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RIEMANN-STIELTJES OPERATOR FROM MIXED NORM SPACES TO
ZYGMUND-TYPE SPACES ON THE UNIT BALL

Yongmin Liu and Yanyan Yu

Abstract. In this paper, the authors characterize the boundedness and compactness
of the following Riemann-Stieltjes operator

L)) = [ Rie)gle) Gz e b

where R f(z) is the radial derivative of function f at z, from mixed norm spaces
H(p, q, ¢) to Zygmund-type spaces on the unit ball.

1. INTRODUCTION
We begin by fixing notation and some results. Let z = (z1,---,2,) and w =

(w1, -, w,) be points in the complex vector space C" and 2w := (z,w) = z1w1 +
2oW3 + - - - + zZpWy,, where wy, is the complex conjugate of wg. We also write

A= Ve -

We denote by B = {z € C" : |z| < 1} the open unit ball in C". Let S be its
boundary of B, and let H (B) denote the class of all holomorphic functions on B. For
f € H(B), let

stand for the radial derivative of f at z ([30, 60]).
The iterated radial derivative operator R™ f is defined inductively by ([8, 45]):
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R™"f=R(R™1'f),meN—{1}.

A positive continuous function ¢ on [0, 1) is called normal, if there are positive
numbers s, t (0 < s < t) and ¢y € [0, 1) such that (see, for example, [8, 26, 31])

- is decreasing on [ty 1) and }1—% % =0,

- is increasing on [tp 1) and }EH (1¢£r2>t = 00

From now on if we say that a function ¢ : B — [0, 00) is normal, we will also
assume that it is radial, that is, ¢(z) = ¢(|z]|), z € B.
For p, ¢ € (0, 00), let

1 .
s = ([ 00 S ar)"

r

where 1
myrn = ( \f(rowcza«)f o<r<l

The mixed norm space H (p, q, ¢) consists of all f € H(B) such that || fl|, 4, ¢ < 0.
For 1 < p < oo, H(p,q,¢), equipped with the norm || f||,, 4,4, is a Banach space.
When 0 < p <1, || ||p,q,6 is @ quasinorm on H (p, q, ¢), H(p, q, ¢) is a Fréchet space
but not a Banach space. If 0 < p = ¢ < oo, then H (p, p, ¢) is the Bergman-type space

Hw.0) = {re ) [ 1ereane <ol

where dA(z) denotes the normalized Lebesgue area measure on the unit ball B such
that A(B) = 1. Note that if ¢(r) = (1 — r)(@+D/P then H(p, p, ¢) is the weighted
Bergman space AL (B) defined for 0 < p < oo and @ > —1, as the space of all
f € H(B) such that

11 = [ P~ PrdAG) < o

For some results on mixed norm and related spaces, as well as on some operators on
them, see, for example, [1, 2, 8, 13, 26, 27, 33, 34, 35,40, 41, 42, 44,47, 48, 49, 56, 59]
and the references therein.

Let 4+ be a normal function on [0,1). We say that an f € H(B) belongs to the
space Z, = Z,(B), if

sup {p(|2|) ’RQf(z)’ iz € B} < 0.

It is easy to check that Z,, becomes a Banach space under the norm
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I fllz, = 1£(0)]+ sup {u(|z]) [R*f(2)| : = € B}

Z,, will be called the Zygmund-type space. Let Z,9 = Z,0(B) denote the class of
holomorphic functions f € Z,, such that
tim p(J=]) [R*£(z)] = 0.
Z,0 1s called the little Zygmund-type space (see [23, 25, 39]). It is easy to see that
Z,,0 is a closed subspace of Z,. When p(r) =1— r2, Zygmund-type space Z, (little
Zygmund-type space Z,, ) is the classical Zygmund space Z (little Zygmund-type
space Zg). For some other results on Zygmund-type and related spaces and operators
on them, see, for example, [14, 16, 18, 27, 49, 56, 59, 60, 61, 62].
Let g € H(B). The following Riemann-Stieltjes operator

1) LN = [ Rt T, 1 HB)., =€ B.

was recently introduced by S. Li and S. Stevi¢ ([10, 12, 13]). This operator is closely
related to the extended Cesaro operator

TN = [ feRa(e) T FeHB), € B

Some characterizations of the boundedness and compactness of the operator L, between
various spaces of holomorphic functions on the unit ball can be found in [3, 15, 19, 21,
24, 37, 47, 64]. Some related integral-type operators in C" are treated, for example,
in[4,5,6,7,9, 22, 25, 32, 33, 36, 38, 41, 43, 46, 48, 49, 50, 51, 52, 53, 54, 55, 56,
57, 58, 61, 62, 63].

For related one-dimensional operators, see, for example [11, 14, 16, 17, 18, 20, 27,
28, 42, 65, 66], as well as the related references therein.

The purpose of the paper is to study the boundedness and compactness of the
operator L, from mixed-norm spaces into Zygmund-type spaces. Throughout the paper,
the letter C' denotes a positive constant which may vary at each occurrence but it is
independent of the essential variables.

2. AUXILIARY RESULTS

Here we state several auxiliary results most of which will be used in the proof of
the main result.

Lemma 1. ([36, 37, 46]). For every f, g € H(B) it holds
RLg(f)(z) = Rf(2)g(z).

Lemma 2. ([45]). Assume that m € N, 0 < p,q < oo, ¢ is normal, f €
H(p, q, ¢). Then there is a positive constant C' independent of [ such that
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Clz|
o(lz)) 1 —12]?)
Lemma 3. ([8]). Assume that 0 < p, ¢ < o, for § >t, w € B and

IR™f(2)] <

mt Hf”th,qﬁa z € B.

(1= |w*)”

n GB
(Jwl) (1 = z@)"*a

fu(z) = 5

Then f,, € H(p, q, ¢) and there is a positive constant C' independent of f such that

sup || fullp,q,0 < C.
weB

The next Schwartz-type lemma is proved in a standard way (see, e.g. [33, Lemma

3]

Lemma 4. Assume @ is a holomorphic self-map of B, ¢ is normal, 0 < p,
qg<ooand g € H(B). Then Ly : H(p, q, ¢) — 2, is compact if and only if Lg :
H(p, q, ) — Z,, is bounded and for any bounded sequence { f,,} in H(p, q, $) which
converges to zero uniformly on compact subsets of B as n — oo, we have || Ly(fy)| z, —
0,n — oo.

Lemma 5. ([23, 62]). A closed set K in 2, is compact if and only if it is
bounded and satisfies

lim sup u(|z|) ’RQf(z)’ = 0.
|z2[=1 fek

3. THE BOUNDEDNESS AND COMPACTNESS OF L, : H(p, q, ¢) — Z,, (Z,,0)

In this section we formulate and prove our main result. Assume that g € H(B), ¢
and p are normal.

Theorem 1 Assume that 0 < p, ¢ < co. Then L, : H(p, ¢, ¢) — Z,, is bounded
if and only if

1(l2)]29(2)]
2) sup 7 < 00,
zeB ¢(|2]) (1 —[2[2)* T
and
. pl2DRe(

zeB ¢(|2]) (1 — |2[2)" s
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Proof. First assume that conditions (2) and (3) hold. For any f € H(p, q, ¢), by
Lemmas 1 and 2, we have

o) [R? (Ly(1) (2)]
- <\ \>\R<Rf<z>g<z>>\
= ull21) [R21(2)g(:) + RS (2)Rg(2)
<l (10Dl ) (ENEE] )
i "f"”¢< (= (=277 9(el) (1~ &)1

From this along with the fact (L4(f))(0) = 0, it follows the operator L,: H (p, q, ¢) —
Z,, is bounded.

Conversely, assume that the operator L,: H(p, ¢, ¢) — Z,, is bounded. Then for
any f € H(p, q, ¢), there is a positive constant C' independent of f such that || L,(f)||z,
< C|fllp,q, - For a fixed w € B, set

fu(z) = <t+2+ g) (1 — |w]?)H 1

o(lwl)  (1- zw)t+1+n

4
@ —<t—|—1—|—2> (1~ ) 1 2 €B
q o(lwl) (1 - zw) ’
then
n\ (1—|w)! - d 1
pu— 2 —
Ri2) (H i Q) ool Z;Z] 0z (1 — zw)H e
n \w\ )2 & 0 1
t+14 —) S PTp—
= <t+2+n> <t—|—1 ) o >t+1 2w
q o(lwl) (1 - zw)t+2+n
<t+1+n) <t ) — |w|?)#? 2W
q o(lwl)  (1— zw)t+3+"’
and
1— |w|?)tt! 2w
R2fu(z :<t+2+ﬁ> <t+1+ﬁ>( R -
ful2) : 7)) e
n n\ (1— |w|?)*? 2w
—(t+1+- t+2+—) R .
©) < Q) < q o(|wl) (1 2w) T

(r2e3) (103) () S5 o
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- <t—i—1—|—§) <t+2+g) <t—|—3+ﬁ> A-wl)™ __ (m)°

PR (R -
+<t+2+ﬁ) <t+1+2) Sl Ul
q q o(lwl)  (1- zw) e
B n n\ (1— |w[*)? 2w
(e ) (o2 3) s R

By Lemma 3, f,, € H(p,q,¢) and sup || fu|/p,q,¢ < C. By applying (5) and (6), we
weB
get

jw|*

_ 2 — n n
(7) Rfu(w) =0, R°f,(w) <t+1+ q) <t+2+ q) oD (1 \w\2)2+%’

thus for any w € B, we get
(110 2) (1024 2) llhlgte) ot
q 4/ $(lw) (1~ |w[2)* "
= u(|w]) [R? fu(w)g(w) + R fu(w)Rg(w)|
< g(fo)llz, < CllLgllap,q, 9)—2.-
Let r € (0, 1), from (8) we get

®)

Dl
r<jw|<1 qﬁ(\w\)(l — \w\2)2+5
S sup,cpwj<1 H(|w]) [R? fu(@)g(w) + Rfu(w)Ryg(w)]

CHLQHH(@ a,¢)—2Zu"

©)

IN

IN

Using the fact

plwDlwg@)] o
wizr sl (1 — w22~ MSPTM(\ DIg(w)| < C,

and inequality (9), we get that (2) holds.
To prove (3), set

_ n (1 _ ‘w‘2>t+1 1
_ n (1 — |w|?)t+2 1 .
<t+1+ q) B(Jw|) (1—zm)t+2+%’ z € B.

A straightforward calculation shows that



Riemann-Stieltjes Operator from Mixed Norm Spaces to Zygmund-type Spaces 1757

Rho(2) = <t+3+ﬁ)wizi 1

q o(lwl) = 702 (1— 2m) "5

_<t+1+ﬁ)w - S S
(11) q B(Jw|) st 702, (1- zm)””%
— <t—|—3+2) <t—|—1+2> (1 — |w[?)tH! 2W
= q q qﬁ(\w\) (1 —ZW> +2+%
- <t+1+2) <t+2+ﬁ) (1= w2 e
1 q ¢(lwl) (1 — 2m) e
and
R2h,,(2)
O VI N
<t+ PV AN ¢(M)2 2(1—zm>+2+a
A AT
<t+ + q t+2+ p o(jw)) (1 _22w2t+3+5 2
= z n n\ (1 - |w[*)™ ()
iy = (9 3) () (o2 ) S e

q
(e n n (=) (o)’
(103 (12 5) (405) 5555 (1= om)"
(-

)
o(lwl) (11— zw) e
)

( )
_(HHg) (HQﬂ) (1= ol i

o(lwl)  (1- 2w) 3z

By Lemma 3, we have h,, € H(p,q,¢) and sup ||hy||p,q,6 < C. By using (11) and
weB

(12), we get

(13) Rhy(w) = R2hy,(w) = <t +1+ ﬁ) py

1+ﬂa
1/ ¢(lw(d = |w|?) "4

from (13) and (2) we have
(t F1+ @> p(wDIRg(@)lwl?
1) p(lwl)(1-|wf2)" e
p(|w]) [Rhy(w)Rg(w)]
1Lg(ho)l 2, + p(|w]) |[R?hy (w)g(w))| ,
(14) Ly ()l + <t+1+ﬁ> ullwDlg@)llwl”
s 0/ $(l)(1 ~ [w]) "5
+g) p(lw))]g(w)|w|
1/ &

wl)(1 = Jw])**s

IA

S CHL!]HH(p,%qﬁ)—»ZH +
< C.
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Let r € (0, 1), by using (14) we get

pleDleRe@]

SUD; < T
(15) Prelel<t oy w2
Note that
16) p(|w))|wRg(w)]

l<r ¢l (1= )T
From (15) and (16), we get that (3) holds.

Theorem 2. Assume that 0 < p, ¢ < oo. Then Ly : H(p, q, $) — Z,, is compact
if and only if

, () O
4 g2l (- )2
and

s plDIRe)

A () (L [22)

Proof. First assume that Ly : H(p, ¢, ¢) — Z,, is compact. Let {z;} be a sequence
in B such that |z;| — 1 as k — oo. Set

fe(2) = f5,(2), k €N,
fu here is defined in (4). Then fi € H(p, ¢, ¢), sup || fellp..0 < C, and {fi}
keN

converges to 0 uniformly on compact subsets of B, using the compactness of L :
H(p, q, ) — Z,, and Lemma 4, we get klim | Lg(fe)llz, = 0. By (13) we have
—00

4
R fi(z) = 0, R :_< ! 2)( : 2) .
fi() o) ==\t 2 ) i = 1

L o ) _rllzDlgCarl ]
<t+ ! q) (” " q) o) (1~ 2?7
= pll24]) [R2 fi(24)9(21) + R fi(24) Ry (1)
< |Lg(fi)l 2,05
hence

: (|z))| 269 (2k)|
(19) 1 K _—0,
b0 o|ze)(1— | 2)2 8
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from which (17) holds.
Set

hi(z) = hs,(2), 2z € B,
he, here is defined in (10), then hy € H(p, q, ¢), sup ||hi|lp,q,6 < C, and {hy}
keN

converges to 0 uniformly on compact subsets of B. From (14) we get

2
200  Rh — R2) - ( 1 ﬁ) |2
(20) k(2k) Rze) = (t+1+ ) oD (=Pt

By Lemma 4 and (19), we have

(1414 1) bRtz
0] ozl (1 = ) 7
EDICAIETS
(126D = ) ¥
EDEAIET
k(1= 23

SCMAMNa+<H4+§>¢

— 0, k — oo,

< ClLyolz, + (1414 2)
1/ ¢
from which (18) holds.

Conversely, suppose (17) and (18) hold. Then it is easy to see that (2) and (3) hold.
By Theorem 1, we get L, : H(p, q, ) — Z,, is bounded and for any ¢ > 0, 39 €
(0, 1) such that for § < |z| <1

1(|2])|zg(2)|
(21) = <€,
(|2]) (1 = [2[2)* T
and
o) pll2DRg()

1+

$(l2]) (1= |21)" "

Set ar, € H(p, q, ¢), sup ||akllp,q,6 < C, and {a;} converges to 0 uniformly on
keN

compact subsets of B, by Lemmas 1 and 2, the Cauchy inequality, (21) and (22), we
have for sufficiently large k

| Lg(ar)| 2, = |Lg(ar)(0)] + zggu(\Z\) |R*(Lg(ar)) ()]
= iggu(\Z\) IR (ak(2)g(2))|

< { EJSB}IHOK(S}M(\Z\) [R?ar(2)g(2) + Rax(2)Ry(2)|

+  suppl|z]) [R%ax(2)9(2) + Rar(2)Rg(2)]
{z€B:|z|>d}



1760 Yongmin Liu and Yanyan Yu

<e sup p(lz))(lg(2)]+ Rg(2)])
{z€B:|2|<6}

b s plel) [Ran(=)9(e) + Raw(2IRg(2)
{z€B:|z|>d}

<Cetl swp <¢(‘u(\2\)\29(2)\ . u(\2\>\2739(2)\>

temilz> \ ¢(12]) (1= 2% 0 g(|2]) (1 —[2[2)Fa
< (C+2L)e,
hence
lim |IZy ()2, = 0.
k—o0
It follows from Lemma 4 that L, : H(p, ¢, ¢) — Z,, is compact.
Theorem 3. Assume that 0 < p , q < oo. Then the following statements are
equivalent:
(a) Lg: H(p, q, ¢) — Z,.0 is compact,
(b) Ly : H(p, q, ¢) — Z,, is compact.

Proof. (a) = (b) This implication is obvious.

(b) = (a). Assume that L, : H(p, ¢, ¢) — 2, is compact, by Theorem 2, for any
feH(p, q ¢)
n(l2]) [R? (Lg(f)) (2)]

= p(lz]) [R (Rf(2)g(2))]

23) = p(l2]) [R*f(2)g(2) + Rf(2)Rg(2)]
(EDIEN] p(lz)|2Rg(2)]
< c f P9, . 242 + 1 ﬂ)
Mleve <¢(\Z\) (L= 122" (lz]) (1= 212"

— 0, |z| — 1,

we see that Ly(f) € Z,0. Since L, : H(p, q, $) — Z, is bounded, we have
L, : H(p, q, $) — Z, is bounded. Hence the set

Lo{f € Hp, 4, ) : | fllp,q,0 < 1}
is bounded in Z, o. By Lemma 5, we wish to show

(24) lim  sup p(|z]) [R*(Ly(f))(2)| = 0.
=11 £1lp,q, <1
In fact, since L, : H(p, q, ¢) — Z, is compact, by Theorem 2, (17) and (18)

hold. Combining with (17) and (18) and (23) we see that |1|im1 sup  u(lz])
A7 fllp, ¢, <1

’RQ(Lg(f))(z)’ = 0, which is what we wanted to prove. It follows that L, :
H(p, q, ) — Z,,0 is compact.
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