T be a self-mapping on X and α : X ×X → [0,+∞)
be a function. We say that T is an α-admissible mapping if

x, y ∈ X, α(x, y) ≥ 1 =⇒ α(Tx, Ty) ≥ 1.

Definition 1.2. [12]. Let T be a self-mapping on X and α, η : X×X → [0,+∞)
be two functions. We say that T is an α-admissible mapping with respect to η if

x, y ∈ X, α(x, y) ≥ η(x, y) =⇒ α(Tx, Ty) ≥ η(Tx, Ty).

Note that if we take η(x, y) = 1 then this definition reduces to Definition 1.1. Also, if
we take, α(x, y) = 1 then we say that T is an η-subadmissible mapping.

Definition 1.3. [8]. Let (X, d) be a metric space. Let α, η : X ×X → [0,∞) and
T : X → X be functions. We say T is an α-η-continuous mapping on (X, d), if, for
given x ∈ X and sequence {xn} with

xn → x asn→ ∞, α(xn, xn+1) ≥ η(xn, xn+1) for alln ∈ N =⇒ Txn → Tx.

Example 1.1. [8]. Let X = [0,∞) and d(x, y) = |x − y| be a metric on X .
Assume, T : X → X and α, η : X ×X → [0,+∞) be defined by

Tx =

{
x5, ifx ∈ [0, 1]

sinπx+ 2, if (1,∞)
, α(x, y) =

{
x2 + y2 + 1, if x, y ∈ [0, 1]

0, otherwise

and η(x, y) = x2. Clearly, T is not continuous, but T is α-η-continuous on (X, d).

A mapping T : X → X is called orbitally continuous at p ∈ X if limn→∞T nx = p
implies that limn→∞TT nx = Tp. The mapping T is orbitally continuous on X if T
is orbitally continuous for all p ∈ X .

Remark 1.1. [8]. Let T : X → X be a self-mapping on an orbitally T -complete
metric space X . Define, α, η : X ×X → [0,+∞) by

α(x, y) =

{
3, if x, y ∈ O(w)

0, otherwise
and η(x, y) = 1

where O(w) is an orbit of a point w ∈ X . If, T : X → X is an orbitally continuous
map on (X, d), then T is α-η-continuous on (X, d).
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2. FIXED POINT RESULTS FOR α-GF -CONTRACTIONS

Consistent with Wordowsky [19], we denote by ΔF the set of all functions F :
R+ → R satisfying following conditions:
(F1) F is strictly increasing;
(F2) for all sequence {αn} ⊆ R+, limn→∞ αn = 0 if and only if limn→∞ F (αn) =

−∞;
(F3) there exists 0 < k < 1 such that limn→0+ αkF (α) = 0.

Now we introduce the following family of new functions.
Let ΔG denotes the set of all functions G : R+4 → R+ satisfying:

(G) for all t1, tt, t3, t4 ∈ R+ with t1t2t3t4 = 0 there exists τ > 0 such that
G(t1, t2, t3, t4) = τ.

Example 2.1. if G(t1, t2, t3, t4) = Lmin{t1, t2, t3, t4} + τ where L ∈ R+ and
τ > 0, then G ∈ ΔG.

Example 2.2. if G(t1, t2, t3, t4) = τeLmin{t1, t2, t3, t4} where L ∈ R+ and
τ > 0, then G ∈ ΔG.

Example 2.3. if G(t1, t2, t3, t4) = L ln(min{t1, t2, t3, t4}+1)+ τ where L ∈ R
+

and τ > 0, then G ∈ ΔG.

Definition 2.1. Let (X, d) be a metric space and T be a self-mapping on X. Also
suppose that α, η : X × X → [0,∞) be two functions. We say T is an α-η-GF -
contraction if for x, y ∈ X with η(x, Tx) ≤ α(x, y) and d(Tx, Ty) > 0 we have,

(2.1) G
(
d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)

)
+ F

(
d(Tx, Ty)

) ≤ F
(
d(x, y)

)
where G ∈ ΔG and F ∈ ΔF .

Now we state and prove our main result of this section.

Theorem 2.1. Let (X, d) be a complete metric space. Let T : X → X be a
self-mapping satisfying the following assertions:

(i) T is an α-admissible mapping with respect to η;
(ii) T is an α-η-GF -contraction;
(iii) there exists x0 ∈ X such that α(x0, Tx0) ≥ η(x0, Tx0);

(iv) T is an α-η-continuous.

Then T has a fixed point. Moreover, T has a unique fixed point when α(x, y) ≥ η(x, x)
for all x, y ∈ Fix(T ).
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Proof. Let x0 ∈ X such that α(x0, Tx0) ≥ η(x0, Tx0). For x0 ∈ X , we define the
sequence {xn} by xn = T nx0 = Txn. Now since, T is an α-admissible mapping with
respect to η then, α(x0, x1) = α(x0, Tx0) ≥ η(x0, Tx0) = η(x0, x1). By continuing
this process we have,

η(xn−1, Txn−1) = η(xn−1, xn) ≤ α(xn−1, xn)

for all n ∈ N. Also, let there exists n0 ∈ N such that, xn0 = xn0+1. Then xn0 is
fixed point of T and we have nothing to prove. Hence, we assume, xn 	= xn+1 or
d(Txn−1, Txn) > 0 for all n ∈ N ∪ {0}. Since, T is an α-η-GF -contraction, so we
derive,

G
(
d(xn−1, Txn−1), d(xn, Txn), d(xn−1, Txn), d(xn, Txn−1)

)
+F

(
d(Txn−1, Txn)

) ≤ F
(
d(xn−1, xn)

)
which implies,

(2.2)
G

(
d(xn−1, xn), d(xn, xn+1), d(xn−1, xn+1), 0

)
+ F

(
d(xn, xn+1)

)
≤ F

(
d(xn−1, xn)

)
.

Now since, d(xn−1, xn).d(xn, xn+1).d(xn−1, xn+1).0 = 0, so from (G) there exists
τ > 0 such that,

G
(
d(xn−1, xn), d(xn, xn+1), d(xn−1, xn+1), 0

)
= τ.

From (2.2) we deduce that,

F
(
d(xn, xn+1)

) ≤ F
(
d(xn−1, xn)

) − τ.

Therefore,

(2.3)
F

(
d(xn, xn+1)

) ≤ F
(
d(xn−1, xn)

)− τ

≤ F
(
d(xn−2, xn−1)

)− 2τ ≤ . . . ≤ F (d(x0, x1))− nτ.

By taking limit as n → ∞ in (2.3) we have, limn→∞ F
(
d(xn, xn+1)

)
= −∞, and

since, F ∈ ΔF we obtain,

lim
n→∞ d(xn, xn+1) = 0.(2.4)

Now from (F3), there exists 0 < k < 1 such that,

lim
n→∞[d(xn, xn+1)]kF

(
d(xn, xn+1)

)
= 0.(2.5)
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By (2.3) we have,

(2.6)
lim

n→∞[d(xn, xn+1)]k[F
(
d(xn, xn+1)

)− F (d(x0, x1))]

≤ −nτ [d(xn, xn+1)]k ≤ 0.

By taking limit as n→ ∞ in (2.6) and applying (2.4) and (2.5) we have,

lim
n→∞ n[d(xn, xn+1)]k = 0.(2.7)

It follows from (2.7) that there exists, n1 ∈ N such that,

n[d(xn, xn+1)]k ≤ 1

for all n > n1. This implies,

d(xn, xn+1) ≤ 1
n1/k

for all n > n1. Now for m > n > n1 we have,

d(xn, xm) ≤
m−1∑
i=n

d(xi, xi+1) ≤
m−1∑
i=n

1
i1/k

.

Since, 0 < k < 1, then
∑∞

i=1
1

i1/k converges. Therefore, d(xn, xm) → 0 as m, n→ ∞.

Thus we proved that {xn} is a Cauchy sequence. Completeness of X ensures that there
exist x∗ ∈ X such that, xn → x∗ as n → ∞. Now since, T is an α-η-continuous and
η(xn−1, xn) ≤ α(xn−1, xn) then, xn+1 = Txn → Tx∗ as n→ ∞. That is, x∗ = Tx∗.
Thus T has a fixed point.

Let x, y ∈ Fix(T ) where x 	= y. Then from

G
(
d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)

)
+ F

(
d(Tx, Ty)

) ≤ F
(
d(x, y)

)
we get,

τ + F
(
d(x, y)

) ≤ F
(
d(x, y)

)
which is a contradiction. Hence, x = y. Therefore, T has a unique fixed point.

Combining Theorem 2.1 and Example 2.1 we deduce the following Corollary.

Corollary 2.1. Let (X, d) be a complete metric space and T : X → X be a
self-mapping satisfying the following assertions:

(i) T is an α-admissible mapping with respect to η;
(ii) if for x, y ∈ X with η(x, Tx) ≤ α(x, y) and d(Tx, Ty)> 0 we have,

τ + F
(
d(Tx, Ty)

) ≤ F
(
d(x, y)

)
(2.8)
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where τ > 0 and F ∈ ΔF .
(iii) there exists x0 ∈ X such that α(x0, Tx0) ≥ η(x0, Tx0);

(iv) T is an α-η-continuous function.

Then T has a fixed point. Moreover, T has a unique fixed point when α(x, y) ≥ η(x, y)
for all x, y ∈ Fix(T ).

Theorem 2.2. Let (X, d) be a complete metric space. Let T : X → X be a
self-mapping satisfying the following assertions:

(i) T is a α-admissible mapping with respect to η;
(ii) T is an α-η-GF -contraction;
(iii) there exists x0 ∈ X such that α(x0, Tx0) ≥ η(x0, Tx0);

(iv) if {xn} is a sequence in X such that α(xn, xn+1) ≥ η(xn, xn+1) with xn → x

as n→ ∞, then either

η(Txn, T
2xn) ≤ α(Txn, x) or η(T 2xn, T

3xn) ≤ α(T 2xn, x)

holds for all n ∈ N.

Then T has a fixed point. Moreover, T has a unique fixed point whenever α(x, y) ≥
η(x, x) for all x, y ∈ Fix(T ).

Proof. Let x0 ∈ X such that α(x0, Tx0) ≥ η(x0, Tx0). As in proof of Theorem
2.1 we can conclude that

α(xn, xn+1) ≥ η(xn, xn+1) and xn → x∗ as n→ ∞

where, xn+1 = Txn. So, from (iv), either

η(Txn, T
2xn) ≤ α(Txn, x

∗) or η(T 2xn, T
3xn) ≤ α(T 2xn, x

∗)

holds for all n ∈ N. This implies,

η(xn+1, xn+2) ≤ α(xn+1, x) or η(xn+2, xn+3) ≤ α(xn+2, x)

holds for all n ∈ N. Equivalently, there exists a subsequence {xnk
} of {xn} such that

η(xnk
, Txnk

) = η(xnk
, xnk+1) ≤ α(xnk

, x∗)

and so from (2.1) we deduce that,

G
(
d(xnk

, Txnk
), d(x∗, Tx∗), d(xnk

, Tx∗), d(x∗, Txnk
)
)
+ F

(
d(Txnk

, Tx∗)
)

≤ F
(
d(xnk

, x∗)
)
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which implies,

F
(
d(Txnk

, Tx∗)
) ≤ F

(
d(xnk

, x∗)
)
.(2.9)

From (F1) we have,
d(xnk+1, Tx

∗) < d(xnk
, x∗).

By taking limit as k → ∞ in the above inequality we get, d(x∗, Tx∗) = 0. i.e.,
x∗ = Tx∗. Uniqueness follows similarly as in Theorem 2.1.

Combining Theorem 2.2 and Example 2.1 we deduce the following Corollary.

Corollary 2.2. Let (X, d) be a complete metric space. Let T : X → X be a
self-mapping satisfying the following assertions:

(i) T is a α-admissible mapping with respect to η;
(ii) if for x, y ∈ X with η(x, Tx) ≤ α(x, y) and d(Tx, Ty)> 0 we have,

τ + F
(
d(Tx, Ty)

) ≤ F
(
d(x, y)

)
where τ > 0 and F ∈ ΔF .

(iii) there exists x0 ∈ X such that α(x0, Tx0) ≥ η(x0, Tx0);
(iv) if {xn} be a sequence in X such that α(xn, xn+1) ≥ η(xn, xn+1) with xn → x

as n→ ∞, then either

η(Txn, T
2xn) ≤ α(Txn, x) or η(T 2xn, T

3xn) ≤ α(T 2xn, x)

holds for all n ∈ N.

Then T has a fixed point. Moreover, T has a unique fixed point when α(x, y) ≥ η(x, x)
for all x, y ∈ Fix(T ).

If in Corollary 2.2 we take α(x, y) = η(x, y) = 1 for all x, y ∈ X , then we deduce
the following Corollary.

Corollary 2.3. (Theorem 2.1 of [19]). Let (X, d) be a complete metric space and
T : X → X be a self-mapping. If for x, y ∈ X with d(Tx, Ty) > 0 we have,

τ + F
(
d(Tx, Ty)

) ≤ F
(
d(x, y)

)
where τ > 0 and F ∈ ΔF . Then T has a fixed point.

Example 2.4. Let X = [0,+∞). We endow X with usual metric. Define, T :
X → X , α, η : X ×X → [0,∞), G : R+4 → R+ and F : R+ → R by,

Tx =

⎧⎨
⎩

1
2
e−τx2, if x ∈ [0, 1]

3x if x ∈ (1,∞)
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α(x, y) =

⎧⎪⎨
⎪⎩

1
2
, if x, y ∈ [0, 1]

1
9
, otherwise

and η(x, y) = 1
4 , G(t1, t2, t3, t4) = τ where τ > 0

and F (r) = ln r.
Let, α(x, y) ≥ η(x, y), then x, y ∈ [0, 1]. On the other hand, Tw ∈ [0, 1] for all

w ∈ [0, 1]. Then, α(Tx, Ty) ≥ η(Tx, Ty). That is, T is an α-admissible mapping
with respect to η. If {xn} is a sequence in X such that α(xn, xn+1) ≥ η(xn, xn+1)
with xn → x as n→ ∞. Then, Txn, T

2xn, T
3xn ∈ [0, 1] for all n ∈ N. That is,

η(Txn, T
2xn) ≤ α(Txn, x) and η(T 2xn, T

3xn) ≤ α(T 2xn, x)

hold for all n ∈ N. Clearly, α(0, T0) ≥ η(0, T0). Let, α(x, y) ≥ η(x, Tx). Now, if

x /∈ [0, 1] or y /∈ [0, 1], then,
1
9

≥ 1
4

, which is a contradiction, so x, y ∈ [0, 1] and
hence we obtain,

d(Tx, Ty) =
1
2
e−τ |x2 − y2| =

1
2
e−τ |x− y||x+ y| ≤ e−τ |x− y| = e−τd(x, y)

which implies,

τ+F (d(Tx, Ty)) = τ +ln d(Tx, Ty) ≤ τ+ln e−τ d(x, y) = ln d(x, y) = F (d(x, y)).

Hence, T is an α-η-GF -contraction mapping. Thus all conditions of Corollary 2.2
(and Theorem 2.2) hold and T has a fixed point. Let x = 0, y = 2 and τ > 0. Then,

τ + F (d(T0, T2)) ≥ F (d(T0, T2)) = ln 6 > ln 2 = F (d(0, 2)).

That is Theorem 2.1 of [19] can not be applied for this example.

Recall that a self-mapping T is said to have the property P if Fix(T n) = F (T )
for every n ∈ N.

Theorem 2.3. Let (X, d) be a complete metric space and T : X → X be an
α-continuous self-mapping. Assume that there exists τ > 0 such that

τ + F
(
d(Tx, T 2x)

) ≤ F
(
d(x, Tx)

)
(2.10)

holds for all x ∈ X with d(Tx, T 2x) > 0 where F ∈ ΔF . If T is an α-admissible
mapping and there exists x0∈X such that, α(x0, Tx0)≥1, then T has the property P .

Proof. Let x0 ∈ X such that α(x0, Tx0) ≥ 1. For x0 ∈ X , we define the
sequence {xn} by xn = T nx0 = Txn. Now since, T is an α-admissible mapping, so
α(x1, x2) = α(Tx0, Tx1) ≥ 1. By continuing this process we have,

α(xn−1, xn) ≥ 1
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for all n ∈ N. If there exists n0 ∈ N such that, xn0 = xn0+1 = Txn0 . Then xn0

is fixed point of T and we have nothing to prove. Hence, we assume, xn 	= xn+1 or
d(Txn−1, T

2xn−1) > 0 for all n ∈ N ∪ {0}. From (2.10) we have,

τ + F
(
d(Txn−1, T

2xn−1)
) ≤ F

(
d(xn−1, Txn−1)

)
which implies,

τ + F
(
d(xn, xn+1)

) ≤ F
(
d(xn−1, xn)

)
(2.11)

and so,

F
(
d(xn, xn+1)

) ≤ F
(
d(xn−1, xn)

) − τ.

Therefore,

(2.12)
F

(
d(xn, xn+1)

) ≤ F
(
d(xn−1, xn)

)− τ ≤ F
(
d(xn−2, xn−1)

) − 2τ

≤ . . .≤ F (d(x0, x1))− nτ.

By taking limit as n → ∞ in (2.12) we have, limn→∞ F
(
d(xn, xn+1)

)
= −∞, and

since, F ∈ ΔF we obtain,

lim
n→∞ d(xn, xn+1) = 0.(2.13)

Now from (F3), there exists 0 < k < 1 such that,

lim
n→∞[d(xn, xn+1)]kF

(
d(xn, xn+1)

)
= 0.(2.14)

By (2.12) we have,

(2.15)
lim

n→∞[d(xn, xn+1)]k[F
(
d(xn, xn+1)

)− F (d(x0, x1))]

≤ −nτ [d(xn, xn+1)]k ≤ 0.

By taking limit as n→ ∞ in (2.15) and applying (2.13) and (2.14) we have,

lim
n→∞ n[d(xn, xn+1)]k = 0.(2.16)

Consequently, there exists, n1 ∈ N such that,

n[d(xn, xn+1)]k ≤ 1

for all n > n1. This implies,

d(xn, xn+1) ≤ 1
n1/k
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for all n > n1. Now for m > n > n1 we have,

d(xn, xm) ≤
m−1∑
i=n

d(xi, xi+1) ≤
m−1∑
i=n

1
i1/k

Since, 0 < k < 1, then
∑∞

i=n
1

i1/k converges. Therefore, d(xn, xm) → 0 asm, n→ ∞.

Thus we proved that {xn} is a Cauchy sequence. Completeness of X ensures that there
exists x∗ ∈ X such that, xn → x∗ as n → ∞. Now since, T is α-continuous and
α(xn−1, xn) ≥ 1 then, xn+1 = Txn → Tx∗ as n → ∞. That is, x∗ = Tx∗. Thus T
has a fixed point and F (T n) = F (T ) for n = 1. Let n > 1. Assume contrarily that
w ∈ F (T n) and w /∈ F (T ). Then, d(w, Tw)> 0. Now we have,

F (d(w, Tw)) = F (d(T (T n−1w)), T 2(T n−1w)))

≤ F (d(T n−1w), T nw))− τ

≤ F (d(T n−2w), T n−1w))− 2τ ≤ · · ·
≤ d(w, Tw)− nτ.

By taking limit as n → ∞ in the above inequality we have, F (d(w, Tw)) = −∞.
Hence, by (F2) we get, d(w, Tw) = 0 which is a contradictions. Therefore, F (T n) =
F (T ) for all n ∈ N.

Let (X, d,�) be a partially ordered metric space. Recall that T : X → X is
nondecreasing if ∀x , y ∈ X, x � y ⇒ T (x) � T (y). Fixed point theorems for
monotone operators in ordered metric spaces are widely investigated and have found
various applications in differential and integral equations (see [1, 3, 7, 8, 10, 11] and
references therein). From Theorems 2.1-2.3, we derive following new results in partially
ordered metric spaces.

Theorem 2.4. Let (X, d,�) be a complete partially ordered metric space. Assume
that the following assertions hold true:

(i) T is nondecreasing and ordered GF-contraction;
(ii) there exists x0 ∈ X such that x0 � Tx0;

(iii) either for a given x ∈ X and sequence {xn}
xn → x asn→ ∞ and xn � xn+1 for alln ∈ N we have Txn → Tx

or if {xn} is a sequence such that xn � xn+1 with xn → x as n → ∞, then
either

Txn � x, or T 2xn � x

holds for all n ∈ N.
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Then T has a fixed point.

Theorem 2.5. Let (X, d,�) be a complete partially ordered metric space. Assume
that the following assertions hold true:

(i) T is nondecreasing and satisfies (2.10) for all x ∈ X with d(Tx, T 2x) > 0
where F ∈ ΔF and τ > 0;

(ii) there exists x0 ∈ X such that x0 � Tx0;
(iii) for a given x ∈ X and sequence {xn}

xn → x asn→ ∞ and xn � xn+1 for alln ∈ N we have Txn → Tx.

Then T has a property P .

3. SUZUKI-WARDOWSKI TYPE FIXED POINT RESULTS

In this section, as an application of our results proved above, we deduce certain
Suzuki-Wardowski type fixed point theorems.

Theorem 3.1. Let (X, d) be a complete metric space and T be a continuous self-
mapping on X . If for x, y ∈ X with d(x, Tx) ≤ d(x, y) and d(Tx, Ty) > 0 we
have,

(3.1) G
(
d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)

)
+ F

(
d(Tx, Ty)

) ≤ F
(
d(x, y)

)
where G ∈ ΔG and F ∈ ΔF . Then T has a unique fixed point.

Proof. Define, α, η : X ×X → [0,∞) by

α(x, y) = d(x, y) and η(x, y) = d(x, y)

for all x, y ∈ X . Now, since, d(x, y) ≤ d(x, y) for all x, y ∈ X , so η(x, y) ≤ α(x, y)
for all x, y ∈ X . That is, conditions (i) and (iii) of Theorem 2.1 hold true. Since T
is continuous, so T is α-η-continuous. Let, η(x, Tx) ≤ α(x, y) with d(Tx, Ty) > 0.
Equivalently, if d(x, Tx) ≤ d(x, y) with d(Tx, Ty)> 0, then, from (3.1) we have,

G
(
d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)

)
+ F

(
d(Tx, Ty)

) ≤ F
(
d(x, y)

)
.

That is, T is an α-η-GF -contraction mapping. Hence, all conditions of Theorem 2.1
hold and T has a unique fixed point.

Corollary 3.1. Let (X, d) be a complete metric space and T be a continuous
self-mapping on X . If for x, y ∈ X with d(x, Tx) ≤ d(x, y) and d(Tx, Ty) > 0 we
have

τ + F
(
d(Tx, Ty)

) ≤ F
(
d(x, y)

)
where τ > 0 and F ∈ ΔF . Then T has a unique fixed point.
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Corollary 3.2. Let (X, d) be a complete metric space and T be a continuous
self-mapping on X . If for x, y ∈ X with d(x, Tx) ≤ d(x, y) and d(Tx, Ty) > 0 we
have,

τeLmin{d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)}+ F
(
d(Tx, Ty)

) ≤ F
(
d(x, y)

)
where τ > 0, L ≥ 0 and F ∈ ΔF . Then T has a unique fixed point.

Theorem 3.2. Let (X, d) be a complete metric space and T be a self-mapping on
X . Assume that there exists τ > 0 such that

(3.2)
1

2(1 + τ)
d(x, Tx) ≤ d(x, y) implies τ + F

(
d(Tx, Ty)

) ≤ F
(
d(x, y)

)
for x, y ∈ X with d(Tx, Ty) > 0 where F ∈ ΔF . Then T has a unique fixed point.

Proof. Define, α, η : X ×X → [0,∞) by

α(x, y) = d(x, y) and η(x, y) =
1

2(1 + τ)
d(x, y)

for all x, y ∈ X where τ > 0. Now, since, 1
2(1+τ )d(x, y) ≤ d(x, y) for all x, y ∈ X ,

so η(x, y) ≤ α(x, y) for all x, y ∈ X . That is, conditions (i) and (iii) of Theorem
2.2 hold true. Let, {xn} be a sequence with xn → x as n → ∞. Assume that
d(Txn, T

2xn) = 0 for some n. Then Txn = T 2xn. That is Txn is a fixed point of T
and we have nothing to prove. Hence we assume, Txn 	= T 2xn for all n ∈ N. Since,

1
2(1+τ )

d(Txn, T
2xn) ≤ d(Txn, T

2xn) for all n ∈ N. Then from (3.2) we get,

F
(
d(T 2xn, T

3xn)
) ≤ τ + F

(
d(T 2xn, T

3xn)
) ≤ F

(
d(Txn, T

2xn)
)

and so from (F1) we get,

d(T 2xn, T
3xn) ≤ d(Txn, T

2xn).(3.3)

Assume there exists n0 ∈ N such that,
η(Txn0, T

2xn0) > α(Txn0, x) and η(T 2xn0, T
3xn0) > α(T 2xn0, x)

then,
1

2(1 + τ)
d(Txn0, T

2xn0) > d(Txn0, x) and
1

2(1 + τ)
d(T 2xn0 , T

3xn0) > d(T 2xn0 , x)

so by (3.3) we have,

d(Txn0, T
2xn0) ≤ d(Txn0, x) + d(T 2xn0, x)

<
1

2(1 + τ)
d(Txn0, T

2xn0) +
1

2(1 + τ)
d(T 2xn0, T

3xn0)

≤ 1
2(1 + τ)

d(Txn0, T
2xn0) +

1
2(1 + τ)

d(Txn0, T
2xn0)

=
2

2(1 + τ)
d(Txn0, T

2xn0) ≤ d(Txn0, T
2xn0)
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which is a contradiction. Hence, either

η(Txn, T
2xn) ≤ α(Txn, x) or η(T 2xn, T

3xn) ≤ α(T 2xn, x)

holds for all n ∈ N. That is condition (iv) of Theorem 2.2 holds. Let, η(x, Tx) ≤
α(x, y). So, 1

2(1+τ )d(x, Tx) ≤ d(x, y). Then from (3.2) we get, τ +F
(
d(Tx, Ty)

) ≤
F

(
d(x, y)

)
. Hence, all conditions of Theorem 2.2 hold and T has a unique fixed

point.

4. APPLICATIONS TO ORBITALLY CONTINUOUS MAPPINGS

Theorem 4.1. Let (X, d) be a complete metric space and T : X → X be a
self-mapping satisfying the following assertions:

(i) for x, y ∈ O(w) with d(Tx, Ty)> 0 we have,

G
(
d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)

)
+ F

(
d(Tx, Ty)

) ≤ F
(
d(x, y)

)
where G ∈ ΔG and F ∈ ΔF ;

(ii) T is an orbitally continuous function.

Then T has a fixed point. Moreover, T has a unique fixed point when Fix(T ) ⊆ O(w).

Proof. Define, α, η : X ×X → [0,+∞) by

α(x, y) =

{
3, if x, y ∈ O(w)

0, otherwise
and η(x, y) = 1

where O(w) is an orbit of a point w ∈ X . From Remark 1.1 we know that T is an α-
η-continuous mapping. Let, α(x, y) ≥ η(x, y), then x, y ∈ O(w). So Tx, Ty ∈ O(w).
That is, α(Tx, Ty) ≥ η(Tx, Ty). Therefore, T is an α-admissible mapping with
respect to η. Since w, Tw ∈ O(w), then α(w, Tw) ≥ η(w, Tw). Let, α(x, y) ≥
η(x, Tx) and d(Tx, Ty)> 0. Then, x, y ∈ O(w) and d(Tx, Ty) > 0. Therefore from
(i) we have,

G
(
d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)

)
+ F

(
d(Tx, Ty)

) ≤ F
(
d(x, y)

)
which implies, T is an α-η-GF -contraction mapping. Hence, all conditions of Theorem
2.1 hold true and T has a fixed point. If Fix(T ) ⊆ O(w), then, α(x, y) ≥ η(x, y) for
all x, y ∈ Fix(T ) and so from Theorem 2.1 T has a unique fixed point.

Corollary 4.1. Let (X, d) be a complete metric space and T : X → X be a
self-mapping satisfying the following assertions:
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(i) for x, y ∈ O(w) with d(Tx, Ty)> 0 we have,

τ + F
(
d(Tx, Ty)

) ≤ F
(
d(x, y)

)
where τ > 0 and F ∈ ΔF ;

(ii) T is orbitally continuous.

Then T has a fixed point. Moreover, T has a unique fixed point when Fix(T ) ⊆ O(w).

Corollary 4.2. Let (X, d) be a complete metric space and T : X → X be a
self-mapping satisfying the following assertions:

(i) for x, y ∈ O(w) with d(Tx, Ty)> 0 we have,

τeLmin{d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)}+F(
d(Tx, Ty)

)≤F(
d(x, y)

)
where τ > 0, L ≥ 0 and F ∈ ΔF ;

(ii) T is orbitally continuous.

Then T has a fixed point. Moreover, T has a unique fixed point when Fix(T ) ⊆ O(w).

Theorem 4.2. (Theorem 4 of [2]) Let (X, d) be a complete metric space and
T : X → X be a self-mapping satisfying the following assertions:

(i) for x ∈ X with d(Tx, T 2x) > 0 we have,

τ + F
(
d(Tx, T 2x)

) ≤ F
(
d(x, Tx)

)
where τ > 0 and F ∈ ΔF ;

(ii) T is an orbitally continuous function.

Then T has the property P .

Proof. Define, α : X ×X → [0,+∞) by

α(x, y) =

{
1, if x ∈ O(w)

0, otherwise

where w ∈ X. Let, α(x, y) ≥ 1, then x, y ∈ O(w). So Tx, Ty ∈ O(w). That is,
α(Tx, Ty) ≥ 1. Therefore, T is α-admissible mapping. Since w, Tw ∈ O(w), so
α(w, Tw) ≥ 1. By Remark 1.1 we conclude that T is an α-continuous mapping. If,
x ∈ X with d(Tx, T 2x) > 0, then, from (i) we have,

τ + F
(
d(Tx, T 2x)

) ≤ F
(
d(x, Tx)

)
.

Thus all conditions of Theorem 2.3 hold true and T has the property P .

We can easily deduce following results involving integral inequalities.
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Theorem 4.3. Let (X, d) be a complete metric space and T be a continuous
self-mapping on X . If for x, y ∈ X with

∫ d(x, Tx)

0
ρ(t)dt ≤

∫ d(x, y)

0
ρ(t)dt and

∫ d(Tx, Ty)

0
ρ(t)dt > 0

we have,

G

(∫ d(x, Tx)

0
ρ(t)dt,

∫ d(y, Ty)

0
ρ(t)dt,

∫ d(x, Ty)

0
ρ(t)dt,

∫ d(y, Tx)

0
ρ(t)dt

)

+F
( ∫ d(Tx, Ty)

0
ρ(t)dt

) ≤ F
( ∫ d(x, y)

0
ρ(t)dt

)
where G ∈ ΔG, F ∈ ΔF and ρ : [0,∞) → [0,∞) is a Lebesgue-integrable mapping
satisfying

∫ ε
0 ρ(t)dt > 0 for ε > 0. Then T has a unique fixed point.

Theorem 4.4. Let (X, d) be a complete metric space and T be a self-mapping on
X . Assume that there exists τ > 0 such that

1
2(1 + τ)

∫ d(x, Tx)

0
ρ(t)dt ≤

∫ d(x, y)

0
ρ(t)dt⇒

τ + F
( ∫ d(Tx, Ty)

0

ρ(t)dt
) ≤ F

( ∫ d(x, y)

0

ρ(t)dt
)

for x, y ∈ X with
∫ d(Tx, Ty)
0 ρ(t)dt > 0 where F ∈ ΔF and ρ : [0,∞) → [0,∞)

is a Lebesgue-integrable mapping satisfying
∫ ε
0 ρ(t)dt > 0 for ε > 0. Then T has a

unique fixed point.

Theorem 4.5. Let (X, d) be a complete metric space and T : X → X be a
self-mapping satisfying the following assertions:

(i) for x, y ∈ O(w) with
∫ d(Tx, Ty)
0 ρ(t)dt > 0 we have,

G
( ∫ d(x, Tx)

0
ρ(t)dt,

∫ d(y, Ty)

0
ρ(t)dt,

∫ d(x, Ty)

0
ρ(t)dt,

∫ d(y, Tx)

0
ρ(t)dt

)

+F
( ∫ d(Tx, Ty)

0
ρ(t)dt

) ≤ F
( ∫ d(x, y)

0
ρ(t)dt

)
where G ∈ ΔG, F ∈ ΔF and ρ : [0,∞) → [0,∞) is a Lebesgue-integrable
mapping satisfying

∫ ε
0 ρ(t)dt > 0 for ε > 0.

(ii) T is an orbitally continuous function;
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Then T has a fixed point. Moreover, T has a unique fixed point when Fix(T ) ⊆ O(w).

Theorem 4.6. Let (X, d) be a complete metric space and T : X → X be a
self-mapping satisfying the following assertions:

(i) for x ∈ X with
∫ d(Tx, T 2x)
0 ρ(t)dt > 0 we have,

τ + F
( ∫ d(Tx, T 2x)

0 ρ(t)dt
) ≤ F

( ∫ d(x, Tx)
0 ρ(t)dt

)
where τ > 0 and F ∈ ΔF and ρ : [0,∞) → [0,∞) is a Lebesgue-integrable
mapping satisfying

∫ ε
0 ρ(t)dt > 0 for ε > 0.

(ii) T is an orbitally continuous function.

Then T has the property P .
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11. J. J. Nieto and R. Rodrı́guez-López, Contractive mapping theorems in partially ordered
sets and applications to ordinary differential equations, Order, 22 (2005), 223-229.

12. P. Salimi, A. Latif and N. Hussain, Modified α-ψ-contractive mappings with applications,
Fixed Point Theory and Applications, 2013 (2013), 151.

13. B. Samet, C. Vetro and P. Vetro, Fixed point theorems for α-ψ-contractive type mappings,
Nonlinear Anal., 75 (2012), 2154-2165.

14. N. Hussain, A. Latif and P. Salimi, Best proximity point results for modified Suzuki
α-ψ-proximal contractions, Fixed Point Theory and Applications, 2014 (2014), 10.

15. Sh. Fathollahi, N. Hussain and L. A. Khan, Fixed point results for modified weak and
rational α-ψ-contractions in ordered 2-metric spaces, Fixed Point Theory and Applica-
tions, 2014 (2014), 6.

16. T. Suzuki, A new type of fixed point theorem in metric spaces, Nonlinear Analysis,
71(11) (2009), 5313-5317.

17. T. Suzuki, A generalized Banach contraction principle that characterizes metric com-
pleteness, Proc. Amer. Math. Soc., 136 (2008), 1861-1869.

18. W. Takahashi, L. J. Lin and S. Y. Wang, Fixed point theorems for contractively gen-
eralized hybrid mappings in complete metric spaces, J. Nonlinear Convex Anal., 13(2)
(2012), 195-206.

19. D. Wardowski, Fixed points of a new type of contractive mappings in complete metric
spaces, Fixed Point Theory and Appl., 2012 (2012), 94.

N. Hussain
Department of Mathematics
King Abdulaziz University
P. O. Box 80203
Jeddah 21589
Saudi Arabia
E-mail: nhusain@kau.edu.sa

P. Salimi
Young Researchers and Elite Club
Rasht Branch
Islamic Azad University
Rasht, Iran
E-mail: salimipeyman@gmail.com


