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The IC-indices of Complete Multipartite Graphs

Chin-Lin Shiue*, Hui-Chuan Lu and Jun-yi Kuo

Abstract. Given a connected graph G, a function f mapping the vertex set of G into
the set of all integers is a coloring of G. For any subgraph H of G, we denote as f(H)
the sum of the values of f on the vertices of H. If for any integer k € {1,2,..., f(G)},
there exists an induced connected subgraph H of G such that f(H) = k, then the
coloring f is called an IC-coloring of G. The IC-index of G, written M (G), is defined
to be the maximum value of f(G) over all possible IC-colorings f of G. In this paper,
we give a lower bound on the IC-index of any complete ¢-partite graph for all £ > 3
and then show that, when £ = 3, our lower bound also serves as an upper bound. As

a consequence, the exact value of the IC-index of any tripartite graph is determined.

1. Introduction

The postage stamp problem in number theory has been extensively studied and formulated
into several versions in different fields [1-648,9,(12,/13]. In this paper, we consider the version
called the IC-coloring of a graph. Throughout this paper, all graphs involved are simple
graphs. For the terminologies and notations in graph theory, please refer to [14]. Given
a connected graph G, a function f: V(G) — N is called a coloring of G. The number
f(v) is the color of the vertex v of G. For any subgraph H of G, we denote the sum
ZveV(H) f(v) as f(H). A coloring f of G is referred to as an IC-coloring of G if, for any
integer k € {1,2,..., f(G)}, there exists an induced connected subgraph H of G such that
f(H) = k. Every connected graph G admits a trivial IC-coloring which assigns the value
1 to every vertex of G. The problem of finding an IC-coloring with the largest value of
f(G) arose naturally. The IC-index of a graph G, denoted M (G), is defined to be

M(G) = max {f(G) | f is an IC-coloring of G} .

An IC-coloring f satisfying f(G) = M(G) is called a mazimal IC-coloring of G.
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Determining the exact values of the IC-index of a graph is challenging. In the past
decades, not much achievements have been made. In 1992, Glenn Chappel formulated
the IC-coloring problem as a “subgraph sums problem” and gave an upper bound on the
IC-index of an n-cycle. He showed that M(C,) < n? —n + 1. Later, in 1995, Penrice [7]
introduced the IC-coloring as the stamp covering and determined the exact values of
M(K,) and M(K ), namely, M(K,) = 2" —1 for n > 1 and M(K;,) = 2" + 2 for
n > 2. In 2005, Salehi et al. [8] proved that M (Ks3,) = 3-2" + 1 for n > 2. Shiue and
Fu [10] completely settled the problem regarding complete bipartite graphs in 2008 by
showing that M (K, ) = 3-2m+"=2 —2m=2 4 9 for 2 < m < n. In this present paper,
we consider complete multipartite graphs. A complete multipartite graph Ko, m,,....m, is a
graph whose vertex set can be partitioned into ¢ partite sets Vi, Va, ..., Vp, where |V;| = m;
for all i € {1,2,...,¢}, such that there are no edges within each V; and any two vertices
from different partite sets are adjacent. A complete multipartite graph with £ partite sets
n < £, the

complete f-partite graph in which there are n partite sets which are of size one and the

is called a complete {-partite graph. We also denote as Ki(n) mni1,mniz,....mes
rest (£ — n) partite sets have sizes My, 11, Mp42,. .., My respectively.

In [11], we first considered complete multipartite graphs. We gave a lower bound on
M (K msg,.om,) for 1 =mp = -+ = myp < mpy1 < myye < -+ < my and showed
that, when £ = n + 1 and n > 2, our lower bound is the exact value of it, that is,
M (K nym) = 2mtn _9m 4 1 for m > 2 and n > 2. In this present paper, we investigate
the problem of the IC-indices of general complete multipartite graphs. In Section [2| we
introduce some previous results which are useful in our discussion. In Section |3, we
introduce our lower bounds on M (K, ms,..m,) for 2 < my < mg < -+ < my and
1=my; < my <--- < my by constructing suitable IC-colorings. Subsequently, we prove in
Section [ that, when ¢ = 3, the lower bounds given in Section [3|are in fact the exact values
of the IC-indices of complete tripartite graphs. Our work completely solves the problem

regarding complete tripartite graphs. Finally, a concluding remark is given in Section

2. Preliminaries

In dealing with the IC-index of a graph, we view the colors of all vertices as a sequence
satisfying some properties. We introduce some basic counting tools from [10] to analyse the
sequence of colors. For convenience, we let [1, /] denote the set {1,2,...,¢}. A sequence

of 0 and 1 is called a binary sequence.

Lemma 2.1. [10] If a1,a2,...,a, are n positive integers which satisfy that a; = 1 and
a; < aj41 < Z;-:l aj +1 for alli € [1,n — 1], then for each £ € [1,>7_, a;] there exists a
binary sequence c1,co,...,c, such that { = Z?Zl cja;.
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Lemma 2.2. |10] If so,s1,...,S, i a sequence of integers, then for each i € [1,n] there
exists an integer r; € Z such that s; = Z;;B sj+riand Y77 85 =2"so+ >0 2"y,

Lemma 2.3. [10] Let V(G) = {ui,ua,...,un}. If f is an IC-coloring of G such that

fui) < fuiyr) for alli € [1,n—1], then f(u1) =1 and f(u;y1) < 2321 f(uj)+1 for all
ieln—1).

Lemma 2.4. [10] Let f be an IC-coloring of a graph G such that f(u;) < f(uit1) for
i €[1,n—1], where V(G) = {u1,us,...,uy,}. For each pair (i1,i2) where 1 <i; <iy <n,
if fluy) = 231:_11 f(uj) +1 and ui,ui, ¢ E(G), then either f(u;,) < 232:_11 flug) — f(ugy)
or f(uiy+1) < fluy) + f(uiy)-

Lemma 2.5. [10] Let r1,ro, ..., be n numbers. If there are two integers i and k such
that 1 <i <k <n andr; <rg, then

n n
Z 2n7j7”j < Z 2n7j7‘j — (2”77;7“1* + anka) + (2"*irk + 2”7’6”).
j=1 j=1

3. Lower bounds on M (K, ms...m,)

A lower bound on the IC-index of Ky, ms,.....
- < my has been given in [11] as M (K, my,..m,) > (2M(27=1(- - (2741 (2" — 1) +

1)---) +1) +1). In this section, we introduce our lower bounds on M (K, ms,..m,)

me for 1 =mq = - =mp <mpp1 <mpga <

separately in two cases where 2 <mj; <mo < ---<myandl=m; <mg <---<my. In
what follows, G represents the complete multipartite graph K, m,,...m, With partite sets
Wi, Wa, ..., W, where W; = {w;; | j € [1,m;]} for all i = 1,2,...,£. For any S C V(G),
we denote the subgraph of G induced by S as (S).

Proposition 3.1. Let m = Zle m;. Then

—1 .
M (Ko ma.mg) 2 13277443 72 Caama ™t — g(my my),
j=3

where
3.2m=2 4 if2<my <mg <o <my,
g(mlv m2) =
om2=2 _ 9 if1:m1<m2§-~§mg.
Proof. We prove the lower bound by constructing an IC-coloring of G. First, let us consider
the case where 2 < m; < mo < --- < my. Before explicitly defining the coloring f, we

arrange the vertices of GG into a new order uq, uo, ..., u;, such that the values of f can be
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defined recursively. Let

w21 ifi= 1,
w1,1 if 1 = 2,
w1,2 if i = 3,
U; = w2 2 if i = 4,

. . _1 . )
wjvi—z.i;é Mg —4 ifi e [Z]x:?) mg + 9, Z]ng my + 4] and j € [3,4],
. . e Z
Wo i3t ma—2 ifie D gme+5,> , ome+2],
. . g
(Y-8, ma ifie [}, _ome+3,m]

Each partite set actually contains the u;’s as follows:
e[S my+3.m]
x:2 X ) )
z’e[zﬁ m+5zg mg + 2
=3 ’ =2 F

Wy = {UQ,Ug} U {uz

Wy = {ul,U4} U {uz

and

W; = {uZ

e[ me+5 Y ma+d]} forjef3a
Now, we define f: V(G) — N recursively as f(u;) = 1 and f(u;) = Z;;ll fluj) + i
for ¢ € [2, m], where
1 ifie{2,3}U {zgzgmgg T4|je [3,6]},
0 ifz'e[5,z§:3mx+4]\{zg:3mx+4\je[3,6]},
—1 ifie {4yU _ama +5, 5, ma + 2],
—4 ifie [, me+3,m)

T, =

1 6 104

Figure 3.1: An IC-coloring of K333
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Now, considering sp = 0 and s; = f(u;) for ¢ € [1,m] in Lemma we have

f(G) = ZSj = 2m ‘So—l-Zmej -7’]'
j=0 J=1

¢ ,
— 2m—1 4 2771—2 4 2m—3 4 2m—4 . (_1) 4 Z 2m—(Z]I:3 mm+4)
71=3

m—m1+2 m

+ > M=)+ Y 2m (=4

Jj=m—mi—ma+5 Jj=m—mi+3

=13. 2"+ f: g (Limgmatd) _ (gratma—d _gmi=2) _ gomi=2 _ 1)
j=3
-1 4
=13.2m7 1 4 ) " gme (T matl) g gmim2 4y
j=3
Next, we will show that f is an IC-coloring of G. Given any k € [1, f(G)], we need
to identify a connected subgraph H such that f(H) = k. Since f(u1) = 1 and f(u;) <
fluizr) < Z§:1 f(uj)+1forallie [1,m—1], Lemma|2.1 guarantees the existence of a bi-
nary sequence ci, ¢, .. ., ¢ such that k =377 ¢;- f(u;). Let S = {u; | ¢; = 1,j € [1,m]}.
Then f((S)) = k. It suffices to consider the situation where (S) is disconnected, that is,
S C Wj for some j € [1,/] and |S| > 2. There are five possible cases.

Case 1: {ug,us} €S C Wj.

Observe that f(ug)+ f(us) = f(ug). Let S = (S\{uz,usz})U{us}. Then the subgraph
H = (S;) is connected and f(H) =k — f(u2) — f(uz) + f(usa) = k.

Case 2: S C Wy and {ug,us} ¢ S.

In this case, {wy; | 7 > 3}NS # ), that is, there is some uj € S where j € [S4_, ma+
3,m]. Let t = min{j | u; € S and Zizgmx—l—?) <j< m} Then we have f(u;) =
23;11 f(uj) — 4 from the definition of f.

(1) 1F up € S, then f(ug) + Fluz) = Y1 flug) — 2 = XL fug) — flua) = flur) +
Z;;é f(uj). By letting S1 = (S\ {ug, ut}) U{ui } U{us, ua, ..., us—1}, we have a connected
subgraph H = (S}) satisfying f(H) = k.

(2) I up ¢ S, then f(ur) = Y2577 f(uy) — flug) = f(wr) + f(ug) + >52, f(uy). The
subgraph H induced by (S\ {u:}) U{ui,u2} U{us,us,...,us—1} is connected and satisfies
f(H) = k.

Case 3: S C Whs.

(1) If ug € S, then the subgraph induced by (S\{u4})U{us2, us} is the desired connected
subgraph because f(ug) = f(uz) + f(us).

(2) If ug ¢ S, then {wo; | j > 3}NS # (. There is some u; in S where j € [Zﬁ::,) Mg+
5,50 ome +2]. Let t =min {j | u; € S and S5 _yma +5 < j < 5 _yma +2}. Then,
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from the definition of f, we have f(u;) = Y '2) f(uy) — 1 = Y023 fluy) — flua) =
Z;;; f(uj). By letting H be the subgraph induced by (S\ {u:}) U {u2,us,...,us—1}, we
have f(H) = k and H is connected.

Case 4: S C W; for some i € [3,/].

Let ¢t = min{j |uj € Sand j€ [Z;_:lgmx—i-&Z;:gmw—i—él]}. Since |S| > 2, t <
2213 mg + 4. It follows that f(u;) = Z§;11 f(uj). Now, let S1 = (S\ {w}) U{ur,ua,...,
u¢—1 }, the subgraph induced by S is desired.

For the second case where 1 = m1 < mg < --- < my, the result can be shown similarly.
Let

wa 1 ifi =1,
wo o if i =2,
w31 if 4 = 3,
U = Wi,1 if i =4,
w33 if i € [5,m3 + 3],
W i,y i€ S g 4+ 4,5 _sme +3] and j € [4,4],
Woi S my—1 if i € [Zi:?) mg + 4, m].

Then we have
Wy = {ua},

l
Wy = {ul,uz}U{uj ‘j € [Zz:?}mx—i-ll,m]},

W3 ={us} U{u; | j € [5,m3 + 3]}
and

T Dal R HIRNE)

Figure 3.2: An IC-coloring of K134
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Now, we define f: V(G) — N recursively as f(u;) = 1 and f(u;) = 23;11 f(uj) + i

for ¢ € [2, m], where
1 ifz‘e{2,4}u{ gzgmﬁs\je[s,g]},
ri =140 ifi:SoriE[5,Ziz3mz+3]\{Zi:3mx+3\je[3,6]},
2 ifie Yl gma +4,m).

r=3

The value of f(G) can be determined using Lemma as follows:

m
FG) =3 2"y
j=1
¢ ) m
_ 2m71 + 2m72 + 2m74 + Z me(zgczs mz+3) + Z 2mfj(_2)
j=3 j=m—mo+3

L
= 13274 1 3 2m(Theamatd) _g(gma—? )
j=3
-1 _
=13.2m71 1) " gmo (X mats) _gma=2 4o
j=3

Next, given k € [1, f(G)], Lemma implies that there exists a binary sequence
C1,€2,...,Cm such that k = >70% ¢j - f(u;). Let S = {u;[c;=1,7€[l,m]}. Then
f((S)) = k. The subgraph (S) is disconnected only when the following three cases occur.
We construct a connected subgraph H with f(H) = k in each case.

Case 1: S C Whs.

If {u1,us} C S, then the subgraph H induced by (S \ {ui,u2}) U {us} is connected
and f(H) = k because uz € W3 and f(u1) + f(u2) = f(ug). If {ui,us} ¢ S, we let
t = min {j |u; € Sand j € [Zi:3 My +4,m]}, then f(u:) = Z§;11 f(uj) — 2. First,
observe that f(ug) + f(ur) = YY) f(uy) — 1 = S04 Flu) — flun) = X5b f(wy). I
u; € S and uy ¢ S, then the subgraph induced by (S \ {ui,u}) U {ug,us,...,us—1} is
the desired one. Second, note that f(u;) = Zﬁ;ll f(uj) — flug) = f(ur) + Z;;é fluj). If
uj ¢ S, then the subgraph H induced by (S\ {u})U{u1}U{us,uq,...,u—1} is connected
and satisfies f(H) = k.

Case 2: S C Ws.

If ug € S, then the subgraph induced by (S\ {ug})U{u1,us2} certainly satisfies our re-
quirement. If uz ¢ S, then we let t = min{j | u; € S,5 < j <ms+ 3}. Since |S]| > 2,t <
ms+3and f(uy) = E;;ll f(uj). The subgraph H induced by (S\ {u:})U{ui,ua,. .., u—1}
is desired.

Case 3: S C W; for some i € [4,1].
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Let ¢ = min{j | u; € $,j € [Sihme + 4,55 gma +3]}. Then t < S ymy +3
and f(uy) = Z§;11 f(uj). The subgraph H induced by (S \ {u:}) U {u1,u2,...,u—1} is

what we need. O

4. The exact value of M (K, myms)

In this section, we prove that the lower bound on M (K, m,.ms) given in the previous sec-
tion also serves as an upper bound on it. To be precise, we shall show that M (K, mo,ms)
is upper-bounded by 13 - 2m—4 _ 3.92™=2 1 4 for the case where 2 < m; < may < ms,
and by 13 -2m~% — 27272 4 9 for the case where 1 = m; < mas < ms. In what follows,
for the given IC-coloring f, we always assume that {uj,ug,...,un} is the vertex set of G
such that f(u;) < f(u;y1) for all i € [1,m — 1]. For brevity, we let fo = 0 and denote the
sum Z _1 f(u;) as fj for j € [1,m]. The following properties are essential for a maximal
IC-coloring of G.

Lemma 4.1. If fis a mazimal IC-coloring of G, then f; < 277(f;+1) for each pair (i, )
with 1 <1< 57 <m.

Proof. 1t suffices to consider the case ¢ < j. For the given pair (i, j), let us consider the
sequence so = f; and s = f(u;yx) for k € [1,7—1i]. Since s < Z’Z:_& s¢+1 by Lemma

we obtain from Lemma [2.2] that

j—i i
fi=Fi+ ) fluipy) <P 7fi+) 2077k

k=1 k=1
=X (P 1) < 27 (fi 4 1), O

Lemma 4.2. If f is a maximal IC-coloring of G, then all colors of the vertices of G are

distinct.

Proof. Suppose that there exist two distinct vertices u; and u;41 such that f(u;) = f(uit1)-

Then we have f;_; < 20-D=1(f;+1)—1 =211 from Lemmaand fluigr) = flug) <

fi—1+1 from Lemma Thus, fir1 = f(uis1) + flu) + fio1 <3-fi1+2<3.2071 1,
Now, Lemma [4.1] implies that

F(G) < 2m 0D (f,0, 41) < 3. 2m2

(4.1a) —13.2m74 3. gm2 _gmi=2(gmatms=2 _ 3)
(4.1b) = 13.9m~4 _gm2=2 _ gma=2(gmitms=2 _ 1)
—om _ 2m72'

The value in 1' is less than 13-2m4 —3.2™172 1 4 when 2 < m; < ma < mg and the
one in is smaller than 13 - 2m*4 —2m2=2 4 2 when 1 = my < ma < ms. These lead
to a contradiction to Proposition [3.1] We have the result. O



The IC-indices of Complete Multipartite Graphs 1221

Lemma 4.3. If f is a mazimal IC-coloring of K, myms, where 2 <myp < mg < mg or
1=my < mg <ms, then f; >51-2776—1 for any j € [1,m].

Proof. Suppose that f; < 51-2776 —1 for some j € [1,m]. Then from Lemma 4.1/ we have

f(G) < 2™ (fj+1) <51.2m6

(4.2a) —13.9m4 _gm—6
(4.2b) =13- Qm—4 —3. 2m1—2 _ 2m1—2(2m2+m3—4 _ 3)
(4.2C) =13- gm—4 _ gma—2 _ 2m2—2(2m1+m3—4 _ 1)‘

The value in (4.2D)) is less than 13 -2™% —3.2™172 1 4 when 2 < m; < ma < m3 and
the upper bound in (#.2d) is smaller than 13-2"~% — 2272 1 2 when 1 = m; < mg < ms3,

contradicting to Proposition [3.1} The result follows. O

Lemma 4.4. Suppose that f is a maximal IC-coloring of Ky, myms, where 2 < my <
me < mg or 1 =my < my < ms, and fr < 142874 — 1 for some k > 4. If f(u;) =
fi—1 + 1 for some j € [1,m] and ujuji¢ ¢ E(G) for some £ € [k + 1 — j,m — j], then
f(ujre) < five—1 — fluj).
Proof. First, we derive upper bounds on f;_; as follows. By Lemma , if j > k41, then
fim1 <207D7k(f4+1) -1 < 14-2975 — 1 < 7-2+75 _ 1. Otherwise, j < k, we have
fic1 < fro1 < 2k=1)=1(f1 1) =1 = 20H6-5.2(h=1)=(G+E=5) 1 — 97 +0=5.93-(+t=k=1)) _ 7
Since j + ¢ > k + 1, these two bounds can be combined into f;_1 < 8- 27+H6=5 _ 1. Now,
suppose that f(ujye) > fjre—1 — f(uj). Then f(ujieq1) < f(ujee)+ f(u;) by Lemmal2.4]
This implies that
fiverr = f(Ujper1) + five

< fluje) + fug) + f(wje) + fivea

S (fjrer + D)+ (fjma+ D)+ (firer + 1)+ fire

=3(fjre—1 + 1)+ fj

<3 [2UHEDk L (f 1)) 48200

<50-27+5 1,

Lemma (4.1 then enables us to find a bound on f(G):
f(G) < 2mf(j+€+1) . (fj—i—f—i—l + 1) < 2m*(j+€+l) . (50 . 2j+€75) =13. 2m74 o 2m75'
This value is smaller than (4.2a]) and we have a contradiction. The result follows. O]

Lemma 4.5. If f is a mazimal I1C-coloring of Ky, myms, where 2 < mp < mg < mg
or 1 = my < mg < ms, then fy > 12. Furthermore, given i € [1,m — 1], let ry =
f(uive) — fize1 for all £ € [1,m —i]. Then f(G)=2"""f; + Z’g:l’ om—i=ty,,
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Proof. The first result is a direct consequence from Lemma [£.3] which gives that fy >
51-2%76 — 1> 11. To prove the second result, for given i € [1,m — 1], we let sg = f; and
s¢ = f(uj4e) for all £ € [1,m — 4. Then Lemma [2.2] gives

J J
(4.3) fivg = fit D fluip) =2 f;+> 27y
=1 =1
Therefore, the result follows by letting j = m — i in (4.3]). O

Now, we are in a position to show our upper bounds on M (G).

Proposition 4.6. If f is a mazimal I1C-coloring of Ky, mo,ms, then

13.-2m 4 _3.2m=2 1 4 if2<my <mo < ms,
f(Km17m27m3) S
13.2m—4 _9ma=2 4 9 if 1 =my < mg < ms,

where m = mq + mg + ms.

Proof. Since f(u2) = 2 < f(uz) < fo+ 1 = 4, the value of f(ug) is either 3 or 4. We
split the long proof into two parts depending on the value of f(u3). In the first part,
let us assume that f(us) = 4. Note that Lemma gives f5 > 51-2°76 — 1 and then
25 < fs = fa+ flus) < fa+ (fa+1) = 2f(usa) + 15. This implies that f(us) > 5. On
the other hand, we see from Lemma that f(ug) < f3+1=28. Hence, 5 < f(uq) < 8.
We discuss the problem for each possible value of f(u4). Since f(us) = 4, ujug must be
an edge of G for otherwise there would be no connected subgraph H satisfying f(H) = 3.
Therefore in each of the following three cases, ujuz € E(G) is true.

Case 1: f(ug) = 8.

Since f(ug) > fo — f(u1) and f(u4) > f(u1) + f(us), we have ujuz € E(G) by
Lemma [2.4] Similarly, uous is an edge of G as well. Hence, the subgraph induced by
{u1,u2,us} is isomorphic to K3. First, let us consider the situation where ujugy ¢ E(G)
or ugugy ¢ E(G). Then f(us) < f(u2) + f(usg) = 10 by Lemma In addition, f5 >
512576 — 1 from Lemma implies that f(us) = f5 — f4 > 25 — 15 = 10. Therefore,
f(us) = 10 and f5 = 25. If m = 5, then (mi,ma,m3) = (1,2,2) and f(G) = f5 =25 <
27 = 13.2m=4 _2m2=2 L 9 Now, suppose that m > 6. The fact fg > 51 2676 — 1
implies that f(ug) = fs — f5 > 51 — 25 = 26. Hence, we see that f(ug) = f5 + 1 = 26.
Since ({u1,u2,us}) = Ks, there is some ¢ € {1,2,3} such that ugus ¢ E(G). Therefore,
Lemma [2.4] gives that f(u7) < f(ug) + f(ur) < f(ug) + f(us) = 30. However, this leads
to fr = f(ur) + f(ug) + f5 < 81 < 51 -2776 — 1, which contradicts to Lemma We
therefore conclude that in this situation where ujus ¢ E(G) or ugug ¢ E(G), “m > 6" is

impossible to be true.
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Next, we consider the situation where ujuy € E(G) and uguy € E(G). Then us and
u4 must be in the same partite set of G. We therefore have that ({u1,ug, us,us}) = Ki12
and then f(us) < f(uq)+ f(us) =12 by Lemma Since f5 = fa+ f(us) < 15412 = 27,
f(G) <13-2m=4* —2m2=2 1 2 holds when m = 5. When m > 6, fg > 512576 — 1 implies
that f(ug) = fo — f5 > 50 — 27 = 23 > f(ug) + f(us). We then have uqus; € FE(G)
by Lemma because fy — f(u4) < 8 = f(ua) < f(us) and f(ug) = f3 + 1. Hence,
({u1,u2,u3,us,us}) = Kq29.

Now, Lemma enables us to obtain that f(G) = 275 f5 + Zznzf om—5=tp, < 27.
9m=5 4 S 9m=5-lr, From the previous discussion, we know that ({uy,u2,us}) = K3.
Let us denote the partite set containing u; as Vi, j = 1,2,4. Then f(u;) = fj—1 +1
and {‘Vuj‘ |j=1,2,4} = {m1,mg,m3}. Since f5 <27 =14-25"4 -1, by Lemma
we know that f(usi¢) < fs4e—1 — f(u;) whenever usyy € V,, for j = 1,2,4. Therefore,
re < —f(u1) = —1 whenever usyp € Vy,; 70 < —f(u2) = —2 whenever usiy € V,, and
ry < —f(us) = —8 whenever us;y € V,,,. With the fact ({u,u2, ug,us, us}) = K9 in
mind, we are ready for the discussion about the upper bounds on f(G).

In the case where 2 < my; < mo < mg, the sum 27:715 2m—=5-Ly, is maximized when

Vil s Vol s Vs ) = (mg,mo,m1) and rp = =1 forall £ = 1,2,...,mg — 1; rp = —2 for
(| 1 2 4

all £ = mg,m3+1,....,m3g+mo—3 and rp, = —8 for all £ = m3 +mo —2,...,m — b.
Therefore,
msg—1 ' ms3+mo—3 )
FG)<2m™ 274 3 om ST (—) 4+ Y 2 (=)
Jj=1 Jj=ms3

m—>5

Y ey

j=msz+ma—2
< 27.2m75 (M= _gmatma—d) _g(gmitma=d _gmi=2) _ gomi-2 1)
_13.9m—1_gmitma—d g gm-1 g
13 2m g2y ey g gy
<13.9m—4 _g.9m=2 4

In the case where 1 = my < mo < mg, the sum 27;15 2m—=5-Ly, is maximized when
(IVar s Vs | s Vg ) = (mg, 1,ma) and rp = —1 for all £ = 1,2,...,m3 — 2; r, = —8 for all

{=mg—1,ms,...,mg+mg—4=m — 5. Hence,
ms3—2 ) m—5 ‘
FG)<2m=P 974 > om™P i (—1) 4 Y 2miT L (=8)
j=1 j=ms—1

S 27 . 2777,75 _ (2m75 _ 2777,272) _ 8(2777,272 _ 1)
<13.2m7t_gm2m2 49
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Case 2: f(us) =T.

For the same reason stated in the previous case, we also have ({uj,u2,us}) = Ks.
Now, Lemma gives that f5 > 51-2°76 — 1. This implies f(us) = f5 — f1 > 11 which
is greater than f(u4) + f(u;) for i = 1,2. We then have uw;uy € E(G) from Lemma
because f(uq) = 7 > f3 — f(u;), i = 1,2. It follows that ug and ugy must be in the
same partite set of G. Since f3 — f(u3) < f(ua), we have f(us) < f(uz) + f(us) = 11
by Lemma This implies that f; < 25. If m = 5, then (my,mg,m3) = (1,2,2) and
f(G) = fs <25 < 13-2m 4 —2m2=2 L 9 If m > 6, then the fact fg > 512676 —1
from Lemma gives f(ug) = fe — f5 > 50 — 25 = 25. Hence, f(ug) = 26 and then
f5 = 25 because f(ug) < f5 + 1. Now, since ugu; ¢ E(G) for some t € {1,2,3}, we have
fluz) < flug) + f(ur) < f(us) + f(uz) = 30. However, this leads to f7r = f5 + f(ug) +
fur) <81 < 51-2776 — 1, which contradicts to Lemma We therefore conclude that

“m > 6” is impossible to occur in this case.
Case 3: f(uy) = 6.

Since f(us) > f(us) + f(u1) and f(uz) > fo — f(u1), Lemma [2.4] implies that ugu; €
E(G). First, consider the situation where uguz € E(G). Then ({u1,us,us}) = K3 and
usug ¢ E(G) for some t € {1,2,3}. Suppose that f(us) > 13. Then f(us) > f1 — f(u1) >
fa— F(ur). By Lemma B, we have f(ug) < f(us) + F(ue) < Flus) + flus) < (fa +1) +
f(u3) < 18. However, this implies that fg = f1+ f(us) + f(ug) < 45 < 51-2676 —1, which
is a contradiction to Lemma Hence we have f(us) < 12 and f5 < 25. Suppose again
that m > 6. Since fg > 51-2576 — 1, one can see that f(ug) = fg — f5 > 25 > f5. This
implies that f(ug) = f5 +1 < 26. Observe that if ugus ¢ E(G) for some s € {1,2,3}, we
have f(u7) < f(ue) + f(us) < f(ue) + f(us) = 30 by Lemma [2.4 However, this leads to
fr=fs+ fug) + f(ur) < 81 < 51-27"6 — 1. This contradiction enables us to conclude
that “m > 6” is impossible to occur in the situation where ugus € E(G). Therefore we
have m = 5 and f(G) = f5 <25 < 27 = 13-2m~4 - 2m2=2 1 9 The result holds in this

situation.

Next, assume that ugus ¢ E(G). Since f5 > 51-2°70—1, f(us) = f5—f1 > 25—13 = 12
which is greater than f(us) + f(ug). We see that ug and uy must be adjacent in G by
Lemmabecause f(usa) > f3— f(us). It follows that ({u1,ug,us, us}) = Ki 12 or Ko .
Now, let the partite set containing u; be V,,;, j = 1,3. Then uy belongs to Vi, or the other
partite set, written V5. Observe that f; = 13 = 14-24"4—1 and f(u;) = fj_1+1for j = 1,3,
one can see from Lemmathat flug) < fro1— fluy), ifug € Vi, j = 1,3 and t € [5,m].
Therefore, f(uate) < fare—1 — f(u1) whenever ugyy € Vi, and f(uate) < faro1 — fus)
whenever uyi¢ € Vy,. Leti =41in Lemma we obtain f(G) = 2m~4 f, 4 St om Aty
where the 74, defined as f(ugy¢)— fare—1, does not exceed — f (uy) if ugyp € Vi, and it is not
greater than —f(us) if ugyp € Viy. Let S1 = {ur € Vo | f(ug) = fx—1 +1}. Then rp, <0
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whenever uyyp € Vo \ S1. If S1 # 0, we denote as i; the minimum element in {k | ux € S1},
then 47 > 5 and Lemma implies that f(ui,1¢) < fi;+e—1 — f(ui,) whenever u;, 14 € Vp.
Therefore, S1 = {u;, }. Let So = {up € Vo | f(ux) < fr—1 — f(wi,)} and |S2| = y. Then
re < —f(u;,) whenever uyy € So. With these observations in mind, we can investigate
the value of f(G) in the following situations.

Subcase 3.1: 2 < my < mo < mg.

First, if S; = 0, then r, < 0 whenever usyy € Vp. The sum ) ,° Lom—a—Ly, ig
maximized when us € Vi, (|Vu,l, Vsl [Vo|) = (m2,mi,m3) and 7, = 0 for all £ =
1,2,...,m3; rp = —f(u1) = —1 for all £ = mg+1,m3+1,...,m3+me —2 and ry =

—f(ug) = —4 for all £ = mg + mg — 1,...,m — 4. Therefore, we have
ms+mo—2 )
f( )<2m 4f4+22m4j 0+ Z 2m—4—],(_1)
j=m3+1
m—4

+ Y 2t (-

Jj=m3+mz—1
=13.2m" % _3.2m72 4 4 gmitma—d
<13.2m74—3.2m7% 4 g,

Second, if S7 # 0, then ry < — f(u;, ) whenever uyyp € Sy. We split the discussion into
two parts:

(1) In the situation where ({uy, u2,us, usa}) = K12, since ujug € E(G) and ug € 1,
f(G) is maximized when (|Vi,|,|Vus!, |Vo|) = (m2, m1,ms) and

ms—y—2
f(G) < 2m—4f4+ Z 2m—4—j _O+2m—4—(m3—y—l)
j=1
m3+mo—y—2 m—y—4
D D e A CR VS oo i (—g
J=m3—y Jj=ma+ma—y—1
m—4
(4.4) + oy 2 ()]
Jj=m—y—3

=13 2m—4 + 2m1+m2+y—3 . 2m1+y—2(2m2—1 o 1)
—4-29(2™M7% — 1) — f(uiy)(2Y — 1)
= 132774 =3 2 g [ f () — 4] - (2Y - 1),

This implies that f(G) < 13-2m~% —3.2™~2 4 4 because f(u;,) > 4.

(2) In the situation where ({u1, ug, uz, us}) = Ko 2, we have ujug ¢ E(G) and ug € V,,,.
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By the similar argument, we obtain

m3—y—1 mo+m3—y—2
FG) <2 pa Y 2mtgaamtstmen S gmetei ()
j=1 Jj=m3—y+1
m_y—4 m—4
LD DR A G VRS L R S [ ()
j=mo+mz—y—1 j=m—-y—3

This upper bound is less than the one in (4.4)). Our result holds in this situation.
Subcase 3.2: 1 = m1 < mo < mg.
First, if ({u1,ug, u3,us}) = Koo, then we have uqy € V,,. Now, f(G) is maximized
when (|Vi, |, |Vus!l, [Vo|) = (m3, ma, 1) and
ms3—1

f(G) < 2m—4f4 + gm—4—1 1 + Z gm—4—j (_1)
=2

m—4
(4.5) + ) 2mA (-4

Jj=ms3
=13.2m % _3.2m272 1 4
=13.2m4 —gm2=2 L 9 9(9m272 _ 1)
<13.2m~4 _gm2=2 4 9

Second, if ({u1,u2,uz, us}) = Ki 12, then ug € V. When |Vj| = 1, the argument is

very similar to the previous one and we have

m3—1 m—4
FG) <2mify+ Y omimd (—1) 4+ Y am i (),
J=1 Jj=ms3

This value is smaller than the one in and our result holds.

When |V,,,| = 1, we have to consider whether S; is empty or not.

(1) If S; = 0, then ry, < 0 whenever ugyp € Vp. f(G) is maximized when (|Vy, |, |Vus|
[Vb]) = (1, m2,m3) and

m3—1 ) mo+m3—3 )
FG)<2m 4+ D om0+ Y 2mTt (=g
J=1 Jj=ms3

=13.2m % _4.9m72 1y
<13.2m 4 _gm2—2 4 9

(2) It S1 # 0, then 7y < —f(u;,) whenever ugyy € S3. We can see from Lemma
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that
m3—y—2
f(G) < 2m—4f4 + Z gm—4—j 0+2m—4—(m3—y—1)
7j=1
ma+m3z—y—3 ma+m3—3
+ ) T+ L 2 f ()]
Jj=m3—y J=ma+mz—y—2

= 13.2m 4 pomaty=2 _ g(omaty=2 _9uy _ f(y, )(2¥ — 1)
=13.2m7 4 —3.0m2 Y2 L g [f(uy) — 4] (2Y - 1)

= 13.2m~4 _om2ty=2 L 9 (2.2m2TY=2 _9) _[f(u;,) — 4](2Y — 1)
<13.9m4 _9gm2=2 9

Case 4: f(ug) = 5.

Since f5 > 51-257% — 1, f(us) = f5 — f1 > 13. Thus, f(us) = 13 = f4 + 1 and
fs = 25. The fact fg > 51 -2576 — 1 implies that f(ug) = fo — f5 > 51 — 25 = 26. Then
f(us) =26 and fs = 51. Since f(ue) > f(us) + f(ur) and f(us) > fa — f(ug) for t =1,2,
Lemma guarantees that usu; € E(G) for t € {1,2}. Hence, ({uj,uz,us}) = Ks.
Suppose that m > 6. Since ugu; ¢ E(G) for some ¢t € {1,2,5} and f(ug) > f5 — f(ue), we
obtain from Lemma [2.4] that f(u7) < f(ug) + f(ur) < f(ug) + f(us) = 39. However, this
implies that f7 = fs + f(u7) <90 < 51-2776 — 1, contradicting to Lemma Therefore,
the only possible situation in this case is “m = 5” and then f(G) = f; = 25 < 27 =
13.2m=4 —gm2=2 4 2,

We have verified that our upper bounds are valid when f(u3) = 4.

For the second part of this proof, we assume that f(us) = 3. Note that f3 +1 >
flug) = fa— f3 > (51-2476 — 1) — 6, that is, 7 > f(us) > 6.

Case 1: f(uyg) =17.

In this case, f(us) = f5 — fa > (512576 — 1) — 13, that is, f(us) > 12. First, let
us consider the situation where wjus € E(G). Since f(us) > f(ua) + f(us) and f(ug) >
f3 — f(u) for t = 1,2, Lemma [2.4] implies that uqu; € E(G). Hence, ({uy,ug, us}) = Ks
and then there is some ¢ € {1, 2,4} such that usu; ¢ E(G). Observe that f(ug) = fo—f5 >
(512676 — 1) — f5 > 50 — (fa+ (f4+1)) = 23. Since f(ug) > 21 > f(uq)+ f(us), we obtain
from Lemma [2.4] that f(us) < fa — f(w) < fa — f(w1) = 12. Therefore, f(us) = 12 and
f5 = 25. Suppose that m > 6. Then f(ug) = fo— f5 > (51-2676 —1) —25. Hence, f(ug) =
f5+ 1 =26. Now, we have ugu; ¢ F(G) for some t € {1,2,4} and f(ug) > f5 — f(ur).
Lemma [2.4] enables us to obtain f(u7) < f(ug) + f(ur) < f(ug) + f(us) = 33. However,
this leads to fr = fg + f(ur) < 84 < 51-2776 — 1, giving a contradiction. Therefore,
“m > 67 is impossible to occur when wjus € E(G) and then f(G) = f5 = 25 < 27 =
13.2m~4 —gm2=2 4 9,
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Next, let us consider the situation where ujus ¢ E(G). Since f(u4) > f3 — f(u1) >
f(us) + f(u1), we know from Lemma [2.4] that both ujus and ujug are edges of G because
flus) > 12> f(ua)+f(ur) and f(us) > fo— f(u1). Therefore, we have ({u1, ug, us, us}) =
Ki12 or Kyo. Let us denote the partite set containing u; as Vi, 7 = 2,4, and the
other one as V. By Lemma we have f(ugre) < fage—1 — flua) = fapo1 — 2
if ugyy € Vi, and f(ugye) < fago—1 — flua) = fago—1 — 7 if ugyy € V4. Let S1 =
{ur, € Vo | f(ug) = fr—1 + 1}. Then r; < 0 whenever ugyy € Vo \ S1. If S # 0, we denote
as i1 the minimum element in {k | uy € S1}, then, for the same reason as we stated in
Case 3 in the proof of Proposition we have S = {u;, }. Let So = {ur € Vo | f(ug) <
fr—1 — f(uiy)} and |Se| = y. Then ry < —f(u;, ) whenever ugiy € Sa.

Note that in the following three situations where “2 < mq < mo < m3”, “1 = my <
me < mg and ({u1,uz, u3,us}) = Koo” and “1 = my < mg < ms, ({u1,u,us, us}) =
K12 and |Vp| = 17, the argument is almost the same as we used in Case 3 in the proof
of Proposition The upper bounds on f(G) here can be obtained by replacing —1 with
—2 and replacing —4 with —7 in the places of r¢’s in the expressions of the upper bounds
in that proof. Since each resulting upper bound is less than the original one, our results
still hold here.

The remaining situation in Case 1 is when “1 = m; < mg < mg, ({u1,ue,us,us}) =
K19 and |V,,| =1". If S; =0, then 7y < 0 whenever uy4y € V. Lemma guarantees
that

m3—1 m—4
f(G) < 2m—4f4 + Z 2m—4—g 04 Z 2m—4—] . (72)
Jj=1 Jj=m3

=13.2m 4 _9.9m72 4 9
<13.9m 4 _9gm2=2 4 9o

If S; # 0, then ry < — f(u;, ) whenever uyyy € So. We have

m3—y—2
f(G) S 2m—4f4 + Z 2m—4—j . 0 + 2m—4—(m3—y—1)
7=1
ma+m3z—y—3 m—4
+ Y 2+ Y 2 [ f(uy)
Jj=m3—y Jj=ma+mz—y—2

=13.2m 4 g gmaty=2 _ 9(9m2ty=2 _9Vy _ f(y,; )(2Y — 1)
=13.2m7 —9m2 Y2 L 9 (f(uy) —2)(2Y — 1)
<13.2m7% _gm2=2 4 9

Case 2: f(uy) = 6.
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Since f(us) = f5—f1 > (51-2°76-1)—12, we have f(us) = f1+1 = 13 and f5 = 25. In
addition, f(ug) = fo — f5 > (51-2676 — 1) — 25 = 25, which means f(ug) > f(us) + f(u;)
for i = 1,2. By Lemma we know that w;us € E(G), ¢ = 1,2, because f(us) >
fa — f(u;). Hence ({uy,u2,us}) = K3 or Kio. If m =5, then (my,mg,m3) = (1,2,2)
and f(G) = f5 = 25 < 27 = 13.2m~4 —2m2=2 1 9 [f m > 6, then, as we just showed,
flug) = fs +1 =26 and fg = 51. Now, f(ur) = fr — fo > (51-2779 — 1) — 51 = 50,
which means f(u7) > f(u2) + f(ug). We then have usug € E(G) by Lemma because
f(ug) > f5 — f(uz2). Similarly, we also have usug € E(G). Therefore, ({ua, us, us}) = Ks.
If m = 6, then (m1, ma,m3) = (1,2,3) or (2,2,2). In the former case, f(G) = fo =51 <
53 = 13-2m~4 —2m2=2 1 9 In the latter case, f(G) < 53 = 13-2m~4 -3.2™~2 1 4 Both
results are true. Now, suppose that m > 7. Then f(u7) > 51 as we just showed. Since
uruy ¢ E(G) for some t € {2,5,6} and f(ur) > fo — f(us), we see from Lemma [2.4] that
flug) < flur) + flur) < fur) + f(us) < (fe +1) + f(us) = 78. However, this leads to
fa = fo + f(ur) + flug) < 181 < 512876 — 1. We obtain a contradiction and therefore
“m > 7”7 is impossible to occur in Case 2.

We conclude that our upper bounds are also valid when f(us) = 3. The proof is

completed. 0

Combining Propositions and the result obtained in [11] we have the following

result.
Theorem 4.7.

13.2m=4 —3.2m=2 14 f2<my < mo < ms,
M (Ko mams) = 13- 2m~4 —2m2=2 4 9 if 1 =m1 < mgo < ms,

om _gms 4 | if 1 =mq =msy < ms,

where m = my1 + ma + ms.

5. Conclusion

In this paper, we have provided a lower bound on M (K, m.,....m,) for two cases and then
proved that, when ¢ = 3, our lower bound also serves as an upper bound on M (K, my.ms)
in each case. The IC-colorings we have constructed are indeed qualified maximal IC-
colorings. The problem of finding the IC-index of any complete tripartite graph is com-
pletely settled. As the derivation of M (K, ms,,..m,) becomes more and more involved
when the value of £ becomes larger, a structural approach is required for future study of
this problem. By analyzing the discussion in this paper, we are inspired to develop such

an approach to deal with the problem for larger /.
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