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INEQUALITIES FOR MIXED COMPLEX PROJECTION BODIES

Wei Wang and Rigao He

Abstract. Complex projection bodies were introduced by Abardia and Bernig,
recently. In this paper some geometric inequalities for mixed complex projection
bodies which are analogs of inequalities for mixed real projection bodies are
established.

1. INTRODUCTION

Let Kn denote the space of non-empty compact convex bodies in R
n with the

Hausdorff topology. The projection body of K ∈ Kn is the convex body ΠK whose
support function is defined by

(1.1) h(ΠK, u) =
1
2

∫
Sn−1

|u · v|dS(K, v),

where S(K, ·) is the surface area measure of K.

Projection bodies have been widely studied since their introduction by Minkowski
at the end of 19th century. They are objects of independent investigation in a number
of mathematical disciplines such as geometric tomography, stereology, combinatorics,
computational and stochastic geometry (see [3,5,7,9,18,20,21]). They have attracted
increased interest in recent years (see [13,17,23]).
Mixed projection bodies were introduced in the classic volume of Bonnesen- Fenchel

[4]. They are related to ordinary projection bodies in the same way that mixed volumes
are related to ordinary volume. For K1, . . . , Kn−1 ∈ Kn and u ∈ Sn−1, the mixed
projection body Π(K1, . . . , Kn−1) is defined by

(1.2) h(Π(K1, . . . , Kn−1), u) =
1
2

∫
Sn−1

|u · v|dS(K1, . . . , Kn−1, v),
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where S(K1, . . . , Kn−1, ·) is the mixed surface area measure of K1, . . . , Kn−1.
In [17] Lutwak considered the volume of mixed projection bodies and established

analogs of the classical mixed volume inequalities, such as the Minkowski and Brunn-
Minkowski inequalities.

Theorem A. [17]. Let K be a convex body in Rn. If 0 ≤ i < j < n − 1, and
0 ≤ k < n, then

Wk(ΠjK)n−i−1 ≥ ω
(n−k)(j−i)
n−1 ωj−i

n Wk(ΠiK)n−j−1,

with equality if and only if K is a ball, where ωn denotes the volume of the Euclidean
unit ball B in R

n and Wk(K) denotes the k-th Quermassintegral of K .

Theorem B. [17]. Let K and L be convex bodies in Rn. If 0 ≤ i < n, and
0 ≤ j < n − 2, then

Wi(Πj(K + L))
1

(n−i)(n−j−1) ≥ Wi(ΠjK)
1

(n−i)(n−j−1) + Wi(ΠjL)
1

(n−i)(n−j−1) ,

with equality if and only if K and L are homothetic.

The theory of real convex bodies goes back to ancient times and continues to
be a very active field now. Until recently the situation with complex convex bodies
began to attract attention (see [1,2,8,10-12,19,24,25]). Some classical concepts of
convex geometry in real vector space were extended to complex cases, such as complex
intersection bodies [11], complex projection bodies [2] and complex difference bodies
[1].
The real vector space R

n of real dimension n is replaced by a complex vector space
Cn of dimension n. We identify Cn with R2n using the standard mapping

(1.3) ξ = (ξ1, . . . , ξn) = (ξ11 + iξ12, . . . , ξn1 + iξn2) �→ (ξ11, ξ12, . . . , ξn1, ξn2).

The unit ball B in Cn is given by

B = {ξ ∈ C
n :

n∑
i=1

(ξ2
i1 + ξ2

i2) ≤ 1}.

The volume of the unit ball B in Cn is denoted by ω2n.
Let K1, . . . , K2n−1 be convex bodies in C

n and C ⊂ C be a convex subset. The
mixed complex projection bodyΠC(K1, . . . , K2n−1) is the convex body whose support
function is defined by[2]

(1.4) h(ΠC(K1, . . . , K2n−1), w) =
1
2n

∫
S2n−1

h(C · w, ξ)dS(K1, . . . , K2n−1, ξ),

where C · w := {cw| c ∈ C}, w ∈ C
n.
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If C = {c}(c ∈ C) is just a point, then ΠC(K1, . . . , K2n−1) = {0}. Indeed, for
every w ∈ C

n,

h(ΠC(K1, . . . , K2n−1), w) =
1
2n

∫
S2n−1

h(cw, ξ)dS(K1, . . . , K2n−1, ξ)

=
1
2n

∫
S2n−1

cw · ξdS(K1, . . . , K2n−1, ξ),

=
1
2n

cw ·
∫

S2n−1

ξdS(K1, . . . , K2n−1, ξ)

= 0,

since the centroid of the mixed surface area measure is the origin (see [6]). Thus,
ΠC(K1, . . . , K2n−1) = {0}.
If K1 = · · · = K2n−i−1 = K and M = (K2n−i, . . . , K2n−1), then the mixed pro-

jection body ΠC(K, . . . , K, K2n−i, . . . , K2n−1) is written as ΠC
i (K, M). In particular,

we write ΠC
i (K, L) for the mixed complex projection body ΠC(K, . . . , K, L, . . . , L)

with i copies of L and 2n− i−1 copies of K . For the mixed complex projection body
ΠC

i (K, B) we simply write ΠC
i K.

Based on the standard proof of geometric inequalities which was mainly developed
by Lutwak [14,15,17] and was successfully used by Schuster in [23], we establish
analogs of the classical inequalities from the Brunn-Minkowski Theory (such as the
Minkowski and Brunn-Minkowski inequalities) for mixed complex projection bodies.

Theorem 1.1. Let K be a convex body in C
n and C ⊂ C be a convex subset

which is not a point. If 0 ≤ i < j < 2n − 1, while 0 ≤ k < 2n, then

(1.5) Wk(ΠC
j K)2n−i−1 ≥ r

(2n−k)(j−i)
C ωj−i

2n Wk(ΠC
i K)2n−j−1,

with equality if and only if K is a ball, where rC is given by ΠCB = rCB.

Theorem 1.2. Let K and L be convex bodies in C
n and C ⊂ C be a convex

subset which is not a point. If 0 ≤ i < 2n, while 0 ≤ j < 2n − 2, then

(1.6)
Wi(ΠC

j (K + L))
1

(2n−i)(2n−j−1)

≥ Wi(ΠC
j K)

1
(2n−i)(2n−j−1) + Wi(ΠC

j L)
1

(2n−i)(2n−j−1) ,

with equality if and only if K and L are homothetic.

2. NOTATION AND BACKGROUND MATERIAL

In this section some notation and basic facts about convex bodies are presented.
For general reference the reader may wish to consult the books of Gardner [7] and
Schneider [21].
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A compact, convex set K ∈ Kn is uniquely determined by its support function
h(K, ·) on R

n , defined by

(2.1) h(K, u) = max{x · u : x ∈ K}, u ∈ R
n.

Let GL(n) denote the group of general linear transformations in R
n. If φ ∈ GL(n)

and K ∈ Kn, then for every u ∈ Rn,

(2.2) h(φK, u) = h(K, φtu),

where φt is the transpose of φ.
For K1, K2 ∈ Kn and λ1, λ2 ≥ 0, the Minkowski sum λ1K1 +λ2K2 is the convex

body defined by

(2.3) h(λ1K1 + λ2K2, ·) = λ1h(K1, ·) + λ2h(K2, ·).
If Ki ∈ Kn(i = 1, 2, . . . , m) and λi(i = 1, 2, . . . , m) are non-negative real num-

bers, then the volume of λ1K1 + · · ·+ λmKm is a homogeneous polynomial of degree
n in λi given by

V (λ1K1 + · · ·+ λmKm) =
∑

i1,...,in

V (Ki1, . . . , Kin)λi1 · · ·λin ,

where the sum is taken over all n-tuples (i1, . . . , in) of positive integers not exceeding
m. The coefficient V (Ki1, . . . , Kin) is called the mixed volume of Ki1, . . . , Kin. It
is nonnegative, symmetric in its arguments and monotone (with respect to set inclu-
sion in each component). In particular, V (K, . . . , K) = V (K). Let K1 = · · · =
Kn−i = K and Kn−i+1 = · · · = Kn = L, then the mixed volume V (K1, . . . , Kn)
is usually written as Vi(K, L). We write B for the Euclidean unit ball in Rn. If
L = B, Vi(K, B) is the i-th Quermassintegral of K and is written as Wi(K). For
0 ≤ i ≤ n, we write Wi(K, L) for the mixed volume V (K, . . . , K︸ ︷︷ ︸

n−i−1

, B, . . . , B︸ ︷︷ ︸
i

, L).

If M = (Kn−i, . . . , Kn−1), we write V (K, n − i − 1; M ; L) for the mixed volume
V (K, . . . , K︸ ︷︷ ︸

n−i−1

, Kn−i, . . . , Kn−1, L).

The mixed volume V (K1, . . . , Kn) has the following integral representation[17]:

(2.4) V (K1, . . . , Kn) =
1
n

∫
Sn−1

h(Kn, u)dS(K1, · · · , Kn−1, u).

One of the most general and fundamental inequalities for mixed volumes is the
Aleksandrov-Fenchel inequality[17]: If K1, . . . , Kn ∈ Kn and 1 ≤ m ≤ n, then

(2.5) V (K1, . . . , Kn)m ≥
m∏

j=1

V (Kj, . . . , Kj︸ ︷︷ ︸
m

, Km+1, . . . , Kn),



Inequalities for Mixed Complex Projection Bodies 1891

Unfortunately, the equality conditions of this inequality are, in general, unknown.
An important special case of inequality (2.5), where the equality conditions are

known, is the classical inequality between the Quermassintegrals: If K ∈ Kn, and
0 ≤ i < j < n, then

(2.6) ωj−i
n Wi(K)n−j ≤ Wj(K)n−i,

with equality if and only if K is a ball.
The Minkowski inequality for mixed volumes states as follows[16]: If K, L ∈ Kn

and 0 ≤ i ≤ n − 2, then

(2.7) Wi(K, L)n−i ≥ Wi(K)n−i−1Wi(L),

with equality if and only if K and L are homothetic.
A consequence of the Minkowski inequality is the Brunn-Minkowski inequality: If

K, L ∈ Kn and 0 ≤ i ≤ n − 2, then

(2.8) Wi(K + L)
1

n−i ≥ Wi(K)
1

n−i + Wi(L)
1

n−i .

Equality holds if and only if K and L are homothetic.
A generalization of inequality (2.8) is also known (but without equality conditions):

If K, L, K1, . . . , Ki ∈ Kn, 0 ≤ i ≤ n − 2, and M = (K1, . . . , Ki), then

(2.9) Vi(K + L, M)
1

n−i ≥ Vi(K, M)
1

n−i + Vi(L, M)
1

n−i .

3. MAIN RESULTS

Lemma 3.1. [2]. If K1, . . . , K2n−1, L1, . . . , L2n−1 are convex bodies in C
n and

C ⊂ C is a convex subset, then

V (K1, . . . , K2n−1, ΠC(L1, . . . , L2n−1)) = V (L1, . . . , L2n−1, ΠC(K1, . . . , K2n−1)),

where C is the complex conjugate of C ⊂ C.

If K1 = · · · = K2n−i−1 = K, while K2n−i = · · · = K2n−1 = B, then Lemma 3.1
reduces to

Lemma 3.2. If K, L1, . . . , L2n−1 are convex bodies in C
n and C ⊂ C is a convex

subset, then

Wi(K, ΠC(L1, . . . , L2n−1)) = V (L1, . . . , L2n−1, ΠC
i K).

The special case of Lemma 3.2, where L1 = · · · = L2n−j−1 = L and L2n−j =
· · · = L2n−1 = B, states as follows:
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Lemma 3.3. Let K and L be convex bodies in Cn and C ⊂ C be a convex subset.
If 0 ≤ i ≤ 2n − 1, while 0 ≤ j ≤ 2n − 2, then

Wi(K, ΠC
j L) = Wj(L, ΠC

i K).

Let w ∈ S2n−1 and SO(2n) be the rotation group in R2n. Then for every ν ∈
S2n−1, there exists a rotation transform φ ∈ SO(2n), such that ν = φw. By (1.4) and
(2.2), we have

h(ΠCB, ν) = h(ΠCB, φw) =
1
2n

∫
S2n−1

h(C · φw, ξ)dS(B, ξ)

=
1
2n

∫
S2n−1

h(C · w, φtξ)dS(B, ξ),

=
1
2n

∫
S2n−1

h(C · w, u)dS(B, u)

= h(ΠCB, w),

equivalently, ΠCB = rCB. Note that h(C · w, ξ) = h(C · ξ, w) and the surface
area measure S(B, ·) is constant in S2n−1. From above argument, we obtain ΠCB =
ΠCB = rCB.

Take K1 = · · · = K2n−1 = B in Lemma 3.1 and use ΠCB = ΠCB = rCB to get

Lemma 3.4. Let L1, . . . , L2n−1 be convex bodies in C
n and C ⊂ C be a convex

subset. Then

(3.1) W2n−1(ΠC(L1, . . . , L2n−1)) = rCV (L1, . . . , L2n−1, B).

For L1 = · · · = L2n−2 = K and L2n−1 = L, identity (3.1) becomes

(3.2) W2n−1(ΠC
1 (K, L)) = rCW1(K, L),

for L1 = · · · = L2n−i−1 = K and L2n−i = · · · = L2n−1 = B, identity (3.1) becomes,

(3.3) W2n−1(ΠC
i K) = rCWi+1(K).

In [2], Abardia and Bernig established the following Minkowski type inequality for
mixed complex projection bodies.

Theorem 3.5. [2]. Let K and L be convex bodies in Cn and C ⊂ C be a convex
subset which is not a point. If 0 ≤ i ≤ 2n − 1, then

(3.4) Wi(ΠC
1 (K, L))2n−1 ≥ Wi(ΠCK)2n−2Wi(ΠCL),
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with equality if and only if K and L are homothetic.

Much more general than the Minkowski inequality is the Aleksandrov-Fenchel
inequality for mixed complex projection bodies which was obtained by Abardia and
Bernig [2].

Theorem 3.6. [2]. Let K1, . . . , K2n−1 be convex bodies in C
n and C ⊂ C be a

convex subset. If 0 ≤ i ≤ 2n − 1, while 0 ≤ k ≤ 2n − 2, then

(3.5) Wi(ΠC(K1, . . . , K2n−1))k ≥
k∏

j=1

Wi(ΠC(Kj, . . . , Kj︸ ︷︷ ︸
k

, Kk+1, . . . , K2n−1)).

From the case of k = 2n − 2 of inequality (3.5), it follows that

(3.6)
Wi(ΠC(K1, . . . , K2n−1))2n−2

≥ Wi(ΠC
1 (K1, K2n−1)) · · ·Wi(ΠC

1 (K2n−2, K2n−1)).

Combine inequality (3.6) and Theorem 3.5, and the result is

Corollary 3.7. Let K1, . . . , K2n−1 be convex bodies in C
n and C ⊂ C be a

convex subset which is not a point. If 0 ≤ i ≤ 2n − 1, then

Wi(ΠC(K1, . . . , K2n−1))2n−1 ≥ Wi(ΠCK1) · · ·Wi(ΠCK2n−1),

with equality if and only if the Ki are homothetic.

The special case of Corollary 3.7, where we have K1 = · · · = K2n−j−1 = K , and
K2n−j = · · · = K2n−1 = L, states as follow:

Corollary 3.8. Let K, L be convex bodies in Cn and C ⊂ C be a convex subset
which is not a point. If 0 ≤ i ≤ 2n − 1 and 1 ≤ j ≤ 2n − 2, then

Wi(ΠC
j (K, L))2n−1 ≥ Wi(ΠCK)2n−j−1Wi(ΠCL)j,

with equality if and only if K and L are homothetic.

An immediate consequence of Corollary 3.8 states as follows:

Theorem 3.9. Let K, L be convex bodies in C
n and M ⊂ C

n be a subset
which contains K and L. Suppose C ⊂ C is a convex subset which is not a point,
0 ≤ i ≤ 2n − 1 and 1 ≤ j ≤ 2n − 2. If either

(3.7) Wi(ΠC
j (K, Q)) = Wi(ΠC

j (L, Q)), for all Q ∈ M,
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or

(3.8) Wi(ΠC
j (Q, K)) = Wi(ΠC

j (Q, L)), for all Q ∈ M,

hold, then it follows that K = L, up to translation.

Proof. Suppose that (3.7) holds. Take K for Q in (3.7), use Corollary 3.8 to get

(3.9) Wi(ΠCK) ≥ Wi(ΠCL),

with equality if and only if K and L are homothetic.
Take L for Q in (3.7), use Corollary 3.8 to get

Wi(ΠCL) ≥ Wi(ΠCK).

Hence, there is equality in (3.9) and thus, there is a λ > 0 for which K and λL are
translates. But equality in (3.9) implies that λ = 1.
Exactly the same sort of argument shows that condition (3.8) implies that K and

L must be translates.

Proof of Theorem 1.1. From (3.3), it follows that the case k = 2n−1 of inequality
(1.5) reduces to (2.6), and hence, it may be assumed that k < 2n − 1.
Suppose Q is a convex body in C

n. From Lemma 3.3,

(3.10) Wk(Q, ΠC
j K) = Wj(K, ΠC

k Q).

From inequality (2.5), it follows that

(3.11) Wj(K, ΠC
k Q)2n−i−1 ≥ W2n−1(ΠC

k Q)j−iWi(K, ΠC
k Q)2n−j−1.

From (3.3) and inequality (2.6), it follows that

(3.12) W2n−1(ΠC
k Q) = rCWk+1(Q) ≥ rCω

1
2n−k

2n Wk(Q)
2n−k−1
2n−k ,

with equality if and only if Q is a ball.
For the second term on the right of (3.11), note that by Lemma 3.3,

Wi(K, ΠC
k Q) = Wk(Q, ΠC

i K).

Apply inequality (2.7) to the quantity on the right and get:

(3.13) Wi(K, ΠC
k Q) ≥ Wk(Q)

2n−k−1
2n−k Wk(ΠC

i K)
1

2n−k ,

with equality if and only if Q and ΠiK are homothetic.
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Now take Q = ΠC
j K, note that Wk(Q, Q) = Wk(Q), and combine (3.10) with

(3.11), (3.12) and (3.13) to obtain the desired inequality of Theorem 1.1.
Suppose there is equality in inequality (1.5):

(3.14) Wk(ΠC
j K)2n−i−1 = r

(j−i)(2n−k)
C ωj−i

2n Wk(ΠC
i K)2n−j−1.

From the equality conditions of inequalities (3.12) and (3.13), this implies that
ΠC

i K and ΠC
j K must be centered balls. Thus there exist λ, μ > 0 and x1, x2 ∈ C

n,
such that

(3.15) ΠC
i K = λB + x1, and ΠC

j K = μB + x2.

Since Quermassintegrals are translation invariant, from (3.14), it follows that

μ2n−i−1 = rj−i
C λ2n−j−1,

equivalently,

ωj−i
2n [

λω2n

rC
]2n−j−1 = [

μω2n

rC
]2n−i−1.

Moreover, (3.3) and (3.15) imply

Wi+1(K) =
λω2n

rC
and Wj+1(K) =

μω2n

rC
.

Hence, we have
ωj−i

2n Wi+1(K)2n−j−1 = Wj+1(K)2n−i−1,

which implies, by (2.6), that K is a ball.

Theorem 3.10. Let K, L, M1, . . . , Mi, N1, . . . , Nj be convex bodies in C
n and

C ⊂ C be a convex subset. Let M = (M1, . . . , Mi), N = (N1, . . . , Nj). If 0 ≤ i ≤
2n − 1, while 0 ≤ j ≤ 2n − 2, then

Vi(ΠC
j (K + L, N ), M)

1
(2n−i)(2n−j−1)

≥ Vi(ΠC
j (K, N ), M)

1
(2n−i)(2n−j−1) + Vi(ΠC

j (L, N ), M)
1

(2n−i)(2n−j−1) .

Proof. If j = 2n − 2, by (1.4), we have that, for every w ∈ S2n−1,

h(ΠC
2n−2(K + L, N ), w) =

1
2n

∫
S2n−1

h(C · w, ξ)dS(K + L, N, . . . , N, ξ)

= V (K + L, N, . . . , N, C ·w)

= V (K, N, . . . , N, C ·w) + V (L, N, . . . , N, C ·w)

= h(ΠC
2n−2(K, N ), w)+ h(ΠC

2n−2(L, N ), w).
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From (2.3), it follows that

ΠC
2n−2(K + L, N ) = ΠC

2n−2(K, N )+ ΠC
2n−2(L, N ).

Hence, for j = 2n − 2, the inequality of Theorem 3.10 reduces to inequality (2.9).
If i = 2n − 1, then from Lemma 3.1, it follows that the inequality of Theorem 3.10
reduces to (2.9). Thus, only the cases where j < 2n − 2 and i < 2n − 1 need be
treated.
Let Q ∈ C

n be a convex body. From Lemma 3.1, (2.9) and (2.5), it follows that

V (Q, 2n− i− 1; M ; ΠC
j (K + L, N )

1
2n−j−1

= V (K + L, 2n− j − 1; N ; ΠC
i (Q, M))

1
2n−j−1

≥ V (K, 2n− j − 1; N ; ΠC
i (Q, M))

1
2n−j−1 +V (L, 2n−j−1; N ; ΠC

i (Q, M))
1

2n−j−1

= V (Q, 2n− i − 1; M ; ΠC
j (K, N ))

1
2n−j−1 +V (Q, 2n−i−1;M ; ΠC

j (L, N ))
1

2n−j−1

≥ Vi(Q, M)
2n−i−1

(2n−i)(2n−j−1) [Vi(ΠC
j (K, N ), M)

1
(2n−i)(2n−j−1)

+Vi(ΠC
j (L, N ), M)

1
(2n−i)(2n−j−1) ].

Take ΠC
j (K + L, N ) for Q, and recall that V (Q, 2n − i − 1; M ; Q) = Vi(Q, M) to

obtain that

Vi(ΠC
j (K + L, N ), M)

1
(2n−i)(2n−j−1)

≥ Vi(ΠC
j (K, N ), M)

1
(2n−i)(2n−j−1) + Vi(ΠC

j (L, N ), M)
1

(2n−i)(2n−j−1) .

The most interesting case of the inequality of Theorem 3.10 is the special case
where N = (B, . . . , B). In this case the inequality of Theorem 3.10 reads

Vi(ΠC
j (K+L), M)

1
(2n−i)(2n−j−1) ≥Vi(ΠC

j K, M)
1

(2n−i)(2n−j−1)+Vi(ΠC
j L, M)

1
(2n−i)(2n−j−1) .

For the special case where M = (B, . . . , B), the equality conditions of the above
inequality will be established.

Proof of Theorem 1.2. Taking N = (B, . . . , B) and M = (B, . . . , B) in Theorem
3.10, we obtain

(3.16)
Wi(ΠC

j (K + L))
1

(2n−i)(2n−j−1)

≥ Wi(ΠC
j K)

1
(2n−i)(2n−j−1) + Wi(ΠC

j L)
1

(2n−i)(2n−j−1) .

By the equality condition of (2.7), equality in (3.16) holds if and only if ΠC
j (K +

L), ΠC
j K and ΠC

j L are homothetic. If there is equality in (3.16), then there exist
λ1, λ2 > 0 and x1, x2 ∈ C

n, such that

(3.17) ΠC
j K = λ1ΠC

j (K + L) + x1 and ΠC
j L = λ2ΠC

j (K + L) + x2.
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From equality in (3.16), it follows that

λ
1

2n−j−1

1 + λ
1

2n−j−1

2 = 1.

Moreover, (3.3) and (3.17) imply

(3.18) λ1 =
Wj+1(K)

Wj+1(K + L)
and λ2 =

Wj+1(L)
Wj+1(K + L)

.

Hence, we have

Wj+1(K + L)
1

2n−j−1 = Wj+1(K)
1

2n−j−1 + Wj+1(L)
1

2n−j−1 ,

which implies, by the equality condition of (2.8), that K and L are homothetic.

Corollary 3.11. Let K, L be convex bodies in Cn and C ⊂ C be a convex subset
which is not a point. If 0 ≤ i ≤ 2n − 1, then

Wi(ΠC(K + L))
1

(2n−i)(2n−1) ≥ Wi(ΠCK)
1

(2n−i)(2n−1) + Wi(ΠCL)
1

(2n−i)(2n−1) ,

with equality if and only if K and L are homothetic.

Remark. The case i = j = 0 of Theorem 3.10 was first established by Abardia
and Bernig [2].
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