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Existence of Solutions to Quasilinear Schrödinger Equations Involving

Critical Sobolev Exponent

Youjun Wang and Zhouxin Li*

Abstract. By using variational approaches, we study a class of quasilinear Schrödinger

equations involving critical Sobolev exponents

−∆u+ V (x)u+
1

2
κ[∆(u2)]u = |u|p−2u+ |u|2

∗−2u, x ∈ RN ,

where V (x) is the potential function, κ > 0, max{(N + 3)/(N − 2), 2} < p < 2∗ :=

2N/(N − 2), N ≥ 4. If κ ∈ [0, κ) for some κ > 0, we prove the existence of a positive

solution u(x) satisfying maxx∈RN |u(x)| ≤
√

1/(2κ).

1. Introduction

This paper is motivated by the recent interests on the following type of quasilinear

Schrödinger equations

(1.1) iψt + ∆ψ −W (x)ψ + ρ(|ψ|2)ψ +
1

2
k∆|ψ|2ψ = 0, x ∈ RN ,

where ψ : RN ×R→ C, W : RN → R is a given potential, k is the nonlocality or diffusion

parameter, which can take any sign in plasma physics, ρ is a real function of essentially

pure power form. Equation (1.1) has been discussed in the literature in the context of

plasma physics [7], the continuum limit of discrete molecular structures and has been

shown to posses bright and dark soliton solutions [18,24].

Here our special interest is the standing wave solutions, i.e., solutions of type ψ(x, t) =

exp(−iEt)u(x), where E ∈ R and u > 0 is a real function. Note that ψ satisfies (1.1) if

and only if the function u(x) solves the following equation of elliptic type with the formal

variational structure

(1.2) −∆u+ V (x)u− 1

2
k[∆(u2)]u = h(u), x ∈ RN ,

where V (x) = W (x)− E is the new potential function, h is the new nonlinearity.
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The existence of positive or sign-changing solutions for (1.2) with k > 0 has been

studied extensively in recent years. In [5] Brüll and Lange studied the existence of ground

states for (1.2) with V (x) = α and h(u) = βup in one dimensional space, where α and β are

positive constants. In [19] Poppenberg, Schmitt and Wang studied (1.2) with subcritical

growth through a constrained minimization argument. A general existence result for (1.2)

was derived in [15] by Liu, Wang and Wang. The idea in [15] is to make a change of

variables v = f−1(u), where f is defined by ODE:

(1.3) f ′(t) =
1√

1 + kf2(t)
, t ∈ [0,+∞),

and f(t) = −f(−t), t ∈ (−∞, 0]. By this way, they reduced (1.2) to a semilinear one and

proved the existence of a positive solution in an Orlicz space via mountain pass theorem.

The method of changing of variable was also used by Colin and Jeanjean in [6], but the

difference lies in that they used the usual Sobolev space H1(RN ) as the working space.

Recently, in [21], Shen and Wang introduced the change of known variables s = G−1(t)

for t ∈ [0,+∞) and G−1(t) = −G−1(−t) for t ∈ (−∞, 0), where

(1.4) G(s) =

∫ s

0

√
1 + kt2 dt.

Then, using variational methods, they established the existence of nontrivial solutions for

(1.1) with subcritical growth.

In [15], the authors pointed out that 2(2∗) behaves like a critical exponent for (1.2) and

proposed an open problem whether (1.2) has nontrivial solutions for h(u) = |u|2(2∗)−2u

when k > 0.

For such kind of problems with “critical growth”, Silva and Vieira in [22] established the

existence of solutions for asymptotically periodic quasilinear Schrödinger equations (1.2)

with the nonlinearity h(u) = |u|p−2u replaced by a general nonlinearity K(x)u2(2∗)−1 +

g(x, u). In [14], the authors proved the existence of one positive and one sign-changing

ground state solutions with h(u) = |u|p−2u + |u|2(2∗)−2u, 4 < p < 2(2∗) under some

assumptions on the potential V (x). In [10], He and Li study the existence, concentration

and multiplicity of weak solutions to equation with h(u) = W (x)uq−1 + u2(2∗)−1, 4 < q <

2(2∗) via minimax theorems and Ljusternik-Schnirelmann theory. For more results for

problems with critical growth termp, we refer to [8, 12,17,23,25–27].

Noting that most of the studies of recent papers on problem (1.2) mainly deal with

k > 0, in this paper, we focus on the case k < 0. The difficulty for k < 0 is that

neither the change of variable (1.3) nor (1.4) is suitable because 1 + kf2(t) or 1 + kt2

may be negative. To overcome this difficulty, using variational methods combined with

perturbation arguments, Alves, Wang and Shen in [3] proved the existence of positive

solution of (1.2) with h(u) = |u|p−2u, 2 < p < 2∗. Then, another question arises: does
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2∗ is a critical exponent for (1.2) when k < 0? It seems that under their arguments, 2∗

indeed behaves like a critical exponent for (1.2). Later, in [23], Wang considered the case

h(u) = λ|u|p−2u + |u|q−2u with q ≥ 2∗ and 2 < p < 2∗ and proved that there exist some

k1 > 0 and λ1 > 0 such that for all k ∈ (−k1, 0) and λ ∈ (0, λ1), (1.2) has a positive

solution.

For simplicity, we denote κ = −k in the following and consider the problem

(1.5) −∆u+ V (x)u+
1

2
κ[∆(u2)]u = |u|p−2u+ |u|2∗−2u, x ∈ RN ,

where κ > 0, 2 < p < 2∗, N ≥ 4.

We assume the following conditions on V (x):

(V1) V (x) ∈ C(RN ,R) and there exists some V0 > 0 such that 0 < V0 ≤ V (x), x ∈ RN .

(V2) There is a constant V∞ such that

lim
|x|→∞

V (x) = V∞, V (x) ≤ V∞, V (x) 6≡ V∞, x ∈ RN .

We have the following main result.

Theorem 1.1. Suppose that (V1)–(V2), N ≥ 4 and p ∈ (max{(N + 3)/(N − 2), 2}, 2∗).
Then, there exists κ > 0 such that for κ ∈ (0, κ], (1.5) has a positive solution u satisfying

maxx∈RN |u(x)| ≤
√

1/(2κ).

We point out that the conclusion of this paper is a supplement to the recent result

in [23], where, using variational methods combined with perturbation arguments, the

existence of nontrivial solutions of (1.5) with critical or supercritical exponent were es-

tablished. For κ = 0, in [16], Miyagaki proved the existence of nontrivial solutions of the

following equation:

−∆u+ V (x)u = λ|u|p−2u+ |u|2∗−2u, x ∈ RN ,

where V (x) satisfies (V0) and V (x) → +∞ as |x| → ∞, λ > 0, either 4 < p < 2∗ and

N = 3 or 2 < p < 2∗ and N ≥ 4. For further related results we refer to the papers [1, 2].

2. Reformulation of the problem

Note that (1.2) is the Euler-Lagrange equation associated to the natural energy functional

(2.1) Iκ(u) =
1

2

∫
RN

(1−κu2)|∇u|2 dx+
1

2

∫
RN

V (x)u2 dx− 1

p

∫
RN
|u|p dx− 1

2∗

∫
RN

u2∗ dx.

From the variational point of view, the first difficulty that we have to deal with is to find

some proper Sobolev space since (2.1) is not well defined in H1(RN ) for N ≥ 3 and κ 6= 0.
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Besides, another difficulty is how to guarantee the positiveness of the principal part, i.e.,

1− κu2 > 0.

In order to solve these difficulties, we first establish a nontrivial solution for a mod-

ified quasilinear Schrödinger equation. Precisely, we consider the existence of nontrivial

solutions for the following quasilinear Schrödinger equation

(2.2) − div(g2(u)∇u) + g(u)g′(u)|∇u|2 + V (x)u = |u|p−2u+ |u|2∗−2u, x ∈ RN ,

where g(t) : [0,+∞)→ R is given by

g(t) =


√

1− κt2 if 0 ≤ t <
√

1/(2κ),

1
4
√

2κt2
+
√

2
4 if

√
1/(2κ) ≤ t.

Setting g(t) = g(−t) for all t ≤ 0, it follows that g ∈ C1(R, (
√

2/4, 1]), g is an even

function, increases in (−∞, 0) and decreases in [0,+∞). Clearly, if 0 ≤ u(x) <
√

1/(2κ),

x ∈ RN , then equation (2.2) turns into (1.5). So, our goal is to prove the existence of a

nontrivial solution u of (2.2) satisfying supx∈RN |u(x)| ≤
√

1/(2κ).

Now, we note that (2.2) is the Euler-Lagrange equation associated to the natural

energy functional

Iκ(u) =
1

2

∫
RN

g2(u)|∇u|2 dx+
1

2

∫
RN

V (x)|u|2 dx− 1

p

∫
RN
|u|p dx− 1

2∗

∫
RN

u2∗ dx.

In what follows, we set

G(t) =

∫ t

0
g(s) ds

and we observe that inverse function G−1(t) exists and it is an odd function. Moreover,

it is very important to observe that G,G−1 ∈ C2(R).

By simple calculations, we get the following important properties involving functions

g and G−1 which will be used later on.

Lemma 2.1. (1) limt→0G
−1(t)/t = 1;

(2) limt→∞G
−1(t)/t = 2

√
2;

(3) 1 ≤ G−1(t)/t ≤ 2
√

2 for all t ∈ R;

(4) −1 ≤ t
g(t)g

′(t) ≤ 0 for all t ∈ R;

(5) t/G−1(t) ≥ g(G−1(t)) for all t ∈ R.

Proof. It follows from the definition of g(t) that

lim
t→0

G−1(t)

t
= lim

t→0

1

g(G−1(t))
=

1

g(0)
= 1
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and

lim
t→∞

G−1(t)

t
= lim

t→∞

1

g(G−1(t))
= 2
√

2.

Thus (1) and (2) is proved. Since g(t) is decreasing in |t|, we have

G(t) ≥ tg(t) ≥ 0, t ≥ 0 and G(t) < tg(t) < 0, t < 0,

which implies (5). Moreover, we have

d

dt

[
G−1(t)

t

]
=
t−G−1(t)g(G−1(t))

g(G−1(t))t2

≥ 0 if t ≥ 0,

< 0 if t < 0.

Combining (1) and (2), we get (3). Finally, we prove (4). We only consider t ≥ 0 since

the case t < 0 can be proved in a similar way. The second inequality in (4) is clear. For

0 ≤ t <
√

1/(2κ), direct calculations show

(2.3)
t

g(t)
g′(t) = − κ

t−2 − κ
≥ −1,

while for t ≥
√

1/(2κ), we have

(2.4)
t

g(t)
g′(t) = − 2

1 + 2κt2
≥ −1.

Item (4) is an immediate consequence of (2.3) and (2.4).

Lemma 2.2. For t > 0, we have

t2
∗ −

(√
2

4
G−1(t)

)2∗

≤ (2
√

2)2∗−1

(2 + π)2∗

8

(
4 + π

4
√

2

)2∗−1

+

1−

(√
2

4

)2∗
 1√

2

 1√
κ
t2

∗−1

:=
C√
κ
t2

∗−1,

(2.5)

where C > 0 is independent of κ.

Proof. For s = G−1(t) >
√

1/(2κ), t > 0, we have

G(s) =

∫ √1/(2κ)

0

√
1− κt2 dt+

∫ s

√
1/(2κ)

[
1

4
√

2κt2
+

√
2

4

]
dt

=

√
2

4
s− 1

4
√

2κs
+

2 + π

8
√
κ
.
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By mean value theorem, there exists 0 < θ < 1 such that

G(s)2∗ −

(√
2

4
s

)2∗

= 2∗

[√
2

4
s+ θ

(
2 + π

8
√
κ
− 1

4
√

2κs

)]2∗−1 [
2 + π

8
√
κ
− 1

4
√

2κs

]

≤ (2 + π)2∗

8
√
κ

[√
2

4
s+

2 + π

8
√
κ
− 1

4
√

2κs

]2∗−1

≤ (2 + π)2∗

8
√
κ

(
4 + π

4
√

2

)2∗−1

s2∗−1.

Thus, from Lemma 2.1(3), we have

(2.6) t2
∗ −

(√
2

4
G−1(t)

)2∗

≤ (2 + π)2∗(2
√

2)2∗−1

8
√
κ

(
4 + π

4
√

2

)2∗−1

t2
∗−1.

On the other hand, for G−1(t) ≤
√

1/(2κ), t > 0, from Lemma 2.1(3), we have

t2
∗ −

(√
2

4
G−1(t)

)2∗

≤

1−

(√
2

4

)2∗
 1√

2κ
G−1(t)2∗−1

≤

1−

(√
2

4

)2∗
 (2
√

2)2∗−1 1√
2κ
t2

∗−1.

(2.7)

Combining (2.6) and (2.7), we get (2.5).

Now, we introduce the following change variable

v = G(u) =

∫ u

0
g(s) ds.

We observe that functional Iκ can be written in the following way

Jκ(v) =
1

2

∫
RN
|∇v|2 dx+

1

2

∫
RN

V (x)|G−1(v)|2 dx

− 1

p

∫
RN
|G−1(v)|p dx− 1

2∗

∫
RN
|G−1(v)|2∗ dx.

From Lemma 2.1, Jκ is well defined in H1(RN ), Jκ ∈ C1(H1(RN ),R) and

〈J ′κ(v), ψ〉

=

∫
RN

[
∇v∇ψ + V (x)

G−1(v)

g(G−1(v))
ψ − |G

−1(v)|p−2G−1(v)

g(G−1(v))
ψ − |G

−1(v)|2∗−2G−1(v)

g(G−1(v))
ψ

]
dx

(2.8)

for all v, ψ ∈ H1(RN ).

Therefore, in order to find a nontrivial solution of (2.2), it suffices to study the existence

of nontrivial solutions of the following equation

(2.9) −∆v+V (x)
G−1(v)

g(G−1(v))
− |G

−1(v)|p−2G−1(v)

g(G−1(v))
− |G

−1(v)|2∗−2G−1(v)

g(G−1(v))
= 0, x ∈ RN .
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3. Existence result of modified problem

In this section, we consider the existence of positive solutions of (2.9). From variational

methods, we will study the positive critical points of the following functional

J+
κ (v) =

1

2

∫
RN
|∇v|2 dx+

1

2

∫
RN

V (x)|G−1(v)|2 dx

− 1

p

∫
RN
|G−1(v)+|p dx− 1

2∗

∫
RN
|G−1(v)+|2∗ dx.

In order to avoid cumbersome notation, in the rest of this paper, we still denote Jκ(v),

|G−1(v)|p and |G−1(v)|2∗ by J+
κ (v), |G−1(v)+|p and |G−1(v)+|2∗ , respectively. Therefore,

if v is a nontrivial solution of (2.9), by Strong maximum principle [9], v is positive.

By (V1) and (V2), the norm

‖v‖ =

[∫
RN

(|∇v|2 + V (x)v2) dx

]1/2

is equivalent to the usual norm in H1(RN ).

Now, we establish the geometric hypotheses of the Mountain Pass Theorem for Jκ.

Lemma 3.1. For 2 < p < 2∗, there exist ρ0, a0 > 0, such that Jκ(v) ≥ a0 for ‖v‖ = ρ0.

Moreover, there exists e ∈ H1(RN ) such that Jκ(e) < 0.

Proof. By Lemma 2.1(3) and Sobolev embedding,

Jκ(v) ≥ 1

2

∫
RN

[
|∇v|2 + V (x)|G−1(v)|2

]
dx− 1

p

∫
RN
|G−1(v)|p dx− 1

2∗

∫
RN
|G−1(v)|2∗ dx

≥ 1

2

∫
RN
|∇v|2 dx+

1

2

∫
RN

V (x)|v|2 dx− C
∫
RN
|v|p dx− C

∫
RN
|v|2∗ dx

=
1

2
‖v‖2 − C‖v‖p − C‖v‖2∗ .

Thereby, by choosing ρ0 small, we get

a0 =
1

2
ρ2

0 − Cρ
p
0 − Cρ

2∗
0 > 0,

and so,

Jκ(v) ≥ a0 for ‖v‖ = ρ0.

In order to prove the existence of e ∈ H1(RN ) such that Jκ(e) < 0, we fix ϕ ∈
C∞0 (RN , [0, 1]) with suppϕ ⊂ B1(0) and show that Jκ(tϕ)→ −∞ as t→∞, because the

result follows by taking e = tϕ with t large enough. By Lemma 2.1(3),

Jκ(tϕ) ≤ Ct2
∫
RN

(|∇ϕ|2 + V (x)ϕ2) dx− Ctp
∫
RN

ϕp dx.

Since p > 2, it follows that Jκ(tϕ)→ −∞ as t→∞.
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Now, in view of Lemma 3.1, applying a version of Mountain Pass Theorem without

(PS)c condition due to Ambrosetti-Rabinowitz [20], it follows that there exists a (PS)c se-

quence {vn} ⊂ H1(RN ), i.e., a sequence such that Jκ(vn)→ cκ and J ′κ(vn)→ 0, where cκ

is the Mountain Pass level of J characterized by

(3.1) cκ = inf
γ∈Γ

sup
t∈[0,1]

Jκ(γ(t)),

where Γ = {γ ∈ C([0, 1], H1(RN )) : γ(0) = 0, Jκ(γ(1)) < 0, γ(1) 6= 0}.

Lemma 3.2. There exists κ̃ > 0 such that for κ ∈ (0, κ̃], the minimax level cκ in (3.1)

satisfies

cκ <
1

N

(√
2

4

)N
SN/2,

where S is the best constant for the embedding D1,2(RN ) ↪→ L2∗(RN ).

Proof. It suffices to show that there exists v0 ∈ H1(RN ) \ {0} such that

max
t≥0

Jκ(tv0) <
1

N

(√
2

4

)N
SN/2.

We follow the strategy used in [4]. First, we choose a cut-off function ϕ ∈ C∞0 (RN , [0, 1])

such that ϕ ≡ 1 on B1(0) and ϕ ≡ 0 on RN \ B2(0) and 0 ≤ ϕ(x) ≤ 1 on B2(0). Let

ψκ(x) = ϕ(x)wκ(x), where

wκ =
[N(N − 2)κ2](N−2)/4

(κ2 + |x|2)(N−2)/2
.

It is known that wκ satisfies the equation −∆u = u2∗−1 in RN and∫
RN
|∇wκ|2 dx =

∫
RN

w2∗
κ = SN/2,

∫
B1(0)

|∇wκ|2 dx ≤
∫
B1(0)

w2∗
κ ,(3.2) ∫

RN\B1(0)
|∇wκ|2 = O(κN−2) as κ→ 0.(3.3)

Thus, if we define the function vκ(x) = ψκ/|ψκ|2∗ , then, by (3.2) and (3.3), as κ → 0, we

have ∫
RN
|∇vκ|2 dx = S +O(κN−2), |vκ|2

∗−1
2∗−1 = O(κ(N−2)/2), if N ≥ 3

and

(3.4) |vκ|22 =


O(κ) if N = 3,

O(κ2| log κ|) if N = 4,

O(κ2) if N ≥ 5.
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In view of Lemma 3.1, we also have limt→+∞ Jκ(tvκ) = −∞ and there exists tκ > 0 such

that Jκ(tκvκ) = maxt>0 Jκ(tvκ). We claim that there exist positive constants t0, t1 > 0

such that t0 ≤ tκ ≤ t1 for some κ0 > 0 with 0 < κ < κ0. First, we prove that tκ is bounded

from below by a positive constant. Otherwise, we could find a sequence κn → 0 such that

tκn → 0. Up to a subsequence (still denote by κn), we have tκnvκn → 0. Therefore,

0 < cκ ≤ supt≥0 Jκ(tκnvκn) → 0, which is a contradiction. On the other hand, from

Lemma 2.1(3), we have

cκ ≤ Jκ(tκvκ)

≤ 1

2
t2κ

∫
B2(0)

|∇vκ|2 dx+
1

2

∫
B2(0)

V (x)|G−1(tκvκ)|2 dx− 1

2∗

∫
B2(0)

|G−1(tκvκ)|2∗ dx

≤ 1

2
t2κ

∫
B2(0)

|∇vκ|2 dx+ 4V∞t
2
κ

∫
B2(0)

|vκ|2 dx−
1

2∗
t2

∗
κ

∫
B2(0)

|vκ|2
∗
dx

≤ Ct2κ‖vκ‖2 −
1

2∗
t2

∗
κ

≤ Ct2κ
[
S2 +O(κ)

]
− 1

2∗
t2

∗
κ

which implies the claim for 0 < κ < κ0.

Now, we have

Jκ(tκvκ) ≤ 1

2
t2κ

∫
B2(0)

|∇vκ|2 dx+ 4V∞t
2
κ

∫
B2(0)

|vκ|2 dx

+ C
1√
κ
t2

∗−1
κ

∫
B2(0)

|vκ|2
∗−1 dx− 1

p
tpκ

∫
B2(0)

|vκ|p dx−
1

2∗
(2
√

2)2∗t2
∗
κ .

(3.5)

Let A =
∫
RN |∇vκ|

2 dx and B = (2
√

2)2∗ , considering the function ξ : [0,+∞) → R given

by

ξ(t) =
1

2
t2A− 1

2∗
Bt2

∗
,

we have t0 = (AB−1)1/(2∗−2) is the maximum point of ξ and

ξ(t0) =
1

N

(√
2

4

)N
AN/2.

Thus, from (3.5) and recalling t0 ≤ tκ ≤ t1, we deduce that

Jκ(tκvκ) ≤ 1

N

(√
2

4

)N [
S +O(κN−2)

]N/2
+ C|vκ|22 + C

1√
κ
|vκ|2

∗−1
2∗−1 − C

∫
B2(0)

|vκ|p dx.

Therefore, by using the following inequality:

(a+ b)r ≤ ar + r(a+ b)r−1b for any a, b > 0, r ≥ 1,
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we have

(3.6) Jκ(tκvκ) ≤ 1

N

(√
2

4

)N
SN/2 +C|vκ|22 +C

1√
κ
|vκ|2

∗−1
2∗−1−C

∫
B2(0)

|vκ|p dx+O(κN−2).

For |x| ≤ κ and 0 < κ ≤ κ0 < 2, we have∫
B2(0)

|vκ|p dx ≥
∫
Bκ(0)

|vκ|p dx ≥ Cκ(2−N)p/2+N .

Therefore, from (3.6), we get

Jκ(tκvκ) ≤ 1

N

(√
2

4

)N
SN/2 + C|vκ|22 + C

1√
κ
|vκ|2

∗−1
2∗−1 − Cκ

(2−N)p/2+N +O(κN−2).

Let

B(κ) = C|vκ|22 + Cκ(N−3)/2 − Cκ(2−N)p/2+N +O(κN−2).

We will prove our result if we show that B(κ) < 0 for small κ. In fact, by (3.4), if N ≥ 4

and p > max{(N + 3)/(N − 2), 2}, the result follows.

Lemma 3.3. The (PS)cκ sequence is bounded in E.

Proof. Let {vn} be a (PS)cκ sequence, that is,

Jκ(vn) =
1

2

∫
RN

[
|∇vn|2 + V (x)|G−1(vn)|2

]
dx− 1

p

∫
RN
|G−1(vn)|p dx

− 1

2∗

∫
RN
|G−1(vn)|2∗ dx

= cκ + o(1)

(3.7)

and

〈J ′κ(vn), ψ〉 =

∫
RN

[
∇vn∇ψ + V (x)

G−1(vn)

g(G−1(vn))
ψ

]
dx

−
∫
RN

|G−1(vn)|p−2G−1(vn) + |G−1(vn)|2∗−2G−1(vn)

g(G−1(vn))
ψ dx

= o(1)‖ψ‖.

(3.8)

By Lemma 2.1(4), we have∫
RN

∣∣∇[G−1(vn)g(G−1(vn))]
∣∣2 =

∫
RN

∣∣∣∣1 +
G−1(vn)g′(G−1(vn))

g(G−1(vn))

∣∣∣∣2 |∇vn|2 dx
≤
∫
RN
|∇vn|2 dx.
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Recalling |G−1(vn)g(G−1(vn))| ≤ |vn|, it follows that G−1(vn)g(G−1(vn)) ∈ H1(RN ). By

choosing ψ = G−1(vn)g(G−1(vn)) as a test function in (3.8) and combining (3.7), we get

pcκ + o(1) + o(1)‖vn‖ = pJκ(vn)− 〈J ′κ(vn), G−1(vn)g(G−1(vn))〉

≥
∫
RN

[
p− 2

2
− G−1(vn)g′(G−1(vn))

g(G−1(vn))

]
|∇vn|2 dx

≥ p− 2

2
‖vn‖2.

The proof of the lemma is complete.

Lemma 3.4. Let {vn} be a (PS)cκ sequence with cκ < 1
N

(√
2

4

)N
SN/2, then there is a

sequence {zn} ⊂ RN and R > 0, β > 0 such that

(3.9)

∫
BR(zn)

v2
n dx ≥ β.

Proof. Suppose by contradiction (3.9) does not hold. Then by Lions compactness lemma

[13] it follows that

(3.10)

∫
RN
|vn|p dx = o(1), ∀ p ∈ (2, 2∗).

Thus, by Lemma 2.1(3), we have

(3.11)

∫
RN
|G−1(vn)|p dx = o(1),

∫
RN

|G−1(vn)|p−2G−1(vn)vn
g(G−1(vn))

dx = o(1), ∀ p ∈ (2, 2∗).

Therefore, in view of Jκ(vn) = cκ + o(1) and (3.11), we have

(3.12)
1

2

∫
RN

(|∇vn|2 + V (x)|G−1(vn)|2) dx =
1

2∗

∫
RN
|G−1(vn)|2∗ dx+ cκ + o(1)

and from 〈J ′κ(vn), vn〉 = o(1)‖vn‖, (3.11) and Lemma 2.1(3) and (5), it follows that

(3.13)

∫
RN

[
|∇vn|2 + V (x)

G−1(vn)vn
g(G−1(vn))

]
dx =

∫
RN

|G−1(vn)|2∗−2G−1(vn)vn
g(G−1(vn))

dx+ o(1).

We claim that

(3.14)

∫
RN

V (x)

[
G−1(vn)vn
g(G−1(vn))

− |G−1(vn)|2
]
dx = o(1).

In fact, by Lemma 2.1(1), for any ε > 0, there exists δ > 0, such that for |vn(x)| < δ, ∀n,

there holds

(3.15)

∣∣∣∣ G−1(vn)vn
g(G−1(vn))

− |G−1(vn)|2
∣∣∣∣ < εv2

n.
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On the other hand, by Lemma 2.1(3), for |vn(x)| ≥ δ, ∀n, we have

(3.16)

∣∣∣∣ G−1(vn)vn
g(G−1(vn))

− |G−1(vn)|2
∣∣∣∣ ≤ C|vn|2 leqCδ2−p|vn|p.

Combining (3.10), (3.15) and (3.16), recalling V (x) is bounded, we get (3.14).

Next, we prove ∫
RN

[
|G−1(vn)|2∗ − (2

√
2)2∗ |vn|2

∗
]
dx = o(1),(3.17) ∫

RN

[
|G−1(vn)|2∗−2G−1(vn)vn

g(G−1(vn))
− (2
√

2)2∗ |vn|2
∗
]
dx = o(1).(3.18)

This is a consequence of (3.10) and Lemma 2.1(2).

Let ` ≥ 0 be such that∫
RN

[
|∇vn|2 + V (x)

G−1(vn)vn
g(G−1(vn))

]
dx→ `.

Then, from (3.13), (3.17) and (3.18), we have

` =

∫
RN

|G−1(vn)|2∗−2G−1(vn)vn
g(G−1(vn))

dx+ o(1)

=

∫
RN
|G−1(vn)|2∗ dx+ o(1) = (2

√
2)2∗

∫
RN
|vn|2

∗
dx+ o(1).

(3.19)

Moreover, by (3.19), we get ` > 0 otherwise we have vn>0 in H1(RN ) which contradicts

cκ > 0.

From Jκ(vn) = cκ + o(1), (3.12), (3.14) and (3.19), we have

(3.20) cκ =
1

2
`− 1

2∗
`.

By the definition of S, we have

(3.21)

∫
RN

[
|∇vn|2 + V (x)

G−1(vn)vn
g(G−1(vn))

]
dx ≥ S

(∫
RN

v2∗
n dx

)2/2∗

.

Taking the limit in (3.21), we get

(3.22) ` ≥ 1

8
S`2/2

∗
.

Finally, combining (3.20) and (3.22), it follows that

cκ ≥
1

N

(√
2

4

)N
SN/2,

which contradicts Lemma 3.2.
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By Lemma 3.3, up to subsequence, we may assume that there is vκ ∈ E such that

vn ⇀ vκ in E, vn → vκ in Lploc(R
N ) and vn → vκ a.e. in RN . We now show that

〈J ′κ(vκ), ψ〉 = 0 for any ψ ∈ C∞0 (RN ), i.e., vκ is a critical point of Jκ. In fact, we have

〈J ′κ(vn), ψ〉 − 〈J ′κ(vκ), ψ〉

=

∫
RN
∇(vn − vκ)∇ψ dx+

∫
RN

V (x)

[
G−1(vn)

g(G−1(vn))
− G−1(vκ)

g(G−1(vκ))

]
ψ dx

−
∫
RN

[
|G−1(vn)|p−2G−1(vn)

g(G−1(vn))
− |G

−1(vκ)|p−2G−1(vκ)

g(G−1(vκ))

]
ψ dx

−
∫
RN

[
|G−1(vn)|2∗−2G−1(vn)

g(G−1(vn))
− |G

−1(vκ)|2∗−2G−1(vκ)

g(G−1(vκ))

]
ψ dx.

Since vn ⇀ vκ in E, vn → vκ in Lploc(R
N ) and vn → vκ a.e. in RN , it follows that vn → vκ

a.e. on O := suppψ and there exists wp ∈ Lp(O) such that for any n, |vn(x)| ≤ |wp(x)|
a.e. on O. Consequently, as n→∞, we get

G−1(vn)

g(G−1(vn))
→ G−1(vκ)

g(G−1(vκ))
, a.e. on O;(3.23)

|G−1(vn)|p−2G−1(vn)

g(G−1(vn))
→ |G

−1(vκ)|p−2G−1(vκ)

g(G−1(vκ))
, a.e. on O;(3.24)

|G−1(vn)|2∗−2G−1(vn)

g(G−1(vn))
→ |G

−1(vκ)|2∗−2G−1(vκ)

g(G−1(vκ))
, a.e. on O.(3.25)

Furthermore, by Lemma 2.1(3),∣∣∣∣V (x)
G−1(vn)

g(G−1(vn))
ψ

∣∣∣∣ ≤ V∞|vn||ψ| ≤ V∞|w2||ψ|, a.e. on O;(3.26) ∣∣∣∣ |G−1(vn)|p−2G−1(vn)

g(G−1(vn))
ψ

∣∣∣∣ ≤ C|vn|p−1|ψ| ≤ C|wp−1|p−1|ψ|, a.e. on O;(3.27) ∣∣∣∣ |G−1(vn)|2∗−2G−1(vn)

g(G−1(vn))
ψ

∣∣∣∣ ≤ C|vn|2∗−1|ψ| ≤ C|w2∗−1|2
∗−1|ψ|, a.e. on O.(3.28)

Now, combining (3.23)–(3.28), the Lebesgue Dominated Convergence Theorem and the

weak convergence vn ⇀ vκ in H1(RN ), we have 〈J ′κ(vn), ψ〉 → 〈J ′κ(vκ), ψ〉 as n → ∞.

Since J ′κ(vn) → 0 as n → ∞, we conclude that J ′κ(vκ) = 0. If vκ 6= 0, then vκ is a

nontrivial critical point. Thus, we assume that vκ ≡ 0. First, we show that {vn} is also a

(PS) sequence for the functional Jκ,∞ : H1(RN )→ R:

Jκ,∞(vn) =
1

2

∫
RN

(|∇vn|2 + V∞|G−1(vn)|2) dx− 1

p

∫
RN
|G−1(vn)|p dx

− 1

2∗

∫
RN
|G−1(vn)|2∗ dx.
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It suffices to show

(3.29) lim
n→∞

∫
RN

[V (x)− V∞]|G−1(vn)|2 dx = 0.

In fact, from (V1), for any ε > 0, there exists R > 0 such that for |x| > R, it follows that

|V (x)− V∞| < ε. Thus,

(3.30)

∣∣∣∣∣
∫
|x|>R

[V (x)− V∞]|G−1(vn)|2 dx

∣∣∣∣∣ ≤ ε
∫
RN
|G−1(vn)|2 dx ≤ Cε.

On the other hand, since vn → 0 in L2
loc(RN ),

(3.31)

∣∣∣∣∣
∫
|x|≤R

[V (x)− V∞]|G−1(vn)|2 dx

∣∣∣∣∣ ≤ 2C|V∞|
∫
|x|≤R

|vn|2 dx→ 0, n→∞.

Combining (3.30) and (3.31), we get (3.29).

By Lemma 3.4, {vn} does not vanish and there exist β,R > 0, and {zn} ⊂ RN such

that

(3.32) lim
n→∞

∫
BR(zn)

v2
n dx ≥ β > 0.

Define ṽn(x) = vn(x+zn). Since {vn} is a (PS) sequence for Jκ,∞, {ṽn} is a (PS) sequence

for Jκ,∞. Arguing as in the case of {vn} we get that ṽn ⇀ ṽκ in H1(RN ) with J ′κ,∞(ṽκ) = 0.

From (3.32), we have ṽκ 6= 0. The last limits together with the lower semicontinuity of

convex functional and Fatou’s Lemma lead to

2cκ = lim
n→∞

[
2Jκ,∞(ṽn)− 〈J ′κ,∞(ṽn), G−1(ṽn)g(G−1(ṽn))〉

]
= − lim

n→∞

∫
RN

G−1(ṽn)g′(G−1(ṽn))

g(G−1(ṽn))
|∇ṽn|2 dx

− 2− p
p

lim
n→∞

∫
RN
|G−1(ṽn)|p dx− 2− 2∗

2∗
lim
n→∞

∫
RN
|G−1(ṽn)|2∗ dx

≥ −
∫
RN

G−1(ṽκ)g′(G−1(ṽκ))

g(G−1(ṽκ))
|∇ṽκ|2 dx

− 2− p
p

∫
RN
|G−1(ṽκ)|p dx− 2− 2∗

2∗

∫
RN
|G−1(ṽκ)|2∗ dx

= 2Jκ,∞(ṽκ)− 〈J ′κ,∞(ṽκ), G−1(ṽκ)g(G−1(ṽκ))〉

= 2Jκ,∞(ṽκ),

(3.33)

that is, Jκ,∞(ṽκ) ≤ cκ. It follows the argument used in [11], we get a path γ(t) : [0, L] →
H1(RN ) such that

max
t∈[0,L]

Jκ,∞(γ(t)) = Jκ,∞(ṽκ).
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In fact, we define

ṽκ,t(x) =

ṽκ(x/t) if t > 0,

0 if t = 0.

Then,∫
RN
|∇ṽκ,t|2 dx = tN−2

∫
RN
|∇ṽκ|2 dx,

∫
RN
|G−1(ṽκ,t)|2 dx = tN

∫
RN
|G−1(ṽκ)|2 dx,

and∫
RN

|G−1(ṽκ,t)|p dx = tN
∫
RN

|G−1(ṽκ)|p dx,
∫
RN

|G−1(ṽκ,t)|2
∗
dx = tN

∫
RN

|G−1(ṽκ)|2
∗
dx.

Since J ′κ,∞(ṽκ) = 0, elliptic regularity implies that ṽκ ∈ C2(RN ). Hence, by

d

dt
Jκ,∞(ṽκ,t)

∣∣∣
t=1

= 0,

it follows that

N − 2

2N

∫
RN
|∇ṽκ|2 dx = −V∞

2

∫
RN
|G−1(ṽκ)|2 dx

+
1

p

∫
RN
|G−1(ṽκ)|p dx+

1

2∗

∫
RN
|G−1(ṽκ)|2∗ dx.

Setting γ(t)(x) = ṽκ,t(x), we see that

Jκ,∞(γ(t))

=
tN−2

2

∫
RN
|∇ṽκ|2 dx

− tN
[
−V∞

2

∫
RN
|G−1(ṽκ)|2 dx+

1

p

∫
RN
|G−1(ṽκ)|p dx+

1

2∗

∫
RN
|G−1(ṽκ)|2∗ dx

]
.

Thus γ ∈ C([0,∞), H1(RN )) and

d

dt
Jκ,∞(γ(t))

=
N − 2

2
tN−3

∫
RN
|∇ṽκ|2 dx

−NtN−1

[
−V∞

2

∫
RN
|G−1(ṽκ)|2 dx+

1

p

∫
RN
|G−1(ṽκ)|p dx+

1

2∗

∫
RN
|G−1(ṽκ)|2∗ dx

]
=
N − 2

2
tN−3(1− t2)

∫
RN
|∇ṽκ|2 dx.

So, d
dtJκ,∞(γ(t)) > 0 for t ∈ (0, 1) and d

dtJκ,∞(γ(t)) < 0 for t > 1. Thus for sufficiently

large L > 1, we get the desired path. Define the set

Γ∞ = {γ ∈ C([0, 1], H1(RN )) : γ(0) = 0, γ(1) 6= 0, J∞(γ(1)) < 0}.
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After a suitable scale change in t, we can assume γ(t) ∈ Γ∞.

Thereby, since V (x) is continuous, by (V2), and since γ ∈ Γ∞ ⊂ Γ, we have

cκ ≤ max
t∈[0,1]

Jκ(γ(t)) := Jκ(γ(t)) < Jκ,∞(γ(t)) ≤ max
t∈[0,1]

Jκ,∞(γ(t)) = Jκ,∞(ṽκ) ≤ cκ,

which is a contradiction. This way, vκ is a nontrivial critical point for Jκ. Moreover,

repeating the same type of arguments explored in (3.33), we have that Jκ(vκ) ≤ cκ.

4. L∞ estimate of the solution

In the following, we will prove an L∞ estimate dependent of κ > 0. To this end, first we

need to give an uniform boundedness of the Sobolev norm independent on κ > 0 for vκ.

Lemma 4.1. The solution vκ satisfies

‖vκ‖2 ≤
2p

N(p− 2)

(√
2

4

)N
SN/2.

Proof. Using the hypothesis that vκ is a critical point of Jκ,

pcκ = pJκ(vκ)− 〈J ′κ(vκ), G−1(vκ)g(G−1(vκ))〉

≥ p− 2

2

∫
RN
|∇vκ|2 dx+

p− 2

2

∫
RN

V (x)|G−1(vκ)|2 dx,

from which it follows that,

‖vκ‖2 ≤
2pcκ
p− 2

.

By Lemma 3.2, we get

‖vκ‖2 ≤
2p

N(p− 2)

(√
2

4

)N
SN/2.

Proposition 4.2. There exists a constant C0 > 0 independent of κ, such that ‖vκ‖∞ ≤ C0.

Proof. In what follows, we denote vκ by v. For each m ∈ N and β > 1, let Am = {x ∈
RN : |v|β−1 ≤ m} and Bm = RN \Am. Define

vm =

v|v|2(β−1) in Am,

m2v in Bm.

Note that vm ∈ H1(RN ), vm ≤ |v|2β−1 and

∇vm =

(2β − 1)|v|2(β−1)∇v in Am,

m2∇v in Bm.
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Using vm as a test function in (2.8), we deduce that∫
RN

[
∇v∇vm + V (x)

G−1(v)

g(G−1(v))
vm

]
dx

=

∫
RN

|G−1(v)|p−2G−1(v) + |G−1(v)|2∗−2G−1(v)

g(G−1(v))
vm dx.

(4.1)

By (4.1),

(4.2)

∫
RN
∇v∇vm dx = (2β − 1)

∫
Am

|v|2(β−1)|∇v|2 dx+m2

∫
Bm

|∇v|2 dx.

Let

wm =

v|v|β−1 in Am,

mv in Bm.

Then w2
m = vvm ≤ |v|2β and

∇wm =

β|v|β−1∇v in Am,

m∇v in Bm.

Hence,

(4.3)

∫
RN
|∇wm|2 dx = β2

∫
Am

|v|2(β−1)|∇v|2 dx+m2

∫
Bm

|∇v|2 dx.

Then, from (4.2) and (4.3),

(4.4)

∫
RN

(|∇wm|2 −∇v∇vm) dx = (β − 1)2

∫
Am

|v|2(β−1)|∇v|2 dx.

Combining (4.1), (4.2) and (4.4), since β > 1, we have∫
RN
|∇wm|2 dx ≤

[
(β − 1)2

2β − 1
+ 1

] ∫
RN
∇v∇vm dx

≤ β2

∫
RN

[
∇v∇vm + V (x)

G−1(v)

g(G−1(v))
vm

]
dx

= β2

∫
RN

|G−1(v)|p−2G−1(v) + |G−1(v)|2∗−2G−1(v)

g(G−1(v))
vm dx

≤ Cβ2

∫
RN

(|v|p−1 + |v|2∗−1)|vm| dx.

Now, by Morse iteration and by arguments similar to [3], the result follows.

Proof of Theorem 1.1. Combining the arguments in Section 3 and Proposition 4.2, the

solution vκ obtained in Section 3 satisfies ‖vκ‖∞ ≤ C0. Choosing κ = min
{

1/(16C2
0 ), κ̃

}
,

it follows that

‖G−1(vκ)‖∞ ≤ 2
√

2‖vκ‖∞ ≤
√

1/(2κ), ∀κ ∈ (0, κ].

From this, u = G−1(vκ) is a classical solution of (1.1).
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