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GAP FUNCTIONS AND GLOBAL ERROR BOUNDS FOR SET-VALUED
MIXED VARIATIONAL INEQUALITIES

Guo-ji Tang and Nan-jing Huang*

Abstract. In this paper, we introduce some gap functions for set-valued mixed
variational inequalities under suitable conditions. We further use these gap func-
tions to study global error bounds for the solutions of set-valued mixed variational
inequalities in Hilbert spaces. The results presented in this paper generalize and
improve some corresponding known results in literatures.

1. INTRODUCTION

The concept of a gap function was introduced for the study of a convex optimization
problem and subsequently applied to variational inequalities. As is well known, gap
functions play a crucial role in transforming a variational inequality into an optimization
problem [6-8, 13, 15-20, 22, 24, 25, 28]. Thus, powerful optimization solution methods
and algorithms can be applied for finding solutions of variational inequalities. On the
other hand, gap functions have turned out to be very useful in deriving the error bounds,
which provide a measure of the distance between solution set and an arbitrary point.
Error bounds have played an important role not only in sensitivity analysis but also
in convergence analysis of iterative algorithms for solving variational inequalities. It
is therefore of interest to investigate error bounds for gap functions associated with
various variational inequalities (see [6, 7, 17, 19, 22, 23, 28]).
Throughout this paper, let H be a real Hilbert space with inner product 〈·, ·〉 and

norm ‖ · ‖, respectively. Let Φ : H → (−∞, +∞] be a lower semicontinuous, proper
and convex function and F : H ⇒ H be an upper semicontinuous set-valued mapping
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with nonempty compact convex values. We consider the following set-valued mixed
variational inequality, denoted by SMVI(F, Φ), which consists in finding x∗ ∈ dom Φ
such that

(1.1) ∃u∗ ∈ F (x∗) : 〈u∗, y − x∗〉 + Φ(y)− Φ(x∗) ≥ 0, ∀y ∈ dom Φ,

It is well known that SMVI(F, Φ) is encountered in many applications, in particular, in
mechanical problems and equilibrium problems (see [3, 4, 9, 10, 26, 27, 30]). Another
problem closely related to SMVI(F, Φ) is the so-called weak set-valued mixed varia-
tional inequality, denoted by WSMVI(F, Φ), which consists in finding x∗ ∈ dom Φ
such that

(1.2) ∀y ∈ dom Φ, ∃u∗ ∈ F(x∗) : 〈u∗, y − x∗〉 + Φ(y)− Φ(x∗) ≥ 0.

For the sake of convenience, the solution sets of SMVI(F, Φ) andWSMVI(F, Φ) are de-
noted by SOL(F, Φ) and SOLw(F, Φ), respectively. It is easy to see that SOL(F, Φ) ⊆
SOLw(F, Φ).
Let K be a nonempty closed convex subset of H. If Φ(·) is the indicator function

δK(·) over the subset K, i.e., δK(x) = 0, if x ∈ K and δK(x) = +∞, if x /∈ K , then
SMVI(F, Φ) reduces to set-valued variational inequality (for short SVI(F, K)): Find
x∗ ∈ K such that

(1.3) ∃u∗ ∈ F (x∗) : 〈u∗, y − x∗〉 ≥ 0, ∀y ∈ K,

which has been investigated by Fan and Wang [7], Daniilidis and Hadjisavvas [5].
If F is single-valued, then both SMVI(F, Φ) and WSMVI(F, Φ) reduce to the

mixed variational inequality (for short MVI(F, Φ)): Find x∗ ∈ dom Φ such that

(1.4) 〈F (x∗), y − x∗〉 + Φ(y) − Φ(x∗) ≥ 0, ∀y ∈ dom Φ,

which has been considered by Solodov [22], Han and Reddy [10] and He [11].
If Φ(·) is the indicator function δK(·) over the subset K and F is single-valued,

then both SMVI(F, Φ) and WSMVI(F, Φ) reduce to Stampacchia variational inequality
(for short, VI(F, K)): Find x∗ ∈ K such that

(1.5) 〈F (x∗), y − x∗〉 ≥ 0, ∀y ∈ K.

For VI(F, K)), constrained differentiable optimization formulations have been pro-
posed [8, 15, 25] and unconstrained differentiable optimization formulations have been
studied [28]. Very recently, followed the ideas due to Yamashita and Fukushima [28],
Fan and Wang [7] constructed new gap functions for SVI(F, K) through the Moreau-
Yosida regularization of some gap functions. The proposed gap functions constitute
unconstrained optimization problems equivalent to problem (1.3) under suitable as-
sumptions. Moreover, they derived global error bounds for the solution of problem
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(1.3) by using the proposed gap functions. Li and Mastroeni [17] introduced several
kinds of strong and weak scalar variational inequalities for studying strong and weak
vector variational inequalities with set-valued mappings and suggested their gap func-
tions and obtained the error bounds for gap functions. On the other hand, Huang et al.
[13] introduced and studied a gap function for a system of vector equilibrium problems
and proved some existence results of solutions for the problem. Some related work,
we refer readers to [16, 12].
Inspired and motivated by the research works above, in this paper, we present some

gap functions for problem (1.1) and give some error bounds based on them. The gap
functions presented in this paper have the following desirable properties:
(i) They are finite valued everywhere. Thus, problem (1.1) is equivalent to uncon-
strained optimization problems.

(ii) They are differentiable even if without the differentiability of F and Φ (see
Theorems 3.2 and 3.3).

(iii) They provide global error bounds for problem (1.1) without the Lipschitz conti-
nuity of F (see Theorems 4.1 and 4.2).

The results presented in this paper generalize the corresponding known results for prob-
lem (1.3) in [28] from set-valued variational inequality to set-valued mixed variational
inequality and from finite dimensional spaces to infinite dimensional Hilbert spaces.
The rest of paper is organized as follows. In the next section, we give some notations

used in this paper and present some preliminary results. In particular, we provide a
gap function induced by natural residual for problem (1.1). In the first subsection of
Section 3, we introduce two regularized gap functions for problem (1.1), and denote
them by fα(·) and hβ(·), respectively. Based on Moreau-Yosida regularization of fα(·)
and hβ(·), in the latter subsection of Section 3, we give two desirable gap functions
for problem (1.1) and study there differentiable properties. In Section 4, we present
error bounds based on the gap functions mentioned above for problem (1.1).

2. PRELIMINARIES

Definition 2.1. The mapping F is said to be
(i) strongly monotone iff, there is β > 0 such that for all (x, x∗), (y, y∗) in the
graphF ,

〈y∗ − x∗, y − x〉 ≥ β‖y − x‖2;

(ii) monotone iff, for all (x, x∗), (y, y∗) in the graphF ,

〈y∗ − x∗, y − x〉 ≥ 0;

(iii) pseudomonotone iff, for all (x, x∗), (y, y∗) in the graphF ,

〈x∗, y − x〉 ≥ 0 ⇒ 〈y∗, y − x〉 ≥ 0;
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(iv) strongly pseudomonotone iff, there is β > 0 such that for all (x, x∗), (y, y∗) in
the graphF ,

〈x∗, y − x〉 ≥ 0 ⇒ 〈y∗, y − x〉 ≥ β‖y − x‖2;

(v) Φ-pseudomonotone iff, for all (x, x∗), (y, y∗) in the graphF ,

〈x∗, y − x〉+ Φ(y)− Φ(x) ≥ 0 ⇒ 〈y∗, y − x〉 + Φ(y)− Φ(x) ≥ 0;

(vi) Φ-strongly pseudomonotone iff, there is β > 0 such that for all (x, x∗), (y, y∗)
in the graphF ,

〈x∗, y − x〉+ Φ(y)− Φ(x) ≥ 0 ⇒ 〈y∗, y − x〉 + Φ(y)− Φ(x) ≥ β‖y − x‖2;

(vii) Φ-strongly pseudomonotone with respect to x̄ with modulus β > 0 iff, for any
y ∈ dom Φ and y∗ ∈ F (y), we have

〈y∗, y − x̄〉+ Φ(y)− Φ(x̄) ≥ β‖y − x̄‖2;

(viii) Lipschitz continuous on a subset B of dom Φ iff, there exists L > 0 such that

H(T (x), T (y))≤ L‖x − y‖, ∀x, y ∈ B,

where H(·, ·) is the Hausdorff metric on a nonempty bounded closed subset of
H , i.e.,

H(T (x), T (y)) = max{ sup
r∈T (x)

inf
s∈T (y)

‖r−s‖, sup
s∈T (y)

inf
r∈T (x)

‖r−s‖}, ∀x, y ∈ B.

Remark 2.1. (i) We illustrate below the relationships between monotonicity and
some generalized monotonicity:

strong pseudomonotonicity⇐strong monotonicity⇒Φ − strong pseudomonotonicity
⇓ ⇓ ⇓

pseudomonotonicity⇐ monotonicity ⇒ Φ − pseudomonotonicity.
(ii) It is easily seen that if x̄ is a solution of problem (1.1) and F is Φ-strongly

pseudomonotone with modulus β > 0, then F is Φ-strongly pseudomonotone
with respect to x̄ with modulus β > 0.

(iii) If Φ ≡ constant, then a Φ-pseudomonotone,Φ-strongly pseudomonotonemapping
reduces to a pseudomonotone, strongly pseudomonotone mapping, respectively.

(iv) We would like to point out the Φ-pseudomonotone mapping was used to study
the F -complementarity problems in Banach spaces by Yin et al. [29], the sta-
bility for Minty mixed variational inequality in Banach spaces by Zhong and
Huang [30], and to construct the algorithm for solving the mixed variational in-
equalities in finite dimensional spaces by He [11], respectively. The relationship
between pseudomonotonicity and Φ-pseudomonotonicitywas discussed by Zhong
and Huang [30].
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Definition 2.2. For a convex function Φ : H → (−∞, +∞], dom Φ = {x ∈ H :
Φ(x) < +∞} denotes its effective domain. For any given x ∈ dom Φ

∂Φ(x) = {p ∈ H : Φ(y)− Φ(x) ≥ 〈p, y − x〉, ∀y ∈ H}

denotes the subdifferential of Φ at x and a point p ∈ ∂Φ(x) is called a subgradient of
Φ at x.

Definition 2.3. A function M : H → (−∞, +∞] is called a gap function for the
set-valued mixed variational inequality problem (1.1) if and only if

(i) M(x) ≥ 0, ∀x ∈ D ⊃ dom Φ;
(ii) M(x) = 0 if and only if x ∈ dom Φ solves the problem (1.1),

where the set D is usually either the whole space or the set dom Φ itself.
One interesting application of gap functions is in deriving the so-called error bounds,

i.e., upper estimates on the distance to the solution set S(F, Φ) of problem (1.1):

dist (x, S(F, Φ)) ≤ γM(x)λ, ∀x ∈ D,

where γ, λ > 0 are independent of x.

Definition 2.4. The set-valued mapping F : H ⇒ H is said to be upper semicon-
tinuous, if for each x ∈ H and each neighborhood V ⊂ H of F (x), there exists a
neighborhood U of x such that F (z) ⊂ V for each z ∈ U .

Lemma 2.1. ([21] Theorem 4.2). Let M be compact, N any space, f a function
on M × N that is concave-convexlike. If f(x, y) is upper semicontinuous in x for
each y, then

sup
x∈M

inf
y∈N

f(x, y) = inf
y∈N

sup
x∈M

f(x, y).

Lemma 2.2. If F : H ⇒ H is a set-valued mapping with nonempty compact
convex values, then the solution set of (1.1) coincides with the one of (1.2), i.e.,
SOL(F, Φ)=SOLw(F, Φ).

Proof. Let

f(u, y) = 〈u, y − x〉 + Φ(y) − Φ(x), ∀(u, y) ∈ F (x) × dom Φ.

Since Φ is convex, it is easy to see that f is concave-convexlike on F (x) × dom Φ.
Moreover, F (x) is compact and f(u, y) is continuous in u for each y. The conclusion
is a direct application of Lemma 2.1. This completes the proof.
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Lemma 2.3. ([1] Theorem 1.4.16). Let X, Y be metric spaces, a set-valued
mapping F : X ⇒ Y and a function f : Graph(F ) → R be given. If f and
F are upper semicontinuous and if the values of F are compact, then the function
g : X → R ∪ {+∞} defined by

g(x) = sup
y∈F (x)

f(x, y)

is upper semicontinuous.

Recall that the proximal map, PΦ
α : H → dom Φ, is given by

PΦ
α (z) := argmin

y∈H

{Φ(y) +
1
2α

‖y − z‖2}, z ∈ H, α > 0.

Note that the objective function above is proper strongly convex. Since dom Φ is
closed, PΦ

α (·) is well defined and single-valued. It is not hard to see that PΦ
α (z) =

(I + α∂Φ)−1(z) for any z ∈ H. Define

Rα(x, u) := x − PΦ
α (x − αu), x ∈ H, u ∈ F (x), α > 0.

and
rα(x) := inf

u∈F (x)
‖Rα(x, u)‖, x ∈ H, α > 0.

It is easy to have the following result.

Proposition 2.1. Let α > 0 be arbitrary. Then the following statements are
equivalent:

(i) An element x ∈ H solves (1.1);
(ii) There is some u ∈ F (x) such that Rα(x, u) = 0;
(iii) rα(x) = 0.

Proposition 2.2. Let α > 0 be arbitrary. Then

(i) rα(·) is a gap function for (1.1);
(ii) There is some u ∈ F (x) such that rα(x) = ‖Rα(x, u)‖;
(iii) rα(·) is lower semicontinuous.

Proof.

(i) Observe that nonnegativity of rα(·) and Proposition 2.1, it is easily seen that
rα(·) is a gap function for (1.1).
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(ii) Since F (x) is compact and ‖Rα(x, u)‖ is continuous in u, there is some u ∈
F (x) such that rα(x) = ‖Rα(x, u)‖.

(iii) Since ‖Rα(x, u)‖ is continuous and F is upper semicontinuous with nonempty
compact convex values, from Lemma 2.3, we have

rα(x) = inf
u∈F (x)

‖Rα(x, u)‖ = − sup
u∈F (x)

(−‖Rα(x, u)‖)

is lower semicontinuous. This completes the proof.

3. GAP FUNCTIONS

3.1. Regularized-gap functions

For any α > 0, we define gα : H × H → R by

(3.1) gα(x; u) = sup
y∈dom Φ

{〈u, x− y〉 + Φ(x)− Φ(y)− 1
2α

‖x − y‖2}, ∀α > 0,

and fα : H → R by

(3.2) fα(x) = inf
u∈F (x)

gα(x; u).

Lemma 3.1. For any α > 0,

(3.3)
gα(x, u) = 〈u, x− PΦ

α (x − αu)〉 + Φ(x)− Φ(PΦ
α (x − αu))

− 1
2α

‖x − PΦ
α (x − αu)‖2, ∀x ∈ H.

Proof. If x /∈ dom Φ then formula (3.3) is correct, because Φ(x) = +∞ while
the other terms are all finite (recall that PΦ

α (z) ∈ dom Φ for all z ∈ H).
Consider now any x ∈ dom Φ. Denote by j(y) the function being maximized in

(3.1). Let z be the (unique, by concavity of j(y)) element at which the maximum
is realized in (3.1), equivalently, z is the argument at which the minimum of −j(y)
is obtained when y ∈ dom Φ. Then z is uniquely characterized by the optimality
condition

0 ∈ ∂(−j(z)) = u + ∂Φ(z) +
1
α

(z − x) = ∂Φ(z) +
1
α

[z − (x− αu)].

It is to say that z = arg min
y∈H

{Φ(y) + 1
2α‖y − (x − αu)‖2} = PΦ

α (x − αu), where

the second equation follows from the definition of proximal mapping PΦ
α (·). This

completes the proof.

Remark 3.1. If F is a single-valued mapping, then Lemma 3.1 coincides with
Lemma 3 of [22] in the case g = I .
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Lemma 3.2. The following conclusions hold:

(i) For any α > 0, fα(·) is nonnegative on dom Φ;
(ii) For any x ∈ H, there exists some u ∈ F (x) such that fα(x) = gα(x; u);
(iii) For any α > 0, fα(·) is lower semicontinuous.

Proof.

(i) Denote by j(y) the function being maximized in (3.1), with x ∈ H and u ∈ F (x)
fixed. If x ∈ dom Φ then j(x) = 0 and so

0 = j(x) ≤ sup
y∈dom Φ

j(y) = gα(x; u).

If x /∈ dom Φ, then it holds that j(y) = +∞ and so

+∞ = sup
y∈dom Φ

j(y) = gα(x; u).

Thus, fα(x) = inf
u∈F (x)

gα(x; u) ≥ 0.

(ii) Since F (x) is compact and gα(x; u) is continuous in u, there is some u ∈ F (x)
such that fα(x) = inf

u∈F (x)
gα(x; u).

(iii) Let g̃α((x, u), y) = 〈u, x− y〉 + Φ(x) − Φ(y)− 1
2α‖x − y‖2. Since Φ is lower

semicontinuous, it is easy to see that g̃α is also lower semicontinuous in the ar-
gument (x, u) for each y ∈ dom Φ. Therefore, gα(x; u) = sup

y∈dom Φ
g̃α((x, u), y)

is lower semicontinuous, i.e., −gα(x; u) is upper semicontinuous. Combining
with the fact that F is upper semicontinuous with compact convex values, from
Lemma 2.3, we obtain that the function fα(·) defined by

fα(x) = inf
u∈F (x)

gα(x; u) = − sup
u∈F (x)

[−gα(x; u)]

is lower semicontinuous. This completes the proof.

Remark 3.2. If H = R and Φ(·) = δK(·), where δK(·) denotes the indicator
function over the closed and convex set K , and we are needed to neglect the slight
difference of coefficient α, then Lemma 3.2 reduces to Lemma 3.1 of [7].

Lemma 3.3. If α > 0, then it holds that

(3.4) fα(x) ≥ 1
2α

r2
α(x), x ∈ H.

In particular, fα(x) = 0 if and only if x is a solution of (1.1).
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Proof. Fix any fixed x ∈ H, and α > 0. Observe that

x − αu ∈ (I + α∂Φ)(I + α∂Φ)−1(x − αu) = (I + α∂Φ)(PΦ
α (x − αu)),

which is equivalent to

−u +
1
α

[x − PΦ
α (x − αu)] ∈ ∂Φ(PΦ

α (x− αu)).

It follows from the definition of subdifferential that

(3.5)
〈u − 1

α
[x − PΦ

α (x − αu)], y − PΦ
α (x − αu)〉

+Φ(y)− Φ(PΦ
α (x − αu)) ≥ 0, ∀y ∈ dom Φ.

Taking y = x in the inequality above, we have

〈u − 1
α

[x − PΦ
α (x− αu)], x− PΦ

α (x − αu)〉 + Φ(x)− Φ(PΦ
α (x − αu)) ≥ 0,

i.e.,
Φ(x)− Φ(PΦ

α (x − αu)) + 〈u, Rα(x, u)〉 ≥ 1
α
‖Rα(x, u)‖2.

Combining with (3.3), we obtain

(3.6)
gα(x, u) = 〈u, Rα(x, u)〉+ Φ(x)− Φ(PΦ

α (x − αu)) − 1
2α

‖Rα(x, u)‖2

≥ 1
α
‖Rα(x, u)‖2 − 1

2α
‖Rα(x, u)‖2 =

1
2α

‖Rα(x, u)‖2.

It follows from the property of infimum that

inf
u∈F (x)

gα(x, u) ≥ 1
2α

( inf
u∈F (x)

‖Rα(x, u)‖)2

and so fα(x) ≥ 1
2αr2

α(x).
To obtain the last assertion, from (3.4) and the nonnegativity of rα(·), we know

that fα(x) = 0 if and only if rα(x) = 0. Hence, by Proposition 2.1, we deduce the
conclusion immediately. This completes the proof.

Remark 3.3. (i) If F is single-valued, then Lemma 3.3 coincides with Theorem
4 of [22] in the case g = I ;

(ii) If H = R and Φ(·) = δK(·), then the last conclusion of Lemma 3.3 reduces to
Lemma 3.3 of [7];

(iii) If F is single-valued, H = R and Φ(·) = δK(·), then the last conclusion of
Lemma 3.3 reduces to Lemma 2.1 of [28].
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We define another function hβ(·) : H → R ∪ {+∞} by

(3.7) hβ(x) = sup
y∈dom Φ,v∈F(y)

{〈v, x− y〉 + Φ(x)− Φ(y) + β‖x − y‖2}

This function has been studied in [7] for the case Φ(·) = δK(·), in [28] for the case
Φ(·) = δK(·) and F is single-valued, in [20] for the case Φ(·) = δK(·), F is single-
valued and β = 0.

Lemma 3.4. For any β ≥ 0, the function hβ(·) is lower semicontinuous convex
function.

Proof. For given β ≥ 0 and y ∈ dom Φ, so is 〈v, ·−y〉+Φ(·)−Φ(y)+β‖ ·−y‖2.
Therefore, it is easy to see that hβ(·) is lower semicontinuous. The convexity of hβ(·)
follows from the definition (3.7) directly, since 〈v, · − y〉 + Φ(·)− Φ(y) + β‖ · −y‖2

is convex for every y ∈ dom Φ and v ∈ F (y). This completes the proof.

Remark 3.4. If H = R and Φ(·) = δK(·), then Lemma 3.4 reduces to Lemma 3.2
of [7]. If, in addition, F is single-valued, then Lemma 3.4 reduces to Lemma 2.2 of
[28].

Lemma 3.5. (i) If F is Φ−pseudomonotone and upper semicontinuous, then
x∗ is a solution of (1.1) if and only if h0(x∗) = 0;

(ii) If F is upper semicontinuous, if there exists β > 0 with hβ(x∗) = 0, then x∗

solves (1.1);
(iii) If x∗ solves (1.1), F is Φ−strongly pseudomonotone with respect to x∗ with

modulus μ > 0, and β is chosen to satisfy 0 ≤ β ≤ μ, then hβ(x∗) = 0;
(iv) If F is upper semicontinuous and Φ−strongly pseudomonotone with respect to

x∗ with modulus μ > 0, and β is chosen to satisfy 0 ≤ β ≤ μ, then x∗ solves
(1.1) if and only if hβ(x∗) = 0.

Proof. (i) If x∗ solves (1.1), then there exists some u∗ ∈ F (x∗) such that

〈u∗, y − x∗〉 + Φ(y)− Φ(x∗) ≥ 0, ∀y ∈ dom Φ.

Since F is Φ−pseudomonotone, then we have

〈v, y − x∗〉 + Φ(y) − Φ(x∗) ≥ 0, ∀y ∈ dom Φ, v ∈ F(y),

which yields that

h0(x∗) = sup
y∈dom Φ,v∈F(y)

{〈v, x∗ − y〉+ Φ(x∗) − Φ(y)} ≤ 0.
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Combining with nonnegativity of hβ(·), we have h0(x∗) = 0.
Conversely, if h0(x∗) = 0, then by the definition of h, we have

(3.8) 〈v, x∗ − y〉 + Φ(x∗)− Φ(y) ≤ 0, ∀y ∈ dom Φ, v ∈ F(y).

We will show that x∗ solves (1.2). If not, there is some y0 ∈ dom Φ such that for all
u∗ ∈ F (x∗), it holds that

〈u∗, y0 − x∗〉 + Φ(y0)− Φ(x∗) < 0.

Since the set A = {u∗ ∈ H : 〈u∗, y0 − x∗〉 + Φ(y0) − Φ(x∗) < 0} is a neighborhood
of F (x∗) and F is upper semicontinuous, then setting xt = ty0 + (1− t)x∗ ∈ dom Φ
and taking t close to zero, we obtain F (xt) ⊂ A, i.e., for each ut ∈ F (xt), it holds
that

〈ut, y0 − x∗〉 + Φ(y0) − Φ(x∗) < 0.

Thus, it follows from the convexity of Φ that

(3.9)

〈ut, xt − x∗〉+ Φ(xt) − Φ(x∗)

= 〈ut, t(y0 − x∗)〉+ Φ(ty0 + (1 − t)x∗) − Φ(x∗)

≤ t〈ut, y0 − x∗〉 + tΦ(y0) + (1− t)Φ(x∗) − Φ(x∗)

= t[〈ut, y0 − x∗〉 + Φ(y0)− Φ(x∗)] < 0,

which contradicts (3.8). So x∗ is a solution of (1.2), thus, by Lemma 2.2, x∗ solves
(1.1).
(ii) If β > 0 and hβ(x∗) = 0, it is easy to see that

〈v, x∗ − y〉 + Φ(x∗)− Φ(y) ≤ 0, ∀y ∈ dom Φ, v ∈ F(y),

From the proof of (i), we know that x∗ is a solution of (1.1).
(iii) Since F is Φ−strongly pseudomonotone with respect to x∗ with modulus

μ > 0, for any y ∈ dom Φ, v ∈ F (y), we have

〈v, y − x∗〉 + Φ(y)− Φ(x∗) ≥ μ‖y − x∗‖2.

This implies that

〈v, x∗ − y〉 + Φ(x∗)− Φ(y) + β‖y − x∗‖2 ≤ (β − μ)‖y − x∗‖2 ≤ 0,

where the second inequality follows from 0 ≤ β ≤ μ, which yields that hβ(x∗) ≤ 0.
Combining with the nonnegativity of hβ(·), we have hβ(x∗) = 0.
(iv) Since F is upper semicontinuous and Φ−strongly pseudomonotone with respect

to x∗, the conclusion follows immediately from (ii) and (iii). This completes the proof.
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Remark 3.5. Lemma 3.5 generalizes and improves Lemma 3.4 of [7] in the fol-
lowing aspects: (a) If H = R and Φ(·) = δK(·), then Lemma 3.5 reduces to Lemma
3.4 of [7]; (b) In item (ii) of Lemma 3.5, we removes the pseudomonotonicity of F of
[7].

3.2. Gap functions based on Moreau-Yosida regularization of fα(·) and hβ(·)
Next, we consider the following functions defined by

(3.10) ϕf,α,λ(x) = inf
z∈dom Φ

{fα(z) + λ‖x − z‖2}

and

(3.11) ϕh,β,λ(x) = inf
z∈dom Φ

{hβ(z) + λ‖x− z‖2},

where λ is a positive constant, fα(·) and hβ(·) are defined by (3.2) and (3.7),respectively.
In fact, combining with the definitions of fα(·) and hβ(·), ϕf,α,λ(·) and ϕh,β,λ(·) can
be rewritten as

(3.12)

ϕf,α,λ(x) = inf
z∈dom Φ,u∈F(z){

sup
y∈dom Φ

{
〈u, z−y〉+Φ(z)−Φ(y)− 1

2α
‖z−y‖2

}
+λ‖x−z‖2

}

and

(3.13)

ϕh,β,λ(x) = inf
z∈dom Φ{

sup
y∈dom Φ,v∈F(y)

{
〈v, z−y〉+Φ(z)−Φ(y)+β‖z−y‖2

}
+λ‖x−z‖2

}

Some special cases of these functions have been studied in [7, 28].

Theorem 3.1. (i) For any α > 0, β ≥ 0 and λ > 0, the functions ϕf,α,λ(·) and
ϕh,β,λ(·) are nonnegative on H.

(ii) For any α>0 and λ>0, x∗ is a solution of (1.1) if and only if ϕf,α,λ(x∗)=0.
(iii) If F is Φ−pseudomonotone, then, for any λ > 0, x∗ is a solution of (1.1) if and

only if ϕh,β,λ(x∗) = 0.
(iv) Let x∗ be a solution of (1.1). If F is Φ−strongly pseudomonotone with respect

to x∗ with modulus μ > 0, β is chosen to satisfy 0 ≤ β ≤ μ, then for any λ > 0,
ϕh,β,λ(x∗) = 0.

(v) If F is Φ−strongly pseudomonotone with modulus μ > 0, for any β, λ satisfying
0 ≤ β ≤ μ and λ > 0, then x∗ is a solution of (1.1) if and only if ϕh,β,λ(x∗) = 0.
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Proof. (i) For any α > 0, β ≥ 0, fα(·) and hβ(·) are nonnegative on H, we can
easily deduce from the definitions of ϕf,α,λ(·) and ϕh,β,λ(·) that they are nonnegative
for all x ∈ H.
(ii) Suppose that x∗ is a solution of (1.1). Then, we have

(3.14)

ϕf,α,λ(x∗) = inf
z∈dom Φ

{fα(z) + λ‖x∗ − z‖2}
≤ fα(x∗) + λ‖x∗ − x∗‖2

= 0.

where the last equality follows from fα(x∗) = 0 (by Lemma 3.3). Since ϕf,α,λ(x) ≥ 0
for all x as shown above, we obtain ϕf,α,λ(x∗) = 0.
Conversely, suppose ϕf,α,λ(x∗) = 0. Then since fα(z) ≥ 0 for all z ∈ dom Φ, it

follows from the definition of ϕf,α,λ(·) that there exists a minimizing sequence {zn}
in dom Φ such that, for any positive integer n, we have

fα(zn) + λ‖zn − x∗‖2 <
1
n

,

i.e., there exists a sequence {zn} in dom Φ such that fα(zn) → 0 and ‖zn −x∗‖ → 0.
Since the set dom Φ is closed (by the lower semicontinuity of Φ), zn → x∗ and
zn ∈ dom Φ imply that x∗ ∈ dom Φ. Since fα(·) is lower semicontinuous and
nonnegative (by Lemma 3.2), we have

0 ≤ fα(x∗) ≤ lim inf
n→∞ fα(zn) = 0,

which yields that fα(x∗) = 0. Therefore from Lemma 3.3, we obtain that x∗ is a
solution of (1.1).
By using Lemmas 3.4 and 3.5, the proof of (iii)-(v) for the functions ϕh,β,λ(·) can

be done analogously. This completes the proof.

Remark 3.6. Theorem 3.1 generalizes Theorem 3.1 of [7] from set-valued vari-
ational inequality (SVI(F, K) to set-valued mixed variational inequality (SMVI(F, Φ)
and from finite dimensional spaces to infinite dimensional spaces.

Theorem 3.1 shows us the unconstrained minimization problems

min
x∈H

ϕf,α,λ(x) and min
x∈H

ϕh,β,λ(x)

are equivalent to the problem (1.1) under certain assumptions of F and the associated
parameters. Thus it is convenient to use unconstrained minimization methods to solve
the problem (1.1) which satisfies the conditions in Theorem 3.1. In order for these
minimization problems to be practically useful, it is desirable that the objective functions
ϕf,α,λ(·) and ϕh,β,λ(·) are everywhere differentiable. For the discussions to follow, for
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any α > 0, β ≥ 0 and λ > 0, we define the functions Ψf,α,λ(·, ·) : H × dom Φ →
(−∞, +∞] and Ψh,β,λ(·, ·) : H × dom Φ → (−∞, +∞] by

Ψf,α,λ(x, z) = fα(z) + λ‖x − z‖2 and Ψh,β,λ(x, z) = hβ(z) + λ‖x− z‖2,

respectively. By the definitions of ϕf,α,λ(·) in (3.10) and ϕh,β,λ(·) in (3.11), we have
ϕf,α,λ(x) = inf

z∈dom Φ
Ψf,α,λ(x, z) and ϕh,β,λ(x) = inf

z∈dom Φ
Ψh,β,λ(x, z).

The following theorems show us that the differentiability of ϕf,α,λ(·) and ϕh,β,λ(·) do
not need to rely on the some differentiability property of set-valued mapping F .

Theorem 3.2. Let α > 0 and λ > 0. If the function Ψf,α,λ(x, ·) attains its
unique minimum zf,α,λ(x) on dom Φ for each x ∈ H and zf,α,λ(x) is continuous,
then ϕf,α,λ(·) is differentiable on H and

∇ϕf,α,λ(x) = 2λ(x− zf,α,λ(x)).

Proof. From the definitions of ϕf,α,λ(·), Ψf,α,λ(·, ·) and zf,α,λ(·), for each d ∈ H

and μ > 0, we have

(3.15)

ϕf,α,λ(x + μd) − ϕf,α,λ(x)

≤ Ψf,α,λ(x + μd, zf,α,λ(x))− Ψf,α,λ(x, zf,α,λ(x))

= λ[‖x + μd − zf,α,λ(x)‖2 − ‖x − zf,α,λ(x)‖2]

= λ[2μ〈x− zf,α,λ(x), d〉+ μ2‖d‖2].

By dividing μ in the leftmost and rightmost sides of the inequality above and tends
μ → 0, we get

(3.16) lim sup
μ→0

ϕf,α,λ(x + μd) − ϕf,α,λ(x)
μ

≤ 2λ〈x− zf,α,λ(x), d〉.

On the other hand, for each d ∈ H and μ > 0, let xμ = x + μd. It follows from
the definitions of ϕf,α,λ(·), Ψf,α,λ(·, ·) and zf,α,λ(·) again that

(3.17)

ϕf,α,λ(x + μd) − ϕf,α,λ(x)

= ϕf,α,λ(xμ)− ϕf,α,λ(x)

≥ Ψf,α,λ(xμ, zf,α,λ(xμ)) − Ψf,α,λ(x, zf,α,λ(xμ))

= λ[‖x + μd − zf,α,λ(xμ)‖2 − ‖x − zf,α,λ(xμ)‖2]

= λ[2μ〈x− zf,α,λ(xμ), d〉+ μ2‖d‖2].
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By dividing μ in the leftmost and rightmost sides of the inequality above and tends
μ → 0, observing the continuity of zf,α,λ(·), we have

(3.18) lim inf
μ→0

ϕf,α,λ(x + μd) − ϕf,α,λ(x)
μ

≥ 2λ〈x− zf,α,λ(x), d〉.

It follows from (3.16) and (3.18) that for each d ∈ H

∇ϕf,α,λ(x; d) = lim
μ→0

ϕf,α,λ(x + μd) − ϕf,α,λ(x)
μ

= 2λ〈x− zf,α,λ(x), d〉.

In other words, ∇ϕf,α,λ(x) = 2λ(x− zf,α,λ(x)).

Theorem 3.3. If β ≥ 0 and λ > 0, then the function Ψh,β,λ(x, ·) attains its unique
minimum zh,β,λ(x) on dom Φ for each x ∈ H. Moreover, ϕh,β,λ(·) is a differentiable
convex function on H and

∇ϕh,β,λ(x) = 2λ(x− zh,β,λ(x)).

Proof. By Lemma 3.4, hβ(·) is a closed convex function. By the strict convexity of
the function ‖·−x‖2, we know thatΨh,β,λ(x, ·) is strict convex, thusΨh,β,λ(x, ·) attains
its minimum on dom Φ uniquely. Observing that zh,β,λ(·) is actually the proximal
mapping with respect to the convex function hβ(·), it is well known that zh,β,λ(·) is
firmly nonexpansive (see, for example, Section 1 of [14]), thus zh,β,λ(·) is continuous.
In the sequel, the proof follows the pattern of the proof of Theorem 3.2 with f and
α replaced by h and β, respectively. We obtain that ϕh,β,λ(·) is differentiable and its
gradient is represented as indicated in the theorem. The convexity of ϕh,β,λ(·) follows
from the convexity of hβ(·) (see the proof of Proposition 4.1 in [2]).
Theorem 3.4. Assume that the problem (1.1) has a solution. Let λ > 0. If F is

Φ−pseudomonotone on dom Φ, then any stationary point of ϕh,0,λ(·) is a solution of
the problem (1.1). Moreover, if F is Φ−strongly pseudomonotone with modulus μ > 0
and β is chosen to satisfy 0 ≤ β ≤ μ, then any stationary point of ϕh,β,λ(·) is a
solution of the problem (1.1).

Proof. It follows from Theorem 3.3 that for each β ≥ 0 and λ > 0, ϕh,β,λ(·) is a
differentiable convex function. Thus, ∇ϕh,β,λ(x) = 0 if and only if ϕh,β,λ(·) attains its
global minimum at x. The conclusion then follows from item (iii) and (v) of Theorem
3.1. This completes the proof.

Remark 3.7. If H = R and Φ(·) = δK(·), then Theorems 3.2, 3.3 and 3.4 reduce
to Propositions 3.1, 3.2 and Theorem 3.2 of [7], respectively. If, in addition, F is
single-valued, then Theorems 3.2, 3.3 and 3.4 collapse to Propositions 2.5, 2.6 and
Theorem 2.9 of [28], respectively.
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4. ERROR BOUNDS

In this section, we present error bounds based on the gap functions fα(·), hβ(·),
ϕf,α,λ(·) and ϕh,β,λ(·) for the set-valued mixed variational inequality (1.1). To begin
with, we discuss how the gap functions fα(·), hβ(·) provide error bounds for the
problem (1.1).

Lemma 4.1. Suppose that F is Φ−strongly pseudomonotone with modulus μ > 0
with respect to solution x∗ of (1.1). If α is chosen to satisfy α > 1

2μ , then we have

(4.1) fα(x) ≥ (μ − 1
2α

)‖x − x∗‖2, ∀x ∈ dom Φ.

Proof. By Lemma 3.2, for any x ∈ dom Φ, there exists ux ∈ F (x) such that
fα(x) = gα(x; ux). Since x∗ is a solution of (1.1), i.e., 〈u∗, x−x∗〉+Φ(x)−Φ(x∗) ≥ 0
with u∗ ∈ F (x∗), and F is Φ−strongly pseudomonotone with modulus μ > 0 with
respect to solution x∗, it holds that 〈ux, x−x∗〉+Φ(x)−Φ(x∗) ≥ μ‖x−x∗‖2. Thus,
we have

(4.2)

fα(x) = gα(x; ux)

= sup
y∈dom Φ

{〈ux, x− y〉+ Φ(x)− Φ(y)− 1
2α

‖x − y‖2}

≥ 〈ux, x − x∗〉+ Φ(x)− Φ(x∗) − 1
2α

‖x − x∗‖2

≥ μ‖x − x∗‖2 − 1
2α

‖x − x∗‖2

= (μ − 1
2α

)‖x − x∗‖2.

This completes the proof.

Remark 4.1. If F is single-valued, then Lemma 4.1 reduces to Theorem 5 of [22]
in the case g = I . This theorem also generalizes Lemma 4.1 of [7], Lemma 4.1 of
[28] and Theorem 2 of [23].

Lemma 4.2. If β > 0 and x∗ is a solution of (1.1), then

hβ(x) ≥ β‖x − x∗‖2, ∀x ∈ dom Φ.

Proof. Let x∗ ∈ dom Φ be arbitrary. It follows from x∗ ∈SOL(F, Φ) that there
exists u∗ ∈ F (x∗) such that

〈u∗, x − x∗〉 + Φ(x)− Φ(x∗) ≥ 0.

Then we have
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(4.3)

hβ(x) = sup
y∈dom Φ,v∈F(y)

{〈v, x− y〉 + Φ(x) − Φ(y) + β‖x − y‖2}

≥ 〈u∗, x − x∗〉+ Φ(x)− Φ(x∗) + β‖x − x∗‖2

≥ β‖x − x∗‖2.

This completes the proof.
Using the results above, we prove below that ϕf,α,λ(·) and ϕh,β,λ(·) provide global

error bounds for the set-valued mixed variational inequality (1.1) on the whole space
H.

Theorem 4.1. Suppose that F is Φ−strongly pseudomonotone with modulus μ > 0
with respect to solution x∗ of (1.1). If α is chosen to satisfy α > 1

2μ . Then for any
λ > 0, we have

(4.4)
1
2

min{μ − 1
2α

, λ}‖x− x∗‖2 ≤ ϕf,α,λ(x) ≤ λ‖x − x∗‖2, ∀x ∈ H.

Proof. First we consider the right-hand inequality. Since x∗ is a solution of (1.1),
from item (ii) of Theorem 3.1, we have ϕf,α,λ(x∗) = 0. Thus

(4.5)

ϕf,α,λ(x) = inf
z∈dom Φ

{fα(z) + λ‖x− z‖2}
≤ fα(x∗) + λ‖x − x∗‖2

= λ‖x− x∗‖2,

Next, we prove the left-hand inequality. It follows from Theorem 4.1 that

(4.6)

ϕf,α,λ(x) = inf
z∈dom Φ

{fα(z) + λ‖x− z‖2}

≥ inf
z∈dom Φ

{(μ − 1
2α

)‖z − x∗‖2 + λ‖x− z‖2}

≥ min{μ − 1
2α

, λ} inf
z∈dom Φ

{‖z − x∗‖2 + ‖x − z‖2}

≥ 1
2

min{μ − 1
2α

, λ}‖x− x∗‖2,

where the last inequality follows from the inequality

‖a‖2 + ‖b‖2 ≥ ‖a − b‖2

2
, ∀a, b ∈ H.

This completes the proof.

Theorem 4.2. Suppose that F is Φ−strongly pseudomonotone with modulus μ > 0
with respect to solution x∗ of (1.1). If β is chosen to satisfy 0 < β ≤ μ. Then for any
λ > 0, we have

(4.7)
1
2

min{β, λ}‖x− x∗‖2 ≤ ϕh,β,λ(x) ≤ λ‖x− x∗‖2, ∀x ∈ H.
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Proof. Observing that x∗ ∈ SOL(F, Φ) and hβ(x∗), the right-hand inequality can
be proved in a way similar to the first part of the proof of Theorem 4.1. Moreover, by
using Lemma 4.2, we can prove the left-hand inequality analogously to the last part of
the proof of Theorem 4.1. This completes the proof.

Remark 4.2. Lemma 4.2, Theorems 4.1 and 4.2 generalize the corresponding re-
sults of [7, 28].
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