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Blow-up and Decay for a Pseudo-parabolic Equation with Nonstandard

Growth Conditions
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Abstract. This paper deals with a pseudo-parabolic equation involving variable ex-

ponents under homogeneous Dirichlet boundary value condition. The authors first

develop the potential well method to prove a threshold result on the existence or

nonexistence of global solutions to the equation when the initial energy is less than

the mountain pass level d. In the case of high energy initial data, a new characteri-

zation for the nonexistence of global solution is also given. These results extend and

improve some recent results obtained by Di et al. [9].

1. Introduction

In this paper, we consider the following initial-boundary value problem:

(1.1)


ut −∆ut − div(|∇u|m(x)−2∇u) = |u|p(x)−2u, (x, t) ∈ QT ,

u(x, t) = 0, (x, t) ∈ ΓT ,

u(x, 0) = u0(x), x ∈ Ω,

where Ω ⊂ RN is a bounded domain with smooth boundary ∂Ω and QT := Ω × [0, T ],

ΓT := ∂Ω× [0, T ]. It will also be assumed throughout this paper that the exponents m(x)

and p(x) are two continuous functions on Ω such that

2 ≤ m− ≤ m(x) ≤ m+ < p− ≤ p(x) ≤ p+ < ∞,(1.2)

ess inf
x∈Ω

(m∗(x)− p(x)) > 0,(1.3)

where m− = ess infx∈Ωm(x), m+ = ess supx∈Ωm(x), p−, p+ are similarly defined, and

m∗(x) :=


Nm(x)
N−m(x) if m(x) < N,

∞ if m(x) ≥ N.
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In addition m(x) satisfies the logarithmic module of continuity:

(1.4) |m(x)−m(y)| ≤ − C

log |x− y|
for all x, y ∈ Ω, |x− y| < δ,

where C > 0, 0 < δ < 1.

Equations of type (1.1) with one time derivative appearing in the highest order term are

called pseudo-parabolic or Sobolev equations, and can be used to describe many important

physical phenomena such as flows of fluids through fissured rock [5], thermodynamics [36],

the unidirectional propagation of nonlinear, dispersive, long waves [6], the aggregation of

populations [25], semiconductors in physics [3, 16, 17]. In mathematics, the study of this

type of equations originated from the work of Ting and Showalter [34, 35]. Subsequently,

nonlinear pseudo-parabolic equations have been investigated by many authors, see [2, 7,

12,15–19,22,27,33,39] and references therein.

Recently the equations with nonlinearities of variable exponent type, also referred as

equations with nonstandard growth conditions, have been studied extensively because

of its applications in various physical phenomena such as the flows of electrorheological

fluids, processes of filtration through a porous media and image processing and so on,

see [1, 4, 8, 10,13,28,30,31] and the further references therein.

Regarding the global existence and nonexistence results of (1.1), in [37] Xu and Su

studied a special case of (1.1) (when m(x) = 2 and p(x) = p). The authors proved

global existence, non-existence, and asymptotic behavior of solutions with initial energy

J(u0) ≤ d by using potential well method and obtained finite-time blow-up with high

initial energy by the comparison principle. Then Luo [24] obtained an upper bound and a

lower bound of the blow-up time and exponential decay under some appropriate conditions.

This problem was studied by Qu et al. [29] for the more general case (when m(x) = 2

and p(x) instead of p), in which the authors established a sharp threshold result on global

existence or blow-up of solution by using the modified potential well method with initial

energy J(u0) ≤ d. The case of high initial energy was concerned.

When both m(x) and p(x) are functions, Di et al. [9] showed that the solutions to

(1.1) fail to exist globally when the initial energy is non-positive and gave an upper bound

for the maximal existence time. Later, Liao [20] obtained the non-global existence of

solutions when the initial energy J(u0) is positive. And then Liao et al. [21] proved the

decay estimates due to a key integral inequality. In a recent result, Zhu et al. [38] obtained

the global existence and blow-up results of solutions in case J(u0) > d.

Inspired by these papers, we develop the potential well method due to Payne and

Sattinger [26,32] to treat the problem (1.1). Note that our method is technically different

from in [9,20,21], in which the authors obtained the results on existence and non-existence

of solution under initial energy is non-positive or positive with assuming its smallness. The
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main advantage of our method is to obtain a sharp result on the existence or nonexistence

of global solutions in case J(u0) < d. The main difficulty here is the presence of variable

exponents that causes the lack of homogeneous properties, the gap between the norm and

the integral in variable exponent spaces, and hence it requires more delicate technique

to overcome these difficulties, for example see Lemmas 2.3 and 2.4 for constructing the

potential well, the proofs of Theorems 3.4 and 3.5. In case J(u0) > d, we give a new

characterization for the nonexistence of global solutions, see Theorem 3.8. It is also

noticed that the authors [38] only stated a such result for the special case m(x) = m,

see Proposition 2.2 in [38]. We also show the asymptotic behavior of global solution, see

Theorem 3.7.

The rest of this paper is organized as follows: In Section 2 we recall some facts about

the function spaces of Orlicz–Sobolev type and construct the stable and unstable sets;

Section 3 states our main results and the rest of the paper is devoted to the proofs of main

results.

Notations. Let ∥ · ∥q denote the usual norm of the space Lq(Ω) for 1 ≤ q ≤ ∞. More-

over, ⟨ · , · ⟩ denote the usual inner product of the Lebesgue space L2(Ω) and ⟨u, v⟩H1
0
=

⟨u, v⟩+ ⟨∇u,∇v⟩ for u, v ∈ H1
0 (Ω). We also denote the norm of H1

0 (Ω) by ∥ · ∥H1
0
, that is,

∥u∥H1
0
=
√

∥u∥22 + ∥∇u∥22. Finally, constants are denoted generically by C although they

can change in line or line by line.

2. Preliminaries

2.1. Functional spaces

In this section, we introduce some definitions and basic results on Lebesgue and Sobolev

spaces with variable exponents (see [11,14] and references therein), which will be used in

the next sections.

Let m : Ω → [1,∞) be a measurable function, where Ω is a domain of RN . The

Lebesgue space with a variable exponent m(·) is defined by

Lm(·)(Ω) =

{
u : Ω → R is measurable, ρm(·)(u) :=

∫
Ω
|u(x)|m(x) dx < ∞

}
,

which is equipped with the Luxemburg-type norm

∥u∥m(·) = inf
{
λ > 0 : ρm(·)

(u
λ

)
≤ 1
}

is a Banach space. We call it a generalized Lebesgue space.

We next define variable exponent Sobolev spaces W 1,m(·)(Ω) as follows:

W 1,m(·)(Ω) = {u ∈ Lm(·)(Ω) : |∇u| ∈ Lm(·)(Ω)},
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endowed with the norm

∥u∥W 1,m(·)(Ω) = ∥u∥m(·) + ∥∇u∥m(·).

The space W
1,m(·)
0 (Ω) is defined as the closure of C∞

0 (Ω) in W 1,m(·)(Ω).

Proposition 2.1. [11] For any u ∈ Lm(·)(Ω). Then the following inequality holds

min
{
∥u∥m−

m(·), ∥u∥
m+

m(·)

}
≤ ρm(·)(u) ≤ max

{
∥u∥m−

m(·), ∥u∥
m+

m(·)

}
.

Proposition 2.2. [11, 14] Let p,m : Ω → [1,∞) be measurable functions. Then we have

(i) If Ω is bounded and m(x) ≤ p(x) for a.e. x ∈ Ω, then Lp(·)(Ω) ↪→ Lm(·)(Ω) and the

embedding is continuous.

(ii) If m ∈ C(Ω) satisfies (1.3) then the Sobolev imbedding W
1,m(·)
0 (Ω) ↪→ Lp(·)(Ω) is

continuous and compact.

(iii) If Ω is bounded and m satisfies (1.4), then the m(·)-Poincaré inequality

∥u∥m(·) ≤ C∥∇u∥m(·)

holds for all u ∈ W
1,m(·)
0 (Ω). Here C is a positive constant depending only on m and

Ω.

By Proposition 2.2(iii), the space W
1,m(·)
0 (Ω) also has a norm ∥∇u∥m(·), which is equiv-

alent to ∥u∥W 1,m(·)(Ω). So we can use this norm to replace ∥u∥W 1,m(·)(Ω) in the next sections.

2.2. Stationary state and potential well

Consider the stationary solutions of (1.1) which solve the problem

(2.1)

−div(|∇u|m(x)−2∇u) = |u|p(x)−2u in Ω,

u(x) = 0 on ∂Ω,

wherem and p satisfy (1.2)–(1.4). Define the energy functional J and the Nehari functional

I by

J(u) =

∫
Ω

1

m(x)
|∇u|m(x) dx−

∫
Ω

1

p(x)
|u|p(x) dx,

I(u) =

∫
Ω
|∇u|m(x) dx−

∫
Ω
|u|p(x) dx.
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Then J and I are of class C1 over W
1,m(·)
0 (Ω) and critical points of J are weak solutions

of (2.1). Moreover, it is easily seen that

J(u) ≥
(

1

m+
− 1

p−

)∫
Ω
|∇u|m(x) dx+

1

p−
I(u),(2.2)

J(u) ≤
(

1

m− − 1

p+

)∫
Ω
|∇u|m(x) dx+

1

p+
I(u).(2.3)

Let u ∈ W
1,m(·)
0 (Ω) \ {0} and consider the fibering map s 7→ j(s) := J(su) for s > 0,

j(s) =

∫
Ω

sm(x)

m(x)
|∇u|m(x) dx−

∫
Ω

sp(x)

p(x)
|u|p(x) dx.

We then have the following lemma.

Lemma 2.3. Let m, p satisfy (1.2)–(1.4), and u ∈ W
1,m(·)
0 (Ω) \ {0}. Then

(i) lims→0+ j(s) = 0 and lims→∞ j(s) = −∞.

(ii) There exists a unique s∗ = s∗(u) > 0 such that I(su) > 0 for s ∈ (0, s∗), I(s∗u) = 0

and I(su) < 0 for s ∈ (s∗,∞). In addition, we have that j(s) is strictly increasing

on (0, s∗), strictly decreasing on (s∗,∞), and attains the maximum at s = s∗.

Proof. (i) Elementary calculations imply that

j(s) ≤ max
{
sm

+
, sm

−}∫
Ω

1

m(x)
|∇u|m(x) dx−min

{
sp

+
, sp

−}∫
Ω

1

p(x)
|u|p(x) dx

and

j(s) ≥ min
{
sm

+
, sm

−}∫
Ω

1

m(x)
|∇u|m(x) dx−max

{
sp

+
, sp

−}∫
Ω

1

p(x)
|u|p(x) dx.

Since m+ < p− and u ̸= 0, we obtain (i).

(ii) It is also noticed that j(s) > 0 for small s > 0 and j is continuous on [0,∞) and

differentiable on (0,∞). Combining this facts and (i), we imply that j attains its maximum

value at some number s∗ := s∗(u) > 0. By Fermat’s theorem, one has j′(s∗) = 0. On the

other hand, since I(su) = sj′(s), we obtain I(s∗u) = 0. Then for any s > 0, we have

I(su) = I(su)−
( s

s∗

)m+

I(s∗u)

=

∫
Ω

(( s

s∗

)m(x)
−
( s

s∗

)m+
)
|∇s∗u|m(x) dx

+

∫
Ω

(( s

s∗

)m+

−
( s

s∗

)p(x))
|s∗u|p(x) dx.

Since m(x) ≤ m+ < p(x) for a.e. x ∈ Ω, we derive that I(su) > 0 for s ∈ (0, s∗),

I(s∗u) = 0 and I(su) < 0 for s ∈ (s∗,∞). Hence j(s) is strictly increasing on (0, s∗),

strictly decreasing on (s∗,∞), and attains the maximum at s = s∗ due to the relation

j′(s) = 1
sI(su). The proof is complete.
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Let us define the so-called mountain pass level

d = inf
u∈W 1,m(·)

0 (Ω)\{0}
sup
s>0

J(su).

We also define the Nehari manifold defined by

N =
{
u ∈ W

1,m(·)
0 (Ω) \ {0} : I(u) = 0

}
.

The next lemma gives the variational characterization of d.

Lemma 2.4. Let m, p satisfy (1.2)–(1.4). Then there exists non-negative function u∗ ∈ N
such that

d = min
u∈N

J(u) = J(u∗) > 0.

Proof. We first prove that d = infu∈N J(u). By Lemma 2.3, we can rewrite the mountain

pass level d as follows

d = inf
u∈W 1,m(·)

0 (Ω)\{0}
J(s∗u),

which implies that d ≥ infu∈N J(u) since s∗u ∈ N . For any u ∈ N , by using Lemma 2.3

again, we have s∗ = 1 and so d = inf
u∈W 1,m(·)

0 (Ω)\{0} J(u) ≤ infu∈N J(u). Hence d =

infu∈N J(u).

We next show that d > 0. Indeed, let u ∈ N . If ∥∇u∥m(·) ≤ 1, then

∥∇u∥m+

m(·) ≤
∫
Ω
|∇u|m(x) dx =

∫
Ω
|u|p(x) dx ≤ max

{
∥u∥p

−

p(·), ∥u∥
p+

p(·)
}

≤ max
{
Sp−

p(·)∥∇u∥p
−

m(·), S
p+

p(·)∥∇u∥p
+

m(·)
}
≤ max

{
Sp−

p(·), S
p+

p(·)
}
∥∇u∥p

−

m(·),

which implies that ∥∇u∥m(·) ≥ (1/δ)1/(p
−−m+), where δ := max

{
Sp−

p(·), S
p+

p(·)
}
and Sp(·) > 0

is the optimal constant in the embedding W
1,m(·)
0 (Ω) ↪→ Lp(·)(Ω). Hence, for any u ∈ N ,

one has

(2.4) ∥∇u∥m(·) ≥ min

{(
1

δ

)1/(p−−m+)

, 1

}
> 0.

On the other hand, we also deduce from u ∈ N and (2.2) that

(2.5) J(u) ≥
(

1

m+
− 1

p−

)
min

{
∥∇u∥m+

m(·), ∥∇u∥m−

m(·)
}
.

Combining (2.4) and (2.5) we obtain d > 0.

We finally prove that d is actually attained by some non-negative function u ∈ N .

Indeed, let {uk} ⊂ N be a minimizing sequence for J such that

(2.6) J(uk) → d as k → ∞.
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Note that |uk| ∈ W
1,m(·)
0 (Ω) thanks to uk ∈ W

1,m(·)
0 (Ω), I(|uk|) = I(uk) and J(|uk|) =

J(uk), so we may assume that uk ≥ 0 a.e. in Ω for all k ∈ N. From (2.5), (2.6) and the

compactness of the embedding W
1,m(·)
0 (Ω) ↪→ Lp(·)(Ω) due to (1.3), we can find a function

u∗ and a sub-sequence of {uk}, still denote by {uk}, so that

uk ⇀ u∗ weakly in W
1,m(·)
0 (Ω),(2.7)

uk → u∗ strongly in Lp(·)(Ω) and a.e. in Ω.(2.8)

Then u∗ ≥ 0 a.e. in Ω. We next show that u∗ ∈ N . Since uk ∈ N , then∫
Ω
|∇uk|m(x) dx =

∫
Ω
|uk|p(x) dx,

which, together with (2.4) and (2.8), implies that u∗ ̸= 0. From (2.7), (2.8) and notice

that uk ∈ N , we have I(u∗) ≤ lim infk→∞ I(uk) = 0. Suppose that I(u∗) < 0, then by

Lemma 2.3 there exists s∗ ∈ (0, 1) such that I(s∗u∗) = 0 which implies

d ≤ J(s∗u∗) = J(s∗u∗)−
1

p−
I(s∗u∗)

=

∫
Ω
(s∗)m(x)

(
1

m(x)
− 1

p−

)
|∇u∗|m(x) dx+

∫
Ω
(s∗)p(x)

(
1

p−
− 1

p(x)

)
|u∗|p(x) dx

<

∫
Ω

(
1

m(x)
− 1

p−

)
|∇u∗|m(x) dx+

∫
Ω

(
1

p−
− 1

p(x)

)
|u∗|p(x) dx

= J(u∗)−
1

p−
I(u∗).

(2.9)

On the other hand, since uk ∈ N , it follows from (2.7) and (2.8) that

d = lim inf
k→∞

[
J(uk)−

1

p−
I(uk)

]
= lim inf

k→∞

[∫
Ω

(
1

m(x)
− 1

p−

)
|∇uk|m(x) dx+

∫
Ω

(
1

p−
− 1

p(x)

)
|uk|p(x) dx

]
≥
∫
Ω

(
1

m(x)
− 1

p−

)
|∇u∗|m(x) dx+

∫
Ω

(
1

p−
− 1

p(x)

)
|u∗|p(x) dx

= J(u∗)−
1

p−
I(u∗),

which contradicts (2.9). Hence we get u∗ ̸= 0 and I(u∗) = 0, and therefore u∗ ∈ N . From

this and the above estimate, we obtain d ≥ J(u∗). On the other hand, d ≤ J(u∗) since

u∗ ∈ N . So d = J(u∗). The proof is complete.

We now define the so-called stable set W (also known as potential well) and unstable

set U as follows:

W =
{
u ∈ W

1,m(·)
0 (Ω) : I(u) > 0, J(u) < d

}
∪ {0},

U =
{
u ∈ W

1,m(·)
0 (Ω) : I(u) < 0, J(u) < d

}
.
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We also define

N+ =
{
u ∈ W

1,m(·)
0 (Ω) : I(u) > 0

}
and N− =

{
u ∈ W

1,m(·)
0 (Ω) : I(u) < 0

}
,

and the closed sub levels of J

Jk =
{
u ∈ W

1,m(·)
0 (Ω) : J(u) ≤ k

}
and Nk := N ∩ Jk ̸= ∅ for k ≥ d.

For k ≥ d, we define

λk = inf
{
∥u∥H1

0
: u ∈ Nk

}
and Λk = sup

{
∥u∥H1

0
: u ∈ Nk

}
.

3. Main results

Before stating our main result, we recall here some known results and definitions.

Theorem 3.1. (see [9, Theorem 3.1]) Assume that (1.2)–(1.4) hold, then for any u0 ∈
W

1,m(·)
0 (Ω), there exists a T0 ∈ (0, T ] such that the problem (1.1) has a unique local solution

u ∈ L∞(0, T0;W
1,m(·)
0 (Ω)), ut ∈ L2(0, T0;H

1
0 (Ω))

satisfying

(3.1) ⟨ut, v⟩+ ⟨∇ut,∇v⟩+ ⟨|∇u|m(x)−2∇u,∇v⟩ = ⟨|u|p(x)−2u, v⟩

for all v ∈ W
1,m(·)
0 (Ω). In addition, u(t) := u(x, t) satisfies the following energy identity

(3.2)
d

dt
∥u(t)∥2H1

0
= −2I(u(t))

and

(3.3)
d

dt
J(u(t)) = −∥u′(t)∥2H1

0
.

Remark 3.2. The existence of such solution was stated in [9] while the identity (3.2) is

obtained by replacing v in (3.1) by u. In addition, by integrating the identity (3.3) with

respect to time variable from 0 to t we obtain

(3.4)

∫ t

0
∥u′(τ)∥2H1

0
dτ + J(u(t)) = J(u0), 0 ≤ t < T0.

Definition 3.3 (Maximal existence time). Let u(t) be a weak solution to the prob-

lem (1.1). We define the maximal existence time Tmax of u(t) as follows:

(i) If u(t) exists for 0 ≤ t < ∞, then Tmax = ∞.
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(ii) If there exists t0 > 0 such that u(t) exists for 0 ≤ t < t0, but does not exist at t0,

then Tmax = t0.

We then introduce the sets

G =
{
u0 ∈ W

1,m(·)
0 (Ω) : u(t) exists globally, i.e., Tmax = ∞

}
,

G0 =
{
u0 ∈ G : u(t) → 0 in W

1,m(·)
0 (Ω) as t → ∞

}
,

B =
{
u0 ∈ W

1,m(·)
0 (Ω) : u(t) blows up in finite time, i.e., Tmax < ∞

}
.

We are now in a position to state our main results. Our first theorem shows that the

solution u(t) to (1.1) exists globally and its potential energy J(u(t)) decays when it begins

in the stable set W.

Theorem 3.4. Let (1.2)–(1.4) hold. If u0 ∈ W, then u0 ∈ G0. Moreover, the energy

functional J(u(t)) satisfies the following decay estimates

J(u(t)) ≤


(
Ct+ (J(u0) + ∥u0∥2H1

0
)
2−m+

2

) 2
2−m+ if m+ > 2,(

J(u0) + ∥u0∥2H1
0

)
e−Ct if m+ = 2

for some positive constant C := C(m, p, u0, d).

We next prove the instability of u(t) that starts from the unstable sets U .

Theorem 3.5. Let (1.2)–(1.4) hold. If u0 ∈ U , then u0 ∈ B. Moreover, we can estimate

the upper bound for Tmax as follows

Tmax ≤
4(p− − 1)∥u0∥2H1

0

p−(p− − 2)2(d− J(u0))
.

Remark 3.6. Theorems 3.4 and 3.5 give us a sharp result on the existence and nonexistence

of global solution to (1.1) when J(u0) < d.

Let us introduce the set

S =
{
ϕ ∈ W

1,m(·)
0 (Ω) : ϕ is a stationary solution of (1.1)

}
.

The next theorem shows the asymptotic behavior of the global solution of (1.1).

Theorem 3.7. Let (1.2)–(1.4) hold and u(t) be a global weak solution of the problem (1.1).

Then there exists a sequence {tn} with tn → ∞ and a function ϕ ∈ S such that u(tn) → ϕ

strongly in W
1,m(·)
0 (Ω) as n → ∞.

Finally, we give a characterization on the data u0 with arbitrary high energy J(u0)

that leads to blow-up in finite time phenomena.
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Theorem 3.8. Let (1.2)–(1.4) hold. Then if J(u0) > d and

(3.5) ∥u0∥2H1
0
>

2(1 + λ1)

m−λ1

(
m+p−

p− −m+
J(u0) +

m+ − 2

2
|Ω|
)
,

then u0 ∈ N− ∩ B. Here λ1 is the first eigenvalue of the problem∆u+ λu = 0 in Ω,

u = 0 on ∂Ω.

4. Proof of Theorem 3.4

We begin this section by the boundedness of the stable set W.

Lemma 4.1. W is a bounded subset of W
1,m(·)
0 (Ω). More precisely, one has

∥∇u∥m(·) ≤ max
{
M

1
m− ,M

1
m+
}
, ∀u ∈ W,

where M = p−m+d
p−−m+ > 0.

Proof. Let u ∈ W then by definition of W we have J(u) < d and I(u) ≥ 0. Taking this

into account and notice that (2.2), we have the following estimate

J(u) ≥
(

1

m+
− 1

p−

)∫
Ω
|∇u|m(x) dx,

which implies

(4.1) ρm(·)(∇u) =

∫
Ω
|∇u|m(x) dx ≤ p−m+

p− −m+
J(u) ≤ p−m+

p− −m+
d = M.

Hence, we obtain

∥∇u∥m(·) ≤ max
{
ρ

1
m−
m(·)(∇u), ρ

1
m+

m(·)(∇u)
}
≤ max

{
M

1
m− ,M

1
m+
}
.

The proof is complete.

The next lemma plays a crucial role in the proof of decay properties of the energy

functional.

Lemma 4.2. Let u(t) be a weak solution to (1.1) on [0, Tmax) associated with the initial

data u0 ∈ W. Then u(t) ∈ W for all t ∈ [0, Tmax) and

I(u(t)) ≥

1− (J(u0)

d

) p−−m+

p+

∫
Ω
|∇u(t)|m(x) dx, 0 ≤ t < Tmax.
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Proof. We first prove that u(t) ∈ W on [0, Tmax). Indeed, assume that u(t) exists in W at

the time t = t0 ∈ (0, Tmax) then we have

u(t) ∈ W, 0 ≤ t < t0 and u(t0) ∈ ∂W.

This implies that J(u(t0)) = d or I(u(t0)) = 0 and u(t0) ̸= 0. By (3.4) we have J(u(t0)) ≤
J(u0) < d, so it must be I(u(t0)) = 0 and u(t0) ̸= 0. However this again leads to the

following contradiction

d = inf
u∈N

J(u) ≤ J(u(t0)) < d.

Hence we get u(t) ∈ W on [0, Tmax).

By Lemma 2.3 there exists a constant s∗ = s∗(u(t)) > 1 such that I(s∗u(t)) = 0. Then

0 = I(s∗u(t)) ≤ (s∗)m
+

∫
Ω
|∇u(t)|m(x) dx− (s∗)p

−
∫
Ω
|u(t)|p(x) dx

=
(
(s∗)m

+ − (s∗)p
−) ∫

Ω
|∇u(t)|m(x) dx+ (s∗)p

−
I(u(t)),

which implies

(4.2) I(u(t)) ≥
[
1− (s∗)m

+−p−
] ∫

Ω
|∇u(t)|m(x) dx.

We next find a precisely lower bound for s∗. By variational characterization of d and the

definition of J , we have

d ≤ J(s∗u(t)) = J(s∗u(t))− 1

p−
I(s∗u(t))

=

∫
Ω
(s∗)m(x)

(
1

m(x)
− 1

p−

)
|∇u(t)|m(x) dx+

∫
Ω
(s∗)p(x)

(
1

p−
− 1

p(x)

)
|u(t)|p(x) dx

≤ (s∗)p
+

[∫
Ω

(
1

m(x)
− 1

p−

)
|∇u(t)|m(x) dx+

∫
Ω

(
1

p−
− 1

p(x)

)
|u(t)|p(x) dx

]
= (s∗)p

+

[
J(u(t))− 1

p−
I(u(t))

]
.

Combining this fact, energy identity (3.4) and u(t) ∈ W we obtain

J(u0) ≥ J(u(t)) ≥ J(u(t))− 1

p−
I(u(t)) ≥ d

(s∗)p+
,

which implies

(4.3) s∗ ≥
(

d

J(u0)

) 1
p+

> 1.

The proof follows from (4.2) and (4.3).
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With the aid of Lemmas 4.1 and 4.2, we are now ready to prove the Theorem 3.4.

Proof of Theorem 3.4. Let u(t) be a weak solution of (1.1) starting from u0 ∈ W. As in

the proof of Lemma 4.2 we have u(t) ∈ W for all t ∈ [0, Tmax). It follows from Lemma 4.1

that u(t) is uniformly bounded in time in W
1,m(·)
0 (Ω). Thus the weak solution u(t) to

(1.1) exists globally, i.e., Tmax = ∞. So it remains to prove the decay property of energy

functional J(u(t)), we define the Lyapunov functional

L(t) = J(u(t)) + ∥u(t)∥2H1
0
.

Then by using the embedding W
1,m(·)
0 (Ω) ↪→ H1

0 (Ω) for m
− ≥ 2 and (4.1), one has

L(t) ≤ J(u(t)) + C∥∇u(t)∥2m(·)

≤ J(u(t)) + Cmax

{
ρ

2
m−
m(·)(∇u(t)), ρ

2
m+

m(·)(∇u(t))

}
= J(u(t)) + Cmax

{
ρ

2
m−− 2

m+

m(·) (∇u(t)), 1

}
ρ

2
m+

m(·)(∇u(t))

≤ J(u(t)) + Cmax
{
M

2
m−− 2

m+ , 1
}
ρ

2
m+

m(·)(∇u(t))

≤ J(u(t)) + CJ
2

m+ (u(t))

=
(
J1− 2

m+ (u(t)) + C
)
J

2
m+ (u(t))

≤ CJ
2

m+ (u(t)).

(4.4)

Here C := C(m, p, u0) is a constant and J(u(t)) ≤ J(u0) is used for the last estimate. By

Lemma 4.2 and (2.3), we obtain

(4.5) J(u(t)) ≤ CI(u(t)),

where C := C(d,m, p, u0) is a positive constant given by

C =

(
1

m− − 1

p+

)1− (J(u0)

d

) p−−m+

p+

−1

+
1

p+
.

Combining (4.4) and (4.5), we find that

L′(t) = −∥ut(t)∥2H1
0
− 2I(u(t)) ≤ −2C−1J(u(t)) ≤ −CL

m+

2 (t),

where C := C(d,m, p, u0). If m
+ > 2, then

J(u(t)) ≤ L(t) ≤
(
Ct+ L

2−m+

2 (0)
) 2

2−m+ =

(
Ct+

(
J(u0) + ∥u0∥2H1

0

) 2−m+

2

) 2
2−m+

.
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If m+ = 2, then

J(u(t)) ≤ L(t) ≤ L(0)e−Ct =
(
J(u0) + ∥u0∥2H1

0

)
e−Ct.

Thus J(u(t)) → 0 as t → ∞ in both cases. It is from this and (4.1) that u0 ∈ G0. The

proof is complete.

5. Proof of Theorem 3.5

We begin this section by the invariance property of U which can be proved similarly as in

the proof of Lemma 4.2. So we omit it here.

Lemma 5.1. If u0 ∈ U and u(t) is a weak solution to (1.1) on [0, Tmax), then u(t) ∈ U
for 0 ≤ t < Tmax.

With the aid of Lemma 5.1, we are now ready to prove Theorem 3.5. Fix T ∈ (0, Tmax)

and consider the function F (t) defined by

F (t) =

∫ t

0
∥u(τ)∥2H1

0
dτ + (T − t)∥u0∥2H1

0
+ µ(t) for t ∈ [0, T ).

Here µ(t) ∈ C2[0, T ) is a positive function given later. We then have

F ′(t) = ∥u(t)∥2H1
0
− ∥u0∥2H1

0
+ µ′(t), and F ′′(t) = −2I(u(t)) + µ′′(t).

By using Cauchy–Schwarz inequality, we have, for any ξ1 > 0,(∫ t

0
∥u(τ)∥2H1

0
dτ + µ(t)

)(∫ t

0
∥u′(τ)∥2H1

0
dτ + ξ1

)

≥

√∫ t

0
∥u′(τ)∥2

H1
0
ds

∫ t

0
∥u(τ)∥2

H1
0
ds+

√
ξ1µ(t)

2

≥
(∫ t

0
⟨u′(τ), u(τ)⟩H1

0
dτ +

√
ξ1µ(t)

)2

=
1

4

(
∥u(t)∥2H1

0
− ∥u0∥2H1

0
+ 2
√
ξ1µ(t)

)2
.

We choose µ(t) such that µ′(t) = 2
√
ξ1µ(t), that is, µ(t) = ξ1(t+ ξ2)

2 with ξ2 > 0. Then

(F ′(t))2 =
(
∥u(t)∥2H1

0
− ∥u0∥2H1

0
+ 2
√
ξ1µ(t)

)2
≤ 4

(∫ t

0
∥u(τ)∥2H1

0
dτ + µ(t)

)(∫ t

0
∥u′(τ)∥2H1

0
dτ + ξ1

)
≤ 4F (t)

(∫ t

0
∥u′(τ)∥2H1

0
dτ + ξ1

)
.

(5.1)
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On the other hand, since u0 ∈ U it follows from Lemma 5.1 that u(t) ∈ U , that is,

I(u(t)) < 0. Then by analogous arguments in the proof of Lemma 2.4, we deduce that

d < J(u(t))− 1

p−
I(u(t)),

which implies that

−I(u(t)) > p−(d− J(u(t))) = p−(d− J(u0)) + p−
∫ t

0
∥u′(τ)∥2H1

0
dτ.

From the above inequality and (5.1), we get

F ′′(t)F (t)− p−

2
(F ′(t))2 ≥ F (t)

[
F ′′(t)− 2p−

(∫ t

0
∥u′(τ)∥2H1

0
dτ + ξ1

)]
= F (t)

[
−2I(u(t))− 2p−

∫ t

0
∥u′(τ)∥2H1

0
dτ − 2ξ1(p

− − 1)

]
≥ F (t)

[
2p−(d− J(u0))− 2ξ1(p

− − 1)
]
.

Choosing ξ1 =
p−(d−J(u0))

p−−1
> 0, we have

F ′′(t)F (t)− p−

2
(F ′(t))2 ≥ 0.

Putting G(t) = F 1− p−
2 (t), we get

G′(t) =

(
1− p−

2

)
F ′(t)

F
p−
2 (t)

, and G′′(t) =

(
1− p−

2

)
F (t)F ′′(t)− p−

2 (F ′(t))2

F 1+ p−
2 (t)

.

Then we have G′′(t) ≤ 0 for all t ∈ [0, T ], that is, G(t) is concave downward on [0, T ]. By

definition of concavity, we get

G(T ) ≤ G(0) + TG′(0).

From this and notice that G(T ) > 0 and G′(0) < 0, one has

T ≤ − G(0)

G′(0)
=

F (0)(p−
2 − 1

)
F ′(0)

=
T∥u0∥2H1

0
+ ξ1ξ

2
2

(p− − 2)ξ1ξ2
.

By choosing ξ2 >
∥u0∥2

H1
0

(p−−2)ξ1
, we have

T ≤ ξ1ξ
2
2

(p− − 2)ξ1ξ2 − ∥u0∥2H1
0

:= γ(ξ2).
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Hence,

T ≤ inf

ξ2>

∥u0∥2
H1
0

(p−−2)ξ1

γ(ξ2) = γ

(
2∥u0∥2H1

0

(p− − 2)ξ1

)
=

4(p− − 1)∥u0∥2H1
0

p−(p− − 2)2(d− J(u0))
.

Letting T → Tmax, we obtain

Tmax ≤
4(p− − 1)∥u0∥2H1

0

p−(p− − 2)2(d− J(u0))
.

The proof is complete.

6. Proof of Theorem 3.7

Let u = u(t) be a global solution to (1.1). By Theorems 3.4 and 3.5, without loss of

generality, we may assume that J(u(t)) ≥ d for all t ≥ 0. It follows from this and (3.4)

that ∫ t

0
∥u′(τ)∥2H1

0
dτ ≤ J(u0)− d.

Letting t → ∞, we get
∫∞
0 ∥u′(τ)∥2

H1
0
dτ < ∞. And hence there exists a sequence {tn}

with tn → ∞ as n → ∞ such that

(6.1) lim
n→∞

∥u′(tn)∥H1
0
= 0.

Then we have

|I(u(tn))| =
∣∣⟨u′(tn), u(tn)⟩H1

0

∣∣ ≤ ∥u′(tn)∥H1
0
∥u(tn)∥H1

0
≤ C∥∇u(tn)∥m(·),

which, together with (2.2), implies

J(u0) ≥ J(u(tn)) ≥
(

1

m+
− 1

p−

)∫
Ω
|∇u(tn)|m(x) dx+

1

p−
I(u(tn))

≥
(

1

m+
− 1

p−

)
min

{
∥∇u(tn)∥m

+

m(·), ∥∇u(tn)∥m
−

m(·)
}
− C

p−
∥∇u(tn)∥m(·).

This and m− > 1 imply

(6.2) ∥∇u(tn)∥m(·) ≤ C, ∀n ∈ N

for some constant C > 0. Then since (1.3), there exists a subsequence of {tn}, still denoted
by {tn} such that

un := u(tn) ⇀ ϕ weakly in W
1,m(·)
0 (Ω),(6.3)

un → ϕ strongly in Lp(·)(Ω).(6.4)
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It follows from (6.3) that

(6.5) |∇un|m(x)−2∇un ⇀ χ weakly in L
m(·)

m(·)−1 (Ω).

We next show that χ = |∇ϕ|m(x)∇ϕ. Testing the equation (1.1) by v ∈ W
1,m(·)
0 (Ω) yields

(6.6)

∣∣∣∣∫
Ω
|∇un|m(x)−2∇un · ∇v dx−

∫
Ω
|un|p(x)−2unv dx

∣∣∣∣ = ∣∣⟨u′n, v⟩H1
0

∣∣ ≤ ∥u′n∥H1
0
∥v∥H1

0
.

Letting n → ∞ and using (6.1), (6.4) and (6.5) we have

(6.7)

∫
Ω
χ · ∇v dx =

∫
Ω
|ϕ|p(x)−2ϕv dx.

By taking v = un in (6.6) and notice that (6.2), one has

(6.8)

∣∣∣∣∫
Ω
|∇un|m(x) dx−

∫
Ω
|un|p(x) dx

∣∣∣∣ ≤ C∥u′n∥H1
0
.

We deduce from (6.1), (6.4), (6.7) and (6.8) that

(6.9) lim
n→∞

∫
Ω
|∇un|m(x) dx =

∫
Ω
|ϕ|p(x) dx =

∫
Ω
χ · ∇ϕ dx.

Since u 7→ K(u) :=
∫
Ω

1
m(x) |∇u|m(x) dx is a convex functional, we imply (see [23, Proposi-

tion 1.1, p. 158]) the mapping K ′ is monotonic and hemicontinuous, where

⟨K ′(u), v⟩ =
∫
Ω
|∇u|m(x)−2∇u · ∇v dx, ∀u, v ∈ W

1,m(·)
0 (Ω).

By the monotonicity of K ′, we have, for any v ∈ W
1,m(·)
0 (Ω),∫

Ω

(
|∇un|m(x)−2∇un − |∇v|m(x)−2∇v

)
· (∇un −∇v) dx ≥ 0,

which yields that∫
Ω
|∇un|m(x) dx−

∫
Ω
|∇un|m(x)−2∇un · ∇v dx−

∫
Ω
|∇v|m(x)−2∇v · (∇un −∇v) dx ≥ 0.

By (6.3), (6.5) and (6.9), letting n → ∞ in the above inequality yields∫
Ω
χ · ∇ϕ dx−

∫
Ω
χ · ∇v dx−

∫
Ω
|∇v|m(x)−2∇v · (∇ϕ−∇v) dx ≥ 0,

which is equivalent to ∫
Ω
(χ− |∇v|m(x)−2∇v) · (∇ϕ−∇v) dx ≥ 0.

For any w ∈ W
1,m(·)
0 (Ω). Note that the hemicontinuous property of K ′. Choosing v =

ϕ ± λw and letting λ → 0+ in the above inequality, one has χ = |∇ϕ|m(x)∇ϕ. This and

(6.7) imply that ϕ ∈ S. It follows from this and (6.9) that

(6.10) lim
n→∞

∫
Ω
|∇un|m(x) dx =

∫
Ω
|ϕ|p(x) dx =

∫
Ω
|∇ϕ|m(x) dx.

Combining (6.3) and (6.10), we get un → ϕ strongly in W
1,m(·)
0 (Ω). The proof is complete.
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7. Proof of Theorem 3.8

In order to prove this theorem, we need to use the following lemma which gives sufficient

conditions for the existence and nonexistence of global solution to (1.1) in terms of the

variational values λk and Λk.

Lemma 7.1. (see [38, Theorem 2.1]) Let (1.2)–(1.4) hold and J(u0) > d. If u0 ∈ N+ and

∥u0∥H1
0
≤ λJ(u0), then u0 ∈ G0. If u0 ∈ N− and ∥u0∥H1

0
≥ ΛJ(u0), then u0 ∈ B.

Let any u ∈ W
1,m(·)
0 (Ω) \ {0}, we have∫

Ω
|∇u|m(x) dx =

∫
Ω1

|∇u|m(x) dx+

∫
Ω2

|∇u|m(x) dx

≥
∫
Ω1

|∇u|m+
dx+

∫
Ω2

|∇u|m−
dx,

(7.1)

where Ω1 = {x ∈ Ω : |∇u| ≤ 1} and Ω2 = {x ∈ Ω : |∇u| > 1}. By virtue of Hölder

inequality and Young inequality, one has

(7.2)

∫
Ω1

|∇u|m+
dx ≥ m+

2

∫
Ω1

|∇u|2 dx−m+ − 2

2
|Ω1| ≥

m−

2

∫
Ω1

|∇u|2 dx−m+ − 2

2
|Ω1|,

and

(7.3)

∫
Ω2

|∇u|m−
dx ≥ m−

2

∫
Ω2

|∇u|2 dx−m− − 2

2
|Ω2| ≥

m−

2

∫
Ω2

|∇u|2 dx−m+ − 2

2
|Ω2|.

Combining (7.1)–(7.3) we get

(7.4)

∫
Ω
|∇u|m(x) dx ≥ m−

2
∥∇u∥22 −

m+ − 2

2
|Ω|.

On the other hand, it follows from Poincaré inequality that ∥∇u∥22 ≥ λ1∥u∥22. Thus, one

has

∥∇u∥22 ≥
λ1

1 + λ1

(
∥u∥22 + ∥∇u∥22

)
=

λ1

1 + λ1
∥u∥2H1

0
.

This, together with (2.2) and (7.4), implies that

(7.5) J(u) ≥
(

1

m+
− 1

p−

)(
m−λ1

2(1 + λ1)
∥u∥2H1

0
− m+ − 2

2
|Ω|
)
+

1

p−
I(u).

Replacing u by u0 in (7.5) and using (3.5), we obtain

J(u0) ≥
(

1

m+
− 1

p−

)(
m−λ1

2(1 + λ1)
∥u0∥2H1

0
− m+ − 2

2
|Ω|
)
+

1

p−
I(u0)

> J(u0) +
1

p−
I(u0),
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which gives I(u0) < 0, i.e.,

(7.6) u0 ∈ N−.

For any u ∈ NJ(u0), we have I(u) = 0 and J(u) ≤ J(u0). Then by using (7.5), we obtain

∥u∥2H1
0
≤ 2(1 + λ1)

m−λ1

(
m+p−

p− −m+
J(u0) +

m+ − 2

2
|Ω|
)
,

which, together with (3.5), implies ∥u∥H1
0
≤ ∥u0∥H1

0
. Taking supremum over u ∈ NJ(u0),

we obtain ΛJ(u0) ≤ ∥u0∥H1
0
. Then by Lemma 7.1, it follows from this and (7.6) that

u0 ∈ N− ∩ B. The proof is complete.
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[13] F. Ettwein and M. Růžička, Existence of local strong solutions for motions of elec-

trorheological fluids in three dimensions, Comput. Math. Appl. 53 (2007), no. 3-4,

595–604.

[14] X. Fan, J. Shen and D. Zhao, Sobolev embedding theorems for spaces W k,p(x)(Ω), J.

Math. Anal. Appl. 262 (2001), no. 2, 749–760.
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