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NEW CRITERIA FOR EXPONENTIAL STABILITY OF LINEAR
TIME-VARYING DIFFERENTIAL SYSTEMS WITH DELAY

Pham Huu Anh Ngoc and Cao Thanh Tinh

Abstract. General linear time-varying differential systems with delay are consid-
ered. Several explicit criteria for exponential stability are presented. Furthermore,
an explicit robust stability bound for systems subject to time-varying perturbations
is given. Two examples are given to illustrate the obtained results. To the best of
our knowledge, the results of this paper are new.

1. INTRODUCTION

Delay differential equations have numerous applications in science and engineering.
They are used as models for of phenomena in the life sciences, physics and technology,
chemistry and economics see e.g. [6, 12, 21].

In particular, problems of stability of time-delay systems have been investigated in-
tensively during the past decades, see e.g. [1-5, 9, 13-16, 24-26] and references therein.
Recently, the exponential stability of delay systems have attracted much attention from
researchers, see e.g. [6, 9, 13-16, 24-26]. In this paper, we first investigate exponential
stability of linear differential systems with time-varying delay of the form

(1) ẋ(t) = A0(t)x(t) +
m∑

k=1

Ak(t)x(t − hk(t)) +
∫ 0

−h(t)
B(t, s)x(t + s)ds, t ≥ σ.

Then we deal with the problem of robust stability of (1) under time-varying structured
perturbations.

In general, problems of stability of time-varying differential systems with delay are
hard. The traditional approaches to stability of time-varying differential systems with
delay are Lyapunov’s method and its variants (Razumikhin-type theorems, Lyapunov-
Krasovskii functional techniques), see e.g. [1, 4, 5, 7, 25, 26]. In contrast to the
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traditional approaches, we present in this paper a novel approach to problems of expo-
nential stability of linear time-varying differential systems with delay. Consequently, we
get some new explicit criteria for the exponential stability of linear differential systems
with time-varying delay (1). Our approach is based on the celebrated Perron-Frobenius
theorem and the comparison principle. It is worth noticing that the approach utilized in
this paper can be used to study stability of various dynamical systems, see e.g. [16-19].

The organization of the paper is as follows. In the next section, we give some
notations and preliminary results which will be used in what follows. The main results
are presented in Section 3. We first offer some new explicit criteria for exponential
stability of the linear time-varying differential system with delay (1). Then we give an
explicit robust stability bound for the system (1) subject to the time-varying structured
perturbations. A brief discussion of the obtained results and two illustrative examples
are presented.

2. PRELIMINARIES

Let us denote by N, the set of all natural numbers. For given m ∈ N, let m :=
{1, 2, ...,m} and m0 := {0, 1, 2, ...,m}. Let K = C or R where C and R denote the
sets of all complex and all real numbers, respectively. For an integer l, q ≥ 1, Kl denotes
the l-dimensional vector space over K and Kl×q stands for the set of all l× q-matrices
with entries in K. Inequalities between real matrices or vectors will be understood
componentwise, i.e. for two real matrices A = (aij) and B = (bij) in Rl×q, we
write A ≥ B iff aij ≥ bij for i = 1, ..., l, j = 1, ...q. In particular, if aij > bij for
i = 1, ..., l, j = 1, ...q, then we write A � B instead of A ≥ B. We denote by Rl×q

+

the set of all nonnegative matrices A ≥ 0. Similar notations are adopted for vectors.
For x ∈ Kn and P ∈ Kl×q we define |x| = (|xi|) and |P | = (|pij|). Then one has

|PQ| ≤ |P ||Q|, ∀P ∈ Rl×q , ∀Q ∈ Rq×r .

A norm ‖·‖ on Kn is said to be monotonic if ‖x‖ ≤ ‖y‖ whenever x, y ∈ Kn, |x| ≤ |y|.
Every p-norm on Kn (‖x‖p = (|x1|p + |x2|p + ... + |xn|p)

1
p , 1 ≤ p < ∞ and ‖x‖∞ =

maxi=1,2,...,n |xi|), is monotonic. Throughout the paper, if otherwise not stated, the
norm of a matrix P ∈ Kl×q is understood as its operator norm associated with a given
pair of monotonic vector norms on Kl and Kp, that is ‖P‖ = max{‖Py‖ : ‖y‖ = 1}.
Note that, one has

P ∈ Kl×q , Q ∈ Rl×q
+ , |P | ≤ Q ⇒ ‖P‖ ≤ ‖|P |‖ ≤ ‖Q‖,

see, e.g. [22]. In particular, if Rn is endowed with ‖ · ‖1 or ‖ · ‖∞ then ‖A‖ = ‖|A|‖
for any A = (aij) ∈ Rn×n. More precisely, one has

‖A‖1 = ‖|A|‖1 = max
1≤j≤n

n∑
i=1

|aij|; ‖A‖∞ = ‖|A|‖∞ = max
1≤i≤n

n∑
j=1

|aij|.
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For any matrix M ∈ Kn×n the spectral abscissa of M is denoted by μ(M) =
max{
λ : λ ∈ σ(M)}, where σ(M) := {λ ∈ C : det(λIn − M) = 0} is spec-
trum of M . A matrix M ∈ Rn×n is said to be Hurwitz stable if μ(M) < 0.

A matrix M ∈ Rn×n is called a Metzler matrix if all off-diagonal elements of M
are nonnegative. We now summarize some properties of Metzler matrices which will
be used in what follows.

Theorem 2.1. [22]. Suppose that M ∈ Rn×n is a Metzler matrix. Then

(i) (Perron-Frobenius) μ(M) is an eigenvalue of M and there exists a nonnegative
eigenvector x �= 0 such that Mx = μ(M)x.

(ii) Given α ∈ R, there exists a nonzero vector x ≥ 0 such that Mx ≥ αx if and
only if μ(M) ≥ α.

(iii) (tIn − M)−1 exists and is nonnegative if and only if t > μ(M).
(iv) Given B ∈ Rn×n

+ , C ∈ Cn×n. Then

|C| ≤ B ⇒ μ(M + C) ≤ μ(M + B).

The following is immediate from Theorem 2.1.

Theorem 2.2. Let M ∈ Rn×n be a Metzler matrix. Then the following statements
are equivalent

(i) μ(M) < 0;
(ii) Mp � 0 for some p ∈ Rn

+, p � 0;
(iii) M is invertible and M−1 ≤ 0;
(iv) For given b ∈ Rn, b � 0 there exists x ∈ Rn

+, such that Mx + b = 0;
(v) For any x ∈ Rn\{0}, the row vector xTM has at least one negative entry.

Let Km×n be endowed with the norm ‖ · ‖ and let J be an interval of R. Denote
by C(J, Km×n), the vector space of all continuous functions on J with values in
Km×n. In particular, C([α, β], Km×n) is a Banach space endowed with the norm
‖ ϕ ‖:= maxθ∈[α,β] ‖ ϕ(θ) ‖. In what follows, we write C instead of C([−h, 0], Rn)
and denote Cr := {ϕ ∈ C : ‖ϕ‖ ≤ r}, for given r > 0. For a matrix function
ϕ(·) : J → Rm×n, we say that ϕ(·) nonnegative and denote it by ϕ ≥ 0 if ϕ(θ) ≥ 0
for all θ ∈ J .

3. EXPONENTIAL STABILITY OF LINEAR TIME-VARYING DIFFERENTIAL SYSTEMS

WITH DELAY

3.1. Explicit criteria for exponential stability

Consider a linear time-varying differential system with delay of the form (1), where
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(i) h(·), hk(·) : R → R (k ∈ m) are given continuous functions such that 0 <

h(t) ≤ h; 0 < hk(t) ≤ hk, ∀t ∈ R, for some positive numbers h, hk(k ∈ m)
and h ≥ max

k∈m
{hk};

(ii) Ak(·) : R → Rn×n, k ∈ m0 and B(·; ·) : R × [−h, 0] → Rn×n are given
matrix-valued continuous functions.

It is well-known that for fixed σ ∈ R and given ϕ ∈ C, (1) has a unique solution
satisfying the initial value condition

(2) x(s + σ) = ϕ(s), s ∈ [−h, 0],

see e.g. [7]. This solution is denoted by x(·; σ, ϕ).

Definition 3.1. The system (1) is said to be exponentially stable if there exist
positive numbers K, β such that

‖x(t; σ, ϕ)‖ ≤ Ke−β(t−σ)‖ϕ‖, ∀t ≥ σ,

for any σ ∈ R and any ϕ ∈ C.

With a given matrix A = (aij) ∈ Rn×n, we associate the Metzler matrix M(A) :=
(âij) ∈ Rn×n, where

âij := |aij|, i �= j, i, j ∈ n; âii := aii, i ∈ n.

We are now in the position to prove the main result of this paper.

Theorem 3.2. Let A0(t) := (a(0)
ij (t)) ∈ Rn×n, t ∈ R. The system (1) is exponen-

tially stable provided one of the following conditions holds:
(i) there exist β1 > 0 and p ∈ Rn

+, p � 0 such that

(3)

(
M(A0(t)) +

m∑
k=1

|Ak(t)|eβ1hk(t) +
∫ 0

−h(t)

|B(t, s)|e−β1sds

)
p

� −β1p, ∀t ∈ R;

(ii) there exist β2 > 0 and a Hurwitz stable matrix B0 ∈ Rn×n such that

(4) M(A0(t))+
m∑

k=1

|Ak(t)|eβ2hk(t) +
∫ 0

−h(t)

|B(t, s)|e−β2sds ≤ B0, ∀t ∈ R;

(iii) there exist A0 ∈ Rn×n and B0 ∈ Rn×n
+ such that

(5) M(A0(t)) ≤ A0, ∀t ∈ R,

(6)
m∑

k=1

|Ak(t)| +
∫ 0

−h(t)
|B(t, s)|ds ≤ B0, ∀t ∈ R,

and A0 + B0 is Hurwitz stable.
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Proof. (i) Let p := (α1, α2, ..., αn)T , αi > 0, ∀i ∈ n and let ϕ ∈ C1. Choose a
positive number K > 0 such that |ϕ(t)| � Ke−β1tp for any t ∈ [−h, 0] and for any
ϕ ∈ C1. Define u(t) := Ke−β1(t−σ)p, t ∈ [σ − h, +∞). Set x(t) := x(t; σ, ϕ), t ≥ σ.
Clearly, |x(t)| � u(t), ∀t ∈ [σ − h, σ]. We claim that |x(t)| ≤ u(t), ∀t ∈ [σ, +∞).

Assume on contrary that there exists t0 > σ such that |x(t0)| � u(t0). Set t1 :=
inf{t ∈ (σ, +∞) : |x(t)| � u(t)}. By continuity, t1 > σ and there is i0 ∈ n such that

(7) |x(t)|≤u(t), ∀t ∈ [σ, t1); |xi0(t1)|=ui0(t1), |xi0(t)|>ui0(t), ∀t ∈ (t1, t1+ε),

for some ε > 0. Let Ak(t) := (a(k)
ij (t)) ∈ Rn×n, t ∈ R, k ∈ m and let B(t, s) :=

(bij(t, s)) ∈ Rn×n, t ∈ R, s ∈ [−h, 0]. For every i ∈ n, we have

d

dt
|xi(t)| = sgn(xi(t))ẋi(t) ≤ a

(0)
ii (t)|xi(t)|+

n∑
j=1,j �=i

|a(0)
ij (t)||xj(t)|

+
m∑

k=1

n∑
j=1

|a(k)
ij (t)||xj(t − hk(t))|+

n∑
j=1

∫ 0

−h(t)
|bij(t, s)||xj(t + s)|ds,

for almost any t ∈ [σ, +∞). It follows that for any t ∈ [σ, +∞)

D+|xi(t)| :=lim sup
ε→0+

|xi(t+ε)|−|xi(t)|
ε

=lim sup
ε→0+

1
ε

∫ t+ε

t

d

ds
|xi(s)|ds≤a

(0)
ii (t)|xi(t)|

+
n∑

j=1,j �=i

|a(0)
ij (t)||xj(t)|+

m∑
k=1

n∑
j=1

|a(k)
ij (t)||xj(t − hk(t))|

+
n∑

j=1

∫ 0

−h(t)
|bij(t, s)||xj(t + s)|ds,

where D+ denotes the Dini upper-right derivative. In particular, it follows that

D+ |xi0(t1)|
(7)
≤ a

(0)
i0i0

(t1)Ke−β1(t1−σ)αi0 +
n∑

j=1,j �=i0

|a(0)
i0j(t1)|Ke−β1(t1−σ)αj

+
m∑

k=1

n∑
j=1

|a(k)
i0j(t1)|Ke−β1(t1−σ)eβ1hk(t1)αj

+
n∑

j=1

∫ 0

−h(t1)
|bi0j(t1, s)|Ke−β1(t1−σ)e−β1sαjds

= Ke−β1(t1−σ)

(
a

(0)
i0i0

(t1)αi0 +
n∑

j=1,j �=i0

|a(0)
i0j

(t1)|αj +
m∑

k=1

n∑
j=1

|a(k)
i0j (t1)|eβ1hk(t1)αj

+
n∑

j=1

∫ 0

−h(t1)
|bi0j(t1, s)|e−β1sαjds

)
(3)
< −β1Ke−β1(t1−σ)αi0 = D+ui0(t1).
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However, this conflicts with (7). Therefore

|x(t; σ, ϕ)| ≤ u(t) = Ke−β1(t−σ)p, ∀t ≥ σ; ∀ϕ ∈ C1.

By the monotonicity of vector norms, this yields

‖x(t; σ, ϕ)‖ ≤ K1e
−β1(t−σ), ∀t ≥ σ; ∀ϕ ∈ C1,

for some K1 > 0. By the linearity of (1),
1

‖ϕ‖‖x(t; σ, ϕ)‖ = ‖x(t; σ,
ϕ

‖ϕ‖)‖ ≤ K1e
−β1(t−σ), ∀t ≥ σ, ∀ϕ ∈ C, ϕ �= 0.

Therefore,
‖x(t; σ, ϕ)‖ ≤ K1e

−β1(t−σ)‖ϕ‖, ∀t ≥ σ, ∀ϕ ∈ C.

Thus, (1) is exponentially stable.

(ii) It remains to show that (ii) implies (i). Since B0 is a Hurwitz stable Metzler
matrix, there exists p ∈ Rn

+, p � 0 so that B0p � 0, by Theorem 2.2. By continuity,
this implies

(8) B0p � −ηp,

for some sufficiently small η > 0. Let β be as in (ii) and let β0 := min{β, η} > 0.
Clearly,(

M(A0(t)) +
m∑

k=1

|Ak(t)|eβ0hk(t) +
∫ 0

−h(t)
|B(t, s)|e−β0sds

)

≤
(

M(A0(t)) +
m∑

k=1

|Ak(t)|eβhk(t) +
∫ 0

−h(t)
|B(t, s)|e−βsds

)
(4)
≤ B0, ∀t ∈ R.

Therefore, (
M(A0(t)) +

m∑
k=1

|Ak(t)|eβ0hk(t) +
∫ 0

−h(t)

|B(t, s)|e−β0sds

)
p

≤ B0p
(8)� −ηp ≤ −β0p, ∀t ∈ R.

Thus, (i) holds.

(iii) We show that (i) holds. Since A0+B0 is a Hurwitz stable Metzler matrix, there
exists p ∈ Rn

+, p � 0 so that (A0 + B0)p � 0, by Theorem 2.2 (ii). By continuity,
this yields

(9) (A0 + eβhB0)p � −βp,

for some sufficiently small β > 0. Then (3) follows from (5)-(6) and (9). This
completes the proof.

The following is immediate from Theorem 3.2.
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Corollary 3.3. Suppose there exist A0 := (a(0)
ij ) ∈ Rn×n and Ak ∈ Rn×n

+ , k ∈ m

and a continuous matrix-valued function C(·) : [−h, 0] → Rn×n
+ so that (5) holds and

(10) |Ak(t)| ≤ Ak, ∀t ∈ R, k ∈ m ; |B(t, s)| ≤ C(s), ∀t ∈ R, ∀s ∈ [−h, 0].

If
∑m

k=0 Ak +
∫ 0
−h C(s)ds, is Hurwitz stable then (1) is exponentially stable.

Remark 3.4. (A discussion of the obtained results).

(i) In the well-known book [7, page 145], it has been shown that the scalar differ-
ential equation with delay

ẋ(t) = −a(t)x(t) −
m∑

k=1

bk(t)x(t − hk(t)),

is exponentially stable for all bounded continuous functions a(·), bk(·), hk(·) ∈ C(R, R),
k ∈ m, provided a(t) ≥ δ > 0,

∑m
k=1 |bk(t)| ≤ θδ, 0 < θ < 1, 0 ≤ hk(t) ≤ h, for

all t ∈ R. The proof given in [7] relies completely upon a Razumikhin-type theorem.
However, this is immediate from Corollary 3.3.

A similar result has been found in [11, Example 5.1, page 74]. More precisely, the
differential equation

ẋ(t) = −ax(t) + b(t)x(t− h),

where a, h > 0 and b(·) ∈ C(R, R) such that supt≥t0 |b(t)| < a, is exponentially
stable. One again, this assertion follows from Corollary 3.3.

On the other hand, based on a generalized Halanay inequality, it has been showed
in [10] that the equation

(11) ẋ(t) = −a(t)x(t) − b(t)
∫ t

t−τ
x(s)ds,

where a(·), b(·) ∈ C(R, R), is exponentially stable provided there exist positive num-
bers a, η such that 0 < a(t) ≤ a, t ∈ R and

(12) inf
t∈R

a(t) − τ |b(t)|
1 + 3

2τ2|b(t)| ≥ η > 0.

We show that this follows from Theorem 3.2. Clearly, et < 1 + 3
2t, t ∈ (0, β), for

sufficiently small β > 0. Let 0 < β1 < min{β
τ , η}. It follows from (12) that

−a(t) +
∫ 0

−τ
|b(t)|e−β1sds ≤ −a(t) + τ |b(t)|eβ1τ

< −a(t) + τ |b(t)|(1 +
3
2
β1τ)

(12)
≤ −β1, ∀t ∈ R.

Thus, (i) of Theorem 3.2 holds and (11) is exponentially stable.
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(ii) Generally speaking, a dynamical system is called positive if for any nonnegative
initial condition, the corresponding solution of the system is also nonnegative, see [6,
13-20]. Positive dynamical systems play an important role in modelling of dynamical
phenomena whose variables are restricted to be nonnegative. They are often encoun-
tered in applications, for example, networks of reservoirs, industrial processes involving
chemical reactors, heat exchangers, distillation columns, storage systems, hierarchical
systems, compartmental systems used for modelling transport and accumulation phe-
nomena of substances, see e.g. [6].

It is well-known that a linear time-invariant differential system of the form

(13) ẋ(t) = A0x(t) +
m∑

k=1

Akx(t − hk) +
∫ 0

−h
C(s)x(t + s)ds,

is positive if, and only if, A0 ∈ Rn×n is a Metzler matrix and Ak ∈ Rn×n
+ for all k ∈ m

and C(s) ∈ Rn×n
+ for all s ∈ [−h, 0], see e.g. [17]. Then, roughly speaking, Corollary

3.3 means that the linear time-varying differential systems with delay (1) is ”bounded
above” (in some sense) by the positive system (13) and then (1) is exponentially stable
provided (13) is exponentially stable. This is a nice surprise because it is very similar
to the well-known Weierstrass M-test in the theory of infinite series of functions (see
e.g. [2]).

3.2. Stability of perturbed systems

In this subsection, we deal with the problem of stability of (1) subject to time-
varying structured perturbations.

Suppose all of the hypotheses of Corollary 3.3 are satisfied and thus (1) is expo-
nentially stable. Consider a perturbed system of the form

(14)

ẋ(t) = (A0(t) + D0(t)Δ0(t)E0(t))x(t)

+
m∑

k=1

Ak(t)x(t − hk(t)) +
m∑

k=1

Dk(t)Δk(t)Ek(t)x(t − τk(t))

+
∫ 0

−h(t)

(B(t, s) + D(t, s)δ(t, s)E(t, s))x(t + s)ds, t ≥ σ,

where

(i) τk(·) : R → R is a given continuous function for each k ∈ m such that 0 <

τk(t) ≤ τk ≤ h, ∀t ∈ R, for some τk ∈ R+;

(ii) Dk(·) : R → Rn×lk , Ek(·) : R → Rqk×n, k ∈ m0 and D(·; ·) : R × [−h, 0] →
Rn×l, E(·; ·) : R×[−h, 0] → Rq×n are given matrix-valued continuous functions;

(iii) Δk(·) : R → Rlk×qk , k ∈ m0 and δ(·; ·) : R × [−h, 0] → Rl×q are unknown
matrix-valued continuous functions.
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We show that there exists a positive number r such that an arbitrary perturbed
equation of the form (14) remains exponentially stable whenever the size of perturba-
tions is less than r.

Theorem 3.5. Assume that all of the hypotheses of Corollary 3.3 are satisfied.
Suppose the exist Dk ∈ Rn×lk

+ , Ek ∈ Rqk×n
+ , Δk ∈ Rlk×qk

+ for k ∈ m0 and Dm+1 ∈
Rn×l

+ , Em+1 ∈ Rq×n
+ , δm+1(·) ∈ C([−h, 0], Rl×q

+ ) such that

(15) |Dk(t)| ≤ Dk, |Ek(t)| ≤ Ek, |Δk(t)| ≤ Δk, ∀t ∈ R, ∀k ∈ m0,

and

(16)
|D(t, s)| ≤ Dm+1, |E(t, s)| ≤ Em+1, |δ(t, s)| ≤ δm+1(s),

∀t ∈ R, ∀s ∈ [−h, 0].

Then the perturbed equation (14) remains exponentially stable provided

(17)

m∑
k=0

‖Δk‖ +
∫ 0

−h
‖δm+1(s)‖ds

<
1

maxi,j∈{0,1,...,m+1} ‖Ei(A0 +
∑m

k=1 Ak +
∫ 0
−h C(s)ds)−1Dj‖

.

Remark 3.6. The problem of robust stability of the linear time-invariant differential
system with discrete delays

(18) ẋ(t) = A0x(t) +
m∑

k=1

Akx(t − hk), t ≥ 0,

under the time-invariant structured perturbations

(19) Ak � Ak + DkΔkEk, k ∈ m0,

has been addressed in [8, 14, 20, 23]. Stability bounds for (18) subject to the time-
invariant structured perturbations (19) can be found in the mentioned papers. However,
the problem of robust stability of (18) subject to time-varying structured perturbations
is still open and a result like Theorem 3.5 cannot be found in the literature.

Proof of Theorem 3.5. It follows from (15) that

|Dk(t)Δk(t)Ek(t)| ≤ DkΔkEk, ∀t ∈ R, ∀k ∈ m0.

Furthermore, (10) and (16) imply that

|B(t, s)+D(t, s)δ(t, s)E(t, s)| ≤ C(s)+Dm+1δm+1(s)Em+1, ∀t ∈ R, ∀s ∈ [−h, 0].
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Let D0Δ0E0 := (m(0)
ij ) and let D0(t)Δ0(t)E0(t) := (m(0)

ij (t)) and A0(t) := (a(0)
ij (t)),

t ∈ R. Thus, A0(t)+D0(t)Δ0(t)E0(t) = (a(0)
ij (t)+m

(0)
ij (t)). It follows from (5) that

a
(0)
ii (t) + m

(0)
ii (t) ≤ a

(0)
ii + m

(0)
ii , ∀t ∈ R; ∀i ∈ n,

and
|a(0)

ij (t) + m
(0)
ij (t)| ≤ a

(0)
ij + m

(0)
ij , ∀t ∈ R; ∀i, j ∈ n, i �= j.

By Corollary 3.3, (14) is exponentially stable if

M∗ := A0 + D0Δ0E0 +
m∑

k=1

(Ak + DkΔkEk) +
∫ 0

−h

(C(s) + Dm+1δm+1(s)Em+1)ds,

is Hurwitz stable.
Assume on the contrary that μ0 := μ(M∗) ≥ 0. By the Perron-Frobenius theorem

(Theorem 2.1 (i)), there exists x0 ∈ Rn
+, x0 �= 0 such that

(
A0+D0Δ0E0+

m∑
k=1

(Ak+DkΔkEk)+
∫ 0

−h
(C(s)+Dm+1δm+1(s)Em+1)ds

)
x0=μ0x0.

By assumption, μ(
∑m

k=0 Ak+
∫ 0
−h C(s)ds) < 0. Thus (μ0In−

∑m
k=0 Ak−

∫ 0
−h C(s)ds)

is invertible and this implies

(20)

(
μ0In −

m∑
k=0

Ak −
∫ 0

−h
C(s)ds

)−1( m∑
k=0

DkΔkEkx0

+Dm+1

∫ 0

−h

δm+1(s)dsEm+1x0

)
= x0.

Let i0 be an index such that ‖Ei0x0‖ = maxi∈{0,1,...,m+1}‖Eix0‖. It follows from
(20) that ‖Ei0x0‖ > 0. Multiply both sides of (20) from the left by Ei0 to get

Ei0

(
μ0In −

m∑
k=0

Ak −
∫ 0

−h
C(s)ds

)−1( m∑
k=0

DkΔkEkx0

+Dm+1

∫ 0

−h
δm+1(s)dsEm+1x0

)
= Ei0x0.

This gives

m∑
k=0

‖Ei0(μ0In −
m∑

k=0

Ak −
∫ 0

−h
C(s)ds)−1Dk‖‖Δk‖‖Ekx0‖+
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‖Ei0(μ0In−
m∑

k=0

Ak−
∫ 0

−h

C(s)ds)−1Dm+1‖
∫ 0

−h

‖δm+1(s)‖ds‖Em+1x0‖ ≥ ‖Ei0x0‖.

Therefore,

max
i,j∈{0,1,...,m+1}

‖Ei(μ0In −
m∑

k=0

Ak −
∫ 0

−h

C(s)ds)−1Dj‖(
m∑

k=0

‖Δk‖

+
∫ 0

−h

‖δm+1(s)‖ds)‖Ei0x0‖ ≥ ‖Ei0x0‖,

or equivalently,

(21)
max

i,j∈{0,1,...,m+1}
‖Ei(μ0In −

m∑
k=0

Ak −
∫ 0

−h

C(s)ds)−1Dj‖(
m∑

k=0

‖Δk‖

+
∫ 0

−h
‖δm+1(s)‖ds) ≥ 1.

On the other hand, the resolvent identity gives

(0In −
m∑

k=0

Ak −
∫ 0

−h

C(s)ds)−1 − (μ0In −
m∑

k=0

Ak −
∫ 0

−h

C(s)ds)−1

= (μ0 − 0)(0In −
m∑

k=0

Ak −
∫ 0

−h
C(s)ds)−1(μ0In −

m∑
k=0

Ak −
∫ 0

−h
C(s)ds)−1.

Since μ0 ≥ 0, Theorem 2.1 (iii) implies that

(−
m∑

k=0

Ak −
∫ 0

−h
C(s)ds)−1 ≥ (μ0In −

m∑
k=0

Ak −
∫ 0

−h
C(s)ds)−1 ≥ 0.

This yields,

Ei(−
m∑

k=0

Ak −
∫ 0

−h
C(s)ds)−1Dj ≥ Ei(μ0In −

m∑
k=0

Ak −
∫ 0

−h
C(s)ds)−1Dj ≥ 0,

for any i, j ∈ (m + 1)0. By monotonicity of an operator norm associated with a given
pair of monotonic vector norms, we have

(22) ‖Ei(−
m∑

k=0

Ak−
∫ 0

−h
C(s)ds)−1Dj‖ ≥ ‖Ei(μ0In−

m∑
k=0

Ak−
∫ 0

−h
C(s)ds)−1Dj‖,

for any i, j ∈ (m + 1)0. Finally, (21) and (22) imply that
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m∑
k=0

‖Δk‖ +
∫ 0

−h
‖δm+1(s)‖ds

≥ 1

maxi,j∈{0,1,...,m+1} ‖Ei(A0 +
∑m

k=1 Ak +
∫ 0
−h C(s)ds)−1Dj‖

.

However, this conflicts with (17). This completes the proof.
Let A ∈ Rn×n be given. Consider a linear differential system with time-varying

delay of the form

(23) ẋ(t)=(A+A0(t))x(t)+
m∑

k=1

Ak(t)x(t−hk(t))+
∫ 0

−h(t)
B(t, s)x(t+s)ds,

where Ak(·) ∈ C(R, Rn×n) (k ∈ m0) and h(·), hk(·) ∈ C(R, R) with 0 < h(t), hk(t) ≤
h, ∀t ∈ R (k ∈ m) and B(·; ·) : R × [−h, 0] → Rn×n, is a continuous function.

Corollary 3.7. Assume that M(A) is Hurwitz stable. Then (23) is exponentially
stable provided there exist Ak ∈ Rn×n

+ , k ∈ m0 and C(·) ∈ C([−h, 0], Rn×n
+ ) such

that

|Ak(t)| ≤ Ak, ∀t ∈ R, k ∈ m0; |B(t, s)| ≤ C(s), ∀t ∈ R, ∀s ∈ [−h, 0],

and m∑
k=0

‖Ak‖+
∫ 0

−h
‖C(s)‖ds <

1
‖M(A)−1‖ .

4. ILLUSTRATIVE EXAMPLES

We illustrate the obtained results by a couple of examples.

Example 4.1. Consider the linear time-varying differential system with delay

(24)

ẋ(t) = (ln(1 +
10
9

sin2 t) − 2et2+2)x(t)

+(
9
4
e−2−t2 sin t − e−t2 cos t)x(t + cos t − 1)

−7
2

∫ 0

sin t−1
e2s−t2 cos(s + t)x(t + s)ds.

Clearly, (24) is of the form (1) with a0(t) := ln(1 + 10
9 sin2 t) − 2et2+2, t ∈ R and

a1(t) := 9
4e−2−t2 sin t−e−t2 cos t, t ∈ R and b(t, s) := −7

2e2s−t2 cos(s+t), t ∈ R, s ∈
[−2, 0].
Let β = 1, p = 1. It is clear that

a0(t) + |a1(t)|e1−cos t +
∫ 0

sin t−1
|b(t, s)|e−sds = ln(1 +

10
9

sin2 t) − 2et2+2
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+|9
4
e−2−t2 sin t − e−t2 cos t|e1−cos t +

7
2

∫ 0

sin t−1
|e2s−t2 cos(s + t)|e−sds

≤ 10
9

− 2e2 +
9
4

+ e2 +
7
2
(1− e−2) < 0, ∀t ∈ R.

Therefore, (24) is exponentially stable, by Theorem 3.2.

Example 4.2. Consider a linear time-varying differential system with delay in R2

given by

(25) ẋ(t) = A0(t)x(t) + A1(t)x(t−h1(t)) +
∫ 0

−h(t)

B(t, s)x(t + s)ds, t ≥ σ ≥ 0,

where h1(·), h(·) ∈ C(R, R) with 0 < h1(t), h(t) ≤ h, ∀t ∈ R and

A0(t) :=

(
−6(1 + t2) e−t2 sin t

cos t 1−t2

1+t2
− 7

)
; A1(t) :=

(
0 − 2t

1+t2

e− sin2 t 0

)
, t∈R,

and

B(t, s) :=

(
0 e

s
2
+st2 cos st

−e
s
2 sin st 0

)
, t∈R, s∈ [−h, 0].

Let us define

A0 :=
( −6 1

1 −6

)
; A1 :=

(
0 1
1 0

)
; C(s) :=

(
0 e

s
2

e
s
2 0

)
, s ∈ [−h, 0].

Note that A0(t) and A0 satisfy (5) and |A1(t)| ≤ A1, ∀t ∈ R; |B(t, s)| ≤
C(s), ∀t ∈ R, ∀s ∈ [−h, 0]. It is easy to check that M := A0+A1+

∫ 0
−h C(s)ds =(

−6 2(2− e−
h
2 )

2(2 − e−
h
2 ) −6

)
and μ(M) < 0. Thus (25) is exponentially stable, by

Corollary 3.3.
Consider the perturbed equation

(26)
ẋ(t) = (A0(t) + D0(t)Δ0(t)E0(t))x(t) + A1(t)x(t − h1(t))

+
∫ 0

−h(t)

(B(t, s) + D(t, s)δ(t, s)E(t, s))x(t + s)ds, t ≥ σ ≥ 0,

where

D0(t) :=

(
sin t

0

)
; E0(t) :=

( − ln(1 + cos2 t) 0

0 (1−t)2

2(1+t2)

)
, t ∈ R,
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and

D(t, s) :=

(
0

cos(s − t)

)
; E(t, s) :=

(
−est2 0

0 − 2st
1+(st)2

)
, t ∈ R, s ∈ [−h, 0],

and

Δ0(t) :=
(

a cos t be−t2
)

, δ(t, s) :=
(

cest2+s −des(1+sinst)
)

, t∈R, s∈ [−h, 0],

with a, b, c, d ≥ 0 are parameters.
Note that for any t ∈ R, s ∈ [−h, 0], we have

|D0(t)| ≤ D0 :=
(

1
0

)
; |D(t, s)| ≤ D :=

(
0
1

)
; |E0(t)| ≤ E0 :=

(
1 0
0 1

)
;

|E(t, s)| ≤ E :=
(

1 0
0 1

)
; |Δ0(t)| ≤ Δ0 :=

(
a b

)
;

|δ(t, s)| ≤ δ(s) :=
(

ces 2des
)
,

and

E0M
−1D0 = EM−1D0 =

⎛
⎜⎝

− 3

18−2(2−e−
h
2 )2

− 2−e−
h
2

18−2(2−e−
h
2 )2

⎞
⎟⎠ ;

E0M
−1D = EM−1D =

⎛
⎜⎝ − 2−e−

h
2

18−2(2−e−
h
2 )2

− 3

18−2(2−e−
h
2 )2

⎞
⎟⎠ .

Let R2 be endowed with 1-norm. By Theorem 3.5, (26) is exponentially stable provided

max{a, b}+ (1 − e−h) max{c, 2d} < 2(1 + e−
h
2 ).
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