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The IC-indices of Complete Multipartite Graphs

Chin-Lin Shiue*, Hui-Chuan Lu and Jun-yi Kuo

Abstract. Given a connected graph G, a function f mapping the vertex set of G into

the set of all integers is a coloring of G. For any subgraph H of G, we denote as f(H)

the sum of the values of f on the vertices of H. If for any integer k ∈ {1, 2, . . . , f(G)},
there exists an induced connected subgraph H of G such that f(H) = k, then the

coloring f is called an IC-coloring of G. The IC-index of G, written M(G), is defined

to be the maximum value of f(G) over all possible IC-colorings f of G. In this paper,

we give a lower bound on the IC-index of any complete `-partite graph for all ` ≥ 3

and then show that, when ` = 3, our lower bound also serves as an upper bound. As

a consequence, the exact value of the IC-index of any tripartite graph is determined.

1. Introduction

The postage stamp problem in number theory has been extensively studied and formulated

into several versions in different fields [1–6,8,9,12,13]. In this paper, we consider the version

called the IC-coloring of a graph. Throughout this paper, all graphs involved are simple

graphs. For the terminologies and notations in graph theory, please refer to [14]. Given

a connected graph G, a function f : V (G) → N is called a coloring of G. The number

f(v) is the color of the vertex v of G. For any subgraph H of G, we denote the sum∑
v∈V (H) f(v) as f(H). A coloring f of G is referred to as an IC-coloring of G if, for any

integer k ∈ {1, 2, . . . , f(G)}, there exists an induced connected subgraph H of G such that

f(H) = k. Every connected graph G admits a trivial IC-coloring which assigns the value

1 to every vertex of G. The problem of finding an IC-coloring with the largest value of

f(G) arose naturally. The IC-index of a graph G, denoted M(G), is defined to be

M(G) = max {f(G) | f is an IC-coloring of G} .

An IC-coloring f satisfying f(G) = M(G) is called a maximal IC-coloring of G.

Received October 5, 2016; Accepted March 16, 2017.

Communicated by Sen-Peng Eu.

2010 Mathematics Subject Classification. 05C15.

Key words and phrases. IC-coloring, IC-index, complete multipartite graph, complete tripartite graph.

Lu was supported in part by the Ministry of Science and Technology of Taiwan under Grant MOST 104-

2115-M-239-001.

Shiue was supported in part by the National Science Council under Grant NSC-100-2115-M033-002.

*Corresponding author.

1213



1214 Chin-Lin Shiue, Hui-Chuan Lu and Jun-yi Kuo

Determining the exact values of the IC-index of a graph is challenging. In the past

decades, not much achievements have been made. In 1992, Glenn Chappel formulated

the IC-coloring problem as a “subgraph sums problem” and gave an upper bound on the

IC-index of an n-cycle. He showed that M(Cn) ≤ n2 − n + 1. Later, in 1995, Penrice [7]

introduced the IC-coloring as the stamp covering and determined the exact values of

M(Kn) and M(K1,n), namely, M(Kn) = 2n − 1 for n ≥ 1 and M(K1,n) = 2n + 2 for

n ≥ 2. In 2005, Salehi et al. [8] proved that M(K2,n) = 3 · 2n + 1 for n ≥ 2. Shiue and

Fu [10] completely settled the problem regarding complete bipartite graphs in 2008 by

showing that M(Km,n) = 3 · 2m+n−2 − 2m−2 + 2 for 2 ≤ m ≤ n. In this present paper,

we consider complete multipartite graphs. A complete multipartite graph Km1,m2,...,m`
is a

graph whose vertex set can be partitioned into ` partite sets V1, V2, . . . , V`, where |Vi| = mi

for all i ∈ {1, 2, . . . , `}, such that there are no edges within each Vi and any two vertices

from different partite sets are adjacent. A complete multipartite graph with ` partite sets

is called a complete `-partite graph. We also denote as K1(n),mn+1,mn+2,...,m`
, n ≤ `, the

complete `-partite graph in which there are n partite sets which are of size one and the

rest (`− n) partite sets have sizes mn+1,mn+2, . . . ,m` respectively.

In [11], we first considered complete multipartite graphs. We gave a lower bound on

M(Km1,m2,...,m`
) for 1 = m1 = · · · = mn < mn+1 ≤ mn+2 ≤ · · · ≤ m` and showed

that, when ` = n + 1 and n ≥ 2, our lower bound is the exact value of it, that is,

M(K1(n),m) = 2m+n − 2m + 1 for m ≥ 2 and n ≥ 2. In this present paper, we investigate

the problem of the IC-indices of general complete multipartite graphs. In Section 2, we

introduce some previous results which are useful in our discussion. In Section 3, we

introduce our lower bounds on M(Km1,m2,...,m`
) for 2 ≤ m1 ≤ m2 ≤ · · · ≤ m` and

1 = m1 < m2 ≤ · · · ≤ m` by constructing suitable IC-colorings. Subsequently, we prove in

Section 4 that, when ` = 3, the lower bounds given in Section 3 are in fact the exact values

of the IC-indices of complete tripartite graphs. Our work completely solves the problem

regarding complete tripartite graphs. Finally, a concluding remark is given in Section 5.

2. Preliminaries

In dealing with the IC-index of a graph, we view the colors of all vertices as a sequence

satisfying some properties. We introduce some basic counting tools from [10] to analyse the

sequence of colors. For convenience, we let [1, `] denote the set {1, 2, . . . , `}. A sequence

of 0 and 1 is called a binary sequence.

Lemma 2.1. [10] If a1, a2, . . . , an are n positive integers which satisfy that a1 = 1 and

ai ≤ ai+1 ≤
∑i

j=1 aj + 1 for all i ∈ [1, n− 1], then for each ` ∈ [1,
∑n

j=1 aj ] there exists a

binary sequence c1, c2, . . . , cn such that ` =
∑n

j=1 cjaj.
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Lemma 2.2. [10] If s0, s1, . . . , sn is a sequence of integers, then for each i ∈ [1, n] there

exists an integer ri ∈ Z such that si =
∑i−1

j=0 sj + ri and
∑n

j=0 sj = 2ns0 +
∑n

j=1 2n−jrj.

Lemma 2.3. [10] Let V (G) = {u1, u2, . . . , un}. If f is an IC-coloring of G such that

f(ui) ≤ f(ui+1) for all i ∈ [1, n− 1], then f(u1) = 1 and f(ui+1) ≤
∑i

j=1 f(uj) + 1 for all

i ∈ [1, n− 1].

Lemma 2.4. [10] Let f be an IC-coloring of a graph G such that f(ui) < f(ui+1) for

i ∈ [1, n− 1], where V (G) = {u1, u2, . . . , un}. For each pair (i1, i2) where 1 ≤ i1 < i2 ≤ n,

if f(ui1) =
∑i1−1

j=1 f(uj) + 1 and ui1ui2 /∈ E(G), then either f(ui2) ≤
∑i2−1

j=1 f(uj)− f(ui1)

or f(ui2+1) ≤ f(ui1) + f(ui2).

Lemma 2.5. [10] Let r1, r2, . . . , rn be n numbers. If there are two integers i and k such

that 1 ≤ i < k ≤ n and ri < rk, then

n∑
j=1

2n−jrj <
n∑

j=1

2n−jrj − (2n−iri + 2n−krk) + (2n−irk + 2n−kri).

3. Lower bounds on M(Km1,m2,...,m`
)

A lower bound on the IC-index of Km1,m2,...,m`
for 1 = m1 = · · · = mn < mn+1 ≤ mn+2 ≤

· · · ≤ m` has been given in [11] as M(Km1,m2,...,m`
) ≥ (2m`(2m`−1(· · · (2mn+1(2n − 1) +

1) · · · ) + 1) + 1). In this section, we introduce our lower bounds on M(Km1,m2,...,m`
)

separately in two cases where 2 ≤ m1 ≤ m2 ≤ · · · ≤ m` and 1 = m1 < m2 ≤ · · · ≤ m`. In

what follows, G represents the complete multipartite graph Km1,m2,...,m`
with partite sets

W1,W2, . . . ,W` where Wi = {wi,j | j ∈ [1,mi]} for all i = 1, 2, . . . , `. For any S ⊆ V (G),

we denote the subgraph of G induced by S as 〈S〉.

Proposition 3.1. Let m =
∑`

i=1mi. Then

M(Km1,m2,...,m`
) ≥ 13 · 2m−4 +

`−1∑
j=3

2m−(
∑j

x=3 mx+4) − g(m1,m2),

where

g(m1,m2) =

3 · 2m1−2 − 4 if 2 ≤ m1 ≤ m2 ≤ · · · ≤ m`,

2m2−2 − 2 if 1 = m1 < m2 ≤ · · · ≤ m`.

Proof. We prove the lower bound by constructing an IC-coloring of G. First, let us consider

the case where 2 ≤ m1 ≤ m2 ≤ · · · ≤ m`. Before explicitly defining the coloring f , we

arrange the vertices of G into a new order u1, u2, . . . , um such that the values of f can be
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defined recursively. Let

ui =



w2,1 if i = 1,

w1,1 if i = 2,

w1,2 if i = 3,

w2,2 if i = 4,

w
j,i−

∑j−1
x=3 mx−4 if i ∈ [

∑j−1
x=3mx + 5,

∑j
x=3mx + 4] and j ∈ [3, `],

w2,i−
∑`

x=3 mx−2 if i ∈ [
∑`

x=3mx + 5,
∑`

x=2mx + 2],

w1,i−
∑`

x=2 mx
if i ∈ [

∑`
x=2mx + 3,m].

Each partite set actually contains the ui’s as follows:

W1 = {u2, u3} ∪
{
ui

∣∣∣ i ∈ [∑`

x=2
mx + 3,m

]}
,

W2 = {u1, u4} ∪
{
ui

∣∣∣ i ∈ [∑`

x=3
mx + 5,

∑`

x=2
mx + 2

]}
and

Wj =
{
ui

∣∣∣ i ∈ [∑j−1

x=3
mx + 5,

∑j

x=3
mx + 4

]}
for j ∈ [3, `].

Now, we define f : V (G) → N recursively as f(u1) = 1 and f(ui) =
∑i−1

j=1 f(uj) + ri

for i ∈ [2,m], where

ri =



1 if i ∈ {2, 3} ∪
{∑j

x=3mx + 4 | j ∈ [3, `]
}
,

0 if i ∈ [5,
∑`

x=3mx + 4] \
{∑j

x=3mx + 4 | j ∈ [3, `]
}
,

−1 if i ∈ {4} ∪ [
∑`

x=3mx + 5,
∑`

x=2mx + 2],

−4 if i ∈ [
∑`

x=2mx + 3,m].

Figure 3.1: An IC-coloring of K3,3,3
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Now, considering s0 = 0 and si = f(ui) for i ∈ [1,m] in Lemma 2.2, we have

f(G) =

m∑
j=0

sj = 2m · s0 +

m∑
j=1

2m−j · rj

= 2m−1 + 2m−2 + 2m−3 + 2m−4 · (−1) +
∑̀
j=3

2m−(
∑j

x=3 mx+4)

+

m−m1+2∑
j=m−m1−m2+5

2m−j(−1) +

m∑
j=m−m1+3

2m−j(−4)

= 13 · 2m−4 +
∑̀
j=3

2m−(
∑j

x=3 mx+4) − (2m1+m2−4 − 2m1−2)− 4(2m1−2 − 1)

= 13 · 2m−4 +

`−1∑
j=3

2m−(
∑j

x=3 mx+4) − 3 · 2m1−2 + 4.

Next, we will show that f is an IC-coloring of G. Given any k ∈ [1, f(G)], we need

to identify a connected subgraph H such that f(H) = k. Since f(u1) = 1 and f(ui) <

f(ui+1) ≤
∑i

j=1 f(uj)+1 for all i ∈ [1,m−1], Lemma 2.1 guarantees the existence of a bi-

nary sequence c1, c2, . . . , cm such that k =
∑m

j=1 cj ·f(uj). Let S = {uj | cj = 1, j ∈ [1,m]}.
Then f(〈S〉) = k. It suffices to consider the situation where 〈S〉 is disconnected, that is,

S ⊆Wj for some j ∈ [1, `] and |S| ≥ 2. There are five possible cases.

Case 1: {u2, u3} ⊆ S ⊆W1.

Observe that f(u2)+f(u3) = f(u4). Let S1 = (S\{u2, u3})∪{u4}. Then the subgraph

H = 〈S1〉 is connected and f(H) = k − f(u2)− f(u3) + f(u4) = k.

Case 2: S ⊆W1 and {u2, u3} * S.

In this case, {w1,j | j ≥ 3}∩S 6= ∅, that is, there is some uj ∈ S where j ∈ [
∑`

x=2mx+

3,m]. Let t = min
{
j | uj ∈ S and

∑`
x=2mx + 3 ≤ j ≤ m

}
. Then we have f(ut) =∑t−1

j=1 f(uj)− 4 from the definition of f .

(1) If u2 ∈ S, then f(ut) + f(u2) =
∑t−1

j=1 f(uj) − 2 =
∑t−1

j=1 f(uj) − f(u2) = f(u1) +∑t−1
j=3 f(uj). By letting S1 = (S \{u2, ut})∪{u1}∪{u3, u4, . . . , ut−1}, we have a connected

subgraph H = 〈S1〉 satisfying f(H) = k.

(2) If u2 /∈ S, then f(ut) =
∑t−1

j=1 f(uj) − f(u3) = f(u1) + f(u2) +
∑t−1

j=4 f(uj). The

subgraph H induced by (S \ {ut})∪{u1, u2}∪ {u4, u5, . . . , ut−1} is connected and satisfies

f(H) = k.

Case 3: S ⊆W2.

(1) If u4 ∈ S, then the subgraph induced by (S\{u4})∪{u2, u3} is the desired connected

subgraph because f(u4) = f(u2) + f(u3).

(2) If u4 /∈ S, then {w2,j | j ≥ 3}∩S 6= ∅. There is some uj in S where j ∈ [
∑`

x=3mx+

5,
∑`

x=2mx + 2]. Let t = min
{
j | uj ∈ S and

∑`
x=3mx + 5 ≤ j ≤

∑`
x=2mx + 2

}
. Then,
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from the definition of f , we have f(ut) =
∑t−1

j=1 f(uj) − 1 =
∑t−1

j=1 f(uj) − f(u1) =∑t−1
j=2 f(uj). By letting H be the subgraph induced by (S \ {ut}) ∪ {u2, u3, . . . , ut−1}, we

have f(H) = k and H is connected.

Case 4: S ⊆Wi for some i ∈ [3, `].

Let t = min
{
j | uj ∈ S and j ∈ [

∑i−1
x=3mx + 5,

∑i
x=3mx + 4]

}
. Since |S| ≥ 2, t <∑i

x=3mx + 4. It follows that f(ut) =
∑t−1

j=1 f(uj). Now, let S1 = (S \ {ut})∪ {u1, u2, . . . ,
ut−1}, the subgraph induced by S1 is desired.

For the second case where 1 = m1 < m2 ≤ · · · ≤ m`, the result can be shown similarly.

Let

ui =



w2,1 if i = 1,

w2,2 if i = 2,

w3,1 if i = 3,

w1,1 if i = 4,

w3,i−3 if i ∈ [5,m3 + 3],

w
j,i−

∑j−1
x=3 mx−3 if i ∈ [

∑j−1
x=3mx + 4,

∑j
x=3mx + 3] and j ∈ [4, `],

w2,i−
∑`

x=3 mx−1 if i ∈ [
∑`

x=3mx + 4,m].

Then we have

W1 = {u4} ,

W2 = {u1, u2} ∪
{
uj

∣∣∣ j ∈ [∑`

x=3
mx + 4,m

]}
,

W3 = {u3} ∪ {uj | j ∈ [5,m3 + 3]}

and

Wj =
{
ui

∣∣∣ i ∈ [∑j−1

x=3
mx + 4,

∑j

x=3
mx + 3

]}
for j ∈ [4, `].

Figure 3.2: An IC-coloring of K1,3,4
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Now, we define f : V (G) → N recursively as f(u1) = 1 and f(ui) =
∑i−1

j=1 f(uj) + ri

for i ∈ [2,m], where

ri =


1 if i ∈ {2, 4} ∪

{∑j
x=3mx + 3 | j ∈ [3, `]

}
,

0 if i = 3 or i ∈ [5,
∑`

x=3mx + 3] \
{∑j

x=3mx + 3 | j ∈ [3, `]
}
,

−2 if i ∈ [
∑`

x=3mx + 4,m].

The value of f(G) can be determined using Lemma 2.2 as follows:

f(G) =

m∑
j=1

2m−j · rj

= 2m−1 + 2m−2 + 2m−4 +
∑̀
j=3

2m−(
∑j

x=3 mx+3) +

m∑
j=m−m2+3

2m−j(−2)

= 13 · 2m−4 +
∑̀
j=3

2m−(
∑j

x=3 mx+3) − 2(2m2−2 − 1)

= 13 · 2m−4 +

`−1∑
j=3

2m−(
∑j

x=3 mx+3) − 2m2−2 + 2.

Next, given k ∈ [1, f(G)], Lemma 2.1 implies that there exists a binary sequence

c1, c2, . . . , cm such that k =
∑m

j=1 cj · f(uj). Let S = {uj | cj = 1, j ∈ [1,m]}. Then

f(〈S〉) = k. The subgraph 〈S〉 is disconnected only when the following three cases occur.

We construct a connected subgraph H with f(H) = k in each case.

Case 1: S ⊆W2.

If {u1, u2} ⊆ S, then the subgraph H induced by (S \ {u1, u2}) ∪ {u3} is connected

and f(H) = k because u3 ∈ W3 and f(u1) + f(u2) = f(u3). If {u1, u2} * S, we let

t = min
{
j | uj ∈ S and j ∈ [

∑`
x=3mx + 4,m]

}
, then f(ut) =

∑t−1
j=1 f(uj) − 2. First,

observe that f(ut) + f(u1) =
∑t−1

j=1 f(uj) − 1 =
∑t−1

j=1 f(uj) − f(u1) =
∑t−1

j=2 f(uj). If

u1 ∈ S and u2 /∈ S, then the subgraph induced by (S \ {u1, ut}) ∪ {u2, u3, . . . , ut−1} is

the desired one. Second, note that f(ut) =
∑t−1

j=1 f(uj)− f(u2) = f(u1) +
∑t−1

j=3 f(uj). If

u1 /∈ S, then the subgraph H induced by (S \{ut})∪{u1}∪{u3, u4, . . . , ut−1} is connected

and satisfies f(H) = k.

Case 2: S ⊆W3.

If u3 ∈ S, then the subgraph induced by (S \ {u3})∪{u1, u2} certainly satisfies our re-

quirement. If u3 /∈ S, then we let t = min {j | uj ∈ S, 5 ≤ j ≤ m3 + 3}. Since |S| ≥ 2, t <

m3+3 and f(ut) =
∑t−1

j=1 f(uj). The subgraph H induced by (S\{ut})∪{u1, u2, . . . , ut−1}
is desired.

Case 3: S ⊆Wi for some i ∈ [4, `].



1220 Chin-Lin Shiue, Hui-Chuan Lu and Jun-yi Kuo

Let t = min
{
j | uj ∈ S, j ∈ [

∑i−1
x=3mx + 4,

∑i
x=3mx + 3]

}
. Then t <

∑i
x=3mx + 3

and f(ut) =
∑t−1

j=1 f(uj). The subgraph H induced by (S \ {ut}) ∪ {u1, u2, . . . , ut−1} is

what we need.

4. The exact value of M(Km1,m2,m3)

In this section, we prove that the lower bound on M(Km1,m2,m3) given in the previous sec-

tion also serves as an upper bound on it. To be precise, we shall show that M(Km1,m2,m3)

is upper-bounded by 13 · 2m−4 − 3 · 2m1−2 + 4 for the case where 2 ≤ m1 ≤ m2 ≤ m3,

and by 13 · 2m−4 − 2m2−2 + 2 for the case where 1 = m1 < m2 ≤ m3. In what follows,

for the given IC-coloring f , we always assume that {u1, u2, . . . , um} is the vertex set of G

such that f(ui) ≤ f(ui+1) for all i ∈ [1,m− 1]. For brevity, we let f0 = 0 and denote the

sum
∑j

i=1 f(ui) as fj for j ∈ [1,m]. The following properties are essential for a maximal

IC-coloring of G.

Lemma 4.1. If f is a maximal IC-coloring of G, then fj < 2j−i(fi +1) for each pair (i, j)

with 1 ≤ i ≤ j ≤ m.

Proof. It suffices to consider the case i < j. For the given pair (i, j), let us consider the

sequence s0 = fi and sk = f(ui+k) for k ∈ [1, j− i]. Since sk ≤
∑k−1

`=0 s`+1 by Lemma 2.3,

we obtain from Lemma 2.2 that

fj = fi +

j−i∑
k=1

f(ui+k) ≤ 2j−ifi +

j−i∑
k=1

2j−i−k · 1

= 2j−ifi + (2j−i − 1) < 2j−i(fi + 1).

Lemma 4.2. If f is a maximal IC-coloring of G, then all colors of the vertices of G are

distinct.

Proof. Suppose that there exist two distinct vertices ui and ui+1 such that f(ui) = f(ui+1).

Then we have fi−1 ≤ 2(i−1)−1(f1+1)−1 = 2i−1−1 from Lemma 4.1 and f(ui+1) = f(ui) ≤
fi−1 + 1 from Lemma 2.3. Thus, fi+1 = f(ui+1) + f(ui) + fi−1 ≤ 3 · fi−1 + 2 ≤ 3 · 2i−1− 1.

Now, Lemma 4.1 implies that

f(G) < 2m−(i+1)(fi+1 + 1) ≤ 3 · 2m−2

= 13 · 2m−4 − 3 · 2m1−2 − 2m1−2(2m2+m3−2 − 3)(4.1a)

= 13 · 2m−4 − 2m2−2 − 2m2−2(2m1+m3−2 − 1)(4.1b)

= 2m − 2m−2.

The value in (4.1a) is less than 13 · 2m−4− 3 · 2m1−2 + 4 when 2 ≤ m1 ≤ m2 ≤ m3 and the

one in (4.1b) is smaller than 13 · 2m−4 − 2m2−2 + 2 when 1 = m1 < m2 ≤ m3. These lead

to a contradiction to Proposition 3.1. We have the result.
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Lemma 4.3. If f is a maximal IC-coloring of Km1,m2,m3, where 2 ≤ m1 ≤ m2 ≤ m3 or

1 = m1 < m2 ≤ m3, then fj > 51 · 2j−6 − 1 for any j ∈ [1,m].

Proof. Suppose that fj ≤ 51 · 2j−6− 1 for some j ∈ [1,m]. Then from Lemma 4.1 we have

f(G) < 2m−j · (fj + 1) ≤ 51 · 2m−6

= 13 · 2m−4 − 2m−6(4.2a)

= 13 · 2m−4 − 3 · 2m1−2 − 2m1−2(2m2+m3−4 − 3)(4.2b)

= 13 · 2m−4 − 2m2−2 − 2m2−2(2m1+m3−4 − 1).(4.2c)

The value in (4.2b) is less than 13 · 2m−4 − 3 · 2m1−2 + 4 when 2 ≤ m1 ≤ m2 ≤ m3 and

the upper bound in (4.2c) is smaller than 13 · 2m−4− 2m2−2 + 2 when 1 = m1 < m2 ≤ m3,

contradicting to Proposition 3.1. The result follows.

Lemma 4.4. Suppose that f is a maximal IC-coloring of Km1,m2,m3, where 2 ≤ m1 ≤
m2 ≤ m3 or 1 = m1 < m2 ≤ m3, and fk ≤ 14 · 2k−4 − 1 for some k ≥ 4. If f(uj) =

fj−1 + 1 for some j ∈ [1,m] and ujuj+` /∈ E(G) for some ` ∈ [k + 1 − j,m − j], then

f(uj+`) ≤ fj+`−1 − f(uj).

Proof. First, we derive upper bounds on fj−1 as follows. By Lemma 4.1, if j ≥ k+1, then

fj−1 ≤ 2(j−1)−k(fk + 1) − 1 ≤ 14 · 2j−5 − 1 ≤ 7 · 2j+`−5 − 1. Otherwise, j ≤ k, we have

fj−1 ≤ fk−1 ≤ 2(k−1)−1(f1+1)−1 = 2j+`−5 ·2(k−1)−(j+`−5)−1 = 2j+`−5 ·23−(j+`−k−1))−1.

Since j + ` ≥ k + 1, these two bounds can be combined into fj−1 ≤ 8 · 2j+`−5 − 1. Now,

suppose that f(uj+`) > fj+`−1−f(uj). Then f(uj+`+1) ≤ f(uj+`) +f(uj) by Lemma 2.4.

This implies that

fj+`+1 = f(uj+`+1) + fj+`

≤ f(uj+`) + f(uj) + f(uj+`) + fj+`−1

≤ (fj+`−1 + 1) + (fj−1 + 1) + (fj+`−1 + 1) + fj+`−1

= 3(fj+`−1 + 1) + fj−1

< 3 · [2(j+`−1)−k · (fk + 1)] + 8 · 2j+`−5 − 1

≤ 50 · 2j+`−5 − 1.

Lemma 4.1 then enables us to find a bound on f(G):

f(G) < 2m−(j+`+1) · (fj+`+1 + 1) ≤ 2m−(j+`+1) · (50 · 2j+`−5) = 13 · 2m−4 − 2m−5.

This value is smaller than (4.2a) and we have a contradiction. The result follows.

Lemma 4.5. If f is a maximal IC-coloring of Km1,m2,m3, where 2 ≤ m1 ≤ m2 ≤ m3

or 1 = m1 < m2 ≤ m3, then f4 ≥ 12. Furthermore, given i ∈ [1,m − 1], let r` =

f(ui+`)− fi+`−1 for all ` ∈ [1,m− i]. Then f(G) = 2m−ifi +
∑m−i

`=1 2m−i−`r`.
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Proof. The first result is a direct consequence from Lemma 4.3 which gives that f4 >

51 · 24−6 − 1 > 11. To prove the second result, for given i ∈ [1,m− 1], we let s0 = fi and

s` = f(ui+`) for all ` ∈ [1,m− i]. Then Lemma 2.2 gives

(4.3) fi+j = fi +

j∑
`=1

f(ui+`) = 2jfi +

j∑
`=1

2j−`r`.

Therefore, the result follows by letting j = m− i in (4.3).

Now, we are in a position to show our upper bounds on M(G).

Proposition 4.6. If f is a maximal IC-coloring of Km1,m2,m3, then

f(Km1,m2,m3) ≤

13 · 2m−4 − 3 · 2m1−2 + 4 if 2 ≤ m1 ≤ m2 ≤ m3,

13 · 2m−4 − 2m2−2 + 2 if 1 = m1 < m2 ≤ m3,

where m = m1 + m2 + m3.

Proof. Since f(u2) = 2 < f(u3) ≤ f2 + 1 = 4, the value of f(u3) is either 3 or 4. We

split the long proof into two parts depending on the value of f(u3). In the first part,

let us assume that f(u3) = 4. Note that Lemma 4.3 gives f5 > 51 · 25−6 − 1 and then

25 ≤ f5 = f4 + f(u5) ≤ f4 + (f4 + 1) = 2f(u4) + 15. This implies that f(u4) ≥ 5. On

the other hand, we see from Lemma 2.3 that f(u4) ≤ f3 + 1 = 8. Hence, 5 ≤ f(u4) ≤ 8.

We discuss the problem for each possible value of f(u4). Since f(u3) = 4, u1u2 must be

an edge of G for otherwise there would be no connected subgraph H satisfying f(H) = 3.

Therefore in each of the following three cases, u1u2 ∈ E(G) is true.

Case 1: f(u4) = 8.

Since f(u3) > f2 − f(u1) and f(u4) > f(u1) + f(u3), we have u1u3 ∈ E(G) by

Lemma 2.4. Similarly, u2u3 is an edge of G as well. Hence, the subgraph induced by

{u1, u2, u3} is isomorphic to K3. First, let us consider the situation where u1u4 /∈ E(G)

or u2u4 /∈ E(G). Then f(u5) ≤ f(u2) + f(u4) = 10 by Lemma 2.4. In addition, f5 >

51 · 25−6 − 1 from Lemma 4.3 implies that f(u5) = f5 − f4 ≥ 25 − 15 = 10. Therefore,

f(u5) = 10 and f5 = 25. If m = 5, then (m1,m2,m3) = (1, 2, 2) and f(G) = f5 = 25 <

27 = 13 · 2m−4 − 2m2−2 + 2. Now, suppose that m ≥ 6. The fact f6 > 51 · 26−6 − 1

implies that f(u6) = f6 − f5 ≥ 51 − 25 = 26. Hence, we see that f(u6) = f5 + 1 = 26.

Since 〈{u1, u2, u3}〉 ∼= K3, there is some t ∈ {1, 2, 3} such that u6ut /∈ E(G). Therefore,

Lemma 2.4 gives that f(u7) ≤ f(u6) + f(ut) ≤ f(u6) + f(u3) = 30. However, this leads

to f7 = f(u7) + f(u6) + f5 ≤ 81 < 51 · 27−6 − 1, which contradicts to Lemma 4.3. We

therefore conclude that in this situation where u1u4 /∈ E(G) or u2u4 /∈ E(G), “m ≥ 6” is

impossible to be true.
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Next, we consider the situation where u1u4 ∈ E(G) and u2u4 ∈ E(G). Then u3 and

u4 must be in the same partite set of G. We therefore have that 〈{u1, u2, u3, u4}〉 ∼= K1,1,2

and then f(u5) ≤ f(u4)+f(u3) = 12 by Lemma 2.4. Since f5 = f4+f(u5) ≤ 15+12 = 27,

f(G) ≤ 13 · 2m−4 − 2m2−2 + 2 holds when m = 5. When m ≥ 6, f6 > 51 · 26−6 − 1 implies

that f(u6) = f6 − f5 > 50 − 27 = 23 > f(u4) + f(u5). We then have u4u5 ∈ E(G)

by Lemma 2.4 because f4 − f(u4) < 8 = f(u4) < f(u5) and f(u4) = f3 + 1. Hence,

〈{u1, u2, u3, u4, u5}〉 ∼= K1,2,2.

Now, Lemma 4.5 enables us to obtain that f(G) = 2m−5f5 +
∑m−5

`=1 2m−5−`r` ≤ 27 ·
2m−5 +

∑m−5
`=1 2m−5−`r`. From the previous discussion, we know that 〈{u1, u2, u4}〉 ∼= K3.

Let us denote the partite set containing uj as Vuj , j = 1, 2, 4. Then f(uj) = fj−1 + 1

and
{∣∣Vuj

∣∣ | j = 1, 2, 4
}

= {m1,m2,m3}. Since f5 ≤ 27 = 14 · 25−4 − 1, by Lemma 4.4,

we know that f(u5+`) ≤ f5+`−1 − f(uj) whenever u5+` ∈ Vuj for j = 1, 2, 4. Therefore,

r` ≤ −f(u1) = −1 whenever u5+` ∈ Vu1 ; r` ≤ −f(u2) = −2 whenever u5+` ∈ Vu2 and

r` ≤ −f(u4) = −8 whenever u5+` ∈ Vu4 . With the fact 〈{u1, u2, u3, u4, u5}〉 ∼= K1,2,2 in

mind, we are ready for the discussion about the upper bounds on f(G).

In the case where 2 ≤ m1 ≤ m2 ≤ m3, the sum
∑m−5

`=1 2m−5−`r` is maximized when

(|Vu1 | , |Vu2 | , |Vu4 |) = (m3,m2,m1) and r` = −1 for all ` = 1, 2, . . . ,m3 − 1; r` = −2 for

all ` = m3,m3 + 1, . . . ,m3 + m2 − 3 and r` = −8 for all ` = m3 + m2 − 2, . . . ,m − 5.

Therefore,

f(G) ≤ 2m−5 · 27 +

m3−1∑
j=1

2m−5−j · (−1) +

m3+m2−3∑
j=m3

2m−5−j · (−2)

+
m−5∑

j=m3+m2−2
2m−5−j · (−8)

≤ 27 · 2m−5 − (2m−5 − 2m1+m2−4)− 2(2m1+m2−4 − 2m1−2)− 8(2m1−2 − 1)

= 13 · 2m−4 − 2m1+m2−4 − 3 · 2m1−1 + 8

= 13 · 2m−4 − 3 · 2m1−2 + 4− (2m1+m2−4 + 3 · 2m1−2 − 4)

≤ 13 · 2m−4 − 3 · 2m1−2 + 4.

In the case where 1 = m1 < m2 ≤ m3, the sum
∑m−5

`=1 2m−5−`r` is maximized when

(|Vu1 | , |Vu2 | , |Vu4 |) = (m3, 1,m2) and r` = −1 for all ` = 1, 2, . . . ,m3 − 2; r` = −8 for all

` = m3 − 1,m3, . . . ,m3 + m2 − 4 = m− 5. Hence,

f(G) ≤ 2m−5 · 27 +

m3−2∑
j=1

2m−5−j · (−1) +

m−5∑
j=m3−1

2m−5−j · (−8)

≤ 27 · 2m−5 − (2m−5 − 2m2−2)− 8(2m2−2 − 1)

≤ 13 · 2m−4 − 2m2−2 + 2.
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Case 2: f(u4) = 7.

For the same reason stated in the previous case, we also have 〈{u1, u2, u3}〉 ∼= K3.

Now, Lemma 4.3 gives that f5 > 51 · 25−6 − 1. This implies f(u5) = f5 − f4 ≥ 11 which

is greater than f(u4) + f(ui) for i = 1, 2. We then have uiu4 ∈ E(G) from Lemma 2.4

because f(u4) = 7 > f3 − f(ui), i = 1, 2. It follows that u3 and u4 must be in the

same partite set of G. Since f3 − f(u3) < f(u4), we have f(u5) ≤ f(u3) + f(u4) = 11

by Lemma 2.4. This implies that f5 ≤ 25. If m = 5, then (m1,m2,m3) = (1, 2, 2) and

f(G) = f5 ≤ 25 ≤ 13 · 2m−4 − 2m2−2 + 2. If m ≥ 6, then the fact f6 > 51 · 26−6 − 1

from Lemma 4.3 gives f(u6) = f6 − f5 > 50 − 25 = 25. Hence, f(u6) = 26 and then

f5 = 25 because f(u6) ≤ f5 + 1. Now, since u6ut /∈ E(G) for some t ∈ {1, 2, 3}, we have

f(u7) ≤ f(u6) + f(ut) ≤ f(u6) + f(u3) = 30. However, this leads to f7 = f5 + f(u6) +

f(u7) ≤ 81 < 51 · 27−6 − 1, which contradicts to Lemma 4.3. We therefore conclude that

“m ≥ 6” is impossible to occur in this case.

Case 3: f(u4) = 6.

Since f(u4) > f(u3) + f(u1) and f(u3) > f2 − f(u1), Lemma 2.4 implies that u3u1 ∈
E(G). First, consider the situation where u2u3 ∈ E(G). Then 〈{u1, u2, u3}〉 ∼= K3 and

u5ut /∈ E(G) for some t ∈ {1, 2, 3}. Suppose that f(u5) ≥ 13. Then f(u5) > f4 − f(u1) ≥
f4 − f(ut). By Lemma 2.4, we have f(u6) ≤ f(u5) + f(ut) ≤ f(u5) + f(u3) ≤ (f4 + 1) +

f(u3) ≤ 18. However, this implies that f6 = f4 +f(u5)+f(u6) ≤ 45 < 51 ·26−6−1, which

is a contradiction to Lemma 4.3. Hence we have f(u5) ≤ 12 and f5 ≤ 25. Suppose again

that m ≥ 6. Since f6 > 51 · 26−6 − 1, one can see that f(u6) = f6 − f5 > 25 ≥ f5. This

implies that f(u6) = f5 + 1 ≤ 26. Observe that if u6us /∈ E(G) for some s ∈ {1, 2, 3}, we

have f(u7) ≤ f(u6) + f(us) ≤ f(u6) + f(u3) = 30 by Lemma 2.4. However, this leads to

f7 = f5 + f(u6) + f(u7) ≤ 81 < 51 · 27−6 − 1. This contradiction enables us to conclude

that “m ≥ 6” is impossible to occur in the situation where u2u3 ∈ E(G). Therefore we

have m = 5 and f(G) = f5 ≤ 25 < 27 = 13 · 2m−4 − 2m2−2 + 2. The result holds in this

situation.

Next, assume that u2u3 /∈ E(G). Since f5 > 51·25−6−1, f(u5) = f5−f4 ≥ 25−13 = 12

which is greater than f(u3) + f(u4). We see that u3 and u4 must be adjacent in G by

Lemma 2.4 because f(u4) > f3 − f(u3). It follows that 〈{u1, u2, u3, u4}〉 ∼= K1,1,2 or K2,2.

Now, let the partite set containing uj be Vuj , j = 1, 3. Then u4 belongs to Vu1 or the other

partite set, written V0. Observe that f4 = 13 = 14·24−4−1 and f(uj) = fj−1+1 for j = 1, 3,

one can see from Lemma 4.4 that f(ut) ≤ ft−1− f(uj), if ut ∈ Vuj , j = 1, 3 and t ∈ [5,m].

Therefore, f(u4+`) ≤ f4+`−1 − f(u1) whenever u4+` ∈ Vu1 and f(u4+`) ≤ f4+`−1 − f(u3)

whenever u4+` ∈ Vu3 . Let i = 4 in Lemma 4.5, we obtain f(G) = 2m−4f4+
∑m−4

`=1 2m−4−`r`,

where the r`, defined as f(u4+`)−f4+`−1, does not exceed −f(u1) if u4+` ∈ Vu1 and it is not

greater than −f(u3) if u4+` ∈ Vu3 . Let S1 = {uk ∈ V0 | f(uk) = fk−1 + 1}. Then r` ≤ 0
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whenever u4+` ∈ V0 \S1. If S1 6= ∅, we denote as i1 the minimum element in {k | uk ∈ S1},
then i1 ≥ 5 and Lemma 4.4 implies that f(ui1+`) ≤ fi1+`−1− f(ui1) whenever ui1+` ∈ V0.

Therefore, S1 = {ui1}. Let S2 = {uk ∈ V0 | f(uk) ≤ fk−1 − f(ui1)} and |S2| = y. Then

r` ≤ −f(ui1) whenever u4+` ∈ S2. With these observations in mind, we can investigate

the value of f(G) in the following situations.

Subcase 3.1: 2 ≤ m1 ≤ m2 ≤ m3.

First, if S1 = ∅, then r` ≤ 0 whenever u4+` ∈ V0. The sum
∑m−4

`=1 2m−4−`r` is

maximized when u4 ∈ Vu1 , (|Vu1 | , |Vu3 | , |V0|) = (m2,m1,m3) and r` = 0 for all ` =

1, 2, . . . ,m3; r` = −f(u1) = −1 for all ` = m3 + 1,m3 + 1, . . . ,m3 + m2 − 2 and r` =

−f(u3) = −4 for all ` = m3 + m2 − 1, . . . ,m− 4. Therefore, we have

f(G) ≤ 2m−4f4 +

m3∑
j=1

2m−4−j · 0 +

m3+m2−2∑
j=m3+1

2m−4−j · (−1)

+
m−4∑

j=m3+m2−1
2m−4−j · (−4)

= 13 · 2m−4 − 3 · 2m1−2 + 4− 2m1+m2−4

≤ 13 · 2m−4 − 3 · 2m1−2 + 4.

Second, if S1 6= ∅, then r` ≤ −f(ui1) whenever u4+` ∈ S2. We split the discussion into

two parts:

(1) In the situation where 〈{u1, u2, u3, u4}〉 ∼= K1,1,2, since u1u4 ∈ E(G) and u4 ∈ V0,

f(G) is maximized when (|Vu1 | , |Vu3 | , |V0|) = (m2,m1,m3) and

f(G) ≤ 2m−4f4 +

m3−y−2∑
j=1

2m−4−j · 0 + 2m−4−(m3−y−1)

+

m3+m2−y−2∑
j=m3−y

2m−4−j · (−1) +

m−y−4∑
j=m3+m2−y−1

2m−4−j · (−4)

+
m−4∑

j=m−y−3
2m−4−j · [−f(ui1)](4.4)

= 13 · 2m−4 + 2m1+m2+y−3 − 2m1+y−2(2m2−1 − 1)

− 4 · 2y(2m1−2 − 1)− f(ui1)(2y − 1)

= 13 · 2m−4 − 3 · 2m1+y−2 + 4− [f(ui1)− 4] · (2y − 1).

This implies that f(G) ≤ 13 · 2m−4 − 3 · 2m1−2 + 4 because f(ui1) ≥ 4.

(2) In the situation where 〈{u1, u2, u3, u4}〉 ∼= K2,2, we have u1u4 /∈ E(G) and u4 ∈ Vu1 .
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By the similar argument, we obtain

f(G) ≤ 2m−4f4 +

m3−y−1∑
j=1

2m−4−j · 0 + 2m−4−(m3−y) +

m2+m3−y−2∑
j=m3−y+1

2m−4−j · (−1)

+

m−y−4∑
j=m2+m3−y−1

2m−4−j · (−4) +
m−4∑

j=m−y−3
2m−4−j · [−f(ui1)].

This upper bound is less than the one in (4.4). Our result holds in this situation.

Subcase 3.2: 1 = m1 < m2 ≤ m3.

First, if 〈{u1, u2, u3, u4}〉 ∼= K2,2, then we have u4 ∈ Vu1 . Now, f(G) is maximized

when (|Vu1 | , |Vu3 | , |V0|) = (m3,m2, 1) and

f(G) ≤ 2m−4f4 + 2m−4−1 · 1 +

m3−1∑
j=2

2m−4−j · (−1)

+
m−4∑
j=m3

2m−4−j · (−4)(4.5)

= 13 · 2m−4 − 3 · 2m2−2 + 4

= 13 · 2m−4 − 2m2−2 + 2− 2(2m2−2 − 1)

≤ 13 · 2m−4 − 2m2−2 + 2.

Second, if 〈{u1, u2, u3, u4}〉 ∼= K1,1,2, then u4 ∈ V0. When |V0| = 1, the argument is

very similar to the previous one and we have

f(G) ≤ 2m−4f4 +

m3−1∑
j=1

2m−4−j · (−1) +

m−4∑
j=m3

2m−4−j · (−4).

This value is smaller than the one in (4.5) and our result holds.

When |Vu1 | = 1, we have to consider whether S1 is empty or not.

(1) If S1 = ∅, then r` ≤ 0 whenever u4+` ∈ V0. f(G) is maximized when (|Vu1 | , |Vu3 | ,
|V0|) = (1,m2,m3) and

f(G) ≤ 2m−4f4 +

m3−1∑
j=1

2m−4−j · 0 +

m2+m3−3∑
j=m3

2m−4−j · (−4)

= 13 · 2m−4 − 4 · 2m2−2 + 4

≤ 13 · 2m−4 − 2m2−2 + 2.

(2) If S1 6= ∅, then r` ≤ −f(ui1) whenever u4+` ∈ S2. We can see from Lemma 4.5
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that

f(G) ≤ 2m−4f4 +

m3−y−2∑
j=1

2m−4−j · 0 + 2m−4−(m3−y−1)

+

m2+m3−y−3∑
j=m3−y

2m−4−j · (−4) +

m2+m3−3∑
j=m2+m3−y−2

2m−4−j · [−f(ui1)]

= 13 · 2m−4 + 2m2+y−2 − 4(2m2+y−2 − 2y)− f(ui1)(2y − 1)

= 13 · 2m−4 − 3 · 2m2+y−2 + 4− [f(ui1)− 4] · (2y − 1)

= 13 · 2m−4 − 2m2+y−2 + 2− (2 · 2m2+y−2 − 2)− [f(ui1)− 4](2y − 1)

≤ 13 · 2m−4 − 2m2−2 + 2.

Case 4: f(u4) = 5.

Since f5 > 51 · 25−6 − 1, f(u5) = f5 − f4 ≥ 13. Thus, f(u5) = 13 = f4 + 1 and

f5 = 25. The fact f6 > 51 · 26−6 − 1 implies that f(u6) = f6 − f5 ≥ 51 − 25 = 26. Then

f(u6) = 26 and f6 = 51. Since f(u6) > f(u5) + f(ut) and f(u5) > f4 − f(ut) for t = 1, 2,

Lemma 2.4 guarantees that u5ut ∈ E(G) for t ∈ {1, 2}. Hence, 〈{u1, u2, u5}〉 ∼= K3.

Suppose that m ≥ 6. Since u6ut /∈ E(G) for some t ∈ {1, 2, 5} and f(u6) > f5 − f(ut), we

obtain from Lemma 2.4 that f(u7) ≤ f(u6) + f(ut) ≤ f(u6) + f(u5) = 39. However, this

implies that f7 = f6 + f(u7) ≤ 90 < 51 · 27−6− 1, contradicting to Lemma 4.3. Therefore,

the only possible situation in this case is “m = 5” and then f(G) = f5 = 25 < 27 =

13 · 2m−4 − 2m2−2 + 2.

We have verified that our upper bounds are valid when f(u3) = 4.

For the second part of this proof, we assume that f(u3) = 3. Note that f3 + 1 ≥
f(u4) = f4 − f3 > (51 · 24−6 − 1)− 6, that is, 7 ≥ f(u4) ≥ 6.

Case 1: f(u4) = 7.

In this case, f(u5) = f5 − f4 > (51 · 25−6 − 1) − 13, that is, f(u5) ≥ 12. First, let

us consider the situation where u1u2 ∈ E(G). Since f(u5) > f(u4) + f(ut) and f(u4) >

f3 − f(ut) for t = 1, 2, Lemma 2.4 implies that u4ut ∈ E(G). Hence, 〈{u1, u2, u4}〉 ∼= K3

and then there is some t ∈ {1, 2, 4} such that u5ut /∈ E(G). Observe that f(u6) = f6−f5 >
(51 ·26−6−1)−f5 ≥ 50−(f4+(f4+1)) = 23. Since f(u6) > 21 ≥ f(u4)+f(u5), we obtain

from Lemma 2.4 that f(u5) ≤ f4 − f(ut) ≤ f4 − f(u1) = 12. Therefore, f(u5) = 12 and

f5 = 25. Suppose that m ≥ 6. Then f(u6) = f6−f5 > (51 ·26−6−1)−25. Hence, f(u6) =

f5 + 1 = 26. Now, we have u6ut /∈ E(G) for some t ∈ {1, 2, 4} and f(u6) > f5 − f(ut).

Lemma 2.4 enables us to obtain f(u7) ≤ f(u6) + f(ut) ≤ f(u6) + f(u4) = 33. However,

this leads to f7 = f6 + f(u7) ≤ 84 < 51 · 27−6 − 1, giving a contradiction. Therefore,

“m ≥ 6” is impossible to occur when u1u2 ∈ E(G) and then f(G) = f5 = 25 < 27 =

13 · 2m−4 − 2m2−2 + 2.
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Next, let us consider the situation where u1u2 /∈ E(G). Since f(u4) > f3 − f(u1) >

f(u3) + f(u1), we know from Lemma 2.4 that both u1u4 and u1u3 are edges of G because

f(u5) ≥ 12 > f(u4)+f(u1) and f(u3) > f2−f(u1). Therefore, we have 〈{u1, u2, u3, u4}〉 ∼=
K1,1,2 or K2,2. Let us denote the partite set containing uj as Vuj , j = 2, 4, and the

other one as V0. By Lemma 4.4, we have f(u4+`) ≤ f4+`−1 − f(u2) = f4+`−1 − 2

if u4+` ∈ Vu2 and f(u4+`) ≤ f4+`−1 − f(u4) = f4+`−1 − 7 if u4+` ∈ Vu4 . Let S1 =

{uk ∈ V0 | f(uk) = fk−1 + 1}. Then r` ≤ 0 whenever u4+` ∈ V0 \ S1. If S1 6= ∅, we denote

as i1 the minimum element in {k | uk ∈ S1}, then, for the same reason as we stated in

Case 3 in the proof of Proposition 4.6, we have S1 = {ui1}. Let S2 = {uk ∈ V0 | f(uk) ≤
fk−1 − f(ui1)} and |S2| = y. Then r` ≤ −f(ui1) whenever u4+` ∈ S2.

Note that in the following three situations where “2 ≤ m1 ≤ m2 ≤ m3”, “1 = m1 <

m2 ≤ m3 and 〈{u1, u2, u3, u4}〉 ∼= K2,2” and “1 = m1 < m2 ≤ m3, 〈{u1, u2, u3, u4}〉 ∼=
K1,1,2 and |V0| = 1”, the argument is almost the same as we used in Case 3 in the proof

of Proposition 4.6. The upper bounds on f(G) here can be obtained by replacing −1 with

−2 and replacing −4 with −7 in the places of r`’s in the expressions of the upper bounds

in that proof. Since each resulting upper bound is less than the original one, our results

still hold here.

The remaining situation in Case 1 is when “1 = m1 < m2 ≤ m3, 〈{u1, u2, u3, u4}〉 ∼=
K1,1,2 and |Vu4 | = 1”. If S1 = ∅, then r` ≤ 0 whenever u4+` ∈ V0. Lemma 4.5 guarantees

that

f(G) ≤ 2m−4f4 +

m3−1∑
j=1

2m−4−j · 0 +
m−4∑
j=m3

2m−4−j · (−2)

= 13 · 2m−4 − 2 · 2m2−2 + 2

≤ 13 · 2m−4 − 2m2−2 + 2.

If S1 6= ∅, then r` ≤ −f(ui1) whenever u4+` ∈ S2. We have

f(G) ≤ 2m−4f4 +

m3−y−2∑
j=1

2m−4−j · 0 + 2m−4−(m3−y−1)

+

m2+m3−y−3∑
j=m3−y

2m−4−j · (−2) +
m−4∑

j=m2+m3−y−2
2m−4−j · [−f(ui1)]

= 13 · 2m−4 + 2m2+y−2 − 2(2m2+y−2 − 2y)− f(ui1)(2y − 1)

= 13 · 2m−4 − 2m2+y−2 + 2− (f(ui1)− 2)(2y − 1)

≤ 13 · 2m−4 − 2m2−2 + 2.

Case 2: f(u4) = 6.
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Since f(u5) = f5−f4 > (51·25−6−1)−12, we have f(u5) = f4+1 = 13 and f5 = 25. In

addition, f(u6) = f6 − f5 > (51 · 26−6 − 1)− 25 = 25, which means f(u6) > f(u5) + f(ui)

for i = 1, 2. By Lemma 2.4, we know that uiu5 ∈ E(G), i = 1, 2, because f(u5) >

f4 − f(ui). Hence 〈{u1, u2, u5}〉 ∼= K3 or K1,2. If m = 5, then (m1,m2,m3) = (1, 2, 2)

and f(G) = f5 = 25 < 27 = 13 · 2m−4 − 2m2−2 + 2. If m ≥ 6, then, as we just showed,

f(u6) = f5 + 1 = 26 and f6 = 51. Now, f(u7) = f7 − f6 > (51 · 27−6 − 1) − 51 = 50,

which means f(u7) > f(u2) + f(u6). We then have u2u6 ∈ E(G) by Lemma 2.4 because

f(u6) > f5 − f(u2). Similarly, we also have u5u6 ∈ E(G). Therefore, 〈{u2, u5, u6}〉 ∼= K3.

If m = 6, then (m1,m2,m3) = (1, 2, 3) or (2, 2, 2). In the former case, f(G) = f6 = 51 <

53 = 13 · 2m−4− 2m2−2 + 2. In the latter case, f(G) < 53 = 13 · 2m−4− 3 · 2m1−2 + 4. Both

results are true. Now, suppose that m ≥ 7. Then f(u7) ≥ 51 as we just showed. Since

u7ut /∈ E(G) for some t ∈ {2, 5, 6} and f(u7) > f6 − f(ut), we see from Lemma 2.4 that

f(u8) ≤ f(u7) + f(ut) ≤ f(u7) + f(u6) ≤ (f6 + 1) + f(u6) = 78. However, this leads to

f8 = f6 + f(u7) + f(u8) ≤ 181 < 51 · 28−6 − 1. We obtain a contradiction and therefore

“m ≥ 7” is impossible to occur in Case 2.

We conclude that our upper bounds are also valid when f(u3) = 3. The proof is

completed.

Combining Propositions 3.1, 4.6 and the result obtained in [11] we have the following

result.

Theorem 4.7.

M(Km1,m2,m3) =


13 · 2m−4 − 3 · 2m1−2 + 4 if 2 ≤ m1 ≤ m2 ≤ m3,

13 · 2m−4 − 2m2−2 + 2 if 1 = m1 < m2 ≤ m3,

2m − 2m3 + 1 if 1 = m1 = m2 < m3,

where m = m1 + m2 + m3.

5. Conclusion

In this paper, we have provided a lower bound on M(Km1,m2,...,m`
) for two cases and then

proved that, when ` = 3, our lower bound also serves as an upper bound on M(Km1,m2,m3)

in each case. The IC-colorings we have constructed are indeed qualified maximal IC-

colorings. The problem of finding the IC-index of any complete tripartite graph is com-

pletely settled. As the derivation of M(Km1,m2,...,m`
) becomes more and more involved

when the value of ` becomes larger, a structural approach is required for future study of

this problem. By analyzing the discussion in this paper, we are inspired to develop such

an approach to deal with the problem for larger `.
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