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THE WEIGHTED POINCARÉ DISTANCE IN THE HALF PLANE

Jisoo Byun, Seung Min Baek, Hong Rae Cho and Han-Wool Lee

Abstract. In this paper we introduce the weighted Poincaré distance and the
induced distance by the weighted Bloch type space. We prove that the weighted
Poincaré distance is identical to the inner distance generated by the induced dis-
tance.

1. INTRODUCTION

Let H = {x + iy : y > 0} denote the upper half plane in the complex plane C.
Let z, w ∈ H. Given any distance function d on H we define the d-length of a curve
γ : [a, b] → H by

�d(γ) = sup

⎧⎨
⎩

N∑
j=1

d(γ(tj−1), γ(tj)) : N ∈ N, 0 = t0 < · · · < tN = 1

⎫⎬
⎭ .

Using the d-length of curves we define a new distance, di, by

di(z, w) = inf{�d(γ) : γ(0) = z, γ(1) = w},
where γ is a continuous curve in H (see [2]). Automatically d ≤ di and if equality
holds d is called an inner distance. More generally di is referred to as the inner distance
generated by d. An inner distance di generated by d is inner, i.e. (di)i = di (see [3]).

For 0 < α ≤ 1 the weighted Poincaré metric, introduced in [1], is given by

ds2
α =

dx2 + dy2

y2α
.
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Suppose that γ(t), 0 ≤ t ≤ 1, is a continuous and piecewise smooth curve in
H. We recall that the length of γ(t) with respect to the weighted Poincaré distance is
defined by

Lpα(γ) =
∫

γ
dsα =

∫ 1

0

|γ ′(t)|
[Imγ(t)]α

dt.

Then the weighted Poincaré distance is defined by

pα(z, w) = inf{Lpα(γ) : γ(0) = z, γ(1) = w},
where γ is a continuous and piecewise smooth curve and z, w ∈ H. Note that p1 is
the classical Poincaré distance.

For each 0 < α ≤ 1, we let Bα denote the space of analytic functions f on H such
that

‖f‖α = sup{(Im z)α|f ′(z)| : z ∈ H} < +∞.

Then, it is well-known that B1 is the Bloch space B and Lipα = B1−α is the analytic
Lipschitz space of order 0 < α < 1. For z, w in H, we define the induced distance
(see [4] and [5]) by

dα(z, w) = sup{|f(z)− f(w)| : ‖f‖α ≤ 1}.
We prove that the weighted Poincaré distance pα is identical to the inner distance

di
α generated by the induced distance dα.

Theorem 1.1. Let 0 < α ≤ 1. Then di
α = pα.

By Theorem 1.1, (di
α)i = di

α and dα ≤ di
α, we get following corollary.

Corollary 1.2. Let 0 < α ≤ 1. Then

(a) dα ≤ pα.
(b) pi

α = pα.

In the case of α = 1, we prove the following :

Theorem 1.3.

p1(z, w) = d1(z, w) for z, w ∈ H.

In [4], the author proved that d1 = p1 on the unit disc. We proved the same identity
on the upper half plane. We do not know that dα = pα for 0 < α < 1. By Corollary
1.2, we know that dα ≤ pα. But authors believe that dα = pα for the unit disc and the
upper half plane.

The organization of paper is as follows: In Section 2, we find geodesics for the
weighted Poincaré metric and compute the weighted Poincaré distance. In Section 3,
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we characterize the weighted Bloch function by the weighted Poincaré distance pα. In
Section 4, we prove several lemmas for main results. We also introduce the sufficient
and necessary condition for weighted Bloch functions using the induced distance dα.
Finally, we prove Theorem 1.1 and Theorem 1.3 in Section 5.

2. THE WEIGHTED POINCARÉ DISTANCE

Let 0 < α ≤ 1. The weighted Poincaré metric (see [1]) is given by

ds2
α =

dx2 + dy2

y2α
.

The parametric equation for geodesics is here:⎧⎪⎨
⎪⎩

ẍ =
2α

y
ẋẏ

ÿ =
α

y
(ẏ2 − ẋ2).

Another equivalent differential system is the following⎧⎪⎪⎨
⎪⎪⎩

ẋ

y2α
= C1

ẋ2 + ẏ2

y2α
= C2.

For a simple calculation, we give C1 = C2 = 1 (the standard geodesic in H). Then⎧⎪⎪⎨
⎪⎪⎩

ẋ

y2α
= 1

ẋ2 + ẏ2

y2α
= 1, x(1) = 0

and so
ẋ2 + ẏ2

ẋ2
=

1
y2α

.

Thus we have ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dy

dx
= −

√
1 − y2α

yα
if x > 0

dy

dx
=

√
1 − y2α

yα
if x < 0.

For example, if α = 1
2 , then
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x(y) =
∫ 1

y

√
t

1 − t
dt

=
√

y(1− y) + cos−1(
√

y)

=
√

y(1− y) + sin−1(
√

1 − y).

Now let 0 < α < 1. First, we recall the hypergeometric function F (a, b; c|z). Let
a ∈ R and c > b > 0. Then

B(b, c− b)F (a, b; c|z) =
∫ 1

0
tb−1(1 − t)c−b−1(1 − zt)−a dt, |z| < 1,

where B is the Beta function.
We see that, if x > 0,

x(y) =
∫ 1

y

tα√
1 − t2α

dt

=
∫ 1

0

tα√
1 − t2α

dt−
∫ y

0

tα√
1 − t2α

dt

= I1 + I2.

We calculate the first term I1. We have

I1 =
∫ 1

0

tα√
1 − t2α

dt

=
1
2α

∫ 1

0
t−

1
2
+ 1

2α (1− t)−
1
2 dt

=
1
2α

B

(
1 + α

2α
,
1
2

)
.

Now, we calculate the second term I2. We have

I2 = −
∫ y

0

tα√
1− t2α

dt

= − 1
2α

∫ y2α

0
t−

1
2
+ 1

2α (1− t)−
1
2 dt

= − y1+α

1 + α
F

(
1
2
,
1 + α

2α
;
3
2

+
1
2α

∣∣∣∣∣y2α

)
.

Thus, we have

x(y) =
1
2α

B

(
1 + α

2α
,
1
2

)
− y1+α

1 + α
F

(
1
2
,
1 + α

2α
;
3
2

+
1
2α

∣∣∣∣∣y2α

)
.(2.1)
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Similarly, we can calculate the case x <0. Then, we get

x(y) = − 1
2α

B

(
1 + α

2α
,
1
2

)
+

y1+α

1 + α
F

(
1
2
,
1 + α

2α
;
3
2

+
1
2α

∣∣∣∣∣y2α

)
.

Now we calculate the weighted Poincaré distance by using the above results. We
define

Dδ(z) = δz for δ ≥ 0

and
Tt(z) = z + t for t ∈ R.

Then it is easy to see that
Lpα(Dδ(γ)) = δ1−αLpα(γ)

and
Lpα(Tt(γ)) = Lpα(γ).

Note that if γg is a geodesic, so are Dδ(γ) and Tt(γ). By these homogeneity properties,
we only need to know the distance between the point i and any other point of the
standard geodesic of H.

Let γg be the standard geodesic in H connecting two points i and x + iy where
x 	= 0 and 0 ≤ y ≤ 1.

For example, when α = 1
2 , we have

Lp 1
2

(γg) =
∫ 1

y

1√
t
√

1 − t
dt

= 2 cos−1(
√

y)

= 2 sin−1(
√

1 − y)

= 2
(
x −

√
y(1 − y)

)
.

Thus
p 1

2
(i, x + iy) = 2

(
x −

√
y(1 − y)

)
.

Now for 0 < α < 1 the length of γg is calculated by

Lpα(γg) =
∫

γg

√
dx2 + dy2

yα

=
∫ 1

y

1
tα
√

1 − t2α
dt
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=
∫ 1

0

1
tα
√

1 − t2α
dt −

∫ y

0

1
tα
√

1 − t2α
dt

= J1 + J2.

We calculate the first term J1. We have

J1 =
1
2α

B

(
1 − α

2α
,
1
2

)
.

Now, we calculate the second term J2. We have

J2 = −
∫ y

0

1
tα
√

1 − t2α
dt

= − 1
1 − α2

y1−α

[
(1 + α)

√
1 − y2α + y2αF

(
1
2
,
1 + α

2α
;
3
2

+
1
2α

∣∣∣∣∣y2α

)]
.

By (2.1), we have

J2 = − 1
2α

B

(
1 − α

2α
,
1
2

)
+

1
1− α

(
x − y1−α

√
1− y2α

)
.

Thus we have

Lpα(γg) =
1

1− α

(
x − y1−α

√
1− y2α

)
.

Hence

pα(i, x + iy) =
1

1 − α

(
x − y1−α

√
1− y2α

)
.

If γg is the geodesic in H connecting two points i and iy where 0 < y < 1, then
γg(t) = it, y ≤ t ≤ 1 and the length of γg is calculated by

Lpα(γg) =
∫ 1

y

dt

tα
=

1
1 − α

(1 − y1−α)

or

pα(i, iy) =
1

1− α
(1 − y1−α).

3. WEIGHTED BLOCH SPACES

We recall that for each 0 < α ≤ 1 the weighted Bloch space Bα is the space of
analytic functions f on H such that

‖f‖α = sup{(Im z)α|f ′(z)| : z ∈ H} < +∞.
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Theorem 3.1. Suppose 0 < α ≤ 1, and f is analytic on H. Then f is in Bα if
and only if there exists a constant C > 0 such that

|f(z) − f(w)| ≤ Cpα(z, w), z, w ∈ H.

Furthermore, we have

‖f‖α = sup
{ |f(z)− f(w)|

pα(z, w)
: z 	= w

}

for all f ∈ Bα.

Proof. The proof is as in ([4], Theorem 19). First assume that

|f(z) − f(w)| ≤ Cpα(z, w), z, w ∈ H.

We may assume that C is the smallest constant satisfying the above condition. Fix
z ∈ H and let γ(s) be the geodesic (parametrized by arc-length) in the underlying
weighted Poincaré metric that starts at z. Since pα(γ(0), γ(s)) = s, we have

|f(z)− f(w)| ≤ Cs, 0 < s < ε.

Dividing both sides by s and then letting s → 0 in the above inequality, we obtain

|f ′(z)||γ ′(0)| ≤ C.

By the minimal length property of geodesics,

s = pα(γ(0), γ(s)) =
∫ s

0

|γ ′(t)|
[Imγ(t)]α

dt, 0 < s < ε.

Then

1 = lim
s→0

1
s

∫ s

0

|γ ′(t)|
[Imγ(t)]α

dt

=
|γ ′(0)|
(Im z)α

.

It follows that (Im z)α|f ′(z)| ≤ C and hence f ∈ Bα with

sup{(Im z)α|f ′(z)| : z ∈ H} ≤ sup
{ |f(z)− f(w)|

pα(z, w)
: z 	= w

}
.

On the other hand, if f is in Bα, then

C = sup{(Im z)α|f ′(z)| : z ∈ H} < +∞

and hence
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|f ′(z)| ≤ C

(Im z)α

for all z ∈ H. If γ(t), 0 ≤ t ≤ 1, is a smooth curve from z to w, the fundamental
theorem of calculus shows that

|f(z)− f(w)| =
∣∣∣∣
∫ 1

0

d

dt
f(γ(t))dt

∣∣∣∣
≤
∫ 1

0
|f ′(γ(t))||γ ′(t)|dt

≤ C

∫ 1

0

|γ ′(t)|
[Imγ(t)]α

dt

= CLpα(γ).

It is easy to see that this also holds if γ is continuous but only piecewise smooth.
Taking the infimum over all piecewise smooth curves connecting z to w, we conclude
that

|f(z) − f(w)| ≤ Cpα(z, w), z, w ∈ H.

This completes the proof.

4. INDUCED DISTANCES FROM WEIGHTED BLOCH SPACES

For 0 < α ≤ 1 and z, w in H, we define
dα(z, w) = sup{|f(z)− f(w)| : ‖f‖α ≤ 1}.

Lemma 4.1. Let 0 < α ≤ 1. For a fixed z in H we define

fz(w) = (2i)α

∫ w

i

dζ

(2ζ − z − z̄)α
, w ∈ H.

Then f ∈ Bα and ‖fz‖α = 1.

Proof. Let z, w ∈ H. Since f ′
z(w) = (2i)α 1

(2w−z−z̄)α , we have

(Im w)α|f ′
z(w)| = (Imw)α

∣∣∣∣ 2i

2w − z − z̄

∣∣∣∣
α

= (Imw)α 1
|w − Re z|α ≤ 1

and (Im z)α|f ′
z(z)| = 1. Thus we have

‖fz‖α = sup
w∈H

(Imw)α|f ′
z(w)| = 1.
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Lemma 4.2. For 0 < α ≤ 1, dα is a distance on H.

Proof. Let z, w ∈ H. Suppose that dα(z, w) = 0. We define

fi(w) = (2i)α

∫ w

i

dζ

(2ζ)α
.

By Lemma 4.1, it follows that ‖ fi ‖α= 1 and

fi(z) − fi(w) = (2i)α

∫ z

w

dζ

(2ζ)α
.

By the definition of dα, for α = 1, we have

|fi(z) − fi(w)| =
∣∣∣∣
∫ z

w

dζ

ζ

∣∣∣∣
= |Log(z) − Log(w)|
≤ d1(z, w) = 0,

where Log is the principal branch of logarithm. When 0 < α < 1, we have

|fi(z) − fi(w)| =
∣∣∣∣
∫ z

w

dζ

ζα

∣∣∣∣
=

1
1 − α

∣∣z1−α − w1−α
∣∣

≤ dα(z, w) = 0.

Hence we have z = w.

Proposition 4.3. Let z, w ∈ H. Then
(a) dα(Dδ(z), Dδ(w)) = δ1−αdα(z, w), 0 < δ < 1.
(b) dα(Tt(z), Tt(w)) = dα(z, w), t ∈ R.

Proof. Since (b) is clear, we prove only (a).
Note that

dα(δz, δw) = sup{|f(δz)− f(δw)| : ‖f‖α ≤ 1}.
For f ∈ Bα with ‖f‖α ≤ 1 let fδ(z) = f(δz). Then

‖fδ‖α = sup
z=x+iy

yα|f ′
δ(z)|

= sup yα|f ′(δz)|δ
= δ1−α sup(δy)α|f ′(δz)|
= δ1−α‖f‖α.
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Hence ‖fδ‖α ≤ δ1−α so that ∥∥∥∥ 1
δ1−α

fδ

∥∥∥∥
α

≤ 1.

Now we have

dα(z, w) = sup{|f(z) − f(w)| : ‖f‖α ≤ 1}

≥ 1
δ1−α

|f(δz)− f(δw)|

so that

δ1−αdα(z, w) ≥ dα(δz, δw).(4.1)

For the converse, we note that ∥∥∥δ1−αf 1
δ

∥∥∥ ≤ 1.

Thus we have

dα(δz, δw) ≥
∣∣∣δ1−αf 1

δ
(δz) − δ1−αf 1

δ
(δw)

∣∣∣
= δ1−α|f(z) − f(w)|

so that

dα(δz, δw) ≥ δ1−αdα(z, w).(4.2)

By (4.1) and (4.2), we get the required result.

Lemma 4.4. For 0 < α ≤ 1 and z, w ∈ H, we have

lim
z,w→z0

dα(z, w)
|z − w| =

1
(Im z0)α

.

Proof. By the definition of dα, we have
dα(z, w)
|z − w| ≥ |f(z) − f(w)|

|z − w|
for all ‖f‖α ≤ 1 and all z, w in H. Let γ be a simple closed curve in H containing z0

inside of γ . By the Cauchy integral formula, we have

lim
z,w→z0

∣∣∣∣f(z) − f(w)
z − w

∣∣∣∣ = lim
z,w→z0

∣∣∣∣ 1
2πi

∫
γ

f(ζ)
(ζ − z)(ζ − w)

dζ

∣∣∣∣
=
∣∣∣∣ 1
2πi

∫
γ

f(ζ)
(ζ − z0)2

dζ

∣∣∣∣
= |f ′(z0)|.
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Thus, letting z, w → z0, we obtain

lim inf
z,w→z0

dα(z, w)
|z − w| ≥ |f ′(z0)|

for ‖f‖α ≤ 1.

Let
fz0(w) = (2i)α

∫ w

i

dζ

(2ζ − z0 − z̄0)α
, w ∈ H.

Then ‖fz0‖α = 1 and
|f ′

z0
(z0)| =

1
(Im z0)α

.

Thus

lim inf
z,w→z0

dα(z, w)
|z − w| ≥ 1

(Im z0)α
.

It remains to show that

lim sup
z,w→z0

dα(z, w)
|z − w| ≤ 1

(Im z0)α
.

Let z, w ∈ H with z 	= w. Then

|f(z)− f(w)| =
∣∣∣∣
∫ 1

0

d

dt
f(tz + (1 − t)w)dt

∣∣∣∣
≤ |z − w|

∫ 1

0
|f ′(tz + (1− t)w)|dt

≤ |z − w|
∫ 1

0

1
|Im[tz + (1− t)w]|αdt

≤ |z − w| 1
(min{Im z, Imw})α

for all f ∈ Bα with ‖f‖α ≤ 1. Taking the supremum over all such f , we get

dα(z, w) ≤ |z − w|
(min{Im z, Imw})α

.

Letting z, w → z0, we obtain

lim sup
z,w→z0

dα(z, w)
|z − w| ≤ 1

(Im z0)α
.

This completes the proof.

We can characterize functions in Bα by using the distance dα as following.
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Theorem 4.5. Let 0 < α ≤ 1 and f is analytic on H. Then f is in Bα if and only
if there exists a constant C > 0 such that

|f(z) − f(w)| ≤ Cdα(z, w), z, w ∈ H.

Furthermore, we have

‖f‖α = sup
{ |f(z)− f(w)|

dα(z, w)
: z 	= w

}

for all f ∈ Bα.

Proof. First of all, if we put M = sup
{ |f(z)−f(w)|

dα(z,w)
: z 	= w

}
, we show that

M ≤ sup{(Im z)α|f ′(z)| : z ∈ H}.
Let

F (z) =
f(z)
‖f‖α

.

Then ‖F‖α = 1. By the definition of dα, it follows that

|F (z) − F (w)| =
1

‖f‖α
|f(z) − f(w)|

≤ dα(z, w).

Thus we have

M = sup
{ |f(z)− f(w)|

dα(z, w)

}
≤ sup{(Imu)α|f ′(u)|}.

On the other hand, for any z ∈ H, we clearly have

M ≥ lim
w→z

|f(z)− f(w)|
dα(z, w)

= lim
w→z

|f(z) − f(w)|
|z − w|

|z − w|
dα(z, w)

.

Applying Lemma 4.4, we obtain M ≥ (Im z)α|f ′(z)| for all z ∈ H.
It follows that

sup
{ |f(z) − f(w)|

dα(z, w)
: z 	= w

}
≥ sup{(Im z)α|f ′(z)| : z ∈ H},

which completes the proof of Theorem 4.5.

5. COMPARISON BETWEEN pα AND dα

We will prove Theorem 1.1.

Proof. In order to prove Theorem 1.1, we will prove that
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�dα(γ) = Lpα(γ)

for all C1 curve γ : [0, 1] → H.
Let γ be a C1 curve in the half plane H. Then, by Lemma 4.4, for any ε > 0 there

exists δ > 0 such that∣∣∣∣dα(γ(t), γ(t′))
|γ(t)− γ(t′)| − 1

[Imγ(t)]α

∣∣∣∣ ≤ ε, 0 ≤ t, t′ ≤ 1, |t − t′| ≤ δ.

Multiplying by |γ(t)− γ(t′)|, we get∣∣∣∣dα(γ(t), γ(t′))− |γ(t)− γ(t′)|
[Imγ(t)]α

∣∣∣∣ ≤ Cε, 0 ≤ t, t′ ≤ 1, |t − t′| ≤ δ,

where C is the Euclidean length of γ . Since γ is C1, by the mean value inequality, we
arrive the following:∣∣∣∣dα(γ(t), γ(t′))− |γ ′(t)|

[Imγ(t)]α
|t − t′|

∣∣∣∣ ≤ 2Cε, 0 ≤ t, t′ ≤ 1, |t − t′| ≤ δ.

We take 0 = t0 < · · · < tN = 1 with tj − tj−1 ≤ δ, j = 1, . . . , N . Then∣∣∣∣∣∣
N∑

j=1

dα(γ(tj−1), γ(tj))−
N∑

j=1

|γ ′(tj−1)|
[Imγ(tj−1)]α

(tj − tj−1)

∣∣∣∣∣∣ ≤ 2Cε.

This implies that

|�dα(γ)− Lpα(γ)| ≤ 2Cε.

Since ε is arbitrary, we get �dα(γ) = Lpα(γ). This implies that di
α = pα.

The Bloch space B on H is defined to be the space of analytic functions f on H

such that

‖f‖B = sup{Im(z)|f ′(z)| : z ∈ H} < +∞.

An important property of the Bloch space is its invariance under Möbius transforma-
tions. Thus the induced distance d1 is also invariant under Möbius transformations.

Now, we will prove Theorem 1.3.

Proof. By Theorem 1.1, we have
d1(z, w) ≤ di

1(z, w) = p1(z, w) for z, w ∈ H.

Now we prove that

p1(i, iy) ≤ d1(i, iy) for y > 0.

We know that
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p1(i, iy) = | ln(y)|.

We take
f(z) = Log

(z

i

)
, z ∈ H.

Then f is analytic in H and

f ′(z) =
1
z
.

Thus
|f ′(z)| = 1

|z| ≤
1

Im(z)
, z ∈ H

and
‖f‖B ≤ 1.

Now
|f(i)− f(iy)| = | ln(y)| = p1(i, iy).

Hence we get
p1(i, iy) ≤ d1(i, iy).

We know that p1 and d1 are invariant under Möbius transformations. Thus

p1(z, w) ≤ d1(z, w).

Hence we get

p1(z, w) = d1(z, w), z, w ∈ H.

By Theorem 1.3, we conjecture that pα = dα for all 0 < α < 1.
Define

fα(z) =
1

1 − α

{
1−

(z

i

)1−α
}

.

Then ‖fα‖α ≤ 1 and

|fα(i)− fα(iy)| = 1
1 − α

(1− y1−α) = pα(i, iy).

Thus we have dα(i, iy) = pα(i, iy). However, pα and dα are not invariant under
Möbious transformations. We don’t know that dα(i, x + iy) = pα(i, x + iy) for any
point x + iy in the standard geodesic of H. Thus the following problem is open. The
same problem for the unit disc model is still open (see [4]).

Problem 5.1. Let 0 < α < 1. Then dα = pα.
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