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On Adjacent Vertex-distinguishing Total Chromatic Number of Generalized
Mycielski Graphs

Engiang Zhu*, Chanjuan Liu and Jin Xu

Abstract. The adjacent vertex-distinguishing total chromatic number of a graph G,
denoted by xq:(G), is the smallest k for which G has a proper total k-coloring such
that any two adjacent vertices have distinct sets of colors appearing on the vertex and
its incident edges. In regard of this number, there is a famous conjecture (AVDTCC)
which states that for any simple graph G, x.+(G) < A(G) +3. In this paper, we study
this number for the generalized Mycielski graph p,,(G) of a graph G. We prove that
the satisfiability of the conjecture AVDTCC in G implies its satisfiability in p,,(G).
Particularly we give the exact values of X4t (1m(G)) when G is a graph with maximum
degree less than 3 or a complete graph. Moreover, we investigate x,:(G) for any graph
G with only one maximum degree vertex by showing that x.:(G) < A(G) + 2 when
A(GQ) < 4.

1. Introduction

In this paper we confine our attention to graphs that are finite, simple, connected and
undirected. For a graph G, we denote by V(G), E(G), dg(v) and A(G) the vertex set,
edge set, degree of v € V(G) and mazimum degree of G, respectively. We use [a,b] to
denote the set {a,a+ 1,a+2,...,b} for two integers a and b with a < b. Notations and
terminologies undefined here are followed |[1].

Let G be a graph, and V' C V(G), E' C E(G). A partial total k-coloring of G
regarding to V' U E’ is a coloring f: (V' U E’) — [1, k], such that no incident or adjacent
elements in V’ U E’ receive the same color. When V/ =V and E' = E, we refer to f as a
total k-coloring of G. Given a partial total k-coloring f of G regarding to V' U E’, for a
vertex v € V and a subset S C [1, k|, we name C’}g(v) ={f)}U{f(uw):uww e E'})NS

as the color set restricted to S of v (under f), or simply color set of v when S = [1, k].
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Let 6?(7)) =5\ C’}g(v). Note that when v ¢ V', v does not receive any color under f. So
{f(v)} =0 and Cf(v) = {f(uwv) : wv € E’'} NS in this case.

Let f be a total k-coloring of G, if C][cl’k] (u) # C’J[cl’k] (v) for any two adjacent vertices
u, v, then we call f an adjacent vertex-distinguishing total coloring (AVDTC) of G. The
smallest k for which G has a k-AVDTC is called the adjacent vertez-distinguishing total
chromatic number of G, denoted by x4:(G). Clearly, if f is an AVDTC of G, then for each
pair of adjacent vertices u,v € V, C ][cl’k] (u)AC][cl’k] (v) # 0, where A denotes the symmetric
difference of two sets.

As an extension of vertex-distinguishing proper edge coloring of graphs [2], AVDTC
was first examined by Zhang et al. [23], where x,:(G) for many basic families of graphs

were determined and a conjecture called AVDTCC was proposed.

Conjecture 1.1 (AVDTCC). For any simple graph G, A(G) +1 < xat(G) < A(G) + 3.

The lower bound in Conjecture [1.1] is easy to see. In addition, when G has two
adjacent vertices with maximum degree, xq:(G) > A(G) 4 2. For the upper bound, there
exist graphs G with x.(G) = A(G) + 3, for example the complete graph K, for n = 1
(mod 2) [23].

Chen [4], and independently Wang [18], confirmed Conjecture for graphs G with
A(G) < 3. Later, Hulgan [9] provided a more concise proof on this result. In [20] and [22],
Xat(G) for Ky-minor free graphs and outerplane graphs were investigated. Wang [21] and
Huang [8] considered x4 (G) for graphs with smaller maximum average degree and large
maximum degree, respectively. A more recent work is Wang [19], which focused on xq:(G)
for planar graphs.

Graphs considered in this paper are Mycielski graphs, which were first introduced
in [15]. Such kind of graphs has gained much attention in the community of graph coloring
[3,6,11,/13,/14,16,17]. Also, the Mycielskian of G was generalized to the m-Mycielskian of
G, where m > 1 [12].

Let G be a graph with vertex set V0 = {U(l),vg, ...,v9) and edge set E°. Given an
integer m > 1, the m-Mycielskian of G, denoted by pun,(G), is the graph with vertex set

VOUViU---uV™ U {u}, where V¢ = {U; : vg-] € VO} is the ith distinct copy of V? for

i € [1,m], and edge set E°U (U:?:ol {v%vﬁl : v?v?, € EO}) U {v;“u tuft € Vm}. In what
follows, we use E*, i € [1,m], to denote the set of edges with one end in V=1 and the
other in V%, and use G’ to denote the subgraph of p,,(G) induced by E°. Clearly, G?,
i € [1,m], is a bipartite subgraph with maximum degree A(G). For completeness, we also
denote G by G°.

In this paper, we investigate the adjacent vertex-distinguishing total chromatic number
of generalized Mycielski graphs. We prove that if G satisfies AVDTCC, then pu,,(G)

also satisfies AVDTCC. Additionally, when G is a graph with maximum degree less than
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3 or a complete graph, we determine the exact values of xqt(tm(G)). Moreover, we
explore the x4 (G) for any graph G with only one maximum degree vertex, and show that
Xat(G) < A(G) + 2 when A(G) < 4.

To prove the main results of this paper, we need to quote the following two theorems.
Theorem 1.2. [10] Every bipartite graph G has a A(G)-edge-coloring.

An L-edge-coloring of a graph G is a proper edge-coloring f of G such that f(e) € L(e)
for each edge e, where L(e) called the list of e, is a set of colors of e, and f(e) denotes the
color assigned to e under f. We say G is L-edge-colorable, if it admits an L-edge-coloring.
For an integer k, if G is L-edge-colorable for every list assignment with |L(e)| > k for each
e € E(G), then G is k-edge-choosable. The following Theorem will be used to prove

the main results later in the next section.

Theorem 1.3. [7] Every bipartite multigraph G is A(G)-edge-choosable.

2. Generalized Mycielski graphs

In this section, we study the adjacent vertex-distinguishing chromatic number of general-
ized Mycielski graphs. Observe that when A(G) = 1, G is a complete graph on 2 vertices.
Then u,,(G) is a cycle, and Xat(pm (G)) = 4 [23]. In the following we assume A(G) > 2.
Let G be a graph, and V' C V(G), E' C E(G). For a partial total coloring f of
G regarding to V' U E' and a vertex v € V', we define E¢(v) = {uwv:uv € E'}, and
Ef(v) ={uv:uwv € E(G)}\ Ef(v). We first have the following observation for latter use.

Lemma 2.1. Let f be a partial total k-coloring of a graph G regarding to V' U E’, where
V' CV(G) and E' C E(G). Suppose that V' contains two adjacent vertices u and v satis-
fying C’lk]( ) # C’lk]( ). Let S C [1,k| be a color set such that C'[1 k]( )AClk]( )ZS.

If there exist two edge colorings, fi: Ef(u) — S and fo: E¢(v) — S, then C’[1 ] (u) #

LA SUf1Uf2
Crinup(©)-
Proof. Let ¢ be a color in Cj[fl’k] (u)AC][}’k] (v) and not in S. Then we have ¢ € Cj[flul}]lufz( )
ACJ[}U];J uf,(v). Hence, the result holds. O

Lemma 2.2. [5] For a generalized Mycielski graph p,(G) of a graph G, there exists a
matching in G* for any i € [1,m], which saturates all of the maximum degree vertices of
G'.

Sun et al. |[16] studied the adjacent vertex-distinguishing chromatic number of ji,,(G)
for m = 1, i.e., the Mycielskian of G. They proved that if x,(G) < A(G) +k and A(G) +
kE > |[V(G)|, then xa:(p11(G)) < 2A(G) + k. The theorem below gives a characterization
of pm(G) for m = 2, which is followed by cases of m > 3.
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Theorem 2.3. Let G be a graph with xqt:(G) =k and A(G) = A (> 2). Then xqt(p2(G))
<max{k+A+1,n+1}.

Proof. Let f: V(G U E(G®) — [1,k], be a k-AVDTC of G°. Based on f, color uvjz- with
j for j € [1,n], and by Theorem properly color E! by the set [k + 1, k: + A]. Color
u and V! by k*, where k* = max {k + A +1,n+ 1}. For any edge e = ]1 ]2 € E?, let
L(e) = [1,k] \ {j2}. Then, |L(e)| > A. So by Theorem E? can be properly colored
by the set [1,k]. In addition, A > 2 implies [k + 1, k*] > 3. Therefore, vjz- can be colored
with an arbitrary color in [k + 1,%k*] \ {j,k*}. Denote by f’ the resulting coloring. By
Lemma any two vertices of V9 have different color sets under f’. Since k* is in the
color sets of vertices in V! U {u}, but not in those of vertices in VO U V2, it follows that
CJ[},’k*](x) # C[l,’k*](y) for any two vertices x € V! U {u} and y € VOU V2. Hence, f' is a
k*-AVDTC of 112(G). O
Theorem 2.4. Let G be a graph on n (> 3) vertices with A(G) = A (> 2). When m

(> 3) is an odd integer, we have

max {xat(G) + A,n+ 1} if xau(G) > A+ 2,

Xat (tm (G)) < .
max {2A +2,n + 1} if Xat(G) = A+ 1.

Proof. Let xat(G) =k, and g: V(G)UE(G) — [1,k], be a k-AVDTC of G. We first define
a partial total (k 4+ A)-coloring of py,(G) regarding to |J;~, Y(ViU E"), denoted by f*.

(1) Let f*(v;) = g(v?) for i € [0,m — 1], j € [1,n].
(2) Let f*(e) = g(e) for e € EV.

(3) When i is odd, we properly color E¢ with the set of [k + 1,k + A] by Theorem
(since G is a bipartite graph with maximum degree A for i > 1). When i is even,
for each edge e —v; Li, e E let f*(e) = g(U?v?,).

Thus, we obtain a partial total (k + A)-coloring of u(G) with only elements in V™ U
{u} UE™U {uv 1j €L, n]} uncolored. As for f*, since m > 3 is odd, it follows that

Cj[cl*k] (vj) C][}*k}(v.) for 4,4/ € [0,m —1] and j € [1,n], and Cj[c]iJrl’kJrA](v;-"_l) = (. Given
that ¢g is a k-AVDTC of G, we have clt k]( ) # Cj[cl*’k] (y) for any zy € U, E'. To
complete our proof, we consider the following two cases.

Case 1: k> A+ 2. Let k* = max{k + A,n+ 1}. Then, we can modify and extend
f*toa k*-AVDTC of ,,(G) as follows.

Since k > A + 2, it has that C[1 k]( m=1)| > 1 for any j € [1,n]. By Lemma let

M be a matching of G™ which saturates every maximum degree vertex of G". Color each
edge e = v 1o € M with a color ¢, € C[lk]( m-1

v*~), and denote the resulting coloring
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by f. We claim that there exists a bijection, from E, = {uv;” 1] € [l,n]} to [1,n], say
f’, such that any pair of two incident edges in M U E,, have different colors.

Suppose this is not the case. Choose an f’ of E, with the fewest pairs of incident edges
in M UE, receiving the same color under fU f’. Let e; and e be two edges in M U E,, with
the same color. Obviously, {e1,e2} ¢ E, and {ej,e2} € M. Without loss of generality,
assume e; € M and ey € E,, and let e = v]'~ lv;” and ey = uv?. If there exists a vZ}
not saturated by M, then we interchange the colors of eo and uvZ}. Now, e; and ey have
distinct colors, a contradiction with the choice of f’. If all of vertices in V™ are saturated

by M, then |M| = n and there exists an edge v~ vy; € M such that ¢y # ¢;. (When
G is not regular, let v9, be a vertex with dg(v),) < A(G) Evidently, C’[1 k}( o > 2.

So, such a ¢,/ can be chosen from C'. el ]( ) When G is a regular graph, such an edge

m—1 Al ]
vy vy also exists because if every C'p (v

m—l
Yj
adjacent vertices in V9 with the same color set under g, and a contradiction with g.) We

) = {cz} for j € [1,n], then there are two

interchange the colors of eo and uvg} Then e; and ey have distinct colors and Um lvg},

and uv;’} also have distinct colors. This contradicts to the choice of f.

After we have properly colored edges of M U {uv 17 €L, n]} by f U f' defined
above, our purpose is to color elements in V™ U {u} U (E™\ M). Let f/ = fuU f’. For
any v;* € V™, when f"(uvy) < k, color v;* with &+ 1, and let L(e) = [k + 2,k*] for
each edge e = 0" 'uy* € E™ \ M. When f”(uv ) > k+1, since k > A+ 2, we color

y' by one color in [ Ik: \ ({f"(wp ) s oot € B U {ep 7771””‘62\4}) and let

( ) = [k+1L BN\ {f" (wv)? }foreaeh edgee—vm Yoyt € E™\M. Clearly, |L(e)| > A—1,
so by Theorem we properly color E™ \ M by the set [k 4+ 1,k*] based on f” (since
G™ — M is a bipartite graph with maximum degree A — 1). Finally, we color u with one
color in [1,k*]\ {f”(uv ):j el n]} This gives a total k*-coloring of u,,(G), denoted
by "

We now show that " is a k*-AVDTC of p,,(G). Since g is a k-AVDTC of G, it follows
that C'j[};k] (u)ACJ[};k] (v)| > 2if uv € E° and dgo(u) = dgo(v). Then, by Lemma [2.1| each
pair of adjacent vertices in V=1 U V™2 have different color sets under f”. For two
adjacent vertices v*~! € V"1 and v}’ € V™, since ‘C[l,,’/k]( ™) <2 and ‘Cj[cl,,,k (v 1)’ >
¢+ 1 when ‘C’ 1/,,k ] ) and vy have distinct color
sets under f"”. Additionally, n > 3 implies that ‘CJ[},,,H (u)‘ > 3. Therefore, C][},,,k }( ) #
C][cl,},k] (vf") for any j € [1,n].

Case 2: k = A+ 1. Let k* = max{2A +2,n+ 1}. We now define a k*-AVDTC of
1(G) based on f*.

Color u with k*, and wvi® with j for j € [I,n]. Color vj" with £* — 1 for j €

[1,k], and with one color in [1, k] \ {f*(vj, h 'vgnv;?_l € Em} for j € [k + 1,n] (note

m 1
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J ) J2

L@l om) = [A+2,2A]U{k*}. If jo > k+1, let L(0] ") = [A+2,k*]\{j2}. Clearly,

‘L ”11 Lymy| > A, and by Theorem we can properly color E™ by the set [A + 2, k*].

that Hf*(v’.n_l) vl e Em}’ < A). For any edge v}~ Lom e Emif jy < k, let

]2
This gives a total k*-coloring of u(G), denoted by f.

We now show that f is a k*-AVDTC of u(G). First, according to Lemma any two
adjacent vertices in V™1 U V™2 have different color sets. In addition, it is easy to see
that ’C'[l k](v)‘ > 2 for each vertex v € V™! U {u}, and ‘C[lk m)) =1 for j € [1,n].
Therefore, the color set of v7* € V™ is different from those of its adjacent vertices under
f. Hence, f is a k*—AVDTC of i, (G) in this case. O

Theorem 2.5. Let G be a graph onn (> 3) vertices with A(G) = A (> 2), and m be an
integer. If m (> 4) is even, then

max {Xat(G) + A,;n+ 1} if xat(G) > A+ 2,

Xat(ﬂm(G)) < )
max {2A +2,n + 1} if Xat(G) = A+ 1.

Proof. Let f* be the partial total (k + A)-coloring of u(G) regarding to J;, Yviu EY),
defined in Theorem Then, under f*, any two adjacent vertices in G* have different
color sets for ¢ € [0,m — 2|, and when m > 4 is even, Ey(z) are colored by the set
[k +1,k+ A] for any vertex z € V™ 1. Based on f*, we consider the following two cases
to complete our proof.

Case 1: k > A+ 2. Let k* = max{k+ A,n+ 1}. In this case, we first erase the
colors appearing on E™~1 U V™! under f*. According to Lemma suppose M is
a matching of G™~! which saturates every maximum degree vertex of G™ . Then for

oM (v=2) (since k > A + 2,

each v]'~ 21);” 1€ M, color v»2¢™~1 with one color in Cr (vg

y
C'[1 k]( m= 2)‘ > 1). Given that G™! — M is a bipartite graph with maximum degree

A — 1, we can properly color edges of E™~1\ M by the set [k + 1,k + A — 1] according to

Theorem and then color vertices of V! by k*. We also denote the resulting coloring
by f*. According to Lemma it is easy to see that any two adjacent vertices in V73
and V™2 have different color sets under f*. So, any two adjacent vertices in UZZBQ have
distinct color sets under f*.

We now based on f* color elements in E™ U V™ U {uvm cj=1,2,. n} U{u} as
follows. Color u with £* and uvj" with j for j € [1,n]. For any edge vm ! vy € E™, let

L vm) = [LK]\ {jg,f*( oy 2)}, where o7 107% € M. Since k 2 A+2, it

has that |L(v™ 'v™)| > A. By Theorem we can properly color E™ by the set [1, k].

]1 ]2

Finally, properly color v7* by one color in [1, k] \ <{j} U {f/(’umv”f OE vl le Em}>

because of k£ > A 4 2. ThlS gives a total k*-coloring of p,,(G), denoted by f. It is easy to
see that k* € C}l’k*}(w) for any x € V" 1U{u}, and k* ¢ C}l’k*}(y) for any y € Vmuvy™-2,
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This shows that any two adjacent vertices in V*=2UV™ 1 UV™U{u} have different color
sets. Therefore, f is a k*-AVDTC of 1, (G).

Case 2: k= A+ 1. Let k* = max{2A +2,n+ 1}. We now extend and modify f* to
a k*-AVDTC.

We first recolor vertices of V=1 with k*. Then, color u with k*. And for any j € [1,n],
color wvi" with j, color vi" with 2A +1if j # 2A + 1 and with 2A if j = 2A + 1. For
each edge v~ ! v € E™, let L(v™ ! vi) = [1, k:]\{f (uvly )} Since k = A + 1, we have

‘L (i)™ ! vi’)| > A. By Theorem 1.3, E™ can be properly colored by the set [1,k]. This
gives a total k*-coloring of u,,(G), denoted by f. Since k* is in the color sets of vertices
in V=1 U {u}, but not in the color sets of vertices in V™2 or V™, it follows that f is a

k*-AVDTC of i (G). 0

Let G be a graph with A(G) = 2, n = |V(G)| > 4. Then, x.(G) = 4 [23], and by
Theorems [2.4)and [2.5] xat (1tm (G)) < max {6,n + 1} when m > 3. On the other hand, when
n > 4, it has that xo:(tm(G)) > max{6,n+ 1}. (When n =4, xut(um(G)) > 6 because
m(G) has two adjacent vertices with maximum degree 4. When n > 5, xat(tm(G)) >
n + 1 since A (G)) = n in this case.) Thus, Xu(pm(G)) = max{6,n+ 1} when
m > 3. Moreover, when m = 1,2, one can easily give a k*-AVDTC of u,,(G), where
k* = max {6,n + 1}. So, we have the following result.

Corollary 2.6. Let G be an n vertices graph with A(G) =2, n > 4. Then Xaot(um(G)) =
max {6,n + 1}.

For a graph G, when A(G) = 3, Hulgan [9] proved that G satisfies the AVDTCC, and
showed that G has a 6-AVDTC with the properties in the following lemma.

Lemma 2.7. 9] Let G be a graph with A(G) = 3. If G # Ku, then G has a 6-AVDTC
with the following properties:

(1) the vertices of G are colored 1,2, 3;
(2) the edges of G are colored 3,4,5,6.

Corollary 2.8. Let G be an n vertices graph with A(G) =3, n > 8. Then Xat(um(G)) =
n+ 1.

Proof. n > 8 implies that u,,(G) contains only one maximum degree vertex u with
(@) (W) = A(pm(G)) = n. So, Xat(km(G)) = n+1. Inorder to show Xat(um(G)) = n+1,
it suffices to give an (n + 1)-AVDTC of p,,(G).

When m > 3, such a coloring does exist by x.(G) < 6 and Theorems and
When m < 2, let f be a 6-AVDTC of G° with the properties in Lemma and let
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VO:{’U‘?f(’U?):Z} fori:172’3 Then72€€‘[f17]< )foreaChU 6%07160[16]( ,7)

for each U] € VP, and {1,2} C C’[1 6}( ?) for each v;-) € VY. We now extend f to an
(n+1)-AVDTC of p,(G).

Color uv* with j for j € [1,n], and color u by n + 1.

According to Lemma suppose that M is a matching of G which saturates every

maximum degree vertex of G1 For each edge e = v¥ G M, color e with 2 when v0 € V,

with one color in C’Ec }(vx) when 00 € V3, and with 1 when v € V). We now denote the

resulting coloring still by f. Since 2 € C'][cl’ﬁ] (v2) for v2 € (VP UVY) but 2 ¢ C][cl’ﬁ] (v0) for
v2e VY and 1€ C[l 6]( ) for v2 € V2 but 1 ¢ CJ[CI’G](vg) for v0 € V7, it has that any two
adjacent vertices in VO have different color sets under f.

Consider G' — M. It is a bipartite graph with maximum degree 2. When m = 1, for
any edge e = %1%2 € B\ M, let L(e) = [8,9] when ja ¢ [7,9], and L(e) = [7,9] \ {j2}
when jo € [7,9]. Clearly, |L(e)| = 2. By Theorem we can properly color B!\ M by
the set [7,9]. For each vertex v; € V!, color it with 7 when j ¢ [7,9] and with one color
in [4,6] \ {c} when j € [7,9], where c is the color appearing on a possible edge vjlv?, e M.
Thus, we obtain a total (n+ 1)-coloring of 11 (G), say f’. By Lemma any two vertices
of V' have different color sets under f’. In addition, that u is the unique maximum degree
vertex of ui(G) shows that C[1 7hL1]( ) # C][cl,’nﬂ] (vjl) for any j € [1,n]. Finally, for two
vertices v2 € VY and v, € Vl, one can readily check that ’C[ (v )’ # ‘C’ 16]( )‘ So,
vy and v, have different color sets under f’. This shows that f" is an (n + 1)-AVDTC of
p1(G).

When m = 2, we properly color E'\ M with colors 7 and 8 by Theorem and color
V1 with n+1. For each edge e = v} v2 € E?, let L(e) = [2,6]\{c, jo}, where c is the color

J1 g2
appearing on a possible edge vjlv?, € M. Clearly, |L(e)| > 3, and by Theorem we
1

can properly color E? by the set [2,6]. Additionally, there are at least two colors of [1, 6]
available for each v2~ € V2. Thus, we obtain a total (n + 1)-coloring of us(G), denoted by
f’. Obviously, for j € [1,n], n+1 € cl n+”( i,n+le C[l nH]( ),n+1¢ cte nH]( ),
and n+1¢ ol n—H]( 2). Therefore, f is an (n + 1)-AVDTC of ua(G). O

Corollary 2.9. For a graph G onn (> 2) vertices, if n > Xaut(G)+A(G), then Xat(pm(G))
=n+1.

Proof. That G is nontrivial, A(G) > 1. Since n > xu(G) + A(G), it follows that
pm(G) contains only one maximum degree vertex u with d,, (¢ (u) = n. Obviously,
Xat(ptm(G)) > n+ 1. On the other hand, when m > 2, by Theorems and we
have Yt (tm(G)) < n+1. When m = 1, let f be a xq:(G)-AVDTC of G°. Then we can
easily extend f to an (n + 1)-AVDTC as follows. First, color u with n + 1 and uvjl- with
j for any j € [1,n]. Then, for each vertex U , color it by xat(G) + 1 when j € [1, xat(G)],
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and by one color of [1,x.(G)] \ {f( ! 0) v v ) € El} when j € [xu(G) + 1,n]. Fi-
nally, for each edge vovl € E', let L(v? ) [Xat(G) + 2,n + 1] when y < x4 (G) and
L(vdvy) = [Xat(G) + 1,n + 1]\ {y} when y > xa(G) + 1. Since n > xu(G) + A(G),
it has that ‘L v 7i)| > A(G). So by Theorem we can properly color E! by the set
[Xat(G) + 1,n + 1]. This gives an (n + 1)-AVDTC of p;(G). O

Let K, be a complete graph on n (> 3) vertices. Then, A(py,(Ky)) = 2n — 2, and
tm (K,) contains two adjacent vertices with maximum degree. Therefore, Xar(pim (Kr)) >
2n. On the other hand, when n is even and m > 3, it has that x.(Ky) =n + 1 |23] and
Xat (pm(Kp)) < 2n by Theorem Additionally, when m < 2, we can easily obtain a
2n-AVDTC of pi,,(K,,) based on an (n+ 1)-AVDTC f of K? as follows: Color vertices vjl-
(and v when m = 2) with f(v ) for j € [1,n]. Color E! by the set [n + 2,2n] according

to Theorem 2} and color each vlv2 € E? with f(vovo) when m = 2. For j € [1,n], color

uvj" with C'[1 n+1]( V). Color u by 2n. It is easy to see that such a coloring is a 2n-AVDTC

of pm(K,). Hence, Xat(,um(Kn)) = 2n when n is even. We now prove that this result also
holds when n is odd.

Theorem 2.10. Let K,, be a complete graph on n vertices, n > 3. Then Xat(pm(Ky)) =
2n.

Proof. 1t is sufficient to assume n is odd and give a 2n-AVDTC of pu,, (K,). We first give
a total (n + 2)-coloring of K, 42, denoted by f. Let V(K,t2) = {v1,v2,...,0p42}. For
i € [1,n+ 2], color v; and edges of F; by i, where F; = {v;_jvi4; : j=1,2,...,(n+1)/2}
according to modulo n + 2 (here we denote 0 by n + 2). Clearly, such a coloring is a total
(n + 2)-coloring of K, 2. We now construct a 2n-AVDTC, denoted by f’, of pm(Ky)
according to f.

(1) For G°, let f’(v?) = f(vj), f’(v?v?,) = f(vjvy), 4,7 € [1,n], j # j'. For any uncol-
ored edges and vertices of y,,(K,) yet, we will color them by the order E*, V1, E? V2 ...,
Em V™ il u, (j=1,2,...,n), and denote the resulting coloring always by f' at each
stage.

(2) For any i € [1,m], set M; = { ; ! ;+1 jE€ [l,n]} with o%,, ; = v}. Clearly, M, is
a perfect matching of G*. Therefore, G* — M; is a bipartite graph with maximum degree
n—2. For My, let f'(v? v; j+1) f(vn41v5) for j € [1,n]. Then we can properly color edges
of EY\ M by the set [n+3, 2n] by Theorem Now, it has that C[ 2n]( 9 = {f(vni2v))},
and n + 1 does not appear on any edge in M;. So, we color vertices in V1 by n + 1.

When m = 1, color uvjl with f(vn42v;) for j = [1,n — 1] and wv} with (n +1)/2, and
color u with 2n. Obviously, such a coloring is a 2n-AVDTC of u (K5,).

When m > 2, we color the remainder elements as follows.

(3) For each edge e = v , € E? let L(e) = [1, n]\{f’( v;_ 1)} (Here we let 00 = vf).
Moreover, consider f’ (UQ’UO) = n+2. We specially let L(’UQU ) = [1,n]\{(n +1)/2}.) Then
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|L(e)] = n — 1, so by Theorem we can properly color E? by the set [1,n]. Now, we
can see that for any v}, C[ 2n]( ) = {n+ 2} when j # 2, and C'[1 Qn}( 1) ={(n+1)/2}.
Therefore, any two adJacent vertices in VO U V! have different color sets under f.

(4) For i € [2,m], we color the vertices in V' with n +2 when i is even, and with n + 1
when ¢ is odd. And when ¢ is odd, color v; ! ZH with Cgc, }( v 1) for each UZ ! ;+1 e M;,

and color E*\ M; by the set [n + 3,2n]. When i is even, for any e = v; 1 v, € B let

L(e) = [1,n] \ {f’( -1 ; 21)} Then |L(e)|] = n — 1, and by Theorem E can be
properly colored by the set [1,n].

After the above coloring, we can see that for i € [2,m], the color sets of vertices in V* do
not contain color n+1 when i is even and do not contain color n+2 when 7 is odd. Addition-
ally, when i is odd, {f’(e) : e € M;} = [1,n], and when i is even, {ég},’n] (vi) cjell, n]} =
[1,n]. Therefore, when m is odd, we color uv}* with f'(v*v7" 1) + 1 for j € [1,n] (here
vt = v71) and color u with n + 2. When m is even, color uvy® with CE&'/ ]( vi) for
j € [1,n] and color u with n + 1. Since the degrees of vertices in Vm are different from
those of vertices in V™! and C'J[cl,’Qn] (u) does not contain the color f(vj"), it follows that

1" is a 2n-AVDTC of pi, (K5). O

3. Graphs with only one maximum degree vertex

In this section, we embark on the study of x4 (G) for a graph G with only one maximum

degree vertex.

Theorem 3.1. Let G be a graph with only one mazimum degree vertex. If A < 3, then
Xat(G) =A+1.

Proof. A < 2 are trivial cases. So we assume A = 3. It suffices to give a 4-AVDTC of
G. Let u be the unique vertex of degree 3 in G, and vy, v9, vs be its three neighbors.
Then G — u, obtained from G by deleting v and its incident edges is disconnected, and
v1, U2, v3 are not in the same component of G — u. Let v; be the one that is not in the
same component with vy or vs in G — u. Then G — uw;, obtained from G by deleting
edge wv; has two components, say G and Go, where v; € V(Gy). Clearly, A(G;) < 2
and G is a path. Let f be a 4-AVDTC of Gy [23]. Without loss of generality, assume
f(u) =1, f(uve) =2, f(uvs) = 3. Then alternately color the vertices of G; with 2 and 1,
and alternately color the edges of {uv;} U E(G1) with 4 and 3, where v is colored with 2
and wwv; is colored with 4. Obviously, such a coloring of {uv;} U G together with f is a
4-AVDTC of G. O

Theorem 3.2. Let G be a graph with only one mazimum degree vertex. If A = 4, then
Xat(G) S 6-
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Proof. Let u be the vertex of degree 4, and v be a neighbor of u. By Lemma [2.7 G — uv
has a 6-AVDTC f with the properties in Lemma 2.7 We now modify and extend f to a
6-AVDTC of G.

When dg(v) < 2, color wv with one color in [1,2] \ {f(u)} and recolor v with one
in [4,6] (or [4,6] \ {f(vv')} when dg(v) = 2, where v is the neighbor of v in G — ww).
Obviously, v has at least two available colors, so we can obtain a 6-AVDTC of G in this
case. In what follows, we assume dg(v) = 3. Denote by u1, ug, uz the three neighbors of
u in G — uv, and vy, ve the two neighbors of v in G — uwv. Since u is the unique maximum
degree vertex in GG, the color set of u is different from that of its each neighbor under any
6-coloring of G.

Case 1: f(u) = f(v). If f(u) # 3, we without loss of generality assume f(u) =
f(v) = 1. When [3,6] Z {f(uu1), f(uug), f(uus), f(u1), f(uz), f(us)}, we recolor u with
[3,6] \ {f(uuy), f(uusz), f(uug)}, and color uv with 2. Thus, we obtain a total 6-coloring
of G, also denoted by f. Obviously, under f, both 1 and 2 are in the color set of v but at
most one of them is in the color set of vy or vg, so f is a 6-AVDTC of G. When [3,6] C
{f(uwr), f(uug), f(uug), f(u1), f(uz), f(us)}, it has that {f(uw1), f(uuz), f(uus)} = [4,6].
Recolor v with [4,6] \ {f(vv1), f(vv2)} and color wv with 2. We denote the resulting
coloring still by f. If CJ[}’6] (v) # 0}1’6] (v1) and C’][cl’ﬁ] (v) # 0}1’6] (v2), then fis a 6-AVDTC
of G. Otherwise, assume C’J[cl’G] (v) = 01[01,6] (v1) (which implies f(v1) = 2). We then
recolor vu; with 1 and v with [4,6] \ {f(v), f(vv2)}. This gives a new 6-AVDTC of G,
also denoted by f. Clearly, 0}1’6] (v) # Cj[cl’(j] (v1). Moreover, since C][cl’G] (v1) and C'J[cl’6] (v)
contain both 1 and 2, it follows that v; has different color set with each of its neighbors
and C}I’G] (v) # C’J[cl’ﬁ] (v2). So, f is a 6-AVDTC of G.

If f(u) = f(v) =3, then {f(vv1), f(vvz2)} C [4,6]. Without loss of generality, assume
f(vv) =4 and f(vvy) = 5. Recolor v with 6, and color wv with 1 or 2. If no matter when
uv is colored 1 or 2, there always exists a vertex in {v1, vy} with the same color set with v

under the resulting coloring, then {C}l’G}(Ul),C}LG}(vg)} = {{1,4,5,6},{2,4,5,6}}. Let

C’J[}’G}(vl) = {1,4,5,6}, and then f(v1) = 1. Since the color sets (under f) of neighbors
of v; do not contain color 1, we can recolor vv; with 3 and color uv with 2 to gain a
6-AVDTC of G.

Case 2: f(u) # f(v). If f(v) # 3, say 2, then f(v;) # 2 and f(v2) # 2 (ie.,
2 ¢ 0}1’6}(121) or C}[cl’G] (v2)). Then, color uv with 2 and recolor v with one color in [4, 6] \
{f(vv1), f(vv2)} to gain a 6-AVDTC of G.

If f(v) = 3, assume f(vv1) = 4, f(vve) = 5 and f(u) = 1. Color wv with 2. If
O wr) # OV w) and O (wa) # CF (), then f is a 6-AVDTC of G. Otherwise,
assume C’][}’G}(vl) = 0}1’6} (v). Then f(vi) = 2. We recolor vv; with 1 and recolor v

with 6, and also denote the resulting coloring by f. Then, 0}1,6} (vg) # 0}1’6} (v), and
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C’J[}’G} (v1) # C][}’G] (v), which implies that v; has different color set with each of its neighbors
under f since C’][cl’ﬁ}(vl) and C’][cl’ﬁ] (v) contain both 1 and 2. Hence, f is a 6-AVDTC of

G. O

4. Discussion

Motivated by Corollary Theorems [3.1] and we propose the following problem.

Problem 4.1. If a graph G has only one vertex of maximum degree, then xq.(G) <
A(G) + 2.

The correctness of this problem would provide a strong support for AVDTCC, since if
we have had a proof of this problem, then we can prove a weaker result of AVDTCC: For
any graph G, xu(G) < A(G) + 4. To see this we first add a new vertex and connect it
with a maximum degree vertex of GG, say v. Denote by G’ the resulting graph. Clearly, G’
contains only one vertex v with the maximum degree A(G)+1. Hence, xq(G') < A(G)+3.
Let f be a (A(G) +3)-AVDTC of G'. Then f is a (A(G) +4)-AVDTC of G by recoloring
v with A(G) +4in G.
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