TAIWANESE JOURNAL OF MATHEMATICS

Vol. 17, No. 5, pp. 1751-1764, October 2013

DOI: 10.11650/tjm.17.2013.3090

This paper is available online at http://journal.taiwanmathsoc.org.tw

RIEMANN-STIELTJES OPERATOR FROM MIXED NORM SPACES TO ZYGMUND-TYPE SPACES ON THE UNIT BALL

Yongmin Liu and Yanyan Yu

Abstract. In this paper, the authors characterize the boundedness and compactness of the following Riemann-Stieltjes operator

$$L_g(f)(z) = \int_0^1 \mathcal{R}f(tz)g(tz) \, \frac{dt}{t}, z \in B,$$

where $\mathcal{R}f(z)$ is the radial derivative of function f at z, from mixed norm spaces $H(p, q, \phi)$ to Zygmund-type spaces on the unit ball.

1. Introduction

We begin by fixing notation and some results. Let $z=(z_1,\cdots,z_n)$ and $w=(w_1,\cdots,w_n)$ be points in the complex vector space C^n and $z\overline{w}:=\langle z,w\rangle=z_1\overline{w_1}+z_2\overline{w_2}+\cdots+z_n\overline{w_n}$, where $\overline{w_k}$ is the complex conjugate of w_k . We also write

$$|z| = \sqrt{\langle z, z \rangle} = \sqrt{\sum_{j=1}^{n} |z_j|^2}.$$

We denote by $B = \{z \in C^n : |z| < 1\}$ the open unit ball in C^n . Let S be its boundary of B, and let H(B) denote the class of all holomorphic functions on B. For $f \in H(B)$, let

$$\mathcal{R}f(z) = \sum_{j=1}^{n} z_j \frac{\partial f}{\partial z_j}(z)$$

stand for the radial derivative of f at z ([30, 60]).

The iterated radial derivative operator $\mathbb{R}^m f$ is defined inductively by ([8, 45]):

Received March 21, 2013, accepted April 9, 2013.

Communicated by Alexander Vasiliev.

2010 Mathematics Subject Classification: 47B38, 47G10, 32A10, 32A18.

Key words and phrases: Unit ball, Mixed norm space, Zygmund-type space, Riemann-Stieltjes operator. Supported by the Natural Science Foundation of China (11171285) and the Priority Academic Program Development of Jiangsu Higher Education Institutions.

$$\mathcal{R}^m f = \mathcal{R}\left(\mathcal{R}^{m-1}f\right), m \in N - \{1\}.$$

A positive continuous function ϕ on [0,1) is called normal, if there are positive numbers s, t (0 < s < t) and $t_0 \in [0,1)$ such that (see, for example, [8, 26, 31])

$$\frac{\phi(r)}{(1-r)^s} \text{ is decreasing on } [t_0 1) \text{ and } \lim_{r \to 1} \frac{\phi(r)}{(1-r)^s} = 0,$$

$$\frac{\phi(r)}{(1-r)^t} \text{ is increasing on } [t_0 1) \text{ and } \lim_{r \to 1} \frac{\phi(r)}{(1-r)^t} = \infty.$$

From now on if we say that a function $\phi: B \to [0, \infty)$ is normal, we will also assume that it is radial, that is, $\phi(z) = \phi(|z|), z \in B$.

For $p, q \in (0, \infty)$, let

$$||f||_{p,q,\phi} = \left(\int_0^1 M_q^p(f,r) \frac{\phi^p(r)}{1-r} dr\right)^{\frac{1}{p}},$$

where

$$M_q(f,r) = \left(\int_S |f(r\zeta)|^q d\sigma(\zeta)\right)^{\frac{1}{q}}, \ 0 \le r < 1.$$

The mixed norm space $H(p,q,\phi)$ consists of all $f\in H(B)$ such that $\|f\|_{p,q,\phi}<\infty$. For $1\leq p<\infty$, $H(p,q,\phi)$, equipped with the norm $\|f\|_{p,q,\phi}$, is a Banach space. When 0< p<1, $\|\cdot\|_{p,q,\phi}$ is a quasinorm on $H(p,q,\phi)$, $H(p,q,\phi)$ is a Fréchet space but not a Banach space. If $0< p=q<\infty$, then $H(p,p,\phi)$ is the Bergman-type space

$$H(p,p,\phi) = \left\{ f \in H(B) : \int_{B} |f(z)|^p \frac{\phi^p(|z|)}{1-|z|} dA(z) < \infty \right\},$$

where dA(z) denotes the normalized Lebesgue area measure on the unit ball B such that A(B)=1. Note that if $\phi(r)=(1-r)^{(\alpha+1)/p}$, then $H(p,p,\phi)$ is the weighted Bergman space $A^p_\alpha(B)$ defined for $0< p<\infty$ and $\alpha>-1$, as the space of all $f\in H(B)$ such that

$$||f||_{A^p_{\alpha}}^p = \int_B |f(z)|^p (1-|z|^2)^{\alpha} dA(z) < \infty.$$

For some results on mixed norm and related spaces, as well as on some operators on them, see, for example, [1, 2, 8, 13, 26, 27, 33, 34, 35, 40, 41, 42, 44, 47, 48, 49, 56, 59] and the references therein.

Let μ be a normal function on [0,1). We say that an $f \in H(B)$ belongs to the space $\mathcal{Z}_{\mu} = \mathcal{Z}_{\mu}(B)$, if

$$\sup \left\{ \mu(|z|) \left| \mathcal{R}^2 f(z) \right| : z \in B \right\} < \infty.$$

It is easy to check that \mathcal{Z}_{μ} becomes a Banach space under the norm

$$||f||_{\mathcal{Z}_{\mu}} = |f(0)| + \sup \{\mu(|z|) |\mathcal{R}^2 f(z)| : z \in B\}.$$

 \mathcal{Z}_{μ} will be called the Zygmund-type space. Let $\mathcal{Z}_{\mu,0}=\mathcal{Z}_{\mu,0}(B)$ denote the class of holomorphic functions $f\in\mathcal{Z}_{\mu}$ such that

$$\lim_{|z| \to 1} \mu(|z|) \left| \mathcal{R}^2 f(z) \right| = 0,$$

 $\mathcal{Z}_{\mu,0}$ is called the little Zygmund-type space (see [23, 25, 39]). It is easy to see that $\mathcal{Z}_{\mu,0}$ is a closed subspace of \mathcal{Z}_{μ} . When $\mu(r)=1-r^2$, Zygmund-type space \mathcal{Z}_{μ} (little Zygmund-type space $\mathcal{Z}_{\mu,0}$) is the classical Zygmund space \mathcal{Z} (little Zygmund-type space \mathcal{Z}_0). For some other results on Zygmund-type and related spaces and operators on them, see, for example, [14, 16, 18, 27, 49, 56, 59, 60, 61, 62].

Let $g \in H(B)$. The following Riemann-Stieltjes operator

(1)
$$L_g(f)(z) = \int_0^1 \mathcal{R}f(tz)g(tz)\frac{dt}{t}, \ f \in H(B), \ z \in B.$$

was recently introduced by S. Li and S. Stević ([10, 12, 13]). This operator is closely related to the extended Cesàro operator

$$T_g(f)(z) = \int_0^1 f(tz) \mathcal{R}g(tz) \frac{dt}{t}, \ f \in H(B), \ z \in B.$$

Some characterizations of the boundedness and compactness of the operator L_g between various spaces of holomorphic functions on the unit ball can be found in [3, 15, 19, 21, 24, 37, 47, 64]. Some related integral-type operators in C^n are treated, for example, in [4, 5, 6, 7, 9, 22, 25, 32, 33, 36, 38, 41, 43, 46, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 61, 62, 63].

For related one-dimensional operators, see, for example [11, 14, 16, 17, 18, 20, 27, 28, 42, 65, 66], as well as the related references therein.

The purpose of the paper is to study the boundedness and compactness of the operator L_g from mixed-norm spaces into Zygmund-type spaces. Throughout the paper, the letter C denotes a positive constant which may vary at each occurrence but it is independent of the essential variables.

2. Auxiliary Results

Here we state several auxiliary results most of which will be used in the proof of the main result.

Lemma 1. ([36, 37, 46]). For every $f, g \in H(B)$ it holds

$$\mathcal{R}L_q(f)(z) = \mathcal{R}f(z)g(z).$$

Lemma 2. ([45]). Assume that $m \in N$, 0 < p, $q < \infty$, ϕ is normal, $f \in H(p, q, \phi)$. Then there is a positive constant C independent of f such that

$$|\mathcal{R}^m f(z)| \le \frac{C|z|}{\phi(|z|) (1 - |z|^2)^{m + \frac{n}{q}}} ||f||_{p, q, \phi}, z \in B.$$

Lemma 3. ([8]). Assume that $0 < p, q < \infty$, for $\beta > t, \omega \in B$ and

$$f_{\omega}(z) = \frac{(1 - |\omega|^2)^{\beta}}{\phi(|\omega|)(1 - z\overline{\omega})^{\beta + \frac{n}{q}}}, \ z \in B.$$

Then $f_{\omega} \in H(p,q,\phi)$ and there is a positive constant C independent of f such that

$$\sup_{\omega \in B} \|f_{\omega}\|_{p, q, \phi} \le C.$$

The next Schwartz-type lemma is proved in a standard way (see, e.g. [33, Lemma 3]).

Lemma 4. Assume φ is a holomorphic self-map of B, ϕ is normal, 0 < p, $q < \infty$ and $g \in H(B)$. Then $L_g : H(p, q, \phi) \to \mathcal{Z}_{\mu}$ is compact if and only if $L_g : H(p, q, \phi) \to \mathcal{Z}_{\mu}$ is bounded and for any bounded sequence $\{f_n\}$ in $H(p, q, \phi)$ which converges to zero uniformly on compact subsets of B as $n \to \infty$, we have $\|L_g(f_n)\|_{\mathcal{Z}_{\mu}} \to 0, n \to \infty$.

Lemma 5. ([23, 62]). A closed set K in $\mathcal{Z}_{\mu,0}$ is compact if and only if it is bounded and satisfies

$$\lim_{|z| \to 1} \sup_{f \in K} \mu(|z|) \left| \mathcal{R}^2 f(z) \right| = 0.$$

3. The Boundedness and Compactness of $L_g: H(p,\,q,\,\phi) o \mathcal{Z}_{\mu}\,\,(\mathcal{Z}_{\mu,0})$

In this section we formulate and prove our main result. Assume that $g \in H(B)$, ϕ and μ are normal.

Theorem 1 Assume that $0 < p, q < \infty$. Then $L_g : H(p, q, \phi) \to \mathcal{Z}_{\mu}$ is bounded if and only if

(2)
$$\sup_{z \in B} \frac{\mu(|z|)|zg(z)|}{\phi(|z|) (1 - |z|^2)^{2 + \frac{n}{q}}} < \infty,$$

and

(3)
$$\sup_{z \in B} \frac{\mu(|z|)|z\mathcal{R}g(z)|}{\phi(|z|) (1-|z|^2)^{1+\frac{n}{q}}} < \infty.$$

Proof. First assume that conditions (2) and (3) hold. For any $f \in H(p, q, \phi)$, by Lemmas 1 and 2, we have

$$\begin{split} &\mu(|z|) \left| \mathcal{R}^2 \left(L_g(f) \right)(z) \right| \\ &= \mu(|z|) \left| \mathcal{R} \left(\mathcal{R} f(z) g(z) \right) \right| \\ &= \mu(|z|) \left| \mathcal{R}^2 f(z) g(z) + \mathcal{R} f(z) \mathcal{R} g(z) \right| \\ &\leq C \|f\|_{p,q,\phi} \left(\frac{\mu(|z|) |zg(z)|}{\phi(|z|) \left(1 - |z|^2 \right)^{2 + \frac{n}{q}}} + \frac{\mu(|z|) |z \mathcal{R} g(z)|}{\phi(|z|) \left(1 - |z|^2 \right)^{1 + \frac{n}{q}}} \right). \end{split}$$

From this along with the fact $(L_g(f))(0) = 0$, it follows the operator L_g : $H(p, q, \phi) \to \mathcal{Z}_{\mu}$ is bounded.

Conversely, assume that the operator L_g : $H(p, q, \phi) \to \mathcal{Z}_{\mu}$ is bounded. Then for any $f \in H(p, q, \phi)$, there is a positive constant C independent of f such that $\|L_g(f)\|_{\mathcal{Z}_{\mu}} \le C\|f\|_{p,q,\phi}$. For a fixed $\omega \in B$, set

(4)
$$f_{\omega}(z) = \left(t + 2 + \frac{n}{q}\right) \frac{(1 - |\omega|^2)^{t+1}}{\phi(|\omega|)} \frac{1}{(1 - z\overline{w})^{t+1 + \frac{n}{q}}} - \left(t + 1 + \frac{n}{q}\right) \frac{(1 - |\omega|^2)^{t+2}}{\phi(|\omega|)} \frac{1}{(1 - z\overline{w})^{t+2 + \frac{n}{q}}}, z \in B,$$

then

$$\mathcal{R}f_{\omega}(z) = \left(t + 2 + \frac{n}{q}\right) \frac{(1 - |\omega|^{2})^{t+1}}{\phi(|\omega|)} \sum_{j=1}^{n} z_{j} \frac{\partial}{\partial z_{j}} \frac{1}{(1 - z\overline{w})^{t+1 + \frac{n}{q}}} \\
- \left(t + 1 + \frac{n}{q}\right) \frac{(1 - |\omega|^{2})^{t+2}}{\phi(|\omega|)} \sum_{j=1}^{n} z_{j} \frac{\partial}{\partial z_{j}} \frac{1}{(1 - z\overline{w})^{t+2 + \frac{n}{q}}} \\
= \left(t + 2 + \frac{n}{q}\right) \left(t + 1 + \frac{n}{q}\right) \frac{(1 - |\omega|^{2})^{t+1}}{\phi(|\omega|)} \frac{z\overline{w}}{(1 - z\overline{w})^{t+2 + \frac{n}{q}}} \\
- \left(t + 1 + \frac{n}{q}\right) \left(t + 2 + \frac{n}{q}\right) \frac{(1 - |\omega|^{2})^{t+2}}{\phi(|\omega|)} \frac{z\overline{w}}{(1 - z\overline{w})^{t+3 + \frac{n}{q}}},$$

and

$$\mathcal{R}^{2} f_{\omega}(z) = \left(t + 2 + \frac{n}{q}\right) \left(t + 1 + \frac{n}{q}\right) \frac{(1 - |\omega|^{2})^{t+1}}{\phi(|\omega|)} \mathcal{R} \frac{z\overline{w}}{(1 - z\overline{w})^{t+2 + \frac{n}{q}}} \\
- \left(t + 1 + \frac{n}{q}\right) \left(t + 2 + \frac{n}{q}\right) \frac{(1 - |\omega|^{2})^{t+2}}{\phi(|\omega|)} \mathcal{R} \frac{z\overline{w}}{(1 - z\overline{w})^{t+3 + \frac{n}{q}}} \\
= \left(t + 2 + \frac{n}{q}\right) \left(t + 1 + \frac{n}{q}\right) \left(t + 2 + \frac{n}{q}\right) \frac{(1 - |\omega|^{2})^{t+1}}{\phi(|\omega|)} \frac{(z\overline{w})^{2}}{(1 - z\overline{w})^{t+3 + \frac{n}{q}}}$$

$$\begin{split} &-\left(t+1+\frac{n}{q}\right)\left(t+2+\frac{n}{q}\right)\left(t+3+\frac{n}{q}\right)\frac{(1-|\omega|^2)^{t+2}}{\phi(|\omega|)}\frac{(z\overline{w})^2}{(1-z\overline{w})^{t+4+\frac{n}{q}}} \\ &+\left(t+2+\frac{n}{q}\right)\left(t+1+\frac{n}{q}\right)\frac{(1-|\omega|^2)^{t+1}}{\phi(|\omega|)}\frac{z\overline{w}}{(1-z\overline{w})^{t+2+\frac{n}{q}}} \\ &-\left(t+1+\frac{n}{q}\right)\left(t+2+\frac{n}{q}\right)\frac{(1-|\omega|^2)^{t+2}}{\phi(|\omega|)}\frac{z\overline{w}}{(1-z\overline{w})^{t+3+\frac{n}{q}}}. \end{split}$$

By Lemma 3, $f_{\omega} \in H(p, q, \phi)$ and $\sup_{\omega \in B} ||f_{\omega}||_{p, q, \phi} \leq C$. By applying (5) and (6), we get

(7)
$$\mathcal{R}f_{\omega}(\omega) = 0$$
, $\mathcal{R}^2 f_{\omega}(\omega) = -\left(t + 1 + \frac{n}{q}\right) \left(t + 2 + \frac{n}{q}\right) \frac{|\omega|^4}{\phi(|\omega|)(1 - |\omega|^2)^{2 + \frac{n}{q}}}$

thus for any $\omega \in B$, we get

(8)
$$\left(t+1+\frac{n}{q}\right)\left(t+2+\frac{n}{q}\right)\frac{\mu(|\omega|)|g(\omega)||\omega|^4}{\phi(|\omega|)(1-|\omega|^2)^{2+\frac{n}{q}}}$$

$$=\mu(|\omega|)\left|\mathcal{R}^2 f_{\omega}(\omega)g(\omega)+\mathcal{R} f_{\omega}(\omega)\mathcal{R} g(\omega)\right|$$

$$\leq \|L_g(f_{\omega})\|_{\mathcal{Z}_{\mu}} \leq C\|L_g\|_{H(p,q,\phi)\to\mathcal{Z}_{\mu}}.$$

Let $r \in (0, 1)$, from (8) we get

(9)
$$\sup_{r<|\omega|<1} \frac{\mu(|\omega|)|\omega g(\omega)|}{\phi(|\omega|)(1-|\omega|^2)^{2+\frac{n}{q}}} \\ \leq \frac{C}{r^3} \sup_{r<|\omega|<1} \mu(|\omega|) \left| \mathcal{R}^2 f_{\omega}(\omega) g(\omega) + \mathcal{R} f_{\omega}(\omega) \mathcal{R} g(\omega) \right| \\ \leq C \|L_g\|_{H(p,q,\phi) \to \mathcal{Z}_{\mu}}.$$

Using the fact

$$\sup_{|\omega| \le r} \frac{\mu(|\omega|)|\omega g(\omega)|}{\phi(|\omega|)(1-|\omega|^2)^{2+\frac{n}{q}}} \le C \sup_{|\omega| \le r} \mu(|\omega|)|g(\omega)| \le C,$$

and inequality (9), we get that (2) holds.

To prove (3), set

(10)
$$h_{\omega}(z) = \left(t + 3 + \frac{n}{q}\right) \frac{(1 - |\omega|^2)^{t+1}}{\phi(|\omega|)} \frac{1}{(1 - z\overline{w})^{t+1 + \frac{n}{q}}} - \left(t + 1 + \frac{n}{q}\right) \frac{(1 - |\omega|^2)^{t+2}}{\phi(|\omega|)} \frac{1}{(1 - z\overline{w})^{t+2 + \frac{n}{q}}}, z \in B.$$

A straightforward calculation shows that

$$\mathcal{R}h_{\omega}(z) = \left(t + 3 + \frac{n}{q}\right) \frac{(1 - |\omega|^2)^{t+1}}{\phi(|\omega|)} \sum_{j=1}^{n} z_j \frac{\partial}{\partial z_j} \frac{1}{(1 - z\overline{w})^{t+1 + \frac{n}{q}}} \\
- \left(t + 1 + \frac{n}{q}\right) \frac{(1 - |\omega|^2)^{t+2}}{\phi(|\omega|)} \sum_{j=1}^{n} z_j \frac{\partial}{\partial z_j} \frac{1}{(1 - z\overline{w})^{t+2 + \frac{n}{q}}} \\
= \left(t + 3 + \frac{n}{q}\right) \left(t + 1 + \frac{n}{q}\right) \frac{(1 - |\omega|^2)^{t+1}}{\phi(|\omega|)} \frac{z\overline{w}}{(1 - z\overline{w})^{t+2 + \frac{n}{q}}} \\
- \left(t + 1 + \frac{n}{q}\right) \left(t + 2 + \frac{n}{q}\right) \frac{(1 - |\omega|^2)^{t+2}}{\phi(|\omega|)} \frac{z\overline{w}}{(1 - z\overline{w})^{t+3 + \frac{n}{q}}},$$

and

$$\begin{aligned}
&\mathcal{R}^{2}h_{\omega}(z) \\
&= \left(t + 3 + \frac{n}{q}\right) \left(t + 1 + \frac{n}{q}\right) \frac{(1 - |\omega|^{2})^{t+1}}{\phi(|\omega|)} \mathcal{R} \frac{z\overline{w}}{(1 - z\overline{w})^{t+2 + \frac{n}{q}}} \\
&- \left(t + 1 + \frac{n}{q}\right) \left(t + 2 + \frac{n}{q}\right) \frac{(1 - |\omega|^{2})^{t+2}}{\phi(|\omega|)} \mathcal{R} \frac{z\overline{w}}{(1 - z\overline{w})^{t+3 + \frac{n}{q}}} \\
&= \left(t + 3 + \frac{n}{q}\right) \left(t + 1 + \frac{n}{q}\right) \left(t + 2 + \frac{n}{q}\right) \frac{(1 - |\omega|^{2})^{t+1}}{\phi(|\omega|)} \frac{(z\overline{w})^{2}}{(1 - z\overline{w})^{t+3 + \frac{n}{q}}} \\
&- \left(t + 1 + \frac{n}{q}\right) \left(t + 2 + \frac{n}{q}\right) \left(t + 3 + \frac{n}{q}\right) \frac{(1 - |\omega|^{2})^{t+2}}{\phi(|\omega|)} \frac{(z\overline{w})^{2}}{(1 - z\overline{w})^{t+4 + \frac{n}{q}}} \\
&+ \left(t + 3 + \frac{n}{q}\right) \left(t + 1 + \frac{n}{q}\right) \frac{(1 - |\omega|^{2})^{t+1}}{\phi(|\omega|)} \frac{z\overline{w}}{(1 - z\overline{w})^{t+2 + \frac{n}{q}}} \\
&- \left(t + 1 + \frac{n}{q}\right) \left(t + 2 + \frac{n}{q}\right) \frac{(1 - |\omega|^{2})^{t+2}}{\phi(|\omega|)} \frac{z\overline{w}}{(1 - z\overline{w})^{t+3 + \frac{n}{q}}}.
\end{aligned}$$

By Lemma 3, we have $h_{\omega} \in H(p, q, \phi)$ and $\sup_{\omega \in B} ||h_{\omega}||_{p, q, \phi} \leq C$. By using (11) and (12), we get

(13)
$$\mathcal{R}h_{\omega}(\omega) = \mathcal{R}^2 h_{\omega}(\omega) = \left(t + 1 + \frac{n}{q}\right) \frac{|\omega|^2}{\phi(|\omega|)(1 - |\omega|^2)^{1 + \frac{n}{q}}},$$

from (13) and (2) we have

$$(14) \qquad \begin{aligned} \left(t+1+\frac{n}{q}\right) & \frac{\mu(|\omega|)|\mathcal{R}g(\omega)|\omega|^{2}}{\phi(|\omega|)(1-|\omega|^{2})^{1+\frac{n}{q}}} \\ &= \mu(|\omega|) \left|\mathcal{R}h_{\omega}(\omega)\mathcal{R}g(\omega)\right| \\ &\leq \|L_{g}(h_{\omega})\|_{\mathcal{Z}_{\mu}} + \mu(|\omega|) \left|\mathcal{R}^{2}h_{\omega}(\omega)g(\omega)\right| \\ &= \|L_{g}(h_{\omega})\|_{\mathcal{Z}_{\mu}} + \left(t+1+\frac{n}{q}\right) \frac{\mu(|\omega|)|g(\omega)||\omega|^{2}}{\phi(|\omega|)(1-|\omega|^{2})^{1+\frac{n}{q}}} \\ &\leq C\|L_{g}\|_{H(p,q,\phi)\to\mathcal{Z}_{\mu}} + \left(t+1+\frac{n}{q}\right) \frac{\mu(|\omega|)|g(\omega)|\omega|}{\phi(|\omega|)(1-|\omega|)^{2+\frac{n}{q}}} \\ &\leq C. \end{aligned}$$

Let $r \in (0, 1)$, by using (14) we get

(15)
$$\sup_{r<|\omega|<1} \frac{\mu(|\omega|)|\omega \mathcal{R}g(\omega)|}{\phi(|\omega|)(1-|\omega|^2)^{1+\frac{n}{q}}} \le C.$$

Note that

(16)
$$\sup_{|\omega| \le r} \frac{\mu(|\omega|)|\omega \mathcal{R}g(\omega)|}{\phi(|\omega|)(1-|\omega|^2)^{1+\frac{n}{q}}} \le C.$$

From (15) and (16), we get that (3) holds.

Theorem 2. Assume that $0 < p, q < \infty$. Then $L_g : H(p, q, \phi) \to \mathcal{Z}_{\mu}$ is compact if and only if

(17)
$$\lim_{|z| \to 1} \frac{\mu(|z|)|zg(z)|}{\phi(|z|) (1 - |z|^2)^{2 + \frac{n}{q}}} = 0,$$

and

(18)
$$\lim_{|z| \to 1} \frac{\mu(|z|)|z \mathcal{R}g(z)|}{\phi(|z|) (1 - |z|^2)^{1 + \frac{n}{q}}} = 0.$$

Proof. First assume that $L_g: H(p,\,q,\,\phi) \to \mathcal{Z}_\mu$ is compact. Let $\{z_k\}$ be a sequence in B such that $|z_k| \to 1$ as $k \to \infty$. Set

$$f_k(z) = f_{z_k}(z), \ k \in N,$$

 f_{ω} here is defined in (4). Then $f_k \in H(p,q,\phi)$, $\sup_{k \in N} \|f_k\|_{p,q,\phi} \leq C$, and $\{f_k\}$ converges to 0 uniformly on compact subsets of B, using the compactness of $L_g: H(p,q,\phi) \to \mathcal{Z}_{\mu}$ and Lemma 4, we get $\lim_{k \to \infty} \|L_g(f_k)\|_{\mathcal{Z}_{\mu}} = 0$. By (13) we have

$$\mathcal{R}f_k(z_k) = 0, \ \mathcal{R}^2 f_k(z_k) = -\left(t + 1 + \frac{n}{q}\right) \left(t + 2 + \frac{n}{q}\right) \frac{|z_k|^4}{\phi(|z_k|)(1 - |z_k|^2)^{2 + \frac{n}{q}}},$$

so

$$\left(t+1+\frac{n}{q}\right)\left(t+2+\frac{n}{q}\right)\frac{\mu(|z_k|)|g(z_k)||z_k|^4}{\phi(|z_k|)(1-|z_k|^2)^{2+\frac{n}{q}}}
= \mu(|z_k|)\left|\mathcal{R}^2 f_k(z_k)g(z_k) + \mathcal{R} f_k(z_k)\mathcal{R} g(z_k)\right|
\leq \|L_g(f_k)\|_{\mathcal{Z}_{\mu}},$$

hence

(19)
$$\lim_{k \to \infty} \frac{\mu(|z_k|)|z_k g(z_k)|}{\phi(|z_k|)(1-|z_k|^2)^{2+\frac{n}{q}}} = 0,$$

from which (17) holds.

Set

$$h_k(z) = h_{z_k}(z), z \in B,$$

 h_{ω} here is defined in (10), then $h_k \in H(p,q,\phi)$, $\sup_{k \in N} \|h_k\|_{p,q,\phi} \leq C$, and $\{h_k\}$ converges to 0 uniformly on compact subsets of B. From (14) we get

(20)
$$\mathcal{R}h_k(z_k) = \mathcal{R}^2 h_k(z_k) = \left(t + 1 + \frac{n}{q}\right) \frac{|z_k|^2}{\phi(|z_k|) (1 - |z_k|^2)^{1 + \frac{n}{q}}}.$$

By Lemma 4 and (19), we have

$$\left(t+1+\frac{n}{q}\right) \frac{\mu(|z_{k}|)|\mathcal{R}g(z_{k})||z_{k}|^{2}}{\phi(|z_{k}|)(1-|z_{k}|^{2})^{1+\frac{n}{q}}} \\
\leq C\|L_{g}(h_{k})\|_{\mathcal{Z}_{\mu}} + \left(t+1+\frac{n}{q}\right) \frac{\mu(|z_{k}|)|g(z_{k})||z_{k}|^{2}}{\phi(|z_{k}|)(1-|z_{k}|^{2})^{1+\frac{n}{q}}} \\
\leq C\|L_{g}(h_{k})\|_{\mathcal{Z}_{\mu}} + \left(t+1+\frac{n}{q}\right) \frac{\mu(|z_{k}|)|g(z_{k})||z_{k}|}{\phi(|z_{k}|)(1-|z_{k}|^{2})^{2+\frac{n}{q}}} \to 0, \ k \to \infty,$$

from which (18) holds.

Conversely, suppose (17) and (18) hold. Then it is easy to see that (2) and (3) hold. By Theorem 1, we get $L_g: H(p,q,\phi) \to \mathcal{Z}_{\mu}$ is bounded and for any $\varepsilon > 0, \; \exists \delta \in (0,1)$ such that for $\delta < |z| < 1$

(21)
$$\frac{\mu(|z|)|zg(z)|}{\phi(|z|)(1-|z|^2)^{2+\frac{n}{q}}} < \varepsilon,$$

and

(22)
$$\frac{\mu(|z|)|z\mathcal{R}g(z)|}{\phi(|z|)\left(1-|z|^2\right)^{1+\frac{n}{q}}} < \varepsilon.$$

Set $a_k \in H(p, q, \phi)$, $\sup_{k \in N} \|a_k\|_{p,q,\phi} \le C$, and $\{a_k\}$ converges to 0 uniformly on compact subsets of B, by Lemmas 1 and 2, the Cauchy inequality, (21) and (22), we have for sufficiently large k

$$\begin{split} & \|L_{g}(a_{k})\|_{\mathcal{Z}_{\mu}} = |L_{g}(a_{k})(0)| + \sup_{z \in B} \mu(|z|) \left| \mathcal{R}^{2}(L_{g}(a_{k}))(z) \right| \\ & = \sup_{z \in B} \mu(|z|) \left| \mathcal{R}\left(a_{k}(z)g(z)\right) \right| \\ & \leq \sup_{\{z \in B: |z| \leq \delta\}} \mu(|z|) \left| \mathcal{R}^{2}a_{k}(z)g(z) + \mathcal{R}a_{k}(z)\mathcal{R}g(z) \right| \\ & + \sup_{\{z \in B: |z| > \delta\}} \mu(|z|) \left| \mathcal{R}^{2}a_{k}(z)g(z) + \mathcal{R}a_{k}(z)\mathcal{R}g(z) \right| \end{split}$$

$$\begin{split} & \leq \varepsilon \sup_{\{z \in B: |z| \leq \delta\}} \mu(|z|) (|g(z)| + |\mathcal{R}g(z)|) \\ & + \sup_{\{z \in B: |z| > \delta\}} \mu(|z|) \left| \mathcal{R}^2 a_k(z) g(z) + \mathcal{R}a_k(z) \mathcal{R}g(z) \right| \\ & \leq C \varepsilon + L \sup_{\{z \in B: |z| > \delta\}} \left(\frac{\mu(|z|) |zg(z)|}{\phi(|z|) \left(1 - |z|^2\right)^{2 + \frac{n}{q}}} + \frac{\mu(|z|) |z\mathcal{R}g(z)|}{\phi(|z|) \left(1 - |z|^2\right)^{1 + \frac{n}{q}}} \right) \\ & < (C + 2L) \varepsilon, \end{split}$$

hence

$$\lim_{k \to \infty} \|L_g(a_k)\|_{\mathcal{Z}_{\mu}} = 0.$$

 $\lim_{k\to\infty}\|L_g(a_k)\|_{\mathcal{Z}_\mu}=0.$ It follows from Lemma 4 that $L_g:H(p,\,q,\,\phi)\to\mathcal{Z}_\mu$ is compact.

Theorem 3. Assume that 0 < p, $q < \infty$. Then the following statements are equivalent:

- (a) $L_g: H(p, q, \phi) \to \mathcal{Z}_{\mu,0}$ is compact;
- (b) $L_q: H(p, q, \phi) \to \mathcal{Z}_{\mu}$ is compact.

Proof. $(a) \Rightarrow (b)$ This implication is obvious.

 $(b) \Rightarrow (a)$. Assume that $L_g: H(p, q, \phi) \to \mathcal{Z}_{\mu}$ is compact, by Theorem 2, for any $f \in H(p, q, \phi)$

(23)
$$\mu(|z|) \left| \mathcal{R}^{2} \left(L_{g}(f) \right)(z) \right| \\ = \mu(|z|) \left| \mathcal{R} \left(\mathcal{R}f(z)g(z) \right) \right| \\ = \mu(|z|) \left| \mathcal{R}^{2}f(z)g(z) + \mathcal{R}f(z)\mathcal{R}g(z) \right| \\ \leq C \|f\|_{p,q,\phi} \left(\frac{\mu(|z|)|zg(z)|}{\phi(|z|) \left(1 - |z|^{2}\right)^{2 + \frac{n}{q}}} + \frac{\mu(|z|)|z\mathcal{R}g(z)|}{\phi(|z|) \left(1 - |z|^{2}\right)^{1 + \frac{n}{q}}} \right) \\ \to 0, |z| \to 1.$$

we see that $L_g(f) \in \mathcal{Z}_{\mu,0}$. Since $L_g: H(p,q,\phi) \to \mathcal{Z}_{\mu}$ is bounded, we have $L_q: H(p, q, \phi) \to \mathcal{Z}_{\mu,0}$ is bounded. Hence the set

$$L_g\{f \in H(p, q, \phi) : ||f||_{p,q,\phi} \le 1\}$$

is bounded in $\mathcal{Z}_{\mu,0}$. By Lemma 5, we wish to show

(24)
$$\lim_{|z| \to 1} \sup_{\|f\|_{p, g, \phi} \le 1} \mu(|z|) \left| \mathcal{R}^2(L_g(f))(z) \right| = 0.$$

In fact, since $L_g: H(p, q, \phi) \to \mathcal{Z}_{\mu}$ is compact, by Theorem 2, (17) and (18) hold. Combining with (17) and (18) and (23) we see that $\lim_{|z|\to 1}\sup_{\|f\|_{p,\,q,\,\phi}\le 1}\mu(|z|)$

 $|\mathcal{R}^2(L_q(f))(z)| = 0$, which is what we wanted to prove. It follows that L_q : $H(p, q, \phi) \to \mathcal{Z}_{\mu,0}$ is compact.

ACKNOWLEDGMENT

The authors thank the referees for their thoughtful comments and helpful suggestions which greatly improved the final version of this paper.

REFERENCES

- 1. K. Avetisyan, Fractional integro-differentiation in harmonic mixed norm spaces on a half-space, *Comment. Math. Univ. Carolin.*, **42(4)** (2001), 691-709.
- 2. K. Avetisyan, Continuous inclusions and Bergman type operators in *n*-harmonic mixed norm spaces on the polydisc, *J. Math. Anal. Appl.*, **291(2)** (2004), 727-740.
- 3. K. Avetisyan and S. Stević, Extended Cesàro operators between different Hardy spaces, *Appl. Math. Comput.*, **207(2)** (2009), 346-350.
- 4. D. C. Chang, S. Li and S. Stević, On some integral operators on the unit polydisk and the unit ball, *Taiwanese J. Math.*, **11(5)** (2007), 1251-1286.
- 5. D. C. Chang and S. Stevic, The generalized Cesàro operator on the unit polydisk, *Taiwanese J. Math.*, **7(2)** (2003), 293-308.
- 6. D. C. Chang and S. Stević, Estimates of an integral operator on function spaces, *Taiwanese J. Math.*, **7(3)** (2003), 423-432.
- 7. Z. Fang and Z. Zhou, Extended Cesàro operators from generally weighted Bloch spaces to Zygmund space, *J. Math. Anal. Appl.*, **359(2)** (2009), 499-507.
- 8. Z. Hu, Extended Cesàro operators on mixed norm spaces, *Proc. Amer. Math. Soc.*, 131(7) (2003), 2171-2179, (electronic).
- 9. S. Krantz and S. Stević, On the iterated logarithmic Bloch space on the unit ball, *Nonlinear Anal. TMA*, **71(5/6)** (2009), 1772-1795.
- 10. S. Li, Riemann-Stieltjes operators from spaces to α -Bloch spaces on the unit ball, J. Inequal. Appl., **2006**, (2006), Article ID 27874, 14 pp.
- 11. S. Li and H. Wulan, Volterra type operators on Q_K spaces, *Taiwanese J. Math.*, **14(1)** (2010), 195-211.
- 12. S. Li and S. Stević, Riemann-Stieltjes-type integral operators on the unit ball in C^n , Complex Variables Elliptic Equations, **52(6)** (2007), 495-517.
- 13. S. Li and S. Stević, Integral type operators from mixed-norm spaces to α -Bloch spaces, *Integral Transform Spec. Funct.*, **18(7)** (2007), 485-493.
- 14. S. Li and S. Stević, Volterra-type operators on Zygmund spaces, *J. Inequal. Appl.*, **2007**, Article ID 32124, 10 pp.
- 15. S. Li and S. Stević, Riemann-Stieltjes operators on Hardy spaces in the unit ball of C^n , Bull. Belg. Math. Soc. Simon Stevin, 14(4) (2007), 621-628.
- 16. S. Li and S. Stević, Generalized composition operators on Zygmund spaces and Bloch type spaces, *J. Math. Anal. Appl.*, **338** (2008), 1282-1295.

- 17. S. Li and S. Stević, Products of composition and integral type operators from H^{∞} to the Bloch space, *Complex Variables Elliptic Equations*, **53(5)** (2008), 463-474.
- 18. S. Li and S. Stević, Products of Volterra type operator and composition operator from H^{∞} and Bloch spaces to Zygmund spaces, *J. Math. Anal. Appl.*, **345** (2008), 40-52.
- 19. S. Li and S. Stević, Compactness of Riemann-Stieltjes operators between F(p, q, s) and α -Bloch spaces, *Publ. Math. Debrecen*, **72(1/2)** (2008), 111-128.
- 20. S. Li and S. Stević, Riemann-Stieltjes operators from H^{∞} space to α -Bloch spaces, *Integral Transform Spec. Funct.*, **19(11/12)** (2008), 767-776.
- 21. S. Li and S. Stević, Riemann-Stieltjes operators on different weighted Bergman spaces in the unit ball of C^n , Bull. Belg. Math. Soc. Simon Stevin, 15(4) (2008), 677-686.
- 22. S. Li and S. Stević, Products of integral-type operators and composition operators between Bloch-type spaces, *J. Math. Anal. Appl.*, **349(2)** (2009), 596-610.
- 23. S. Li and S. Stević, Integral-type operators from Bloch-type spaces to Zygmund-type spaces, *Appl. Math. Comput.*, **215(2)** (2009), 464-473.
- 24. S. Li and S. Stević, Cesàro type operators on some spaces of analytic functions on the unit ball, *Appl. Math. Comput.*, **208(2)** (2009), 378-388.
- 25. S. Li and S. Stević, On an integral-type operator from ω -Bloch spaces to μ -Zygmund spaces, *Appl. Math. Comput.*, **215(12)** (2010), 4385-4391.
- 26. Y. Liu, Boundedness of the Bergman type operators on mixed norm spaces, *Proc. Amer. Math. Soc.*, **130(8)** (2002), 2363-2367 (electronic).
- 27. Y. Liu and H. Liu, Volterra-type composition operators from mixed norm spaces to Zygmund spaces, *Acta Math. Sinica* (*Chin. Ser.*), **54(3)** (2011), 381-396 (in Chinese).
- 28. Y. Liu and Y. Yu, On a Li-Stević integral-type operators from the Bloch-type spaces into the logarithmic Bloch spaces, *Integral Transform Spec. Funct.*, **21(2)** (2010), 93-103.
- 29. Y. Liu and Y. Yu, On compactness for iterated commutators, *Acta Math. Sci. Ser. B Engl. Ed.*, **31B(2)** (2011), 401-500.
- 30. W. Rudin, Function Theory in the Unit Ball of C^n , Springer-Verlag, New York-Berlin, 1980.
- 31. A. Shields and D. Williams, Bounded projections, duality, and multipliers in spaces of analytic functions, *Trans. Amer. Math. Soc.*, **162** (1971), 287-302.
- 32. S. Stević, Boundedness and compactness of an integral operator on a weighted space on the polydisc, *Indian J. Pure Appl. Math.*, **37(6)** (2006), 343-355.
- 33. S. Stević, Boundedness and compactness of an integral operator on mixed norm spaces on the polydisc, *Siberian Math. J.*, **48(3)** (2007), 559-569.
- 34. S. Stević, Generalized composition operators between mixed-norm and some weighted spaces, *Numer. Funct. Anal. Optim.*, **29(7)** (2008), 959-978.
- 35. S. Stević, Generalized composition operators from logarithmic Bloch spaces to mixed-norm spaces, *Utilitas Mathematica*, 77 (2008), 167-172.

- 36. S. Stević, On a new integral-type operator from the weighted Bergman space to the Bloch-type space on the unit ball, Discrete Dyn. Nat. Soc., 2008, Art. ID 154263, 14 pp., doi:10.1155/2008/154263.
- 37. S. Stević, On a new operator from H^{∞} to the Bloch-type space on the unit ball, *Util. Math.*, 77 (2008), 257-263.
- 38. S. Stević, On a new operator from the logarithmic Bloch space to the Bloch-type space on the unit ball, *Appl. Math. Comput.*, **206(1)** (2008), 313-320.
- 39. S. Stević, On an integral operator from the Zygmund space to the Bloch-type space on the unit ball, *Glasg. Math. J.*, **51(2)** (2009), 275-287.
- 40. S. Stević, On an integral-type operator from logarithmic Bloch-type and mixed-norm spaces to Bloch-type spaces, *Nonlinear Anal.*, **71(12)** (2009), 6323-6342.
- 41. S. Stević, Integral-type operators from the mixed-norm space to the Bloch-type space on the unit ball, *Siberian Math. J.*, **50(6)** (2009), 1098-1105.
- 42. S. Stević, Products of integral-type operators and composition operators from a mixed norm space to Bloch-type spaces, *Siberian Math. J.*, **50(4)** (2009), 726-736.
- 43. S. Stević, On a new integral type operator from the Bloch space to Bloch-type spaces on the unit ball. *J. Math. Anal. Appl.*, **354(2)** (2009), 426-434.
- 44. S. Stević, Extended Cesàro operators between mixed-norm spaces and Bloch-type spaces in the unit ball, *Houston J. Math.*, **36(3)** (2010), 843-858.
- 45. S. Stević, Weighted iterated radial composition operators between some spaces of holomorphic functions on the unit ball, Abstr. Appl. Anal. 2010, Art. ID 801264, 14 pp., doi:10.1155/2010/801264.
- 46. S. Stević, On an integral operator between Bloch-type spaces on the unit ball, *Bull. Sci. Math.*, **134(4)** (2010), 329-339.
- 47. S. Stević, On an integral-type operator from logarithmic Bloch-type spaces to mixed-norm spaces on the unit ball, *Appl. Math. Comput.*, **215(11)** (2010), 3817-3823.
- 48. S. Stević, On operator P_{φ}^g from the logarithmic Bloch-type space to the mixed-norm space on the unit ball, *Appl. Math. Comput.*, **215(12)** (2010), 4248-4255.
- 49. S. Stević, On an integral-type operator from Zygmund-type spaces to mixed-norm spaces on the unit ball, Abstr. Appl. Anal. 2010, Art. ID 198608, 7 pp.
- 50. S. Stević, On a product-type operator from Bloch spaces to weighted-type spaces on the unit ball, *Appl. Math. Comput.*, **217(12)** (2011), 5930-5935.
- 51. S. Stević, On some integral-type operators between a general space and Bloch-type spaces, *Appl. Math. Comput.*, **218(6)** (2011), 2600-2618.
- 52. S. Stević, Boundedness and compactness of an integral-type operator from Bloch-type spaces with normal weights to F(p, q, s) space, *Appl. Math. Comput.*, **218(9)** (2012), 5414-5421.
- 53. S. Stević and S. I. Ueki, Integral-type operators acting between weighted-type spaces on the unit ball, *Appl. Math. Comput.*, **215(7)** (2009), 2464-2471.

- 54. S. Stević and S. I. Ueki, *On an integral-type operator acting between Bloch-type spaces on the unit ball*, Abstr. Appl. Anal. 2010, Art. ID 214762, 14 pp.
- 55. X. Tang, Extended Cesàro operators between Bloch-type spaces in the unit ball of C^n , J. Math. Anal. Appl., **326(2)** (2007), 1199-1211.
- 56. S. I. Ueki, On the Li-Stević integral type operators from weighted Bergman spaces into β -Zygmund spaces, *Integr. Equ. Oper. Theory*, **74(1)** (2012), 137-150.
- 57. W. Yang and X. Meng, Generalized composition operators from F(p, q, s) spaces to Bloch-type spaces, *Appl. Math. Comput.*, **217(6)** (2010), 2513-2519.
- 58. L. Zhang and Z. Zhou, Integral type operators between logarithmic Bloch-type space and F(p, q, s) space on the unit ball, *Publ. Math. Debrecen*, **82(2)** (2013), 407-423.
- 59. L. Zhang and Z. Zhou, Generalized composition operator from Bloch-type spaces to mixed-norm space on the unit ball, *J. Math. Inequal.*, **6(4)** (2012) 523-532.
- 60. K. Zhu, Spaces of Holomorphic Functions in the Unit Ball, Graduate Text in Mathematics, 226, Springer, New York, 2005.
- 61. X. Zhu, Extended Cesàro operator from H^{∞} to Zygmund type spaces in the unit ball, J. Comput. Anal. Appl., **11(2)** (2009), 356-363.
- 62. X. Zhu, Integral-type operators from iterated logarithmic Bloch spaces to Zygmund-type spaces, *Appl. Math. Comput.*, **215(3)** (2009), 1170-1175.
- 63. X. Zhu, Generalized composition operators from generalized weighted Bergman spaces to Bloch type spaces, *J. Korean Math. Soc.*, **46(6)** (2009), 1219-1232.
- 64. X. Zhu, On an integral-type operator between H^2 space and weighted Bergman spaces, *Bull. Belg. Math. Soc. Simon Stevin*, **18(1)** (2011), 63-71.
- 65. Y. Yu, Volterra-type composition operators from logarithmic Bloch spaces into Bloch-type spaces, *J. Xuzhou Norm. Univ. Nat. Sci. Ed.*, **27(3)** (2009), 14-18.
- 66. Y. Yu and Y. Liu, Integral-type operators from weighted Bloch spaces into Bergman-type spaces, *Integral Transform Spec. Funct.*, **20(6)** (2009), 419-428.

Yongmin Liu School of Mathematics and Statistics Jiangsu Normal University Xuzhou 221116 P. R. China

E-mail: minliu@jsnu.edu.cn

Yanyan Yu School of Mathematics and Physics Science Xuzhou Institute of Technology Xuzhou 221008 P. R. China E-mail: yuyanyan@xzit.edu.cn