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FIXED POINTS OF MEROMORPHIC SOLUTIONS FOR DIFFERENCE
RICCATI EQUATION

Ye-Yang Jiang and Zong-Xuan Chen*

Abstract. In this paper, we investigate fixed points of meromorphic functions
f(z) for difference Riccati equations, and obtain some estimates of exponents
of convergence of fixed points of f(z) and shifts f(z + n), differences
�f(z) = f(z + 1) − f(z) and divided differences �f(z)

f(z)
.

1. INTRODUCTION

In this paper, we assume that the reader is familiar with the standard notations and
basic results of Nevanlinna’s value distribution theory (see [11, 15]). In addition, we
use the notions σ(f) to denote the order of growth of the meromorphic function f(z),
λ(f) and λ( 1

f ) to denote the exponents of convergence of zeros and poles of f(z),
respectively. We also use the notion τ(f) to denote the exponent of convergence of
fixed points of f that is defined as

τ(f) = lim
r→∞

logN (r, 1
f−z )

log r
.

Early results for difference equations were motivated by the work of Kimura [14]
on the iteration of analytic functions. Bank and Kaufman [2], Shimomura [17] and
Yanagihara [18] studied complex non-linear difference equations from the viewpoint
of Nevanlinna theory and obtained a series of original results on the existence of
meromorphic solutions of complex difference equations. As the difference analogues
of Nevanlinna’s theory are being investigated, many results on the complex difference
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equations are got rapidly. Many papers [1, 3, 5, 7, 13, 16] mainly deal with the growth
of meromorphic solutions of difference equations.
In [9], Halburd and Korhonen use value distribution theory to single out the dif-

ference Painlevé II equation from a large class of difference equations of the form

y(z + 1) + y(z − 1) =
c2y

2 + c1y + c0

y2 − p2
,

where c′js, p( �≡ 0) are rational functions. In their proof, Halburd and Korhonen are
concerned with the Riccati difference equations of the form

w(z + 1) =
A + δw(z)
δ − w(z)

,

where A is a polynomial, δ = ±1 (see [10, p. 197]).
In [13], Ishizaki illustrates that the difference Riccati equation

f(z + 1) =
A(z) + f(z)

1 − f(z)

and the second linear difference equation

y(z + 2)− 2y(z + 1) + (A(z) + 1)y(z) = 0

are closed related by the passage

f(z) = −�y(z)
y(z)

.

From the above, we see that the difference Riccati equation is an important class of
difference equation, it will play an important role in research of difference equations.
Recently, many papers [3, 4, 6, 13] deal with complex difference Riccati equations.

In [4], Chen and Shon investigated the existence and forms of rational solutions, and
the Borel exceptional value, zeros, poles and fixed points of transcendental solutions,
and they proved the following theorem.

Theorem A. Let δ = ±1 be a constant and A(z) = m(z)
n(z)

be an irreducible
nonconstant rational function, wherem(z) and n(z) are polynomials with deg m(z) =
m and deg n(z) = n.
If f(z) is a transcendental finite order meromorphic solution of the difference

Riccati equation

(1.1) f(z + 1) =
A(z) + δf(z)

δ − f(z)
,

then
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(i) if σ(f) > 0, then f(z) has at most one Borel exceptional value;
(ii) λ( 1

f ) = λ(f) = σ(f);

(iii) if A(z) �≡ −z2 − z + 1, then the exponent of convergence of fixed points of f
satisfies τ(f) = σ(f).

In this paper, we continue to investigate the difference Riccati equation (1.1), and
obtain some estimates of fixed points of difference and shift of meromorphic solutions
of (1.1). We prove the following theorem.

Theorem 1.1. Let δ = ±1 be a constant and A(z) be a nonconstant rational
function, not be a polynomial with deg A = 2. Set�f(z) = f(z+1)−f(z). Then every
finite order transcendental meromorphic solution of the difference Riccati equation
(1.1) satisfies:

(i) τ(f(z + n)) = σ(f(z)) (n = 0, 1, 2, · · ·);
(ii) if there is a rational function m(z) satisfying

m2(z) =
(

z

1 + z

)2

− 4A(z)
1 + z

,

then τ
(�f(z)

f(z)

)
= σ(f(z));

(iii) if there is a rational function n(z) satisfying n2(z) = z2−4A(z), then τ(�f(z))
= σ(f(z)).

Remark 1.2 Generally, for a meromorphic function f(z) , τ(f(z+n)) �= τ(f(z)).
For example, the function f(z) = ez2

+ z satisfies

τ(f(z)) = 0, but τ(f(z + n)) = 2 (n = 1, 2, · · · ).
2. LEMMAS FOR PROOF OF THEOREM 1.1

Firstly we need the following lemma for the proof of Theorem 1.1.

Lemma 2.1. (See [8, 16]). Let w(z) is a nonconstant finite order transcendental
meromorphic solution of the difference equation of

P (z, w) = 0

where P (z, w) is a difference polynomial in w(z). If P (z, α) �≡ 0 for a meromorphic
function α(z) satisfying T (r, α) = S(r, w), then

m

(
r,

1
w − α

)
= S(r, w)

holds for all r outside of a possible exceptional set with finite logarithmic measure.
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Lemma 2.2. Let A(z) be a nonconstant rational function, and f(z) be a noncon-
stant meromorphic function. Then

y1(z) = (1 + z)f(z) + A(z) − z and y2(z) = 1 − f(z)

have at most finitely many common zeros.

Proof Suppose that z0 is a common zero of y1(z) and y2(z). Then y1(z0) =
1− f(z0) = 0. Thus, f(z0) = 1. Substituting f(z0) = 1 into y1(z), we obtain

y1(z0) = (1 + z0) + A(z0) − z0 = A(z0) + 1 = 0.

Since A(z) is a nonconstant rational function, A(z) + 1 has only finitely many zeros.
Thus, y1(z) and y2(z) have at most finitely many common zeros.

Lemma 2.3. (See [7]). Let f(z) be a meromorphic function with order σ =
σ(f), σ < +∞, and let η be a fixed non zero complex number, then for each ε > 0,
we have

T (r, f(z + η) = T (r, f) + O(rσ−1+ε) + O(log r).

Using the same discussion as Lemma 2.2, we have the following two lemmas.

Lemma 2.4. Let A(z) be a nonconstant rational function, and f(z) be a noncon-
stant meromorphic function. Then

y1(z) = (1 + z)f2(z) − zf(z) + A(z) and y2(z) = (1 − f(z))f(z)

have at most finitely many common zeros.

Lemma 2.5. Let A(z) be a nonconstant rational function, and f(z) be a noncon-
stant meromorphic function. Then

y1(z) = f2(z) + zf(z) + A(z)− z and y2(z) = 1− f(z)

have at most finitely many common zeros.

3. PROOF OF THEOREM 1.1

Suppose that δ = 1. We only prove the case δ = 1. We can use the same method
to prove the case δ = −1.

(i)We prove that τ(f(z + n)) = σ(f(z)) (n = 0, 1, 2, · · ·). Firstly, if n = 0, by
theorem A(iii), the conclusion holds.
Now suppose that n = 1. By (1.1), we obtain

(3.1)

f(z + 1) − z =
A(z) + f(z)

1 − f(z)
− z =

(1 + z)f(z) + A(z) − z

1 − f(z)

=
(1 + z)

(
f(z) + A(z)−z

1+z

)
1 − f(z)

.



Fixed Points of Meromorphic Solutions for Difference Riccati Equation 1417

Since A(z) is a nonconstant rational function, by (3.1), we know that f(z) + A(z)−z
1+z

and 1 − f(z) have the same poles, except possibly finitely many. By Lemma 2.2, we
see that (1 + z)f(z) + A(z) − z and 1 − f(z) have at most finitely many common
zeros. Hence, by (3.1), we have that

(3.2) τ(f(z + 1)) = λ(f(z + 1)− z) = λ

(
f(z) +

A(z)− z

1 + z

)
.

Suppose that λ
(
f(z) + A(z)−z

1+z

)
< σ(f(z)). Thus, f(z) + A(z)−z

1+z can be rewritten as
form

(3.3) f(z) +
A(z) − z

1 + z
= zs P0(z)

Q0(z)
eh(z) =

P (z)
Q(z)

,

where h(z) is a polynomial with deg h(z) ≤ σ(f(z)), P0(z) and Q0(z) are canonical
products (P0(z) may be a polynomial) formed by nonzero zeros and poles of f(z) +
A(z)− z

1 + z
, respectively, s is an integer, if s ≥ 0, then P (z) = zsP0(z), Q(z) =

Q0(z)e−h(z); if s < 0, then P (z) = P0(z), Q(z) = z−sQ0(z)e−h(z). Combining
Theorem A with property of canonical product, we have{

λ(P (z)) = σ(P (z)) = λ
(
f(z) + A(z)−z

1+z

)
< σ(f(z)),

λ(Q(z)) = σ(Q(z)) = σ(f(z))
(3.4)

by (3.3), we obtain

(3.5) f(z) =
z − A(z)

1 + z
+P (z)y(z), f(z+1) =

z + 1 − A(z + 1)
2 + z

+P (z+1)y(z+1),

where y(z) = 1
Q(z) . Thus, by (3.4), we have

(3.6) σ(y(z)) = σ(Q(z)) = σ(f(z)), σ(P (z + 1)) = σ(P (z)) < σ(f(z)).

Substituting (3.5) into (1.1), we obtain

K1(z, y) : =
(

P (z + 1)y(z + 1) +
z + 1 − A(z + 1)

2 + z

)

·
(

1 − z − A(z)
1 + z

− P (z)y(z)
)
− A(z) − P (z)y(z)− z − A(z)

1 + z

= 0

and
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(3.7)

K1(z, 0) : =
z + 1 − A(z + 1)

2 + z
· 1 + A(z)

1 + z
− A(z) − z − A(z)

1 + z

=
(z + 1 − A(z + 1) − z(1 + z)) (1 + A(z))

(2 + z)(1 + z)

=

(
1 − z2 − A(z + 1)

)
(1 + A(z))

(2 + z)(1 + z)
.

Since A(z) is neither a constant nor a polynomial with deg A = 2, we see that
1− z2 − A(z + 1) �≡ 0 and 1 + A(z) �≡ 0, so that

(3.8) K1(z, 0) �≡ 0.

Thus, by (3.4), (3.8) and Lemma 2.1, we obtain for any given ε (0 < ε < σ(f(z)) −
σ(P (z)))

(3.9) N

(
r,

1
y(z)

)
= T (r, y(z))+ S(r, y(z))+ O

(
rσ(P (z))+ε

)

holds for all r outside of a possible exceptional set with finite logarithmic measure.
On the other hand, by y(z) =

1
Q(z)

and the fact that Q(z) is an entire function, we

see that
N

(
r,

1
y(z)

)
= 0,

which contradicts (3.9). Hence, λ
(

f(z) +
A(z)− z

1 + z

)
= σ(f(z)). By (3.2), we have

τ(f(z + 1)) = σ(f(z)).

Now suppose that n = 2. By (1.1), we obtain

(3.10) g(z + 1) =
A(z + 1) + g(z)

1 − g(z)
,

where g(z) = f(z + 1). By Lemma 2.3, we know that σ(g(z)) = σ(f(z)). By the
assumption, we know that A(z + 1) is a nonconstant rational function and is not a
polynomial with deg A = 2. Thus for (3.10), applying the conclusion of n = 1 above,
we have

(3.11) τ(f(z + 2)) = τ(g(z + 1)) = σ(g(z)) = σ(f(z)).

Continuing to use the same method as above, we can obtain

τ(f(z + n)) = σ(f(z)) (n = 1, 2, · · · ).
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(ii) Suppose that there is a rational function m(z) satisfying

(3.12) m2(z) = (
z

1 + z
)2 − 4A(z)

1 + z
.

Now we prove that τ
(�f(z)

f(z)

)
= σ(f(z)). By (1.1), we have

(3.13)

�f(z)
f(z)

− z =
f(z + 1) − f(z)

f(z)
− z =

(1 + z)f2(z)− zf(z) + A(z)
(1− f(z))f(z)

=
(1 + z)

(
f(z) −

z
1+z

+m(z)

2

) (
f(z) −

z
1+z

−m(z)

2

)
(1− f(z))f(z)

.

Since z
1+z and m(z) are rational functions, we see that (1 + z)f2(z) − zf(z) + A(z)

and (1−f(z))f(z) have the same poles, except possibly finitely many. By Lemma 2.4
and (3.13), in order to prove τ

(�f(z)
f(z)

)
= σ(f(z)), we only need to prove that

(3.14) λ

(
f(z) − 1

2

(
z

1 + z
− m(z)

))
= σ(f(z))

or

(3.15) λ

(
f(z) − 1

2

(
z

1 + z
+ m(z)

))
= σ(f(z)).

Now we prove that (3.14) holds. Suppose that λ

(
f(z) − 1

2

(
z

1 + z
− m(z)

))
<

σ(f(z)).Using a similar method as in the proof of (i), we see that f(z)− 1
2 ( z

1+z +m(z))
can be rewritten as form

(3.16) f(z) =
z

1+z − m(z)
2

+ P2(z)y2(z),

where y2(z) = 1
H2(z)

, P2(z) and H2(z) are nonzero entire functions, such that

λ(P2(z)) = σ(P2(z)) < σ(f(z)) and λ(H2(z)) = σ(H2(z)) = σ(f(z))

Substituting (3.16) into (1.1), we have

K2(z, y2) : =
(

z + 1
2z + 4

− 1
2
m(z + 1) + P2(z + 1)y2(z + 1)

)

·
(

z+2
2z+2

− 1
2
m(z)+P2(z)y2(z)

)
−A(z)− z

2z+2
+

1
2
m(z)−P2(z)y2(z)

= 0
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and

K2(z, 0) :

=
(

z + 1
2z + 4

− 1
2
m(z + 1)

)(
z + 2
2z + 2

− 1
2
m(z)

)
− A(z) − z

2z + 2
+

1
2
m(z)

=
1 − z

4z + 4
− z + 2

4z + 4
m(z + 1) +

3z + 5
4z + 8

m(z) − 1
4
m(z + 1)m(z)− A(z)

=
1 − z

4z + 4
− z + 2

4z + 4
m(z + 1) +

3z + 5
4z + 8

m(z) + (1 + z)m2(z)

− z2

z + 1
− 1

4
m(z + 1)m(z).

We affirm that K2(z, 0) �≡ 0. We set m(z) = S(z)
T (z) , where S(z) and T (z) are mutually

prime polynomials with deg S(z) = s and deg T (z) = t. If deg m(z) = s− t > 0, we
see that in the representation of K2(z, 0), there exists only term being of the highest
degree with deg(1 + z)m2(z) = 1 + 2(s − t), then K2(z, 0) �≡ 0. If deg m(z) =

s − t < 0, we have that
z2

z + 1
is the unique highest degree term, then K2(z, 0) �≡ 0.

If deg m(z) = s − t = 0, we obtain that (1 + z)m2(z) and
z2

z + 1
have the highest

degree. If (1+ z)m2(z)− z2

z + 1
≡ 0, by (3.12), then A(z) ≡ 0, which contradicts the

assumption. Hence, K2(z, 0) �≡ 0.

Using the same method as in the proof of (i), we see that (3.15) holds.

(iii) Suppose that there is a rational function n(z) satisfying

(3.17) n2(z) = z2 + 4z − 4A(z),

then τ(�f(z)) = σ(f(z)). By (1.1), we obtain

(3.18) �f(z) − z = f(z + 1) − f(z) − z =
f2(z) + zf(z) + A(z) − z

1 − f(z)
.

By (3.17) and (3.18), we have

(3.19) f(z + 1) − f(z) − z =

(
f(z) +

z − n(z)
2

)(
f(z) +

z + n(z)
2

)
1 − f(z)

.

Since A(z) is a rational function, we know that poles of 1 − f(z) must be poles of
f2(z)+zf(z)+A(z)−z. Thus, poles of 1−f(z) are not zeros of f(z+1)−f(z)−z.

By Lemma 2.5, we see that the numerator and denominator of the right side of (3.18)
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have at most finite many common zeros. Thus, in order to prove τ(�f(z)) = σ(f(z)),
by (3.19), we only need to prove that

(3.20) λ

(
f(z) +

z − n(z)
2

)
= σ(f(z))

or

(3.21) λ

(
f(z) +

z + n(z)
2

)
= σ(f(z)).

Now we prove that (3.20) holds. Suppose that

λ

(
f(z) +

z − n(z)
2

)
< σ(f(z)).

Using a similar method as in the proof of (i), we see that f(z) +
z − n(z)

2
can be

rewritten as form

(3.22) f(z) =
1
2
n(z) − 1

2
z + P3(z)y3(z).

where y3(z) = 1
H3(z)

, P3(z) and H3(z) are non-zero entire functions such that

λ(P3(z)) = σ(P3(z)) < σ(f(z)) and λ(H3(z)) = σ(H3(z)) = σ(f(z))

Substituting (3.22) into (1.1), we have

K3(z, y3(z)) :=
[
1
2
n(z+1)− 1

2
(z + 1)+P3(z + 1)y3(z+1)

]
·[

1− 1
2
n(z)+

1
2
z−P3(z)y3(z)

]
−A(z)− 1

2
n(z)+

1
2
z−P3(z)y3(z).

By (3.17), we have

K3(z, 0) : =
(

1
2
n(z + 1) − 1

2
(z + 1)

)(
1 − 1

2
n(z) +

1
2
z

)
− A(z) − 1

2
n(z) +

1
2
z

=
1
4
(z + 2)n(z + 1) − 1

4
(z2 + z + 2)− 1

4
n(z + 1)n(z)

+
1
4
(z − 1)n(z)− A(z)

=
1
4
(z + 2)n(z + 1) − 1

4
(z2 + 3z + 2)− 1

4
n(z + 1)n(z)

+
1
4
(z − 1)n(z)− 1

4
(z2 + z) +

1
4
n2(z)

=
1
4
n(z)[n(z)− n(z + 1)] +

1
4
z[n(z) + n(z + 1)]

+
1
4
[n(z + 1)− n(z)]− 1

4
(2z2 + 5z + 2).



1422 Ye-Yang Jiang and Zong-Xuan Chen

We affirm thatK3(z, 0) �≡ 0. In fact, we set n(z) =
S1(z)
T1(z)

, where S1(z) and T1(z) are

mutually prime polynomials with deg S1(z) = s1 and deg T1(z) = t1. If s1 − t1 ≤ 0,

we see that in the representation of K3(z, 0), there exists only term being of the highest
degree with deg 1

4 (2z2+5z+2) = 2, thenK3(z, 0) �≡ 0. If deg n(z) = s1−t1 > 0, then

n(z) can be rewritten as
S0(z)
T0(z)

+ n0(z), where S0(z), T0(z), n0(z) are polynomials

with deg S0(z) ≤ deg T0(z) and deg n0(z) = s1 − t1. It is sufficient to consider
n0(z) in place of n1(z). If deg n0(z) = 1 or 2, we may set n0(z) = az + b or
n0(z) = az2 + bz + c. Substituting n0(z) = az + b or n0(z) = az2 + bz + c into
K3(z, 0), and combining the coefficients of the polynomial K3(z, 0), we have that
K3(z, 0) �≡ 0. If deg n0 ≥ 3, combining the degree of every terms in K3(z, 0), we

obtain that deg
1
4
n0(z)[n0(z) − n0(z + 1)] is the highest degree, then K3(z, 0) �≡ 0.

Using the same method as in the proof of (i), we know that (3.20) holds.

Thus, Theorem 1.1 is proved.
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