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ON ENTIRE SOLUTIONS OF CERTAIN
TYPE OF DIFFERENTIAL-DIFFERENCE EQUATIONS

Zong-Xuan Chen and Chung-Chun Yang

Abstract. In this paper, we deal with differential-difference equations of the form

f(z)2 + p(z)f(z + c) + h(z)f ′(z) + g(z) = d1e
λz + d2e

−λz

where p(z), h(z), g(z) are polynomials, and c, d1, d2, λ ∈ C are constants with
d1d2λ �= 0. By utilizing Nevanlinna’s value distribution theory, some sufficient
conditions on the nonexistence of entire solutions regarding the equations are
provided.

1. INTRODUCTION AND RESULTS

Let f denote a nonconstant meromorphic function. We assume the readers are
familiar with the basic Nevanlinna’s value distribution theory and its standard notations
such as m(r, f), N (r, f), T (r, f), S(r, f) and etc., see e.g. [4, 5]. Also we shall
use the notation σ(f) to denote the order of f. Moreover, we shall use Pd(f) to denote
a differential polynomial in f and its derivatives f ′, f ′′, · · · , with a total degree d,
which has rational functions as the coefficients. However, without confusion, we also
use Pd(f) to denote a differential-difference polynomial in f , namely a polynomial in
f, f ′, f ′′, · · · , and its shifts f(z + cj), (where cj(j = 1, 2, · · · ) are constants), with
a total degree d.

Recently, several papers [6–8, 9] have been published regarding entire solutions of
nonlinear differential equations of the form:

(1.1) f(z)n + Pd(f) = p1e
α1z + p2e

α2z,

where d, n are integers, n > d, Pd(f) a differential polynomial in f(z), and p1, p2

nonzero polynomials and α1, α2 nonzero constants. More specifically, we recall the
following Theorems A, B, C and D.
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Theorem A. ([8]). Let n ≥ 4 be an integer and Pd(f) denote an algebraic dif-
ferential polynomial in f of degree d ≤ n−3. Let p1, p2 be two nonzero polynomials,
α1 and α2 be two nonzero constants with α1/α2 �= rational. Then the differential
equation (1.1) has no transcendental entire solutions.

Theorem B. ([7]). Let n ≥ 2 be an integer and Pd(f) denote a differential
polynomial in f of degree d ≤ n− 1. Let p1, p2 be small functions of ez , and α1 and
α2 be two positive number satisfying (n − 1)α2 ≥ nα1 > 0. If α1/α2 is irrational,
then the differential equation (1.1) has no entire solutions.

Theorem C. ([6]). Let n ≥ 3 be an integer and Pd(f) denote a differential
polynomial in f of degree d ≤ n−2 with polynomial coefficients such that Pd(0) �= 0.
Provided that p1, p2 are non-vanishing polynomials and α1 and α2 are distinct nonzero
complex constants, then the differential equation (1.1) has no entire solutions.

Remark 1.1. The condition Pd(0) �= 0 is a necessary one.

Theorem D. ([9]). Let p1, p2 and λ be nonzero constants. For the difference
equation

(1.2) f(z)3 + a(z)f(z + 1) = p1e
λz + p2e

−λz,

where a(z) is a polynomial. If a(z) is not a constant, then the equation (1.2) does not
have any transcendental entire solution of finite order.

Remark 1.2. In Theorems A, C and D, it is required that n ≥ 3, and in Theorem
B, though n can be equal to 2, it is required that α1 and α2 are positive numbers, with
α1/α2 being irrational.

In this note, we shall tackle differential or differential-difference equations in the
form (1.1) with n = 2, α1/α2 = −1, and obtain the following results.

Theorem 1.1. Let p(z), h(z), g(z) be polynomials, such that either p and h are
linearly independent, or there is one and only one of p and h being identically equal
to zero, and let c, d1, d2, λ ∈ C be constants such that d1d2λ �= 0 and eλc �= 1.

Then the differential-difference equation

(1.3) f(z)2 + p(z)f(z + c) + h(z)f ′(z) + g(z) = d1e
λz + d2e

−λz

has no entire solution of finite order.

Example. The equation

f(z)2 +
1
2
if(z + πi) + f ′(z)− 2 = ez + e−z
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has a solution f = e
z
2 + e−

z
2 , where p(z) = 1

2i and h(z) = 1 are linearly dependent.
This shows that the condition “p and h are linearly independent, or that there is one
and only one of p and h being identically equal to zero” in Theorem 1.1 can not be
omitted.

Theorem 1.2. Let h(z) ( �≡ 0), g(z) be polynomials, and let d1, d2, λ ∈ C be
constants such that d1d2λ �= 0. Then the differential equation

(1.4) f(z)2 + h(z)f ′(z) + g(z) = d1e
λz + d2e

−λz

has no entire solution.

Corollary 1.3. Let p(z), h(z), g(z) be polynomials, such that deg p �= deg h,
and let c, d1, d2, λ ∈ C be constants such that d1d2λ �= 0.

Then the differential-difference equation (1.3) has no entire solution of finite order.

Corollary 1.4 Let p(z) ( �≡ 0), g(z) be polynomials, and let d1, d2, λ ∈ C be
constants such that d1d2λ �= 0. Then the difference equation

(1.5) f(z)2 + p(z)f(z + c) + g(z) = d1e
λz + d2e

−λz

has no entire solution of finite order.

Remark 1.3. If one follows the proofs of the theorems carefully, then it is not
difficult to see that Theorems 1.1 and 1.2 remain to be valid if the term f ′ in the
equations of the two theorems is replaced by any linear differential polynomial or
differential-difference polynomial (�≡ 0), respectively.

2. PROOFS OF THEOREMS

Lemma 2.1. (see e.g. [1, p. 69-70]). Suppose that n ≥ 2 and let fj(z), j =
1, · · · , n, be meromorphic functions and gj(z), j = 1, · · · , n, be entire functions such
that

(i)
∑n

j=1 fj(z) exp{gj(z)} ≡ 0;
(ii) when 1 ≤ j < k ≤ n, gj(z) − gk(z) is not constant;
(iii) when 1 ≤ j ≤ n, 1 ≤ h < k ≤ n,

(2.1) T (r, fj) = o{T (r, exp{gh − gk})} (r → ∞, r �∈ E),

where E ⊂ (1,∞) is of finite linear measure or finite logarithmic measure.
Then fj(z) ≡ 0, j = 1, · · · , n.
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Lemma 2.2. (see [3]). Let f be a nonconstant finite-order meromorphic solution
of

fnP (f) = Q(f),

where P (f), Q(f) are difference polynomials in f with small meromorphic coeffi-
cients, and let δ < 1. If the total degree of Q(f) as a polynomial in f and its shifts
is at most n, then

(2.2) m(r, P (f)) = o

(
T (r + |c|, f)

rδ
+ o(T (r, f)

)

for all r outside of a possible exceptional set with finite logarithmic measure.

Remark 2.1. In Lemma 2.2, if f is transcendental with σ(f) < ∞, and P (f), Q(f)
are differential-difference polynomials in f , then by using a similar method as in the
proof of Lemma 2.4.2 of [5], we see that a similar conclusion of Lemma 2.2 holds.
Moreover, we see that if the coefficients of P (f) and Q(f) (σ(f) < ∞) are polynomials
or rational functions aj(z), j = 1, · · · , k, then (2.2) can be replaced by

m(r, P (f)) = S(r, f) + O

⎛
⎝ k∑

j=1

m(r, aj)

⎞
⎠

where r is sufficiently large.

Lemma 2.3. Let λ denote a nonzero constant, and H(z) a nonvanishing poly-
nomial. Then the differential equation

(2.3) 4y′′(z) − λ2y(z) = H(z)

has a special solution y0(z) which is a nonvanishing polynomial.

Proof. If H(z) is a nonzero constant, then clearly y0(z) = −H(z)
λ2 is a special

solution of (2.3).
Now suppose that

H(z) = anzn + an−1z
n−1 + · · ·+ a1z + a0

where n ≥ 1 is an integer, an �= 0, an−1, · · · , a0 are constants.
We use the method of undetermined coefficients, to derive the polynomial solution

y0(z) satisfying (2.3) by λ, an, an−1, · · · , a0. Clearly, by (2.3), we see that deg y0 =
deg H. For n = 1, or 2, clearly, equation (2.3) has a polynomial solution

y0(z) = − 1
λ2

(a1z + a0),

or
y0(z) = − 1

λ2
(a2z

2 + a1z + a0 + 8
a2

λ2
).
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In a general case, for n ≥ 3, (2.3) has a polynomial solution

y0(z) = bnzn + bn−1z
n−1 + · · ·+ bjz

j + · · ·+ b1z + b0

where
bn = − 1

λ2
an, bn−1 = − 1

λ2
an−1,

bj = − 1
λ2

(aj − 4(j + 2)(j + 1)bj+2) j = n − 2, · · · , 0.

Hence, (2.3) has a nonvanishing polynomial solution y0(z).

Lemma 2.4. (see [2]). Suppose that f(z) is a meromorphic function of finite
order. Then

T (r + 1, f) = T (r, f) + S(r, f).

Remark 2.2. it follows that σ(f(z + c)) = σ(f(z)), for any constant c ∈ C.

2.1. Proof of Theorem 1.1

Clearly, σ
(
d1e

λz + d2e
−λz

)
= 1. By Lemma 2.4 and Remark 2.2, it follows right

away from the equation (1.3) that σ(f) ≥ 1.

Differentiating both sides of (1.3), we obtain

(2.4) 2f(z)f ′(z) + Q11(f) = d1λeλz + d2(−λ)e−λz,

where Q11(f) and the following Q12(f), Q13(f), · · · denote differential-difference
polynomials in f(z), with a total degree ≤ 1, and with the polynomials as the coeffi-
cients.

By eliminating e−λz from the equations (1.3) and (2.4), we have

(2.5) λf(z)2 + 2f(z)f ′(z) + Q12(f) = 2λd1e
λz.

Similarly, by eliminating eλz from the equations (1.3) and (2.4), we have

(2.6) λf(z)2 − 2f(z)f ′(z) + Q13(f) = 2λd2e
−λz.

Again by eliminating eλz and e−λz from the equations (2.5) and (2.6), we obtain

λ2f(z)4 − 4f(z)2f ′(z)2 + Q31(f) = 4λ2d1d2

or

(2.7) λ2f(z)4 − 4f(z)2f ′(z)2 + Q32(f) = 0,

where Q31(f), Q32(f) and the following Q33(f), · · · denote differential-difference
polynomials in f(z), with total degree ≤ 3.
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Differentiating both sides of (2.4), we have

(2.8) 2f ′(z)2 + 2f(z)f ′′(z) + Q14(f) = d1λ
2eλz + d2λ

2e−λz .

Combining (1.3) with (2.8), we obtain

2f ′(z)2 + 2f(z)f ′′(z) − λ2f(z)2 + Q15(f) = 0,

that is

(2.9) f ′(z)2 =
1
2
λ2f(z)2 − f(z)f ′′(z) − Q15(f).

Substituting (2.9) into (2.7), we obtain

λ2f(z)4 − 4f(z)2
(

1
2
λ2f(z)2 − f(z)f ′′(z) − Q15(f)

)
+ Q32(f) = 0

or

(2.10) f(z)3
(
4f ′′(z) − λ2f(z)

)
= Q33(f).

Now we consider the equation (2.10) in two cases, Case 1: Q33(f) �≡ 0 and Case
2: Q33(f) ≡ 0.

Case 1. In this case, since f(z) is a transcendental entire function of finite order,
we see that (2.10) satisfies conditions of Lemma 2.2 and Remark 2.1. Thus, we have

(2.11)
m

(
r, 4f ′′(z)− λ2f(z)

)
= S(r, f) + O(m(r, p) + m(r, h) + m(r, g)) = O(log r),

which implies that 4f ′′(z)−λ2f(z) is a polynomial. Thus, from (2.10) and Q33(f) �≡ 0,
we have

(2.12) 4f ′′(z)− λ2f(z) = H(z),

that H(z) is a nonvanishing polynomial, but H(z) may be a nonzero constant. By
Lemma 2.3, we see that equation (2.12) must have a nonvanishing polynomial solution,
say, f0(z).

Since the differential equation

(2.13) 4f ′′(z)− λ2f(z) = 0

has two fundamental solutions

f1(z) = e
λ
2
z, f2(z) = e−

λ
2
z.
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It follows that the general entire solution f(z) of (2.12) can be expressed as

(2.14) f(z) = c1e
λ
2
z + c2e

−λ
2
z + f0(z),

where c1 and c2 are constants, f0(z) is a nonvanishing polynomial.
Substituting this into (1.3), we obtain

(2.15)

(c2
1 − d1)eλz + (c2

2 − d2)e−λz + c1

[
2f0(z) + e

λ
2
cp(z) +

λ

2
h(z)

]
e

λ
2
z

+c2

[
2f0(z) + e

−λ
2

cp(z)− λ

2
h(z)

]
e−

λ
2
z

+f0(z)2 + 2c1c2 + p(z)f0(z) + h(z)f ′
0(z) + g(z) = 0.

It follows from Lemma 2.1 that

c2
1 = d1 �= 0, c2

2 = d2 �= 0, f0(z)2 + 2c1c2 + p(z)f0(z) + h(z)f ′
0(z) + g(z) ≡ 0,

and

(2.16) 2f0(z) + e
λ
2
cp(z) +

λ

2
h(z) ≡ 0, 2f0(z) + e

−λ
2

cp(z)− λ

2
h(z) ≡ 0.

Clearly, if h(z) ≡ 0, then p(z) �≡ 0 by assumption of the theorem. Thus, by (2.16),
we obtain 2f0(z) = −e

λc
2 p(z) = −e−

λc
2 p(z), which leads to eλc = 1, which is a

contradiction with the assumption that eλc �= 1. If p(z) ≡ 0, then h(z) �≡ 0. Again by
(2.16), we have 2f0(z) ≡ −λ

2 h(z) ≡ λ
2 h(z), which is also a contradiction.

Now suppose that p(z) and h(z) are linearly independent, which implies neither
p(z) nor h(z) can be identically zero. Then, by (2.16), we deduce that

(2.17)
(
e

λc
2 − e−

λc
2

)
p(z) + λh(z) ≡ 0.

This also contradicts the assumptions of the theorem.

Case 2. In this case, by (2.10) and Q33(z) ≡ 0, we have that

(2.18) 4f ′′(z) − λ2f(z) ≡ 0.

By the fact that every entire solution f(z)( �≡ 0) of (2.18) can be expressed as

(2.19) f(z) = c1e
λ
2
z + c2e

−λ
2
z,

where c1 and c2 are constants, with at least one of them being not equal to zero.
Substituting this into (1.3), we obtain

(c2
1 − d1)eλz + (c2

2 − d2)e−λz + c1

[
e

λ
2
cp(z) +

λ

2
h(z)

]
e

λ
2
z
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(2.20) +c2

[
e

−λ
2

cp(z)− λ

2
h(z)

]
e−

λ
2
z + g(z) = 0.

Again by Lemma 2.1, we conclude

c2
1 = d1 �= 0, c2

2 = d2 �= 0, 2c1c2 + g(z) ≡ 0,

and

(2.21) e
λ
2
cp(z) +

λ

2
h(z) ≡ 0, e

−λ
2

cp(z) − λ

2
h(z) ≡ 0.

Thus, we have p(z) ≡ 0 and h(z) ≡ 0, which contradicts with the assumptions of
the theorem. Similarly, if p(z) and h(z) are linearly independent, then by the same
arguments used in Case 1, we can also derive a contradiction. Theorem 1.1 is thus
proved.

2.2. Proof of Theorem 1.2
Now we are going to show that any entire solution f of the equation (1.4) must be

of finite order. By (1.4), we have that

(2.22) T (r, f2 + hf ′ + g) = T (r, d1e
λz + d2e

−λz) ≤ 2T (r, eλz) + O(1).

On the other hand, by the fact that

T (r, f ′) = m(r, f) ≤ m

(
r,

f ′

f

)
+ T (r, f) ≤ T (r, f) + S(r, f)

we obtain

(2.23)

T (r, f2 + hf ′ + g) ≥ T (r, f2) − T (r, hf ′ + g)

≥ 2T (r, f) − (T (r, f ′) + T (r, h) + T (r, g)

≥ 2T (r, f) − T (r, f) + S(r, f) = T (r, f) + S(r, f).

This and (2.22) lead to

T (r, f) + S(r, f) ≤ 2T (r, eλz) + O(1).

It follows that σ(f) ≤ σ(eλz) = 1. Thus, σ(f) is finite. This contradicts Theorem
1.1 that the equation (1.4) has no entire solution of finite order. The theorem is thus
proved.

Finally, we would like to conclude the paper with the following:

Conjecture. Let q1 and q2 denote any two nonconstant polynomials, with q1/q2 �=
rational number, and P1(f) denote any differential or differential-difference polynomial,
with P1(0) �= 0, then the equation

f(z)2 + P1(f) = q3e
q1(z) + q4e

q2(z)

has no entire solutions, for any two polynomials q3 and q4 with q3q4 �≡ 0.
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