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Global Existence and Exponential Decay of Strong Solutions to the 2D
Density-dependent Nematic Liquid Crystal Flows with Vacuum

Yang Liu

Abstract. This paper deals with the 2D incompressible nematic liquid crystal flows
with density-dependent viscosity in bounded domain. The global well-posedness of
strong solutions are established in the vacuum cases, provided the assumption that
7+ [[Vdo||L2 is suitably small with large velocity, which extends the recent work
[Discrete Contin. Dyn. Syst. 37 (2017), 4907-4922] and [Methods Appl. Anal. 22
(2015), 201-220] to the case of variable viscosity. Furthermore, the exponential decay
of the solution is also obtained.

1. Introduction

The motion of incompressible nematic liquid crystal flows, which are described by the
following simplified version of the Ericksen-Leslie equations:

,

pr + div(pu) = 0,

put + p(u - V)u — div(u(p)Vu) + VP = =\ div(Vd © Vd),
divu=0, |d =1,

di +u-Vd = 0(Ad + |Vd|?d),

(1.1)

in Q x [0,00), where € is a bounded domain with smooth boundary in R?. Here u: 2 x
[0,00) — R? represents the velocity field of the flow, d: Q x [0,00) — S?, the unit sphere
in R?, represents the macroscopic molecular orientation of the liquid crystal material, p
and P are scalar functions, respectively, denoting the density of the fluid and the pressure
arising from the usual assumption of incompressibility divu = 0. The positive constants
A and 6 represent viscosity of fluid, competition between kinetic and potential energy, and
microscopic elastic relaxation time respectively. The viscosity coefficient © = pu(p) is a

general function of density, which is assumed to satisfy

(1.2) peCl0,00) and O0<p<pu<@E<oo on0,0c0)
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for some positive constant p and . Without loss of generality, both A and 6 are normalized

to 1. The symbol Vd ® Vd, which exhibits the property of the anisotropy of the material,

denotes the n x n matrix whose (4, j)-th entry is given by 0;d - 0;d, for i,j = 1,2.
Noticing that

2
div(Vd ® Vd) = Ad - Vd + V <|V2d| > :

one can rewrite equation (|1.1))s as
(1.3) pur + p(u - V)u — div(u(p)Vu) + VP = —=AAd - Vd.

We consider an initial boundary value problem for (|1.1)) with the following initial and

boundary conditions:
(1.4) (p, pu, d)|t=0 = (po, pouo,do), |do]=1 in€; wu=0, d=dj on N

with dj, € S? being given with compatibility, divug = 0 in Q and d, € C1(Q) satisfying
Vd{, = 0 on the boundary 99 (see e.g., [7]).

The hydrodynamics of nematic liquid crystals developed by Ericksen [2] and Leslie [12]
in the 1960’s, but it still retains most important mathematical structures as well as most of
the essential difficulties of the original Ericksen-Leslie model. Mathematically, system
is a strongly coupled system between the nonhomogeneous incompressible Navier-Stokes
equations and the transported heat flows of harmonic map, and thus, its mathematical
analysis is full of challenges.

When the fluid is the homogeneous case, the systems are the simplified model of
nematic liquid crystals with constant density. Huang-Wang [9] have provided a blow-up
criterion of strong solutions, and the well-posedness of for an initial data (ug, do) with
small BMO ™! x BMO-norm, and with small L3 (R%)-norm has been shown by Wang [25]|
and Hineman-Wang [5], and small L3(R3 )-norm has been established by Huang-Wang-
Wen [8], respectively. Li [13] proved the local well-posedness of mild solutions with L™
initial data, in particular, that the initial energy may be infinite. Most recently, Lin-
Wang [20] have shown the existence of global weak solutions in dimension three under the
assumption that the initial director field dy C Si.

Let’s go back to the system . When viscosity w is a constant, there is a huge
literature on the studies about well-posedness of solutions. In the absence of vacuum,
Li [14] and Wen-Ding [26] established the global strong solutions in dimension two. For
small data, Li-Wang [19] obtained global strong solutions in three dimensional space. On
the other hand, when the initial density allows to vanish, if the initial data are small (in
some sense) and satisfy the additional compatibility condition, Li [15], Yu-Zhang [27] and
Ding-Huang-Xia [1] obtained the global existence of strong solutions in dimension three.
Li [18] considered the case on the bounded domains in R?. Recently, Liu-Zhang [23] and
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Liu et al. [22] independently extended the result of [18] to R? with large initial data,

provided that the initial orientation dy = (do1, doz, dos) satisfies a geometric condition
(1.5) doz > € for some positive ey > 0.

Li-Liu-Zhong [17] got the same result under small initial data without the additional
geometric condition ([1.5). Recently, when the viscosity coefficient is a function of the

density of fluid, if the initial data satisfies the following compatibility condition
—div(p(po)Vug) + V Py + div(Vdy © Vdg) = /pog for some (VFPy,g) € L,

Gao-Tao-Yao [3] established the local unique strong solutions to the system in a
bounded domain of RY (N = 2,3) with the Neumann boundary condition, and they also
obtained the Serrin-type blow up criterion of the strong solutions.

Especially, Li [18] (also see [15]) studied global regularity for d = djj on 9Q when
initial energy is small. However, when deal with the case of variable viscosity, some new
difficulties need to be overcome and the similar result is still unclear. Our main aim in
this paper is to offer an answer to this open problem. Indeed, we will establish the global
existence of strong solutions to the 2D incompressible nematic liquid crystal system ([1.1])—
, under the assumption that the initial data in some norm is small enough, and we
don’t need any smallness on the initial velocity.

Before stating the main results, we first explain the notations and conventions used

/fdx::/gfdx.

For 1 <r < oo and k € N, the Sobolev spaces are defined in a standard way,

throughout this paper. Set

L' :=L"(Q), WhF.={feL :Df el |a <k}, H':=whr?2

Moreover, H} and H& » represent the closure of C§° and Cg5, := {f € C§° : div f = 0} in
H?', respectively.

Our main result can be stated as follows:

Theorem 1.1. Let  be a bounded smooth domain in R? and q € (2,00) be a fived
constant. For any given positive numbers My, My, Mo, and Ms, suppose that the initial

data (po, pouo,dy) satisfies the reqularity conditions
(1.6) 0<po<p, po€H' NW™, Vpu(py) €LY, g€ Hy,, do€H? |do|=1.

Then for
P+ Vdollrz = Mo, |lv/pouol72 + 1| Vdoll72 =: Mo,

IVlpo)ls = My, FllVuolZa + | Adoll3e = Ms,
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there exists some small positive constant eg depending on Q, u, j, My, Ma, and M3 such
that if
My < eo,

then the initial boundary value problem (1.1))—(1.4) admits a unique global strong solution
(p, u,d, P) satisfying that any 0 < 7 < T < oo for any r with 2 < r < min{q, 3},

0<peC(0,T]; H nWwha),

Vu € L>(0,T; L?) N L (7, T; HY) N L*(r, T; Whr),
Pc L>®0,T; L) N L®(r,T; H') N L?(7, T; WbT),
de€ L>®0,T; H?) N L>(7,T; H3) N L?(7,T; HY),

dy € L®(1,T; HY) N L?(7,T; H?),

Vu(p) € C([0,T); LY), |d=1 1inQ x[0,T].

Moreover, it holds that

(1.8) sup [|Vpllrznre < 2|Vpollr2ape,  sup [[Vu(p)llze < 2[[Vi(po)llza,

0<t<oo <t<oo

and that there exists some positive constant o depending only on the constant of Poincaré’s

inequality, ), p, and p such that for all t > 1,
(L9) IVl + [9dI2 + 9, O + IP(- )2 < Ce,
where C depends only on ), q, p, 1, My, Ma, and Ms;.

Remark 1.2. Theorem [1.1]|extends the result of Li [18] (also see [15]) to the case of variable
viscosity for arbitrarily large initial velocity with a smallness assumption only on p +
IVdo|| 72, which is in sharp contrast to |15]/18] where they need the smallness assumption

on the initial energy.

Remark 1.3. Compared with [15} 18], there is no need to impose the additional com-
patibility conditions on the initial data for the global existence of the strong solutions.
Furthermore, it should be pointed out that the exponential decay of the global strong
solution in is completely new for the 2D nonhomogeneous nematic liquid crystal

flows.

Remark 1.4. When d is a constant vector and |d| = 1, system turns to be the
nonhomogeneous incompressible Navier-Stokes equations. Theorem is different from
the result of Huang-Wang [11], since they need the smallness assumptions on ||V u(po)||za-
Moveover, Theorem established the exponential decay-in-time properties, since the
corresponding decay-in-time rates of |[11] for the strong solutions to f is algebraic.
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We now make some comments on the analysis in this paper. To extend the local strong
solutions whose existence is obtained by Lemma[2.1]globally in time, one needs to establish
global a priori estimates on smooth solutions to f in suitable higher norm. The
key ingredient here is to get the time-independent bounds on the L'(0,T’; L>)-norm of
Vu and then the L>(0,T; L9)-norm of Vu(p) and the L>(0, T; L?)-one of Vp. Here, some
key ideas due to [11] will be used, which deals with the 2D incompressible Navier-Stokes.
It should be pointed out that the crucial techniques of proof in [11] cannot be adapted
directly to the situation treated here. On the one hand, as mentioned by Huang-Wang [11],
the methods used in [11] depend crucially on the smallness assumptions on ||V u(po)|| La

and the following inequality

IVBull2s < C3, (1 + [lpull2) [Vl 2 log(2 + | Vul2.).

On the other hand, compared with [11], for system f treated here, the strong
coupling terms and strong nonlinear terms, such as u - Vd, div(Vd ® Vd), and |Vd|*d
will bring out some new difficulties. Hence, some new ideas are needed here. First, using
the initial layer analysis (see [4,6[10]), we succeed in bounding the L!(0, min{1,T}; L°°)-
norm of Vu by p and supgc;<r ||Vd|r2 (see (3.34)). Then, in order to estimate the
LY(min{1, T}, T; L>)-norm of Vu, we find that ||\/pul|2, + ||[Vd||?, in fact decays at the
rate of e= 7" (0 > 0) for large time (see (3.5))), which can be achieved by combining the
standard energy equality (see ) with the following fact

Voullz> + 1VdlZ < llpllzeullZ> + ClAdIE: < C(IVulZ: + [Ad]72),

due to (|1.1))1, and Poincaré’s inequality. With this key exponential decay-in-time rate at
hand, we can obtain that both [|[Vul?, + [|Ad|F. and ||\/pui||7s + [|[Vde||7. decay at the
same rate as e~?' (o > 0) for large time (3.10) and (3.24). In fact, all these exponential

decay-in-time rates are the key to obtaining the desired uniform bound (with respect to
time) on the L' (min{1, T}, T; L°°)-norm of Vu (see (3.37))). Finally, using these a priori
estimates and the fact that the velocity is divergent free, we establish the time-independent
estimates on the |[Vu(p)||e, [|[Vul/2,, and ||Ad||?, which guarantee the extension of local
strong solutions (see Proposition .

The rest of this paper is organized as follows. In Section [2, we collect some elementary
facts and inequalities that will be used later. Section [3]is devoted to the a priori estimates.
Finally, we will prove Theorem in Section [}

2. Preliminaries

In this section, we shall enumerate some auxiliary lemmas.
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We start with the following local existence of strong solutions can be shown by similar

strategies as in [3,[16,24].

Lemma 2.1. Assume that (po, pouo,do) satisfies (1.6). Then there exists a small time
To > 0 and a unique strong solution (p,u,d, P) to the problem (1.1)—(1.4) in Q x (0,Tp)

satisfying (1.7]).

The following regularity results on the Stokes equations will be useful for our derivation

of higher order a priori estimates (see [11]).

Lemma 2.2. Assume that p € W, 2 < g < o0, 0 < p < p, and u(p) satisfies (1.2]) on
[0,p]. Let (u,P) € H&U x L? be the unique weak solution to the following boundary value

problem

—div(u(p)Vu) + VP =F, divu=0 1inQ, /de =0.
Then we have the following regularity results:
o If F € L? then (u,P) € H?> x H' and

(2.1) ||z < C||F||z2(1 + ||V e(p)]|| £a)?/ @2,
[Pl < ClIFI L2 (1 + | Via(p)l| ) 22-2/ (072,

o If F € L" for somer € (2,q), then (u, P) € W™ x WL and

_ar
lullwar < CIF|Lr(1+ [V p(p)llza) 2=,

(2.2) T LA
[Py < ClF[|lz (1 4+ V(o) Le)

2(q—r) |
Here the constant C in (2.1) and (2.2)) depends on 2, q, v, u, 1.

3. A priori estimates

In this section, we will establish some necessary a priori bounds of local strong solutions
(p,u,d, P) to the problem f whose existence is guaranteed by Lemma Thus,
let T > 0 be a fixed time and (p, u, d, P) be the smooth solution (L.1))~(1.4) on © x (0,T]
with smooth initial data (po, uo, dp) satisfying . For simplicity, we shall the letters C'
and C; (i = 1,2,...) (except Lemma to denote the generic constants which may be
dependent on €, g, u, @i, and Mj, but independent of 7', Mz, and M.

We aim to get the following key a priori estimates on (p,u,d, P).
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Proposition 3.1. There exists some small positive constant €y depending only on €, q,

W, fi, My, Ms, and Mz such that if (p,u,d,P) is a smooth solution of (L.1)~(L.4) on
Q x (0,T] satisfying

sup (p+ ||Vd||2) < Mo,  sup [[Vu(p)|re < 4M;,
51) 0<t<T 0<t<T

3
sup e’ (u||Vullz + [|Ad])7.) <4 [2 (M + 1) M + Mg] ,
0<t<T - 14 2

the following estimates hold

_ My
sup (p+||Vd||z2) < —=,  sup [[Vu(p)|lrs < 2M;,

(3.2) 0<t<T 2 0<t<T

' I 3

sup e’ (u]|Vulz + |Ad]3.) <2 [2 (M + 1) My + Mg] ;
0<t<T - 14 2
provided
My < e,
where
. 1 1 1 1 1 1
€0 ‘= min 17 ; 3 1/2° 5 9/27 3
v 201 (802) (8C2)2M3/ 403M3 (403)2M3/ 1204M3
1 1 1 1
[12C,(M3? + 1)]* 120,057 (2C5)2 206 My

r/(6r—6)

4/3
( In2 ) In2
572 ) = :
3C7M3(M3/ +1)3/2 3C7 M3 * My

4/3
In 2 11 1
3C My (M )7/ ) 2087200 1900 My

1 1 1 }
1200 My (M 13/ 12000 M Py 4 1y 4

Before proving Proposition [3.1] we establish some necessary a priori estimates, see
Lemmas B.2H3.5l

We begin with the nonnegativity and boundedness of density and basic energy esti-
mates for (p,u,d, P).

Lemma 3.2. Let (p,u,d, P) be a smooth solution to (1.1))~(1.4) on [0,T]. Then for

. 1 1%
(3.3) o= mln{N,},
2CcC2 2C3p
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it holds that

(3.4) 0 < p(x,t) < sup po(z) = 7,
z€eQ

t
e (Ilvpullzz + [Vd]z2) +/0 (el Vullz: + | Ad72) dt

< My for every t € [0,T)

(3.5)

provided supg<;<7(p + [|[Vd|2) < €1 := min{l, \/%} Here, C, is the constant of
Poincaré’s inequality.

Proof. Note that (3.4) follows from the transport equation (|1.1]); and making use of (|1.1f)s
(see Lions [21, Theorem 2.1]). Next, multiplying (T.1])2 and (T.1))4 by u and —(Ad+|Vd|?d),

respectively, summing the resulting equations up and integrating over €2, then it follows
from integration by parts and using (1.1); and (1.1)3 that

1d

S [ (plul? + V) du + / (1(p)|Vul® + |Ad + [Vd[*d?) do = 0,

from which, noticing that
|Ad + |Vd|*d|* = |Ad|* — |Vd)*,

guaranteed by the condition |d| = 1, one arrives at

1d
2dt
— / V| de < CIVd|2|[Vd]%: < Cil|Vd|2 ] Ad|2,

(plul® +[Vd|*) da + /(M(P)VU|2 +|Adf) dx

which directly deduce that

d
(3.6) - (plu® + |Vd|?) dz + /(,u]Vu|2 + |Ad|*) dz <0,

provided supg<;<r [|Vd|[;2 < My < €1 := min{l,\/%}. Then, integrating (3.6) over

[0, 7], one arrives at
t
Ivpulz: + 1Vd|?a +/0 (ulIVull32 + [|Ad|)72) dt < My for every t € [0,T].

Moveover, it follows from the Poincaré’s inequality, and (3.4) that

Ivpul2z + IVd|2s < llpllpellul2. + CC2|Ad|2,
Cgﬁ 2 ~ 2 2
(3.7) < = (ulVullze) + CCHIAdIE

(M 1
<ot (§Ivul+ glad.).
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where we have used the following inequality
(3.8) ldllZ> < CllAd]Z.
Here, o is defined as in (3.3]). Putting (3.7) into (3.6|) yields

d 1
7 ((IVpullzz + 1Vdllz) + o (IVpul Lz + V7)) + 5 (I Vulze + [Ad]7:) <0,

that is J
@(Got(llﬁUH%z +IVd||72)) + e (ul Vull7. + [|Ad]|7,) <0,

which, integrated over [0,t] gives (3.5). The proof of Lemma is completed. O

Lemma 3.3. Let (p,u,d, P) be a smooth solution to (L.1)—(1.4) satisfying (3.1). Then
there exists a generic positive constant C' depending only on Q, q, p, @i, My, Ma, and Ms

such that

¢(T)
69 sw IVl + 83 + [ (s + Ve ) de < 0,
0<t<¢(T) 0
T
G10) sl Vulle + AR + [ e (Il + IVd) de < O
¢(T)<t<T ¢(T)
‘ _ R 1 1 1 1
proded supscecr -+ 194122 < 5= i (s, e, b i b
1 1 1 1 ~
v ]3/2, SO 120,107 (205)1/2}. Here, ((t) is defined by

[1204(M3% 4 1)
¢(t) :== min{1,t}.
Proof. First, by (L.1));, we obtain the following equation

1(p)e +u - Vu(p) = 0.

Next, multiplying (I.1)2 by u; in L?, we obtain after using integration by parts over
Q and (1.1)3 that
1d
2dt
1
= —/pu-Vu-utdac— 2/u-Vu(p)]Vu|2dx+/Vd®Vd:Vutdx

p(pIVal o+ [ plusf ds

d
(3.11) :dt/Vd@Vd:Vuda:—/(Vd@Vd)t:Vudx—/pu-Vu-utd:U
1

3 / w- V()| Vul? d

3
d
= dt/Vd@Vd : Vudx—kZ;Ili.
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Now, we will use the Gagliardo-Nirenberg inequality, Poincaré’s inequality, (3.1]), (3.5)),
and (3.4) to estimate each term on the right hand of (3.11]) as follows:

a12) Ill<CHthHL2\\Vd\\L4!\VU\|L4<CHthHL2HVdHl/QHVQdHl/QHVUHHl
3.12
< guwtum + C|Vd|| 2| Ad]| 2| V|31 < guwtug + C M|Vl 2,

_ 1
(3.13) Tiz < Cp'2(l/pudll g2 |l o= |Vl 12 < ZH\/ﬁUtHé + OVl po|ull 2| Vel 72
3.13
1 1
< leﬁwlliz + O Vul Lol Vul 7 < *H\/ﬁw!l%z + CM;||Vuljp,

32 Va2,

(3:14) Tz < CO|IVulp)llzallull poasa-o | Vul|Fe < C|Vul| 2| Va7 < CM.
where we have used the following fact that

(3.15) |[v/pouol|Z> + [ Veol|Z> < llpollz=uol72 + CllAdo|[7: < C(|[VuollZa + | Adol1Z2).

Substituting (3.12)—(3.14)) into (3.11)), using (3.1]), yields that

1d
2dt
d _ 1 9 1 2 1/2 2

u(p)|Vul? dz + / plus[? da
(3.16)

Next, multiplying ([L.1))4 by Ad; and integrating over 2, using (3.15)), (3.1)), Gagliardo-
Nirenberg, Poincaré’s, and Young’s inequalities, we obtain, bearing in mind the facts that
|d| =1, w =0 and Vdj = 0 on 02 that

2dt/|Ad\2da:+/th2dx

:/u-Vd-Adtd:c—/Wd] d- Ady da

A

1
SIVAilE: +C [ (VG- V) + [V(TdP)P) ds

IN

1
SIVadillzz + CUIVullVdllg: + el [V2dll7: + 1Vdlls + [Vl V2d]l|72)

IN

SIVAl: + CIVulZa |Vl + Clull3 123,

(3.17) + O|[Vd|| 1 | Vdl[72 + C||Vd|[74]|V*d] 7.4

fuwtup + C|[Vdl| 2| V3 dl| 2| Vull32 + ClIVull 32 [V3dII |Vl
+ C|V2d|2: | Vd][Ls + ClIVdl| 2| V2d]|2: ][V 2

f||wtup +C(IVdl2s + V75 + Vd]Ls + My (V] 1) V3d]|2

+C||Vul + Cl[Vul 32
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||wt||L2 + C(|Vd| 22 + IV 2 + | Vd||Ls + My 2| Vd]| 12) | V2|2

+ C(M3 + M3)HV’LL|’H1

Adding (3.16) to , it holds that
1d
2dt
i . 1 2 2 3110112

< & [ Vaova: Vude+ (a3, + Ioul}s) + CM IVl

/ (1) [Vl + |Ad?) da + [[y/pue |2 + [Vl

2/3 1/2
+c<nwuL2 + Va2 + (V)L + M3 V]| 2) ]| V3d] |2,

Moreover, we estimate |Vul|z: and ||V3d| 2. According to Lemma with F' =

—pur — pu - Vu — div(Vd © Vd), using , , and , we derive

IVull g1+ | Pl
< C [+ IV 1) + (L4 [ Tpalp) o) P22 |
< C(pllull = Vull 2 + 772 /pullz2 + Ve < | V2d]| 12)
< Opl|V2ull 2 llull 21V ull2e + C372 | puel 2 + ClIVAlL IVl L V2] 2
< CpM;|[Vul g1 + Cp2 Vol 2 + CIVAIlLL V2] g2 | Adl 3
< CpMs |Vl g1+ Cp2 | Vpudl 2 + CM | Va7 VPd] e

(3.18)

Using H* estimate of the elliptic systems, it is easy to deduce from (1.1)4 that

IV3d| 12 < C|Vd; + V(u - Vd) — V(|Vd[*d)] 2
< Co(||Vd| g2 + |V} + 1Vd| 22 + My | V| Vd| 2
+ C||Vdy| 2 + OMY |Vl 1,

which directly leads to

(3.19) IV3d|| 2> < OM3||Vul| g+ C|[Vdy| 2,

173 - Inserting (3 into

provided supy<;<r [|Vd||2 < My < €3 := min{e, 802

(3.18), we have

IVull 1 < Ca(pMs + V|| 1o My ™ )|Vl g1 + 5721 /pull 2 + CME | Vd| L1V ds 2,

%7 (8Cy )2M

that is

(3.20) IVull g < C(PY2 + MYV (|Vpuel 2 + || Vel 22),
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provided supg<;<7(p + [|Vd|[12) < My < €3 := min{ey, 4031M3
(3.19) and (3.20)), yields that

(40) 9/2} Combining

4
IV3d|| > < OMY* ("2 + M |Vd| 5D (1Pl 2 + | Vde|12) + C|[ Vel 2
< G<M§/‘* + 1) (puel 2 + Vi 2).

Thus, it follows from (3.20]) and ( - ) that

1d
2 dt
d 1

< dt/Vd@Vd:Vudm—i— Z(;;vcztug + lv/puel|2s)

(3.21)

(1(p)|Vul® + |Ad?) dx + ||\/pudl|F 2 + |V dy]|7 2

+C[pM5 + My?|Vd| 12 + (M) + 1)(|Vd||22 + | Vd| 275 + [|Vd]22)]
% (lv/puel|22 + [ Vee|22)
d 1
< /Vd@ Vd: Vudz + (IVddls + | /pul3)

9/2

+ Ca(pM3 + M| Vd| 2 + (M3 + 1) |[Vd| 22 (/P22 + | Vde]|22),

which, yields that

1d d
(3.22) /(u(p)]Vu\Q—i—Md\Q) dz + |/pulZa + Vel 2 §2dt/Vd®Vd:Vud:c

2dt

provided supy<; <7 (p+||Vd||12) < My < €4 := min {63, 1201M 1

57 [12C4(M 9/2+1)} 1264 M9/2 I
Integrating (3.22)) over [0, ((7T)], from ) and (3.8), gives

(1)
sup (][ VulZa + [ Ad]22) + / (Iv/pudl2: + 19di|25) dt
0<t<((T) 0

<5 sup [Vl +Cs sup [|Vdl|Z | AdlfZ.] + Ms.
0<t<¢(T) 0<t<¢(T)

From the above inequality, we get

(1)
sup  (ul|VullZ> + [|Ad]|72) +/ (IVpuelZ2 + [ Vdel|72) dt < Ms,
0<t<((T) 0

provided supg<;<7 [|Vd|| 2 < My < 65 = min{ey, 205)1/2}
Finally, it remains to estimate . In fact, multiplying (3.22)) by ! and integrating
the result inequality over [((T), T], we obtain

T
sup e (ul|Vull72 + [ Ad]I72) + / e (Ilvpuezz + Vdill72) dt
C(T)<t<T ¢(T)

T
<C sup eot[uwuiﬂmdnigh/ e (Al Vul 32 + ||Ad||72) dt
¢(T)<t<T ¢(T)
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T
bosup Blert| 2] +0/ V|2 | Vull 2 dt + e M,
C(T)<t<T ¢(T)
T
<Cs sup  e”[||Vd||72]|Ad]|7,)] +/ et (71| Vul|22 + [|Ad||2,) dt + 4T My
¢(T)<t<T ¢(T)
oo r
+ sup :[e t||VuH%2] +C sup ||Vd||L2/ e t(HHVUH%z + ||Ad\|%2) dt
¢(T)<t<T ¢(T)<t<T ¢(T)

which directly deduce from (3.8]), (3.15]), and (3.5)) that

T
sup eVl + |AdE) + [ et (I Vpuils + [VailRa) de < O,
T)<t<T (1)

provided supg<;<7 [|Vd|| 2 < Mo < €5. The proof of Lemma (3.3 is finished. O

Lemma 3.4. Let (p,u,d, P) be a smooth solution to (1.1)~(1.4)) satisfying (3.1). Then
there exists a generic positive constant C' depending only on Q, q, p, @, My, Ma, and M;

such that

¢(T)
(323)  sup [t(ly/puella + Veil22)] + / HlVale + | Ady32) dt < 2,
0<t<((T) 0

T
sup  [e7(|[/pusl3 + | Vel[32)] + / e (| V|32 + | Ade|32) dt
(3.24) ¢(T)<t<T ¢(T)

< CMF(M5" +1)%,

(3.25) (S Il V) < CM3 (M + 1),

provided supg<;<7 [|Vd| 12 < My < €6 := min{es, v ]1\/[1/2}.
6V3

Proof. Differentiating (1.1])2 with respect to time variable ¢ gives

(3.26) pus+pu-Vug—div(u(p)Vu)r = —pi(u+u-Vu) — pus - Vu— VP —div(Vd © Vd);.
Multiplying (3.26)) by u; and integrating the resulting equality by parts over {2, we obtain
after applying (|1.1); and the divergence free condition ([I.1])3 that

(3.27)

1d
2dt
= /[(Vd O Vd): Vug — p(ug - Vu - ug + div(pu) (ug + w - Vu) - up — p(p)e Vu - V) do

plurf? da: + / 1(p)|Varf? da

= /{(Vd O Vd); : Vug — p(ug - V)u-ug — pu - V(jug|?) + pu - V(u - Vu - uy)

— p(p)iVu - Vu } dx
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<C [ plullul (VuP + fullul)dz + C [ pluf|9ul[ Vsl o+ C [ pluljuel T do

e / plusl?| V| e + C / V|| V|| Ve de + C / |V 1(0)| |V |Vt
6
= ZIQZ
=1

Now, we use (3.4), (3.20]), (3.21)), the Gagliardo-Nirenberg, Poincaré’s and Holder’s
inequalities to estimate each term on the right-hand side of (3.27)) as follows:

Tyy < Cpllurlpalull s | Vullds + Clludl| 2 llullF o | V20l 2
< Cpl|Vurl 2| Vul 2| Vul 3 < 0plVuel 3z + CH*I|Vull 22| Vull s,
Tos < Opllull} o [ Vull 2| Ve 2 < CBllul 2| Vel s [ Vull 2| Ve 2
< opllVull72 + CP IVl 22 1 Vul 1,
Tys < CPY2|ull poo | Vuell 2 | /puell 2 < CBY2 |l IVl e 1 Ve 2 |y/Bue 2
< Sp| V|22 + OBl Vul 3 [l ol 22,
Tos < ") /pudll 2wl pal| Vel o < C5Y2 V|| 2|Vl g || /e 2
< 0| Vue |2 + OBl Vul 3 [l o3,
Tos < C|[Vd| ]| Vdsl| | Verll 2 < OV [ Ad] L [ Ady ] 12|V | 12
< Spl| V|32 + CMy|| V| 2 || Ady |3,
Tos < Olfull o= |V 1(p) | o[ Vul| 2o | Ve 2
< Cllull LIVl IV (o) oVl Vel 2 < Sl Vuel2s + OVl 3 |Vl 2.

Substituting the estimates of Zy; (i = 1,2,...,6) into (3.27), and then using (3.1)), we
obtain

1d
e / 1(p)[Vur]? da

< OpllVul2s + C(Ms + 1)Vl 2 (VA2 + | Vull %)
(3.28) + M| Vd|| 2] Ady 2
< opllVuel2s + COME"™ + D2 Vul3n (Il puel2a + |Vl |22)
+ CMy || Vd]| 2| Ady 2.

Now, differentiating (|1.1)4 with respect to time variable ¢ yields

(3.29) dit — Ady = —(u - Vd); + (|Vd|*d);.
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Multiplying (3.29)) by Ad;, and integrating the resulting equality over 2, we get

2dt/|th|2d:p—|—/|Adt|2d:c

:/ut.Vd-Adtdx+/u-th-Adtdx—/|Vd|2dt-Adtda;

— 2/(Vd 1 Vdy)d - Ady dx
(3.30) ) )
< C [ |Vw||Vd||Vdi|dx + C | |ug||V2d||Vdy| dx + C | |Vd|*|ds||Ady| dz:

+C/\Vd\thHAdt]dx+C/\uHthHAdt\da:
5
= ZI3Z
=1

By virtue of Hélder’s, Poincaré’s and Gagliardo-Nirenberg inequalities, , and .,

we have

T3t < C|| Vgl 2|Vl 12 [ Vdel o < 6l Veuel|22 + CIVA| 24 Vdi]|24
< OpllVuel3s + OVl 2| Ad]| 2| Adel|2> < 01| Vel 22 + OMy ([ Vel 12| Ady |2,
Tz < Clluall 12 V2d]| | Ve | 1 < OVl 2| Ad]| 2 V2L |V | 2 Ad |
< ol Vurl|22 + CI A 12|V d) 2 | Ve 2] Ads | .
< opl|Vuel7s + KlIA 7 + ClIAL|T IV 72 Vd:172
< 0plI V|72 + Kl A |72 + OMs|| V3|72V de |72,
T3 < C|Ady| 2| Vdl2 o lde 12 < Cl|Ady ]| 12|Vl 12V 12| Ve | 2
< 0| Ady |22 + CIV3d|1 22| Vdy 3,
T34 < C)|Ady] 2| Vdl| 1l Velel| 4 < S| Adel|2 + CI Va2 [ V2d]122 | Vde |2
< 0| Ady|[72 + O V2|72V de|72,
s < Clull o | Vil| 2| Ady | 12 < S| Adel|22 + C[ V]2 [ Ve 2.

Thus, inserting the estimates of Z3; (1 = 1,2,...,5) into (3.30]), we arrive at

(3.31) 2 dtHthHm + Ayl 72 < opl| V|72 + C(IVullfp + (Mz + 1)[[V2d|72) || Vel |72

+ (0 + K) | Ady| 22 + CMy 2|V 2| Ady |2

Adding the resulting inequality with (3.31]) and (3.28]), taking § and « suitable small, we
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get after using (3.20) and (3.21) that

(3.32)
1d
5 g (IVPuellie + 1V del2) + ul PuellZ2 + | Ade 7
3/2 1/2
< (MY + 1D2(|Vul2 + IV3d)22) (1Pl 2e + | Vdil|22) + OMy (| Vd| 12| Ady |2

9/2 1/2
< C(M5” + 13 (| puele + IVl 22) (IVpurl|22 + [V da|22) + CMy || Vd]| 2 ]| Ady |2

Next, multiplying the above inequality by ¢, we get

1d
5o [HUVAlZ: + Vi3] + el Va2 + |1 Ads)22)

< Co(M5? + 13 (|| /pusl 22 + IV del|22) [t puel 32 + || Ve 22)]
+ Cs My |Vd|| 2 [t Ade|22] + [[Vpuel2e + | Vee] 22,

which, integrating over [0, ((T")], using Gronwall’s inequality and (3.9) lead to

(1)
633 swp [l vpuls + V)] + [ el Vel + |AdIE:) di < 208,
0<t<¢(T) 0
provided supy<;<r ||Vd||12 < Mo < €6 := min{es, W}

Similarly, multiplying (3.32)) by e¢°* and integrating over [((T),T], by Gronwall’s in-
equality, (3:33), and (B-10), we get

T
sup e (lv/puellzz + IVde|72)] +/ ! (pll V72 + | Adef72) dt
(T)<t<T (1)

T
< C(M§/4 + I)Qexp {e—C(T) /C(T) eat(H\/ﬁUtH%Z + ||th||%2) dt}

T
x4 O (IVpullz: + 1Vdi|Z2)| +/ e (Ilv/pudlgs + IVde72) dt
t=¢(T)  J¢()

< CME(M? + 1),

provided supg<;<p || Vd|| 2 < My < € := min{es, m}
<t< 6 M.
Finally, it follows from (3.20)), (3.21)), (3.10]), and (3.24) that (3.25)) holds. The proof
of Lemma is completed. O

We will use Lemmas [3:2H3.4] to prove the following time-independent bound on the
LY(0,T; L>)-norm of Vu which is important for obtaining the uniform one (with respect

to time) on the L°°(0,T; L9)-norm of the gradient of u(p).
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Lemma 3.5. Let (p,u,d, P) be a smooth solution to (L.1)—(1.4) satisfying (3.1). Then
there exists a generic positive constant C' depending only on Q, q, p, @, My, Ma, and M;
such that

T 5r—6
/ ||VUHL°° < Cﬁ3/4M3(M§/2 + 1)3/2 + Cp(GrfG)/ng M,
(3.34) 0

+C sup HVdH5/6 7/12( 3/24—1)7/6.
0<t<T

Proof. First, it follows from Lemma (13.1), (3.4), Gagliardo-Nirenberg and Holder’s
inequalities that for r € (2, min{q, 3}),

_4ar
IVullwsr < CIENL (1 + [V a(p) o) TP
< Cllpudlys + Cllpu- Vull - + CJVd[Vd] 15

1/2 1/2 —
< Cllpud| 2 louell 6 + Collull 31Vl srsa-r) + CI Vel 1os || V2d]| o

3/4 1/2 1/2 =6 br—6
< Co* | pud [} V|35 + Cpl V|30 ||Vl |57
2/3 1/3

+ C|\Vd| 1= | V3| 25 V]| s
r—6)/r r—6)/r
<Cp3/4||\fUt||Lz Ve |1 + CpOr =0/ 7| (=0

f||VuHWw + C||Vd| 2P|

which directly deduces that
(3.35)
IVullyrr < CoY 4| /pue| 1o Ve |1s + CpO =9 v =9 1 o w22 | v3d) 7.

On the one hand, it follows from (3.23)), (3.5)), (3.21)), and (3.9)) that for ¢ € [0,(T")],

()
/ V] e dt
0

¢(T) 84T e(m)
/ t_1/2||\/ﬁut||i/23 dt] . [/ 753/2||vut|y%2 dt]
0 0

+ oMY+ 1) sup Va2
0<t<((T)

()
< sup (tH\/ﬁutH%Q—}-tHthIQLQ)Wu/ {15/ gy
0<t<¢(T) 0

1/4

_¢ [C(T)
(336)  +CPO O sup (|VulZe) T / IVull2, dt
0<t<C(T) 0

¢ 4T e e
< Cp¥AM* [/0 t—l/Q-t—%'idt] [/0 t3/2HVutllizdt]
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5r=6
+CpO O M T My + O sup ||V My P (M 4+ 1)7/6
0<t<¢(T)

5r—6
< C’ﬁg’/‘lMgl/2 +Cp= /"M My + C sup HVdH5/6 7/12( 39/2 +1)7/8,
0<t<¢(T)

On the other hand, using (3.10), (3.24), (3.21)) and (3.5]), we obtain that for ¢t € [((T"),T],
(3.37)

T 516 (sr-6)oc(r) [T
/ Ve dt < CplT =0/ sup (e Vull72) 7 e 2 / |Vul|7. dt
¢(T) (T)<t<T ¢(T)

T 7/12 T 5/12
+C sup |V l/ e”tHV3dH%th] l/ eéotdt]
0<t<¢(T) ¢(r) ¢(r)

T
o /C o Oprlze + [z

T - 5r—6
< Cﬁ3/4 sup (eat”\/ﬁutH%Z)l/Q/ 6—7’5 dt + Cﬁ(6r—6)/TM3 7 M,
(D)<i<T ¢(T)

T 12 /5 1/2
ol / et dt / e[V |22 dt)
) G

+C  sup HVdH5/6 7/12( 3?/24-1)7/6
C(T)<t<T

Scﬁ3/4M3(M9/2 )3/2+Cf(67"—6)/7“M3527:6M2
7
+C sup  |[Vd|2 M P (M 4 1)/,

T)<t<T
Combining this with (3.36)) gives (3.34) and finishes the proof of Lemma O

With Lemmas at hand, we are in a position to prove Proposition
Proof of Proposition [3.1] First, it follows from (I.1]); that

d
(3.39) LIV e < OIulli |0l 1o
which together with Gronwall’s inequality and ({3.34]) yields

sup ||Vu(p)|La
0<t<T
T
< [V ao0)lzs exp{o | 1wl dt}
0
5r—6
(3'39) < HV/L(p()) ”Lq exp {C7p3/4M3(M3?/2 + 1)3/2 + C7ﬁ(6T76)/TM3 My

+C7osup HVd|]5/6 7/12( §/2+1)7/6}

< 2M;,
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In2 )4/3

provided Sup0§t§T<ﬁ + HVdHLQ) S M() S €7 = min {66, (3C7M3(M§/2+1)3/2

)

( In2 )r/(6r76) ( In2 )4/3}
3C7M§57‘—6)/(27‘)M2 ’ 3C7M:Z/12(M9/2+1)7/6

Next, we deduce from (3.22)) and (3.5 that
T
sup e (ul| Va7 + [[Ad]|72) +/ e (Ivpuelzz + Ve 72) dt
0<t<T 0
T
< C sup e[| Vd|2]|Ad|2:] +/ e (7| Vul72 + |Ad||72) dt + M
0<t<T 0

T

ILL o ag

+ sup Z[e™(|Vulf.] + C sup ||VdHL2/ e’ (I Ad|f72 + pl Vullf2) dt
0<t<T 0<t<T 0

(340) < sup e[| Vd|2s]|Ad|2:] + 2 <“ - 1) My + M;
0<t<T H

Bro
Sle NIVullfe] +C sup [[Vdl|z2([lv/pouoll72 + [ Vdol72)
o<t<T

< Cs sup e”[||Vd|32]Ad|%2] + 2 <,u + 1) My + M;3
0<t<T Iz
i
+ sup :[e"tHV’uH%z] + Cs sup ||Vd| 2M;
0<t<T 2 0<t<T

which leads to

o 3
sup e’ (u||Vulz + [|Ad]3.) <2 [2 (,u + 1) M; + M3] ,
0<t<T © 2

provided supg<;<r | Vd|| 2 < Mg < e := min{ey, ﬁ}
Moreover, it remains ro prove supg<;<r [|Vd||2 < Mo/4. In fact, multiplying (1.1,
by —Ad and integrating by parts over €, it follows that

%%HV(ZH%Q + 1A% < c/|vu|\wy|w| dm+C/|Vd|2]V2d do
< C|IVull = |Vdl|72 + C[|Vd|[74]|Ad] 2
< C|[Vullp= |V |22 + Col| V| 2 | Ad] 2,
that is
(3.41) SNVl + I Ad3s < Va1 V3,

provided supg<;<7 [|Vd|[12 < My < €9 = min{es, ﬁ} Then, (3.41) together with (3.34)
and Gronwall’s inequality leads to

(3.42)
5r—6
sup V2 < Cro{ M2 (M5? + 1)¥* + My ™ My + My (M5? + 1)7/2} | Vdo|| 2
<t<

My

<77
- 4
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1

1
12C10Ma 2 (M2 +1)3/47 12010 M~/ g,

provided My < €19 := min {69,

1
12010M;/24(M§/2+1)7/12 }
Finally, choosing €y := min{ejg, €/4}, we directly obtain (3.2) from (3.4)), (3.39)), and
(3.42). The proof of Proposition is finished. O

The following Lemma [3.6]is necessary for further estimates on the higher-order deriva-

tives of the strong solution (p,u,d, P).

Lemma 3.6. Let (p,u,d, P) be a smooth solution to (L.1)—(1.4) satisfying (3.1). Then
there exists a generic positive constant C' depending only on Q, q, p, @i, My, Ma, and Ms

such that for r € (2, min{q, 3}),
(3.43)
ot 2 2 2 3 712
sup lpllaiawre + sup e (¢ Vullzn + ClIPIF + ClIVdel[7 + CIIV2d|[72)
0<t<T 0<t<T
T
+/0 e (IVullfn + P13 + IV2dl52 + SV ullfe + /O P + ¢V dl[72) di

T
+/ e ([ Va2 + |Ady|22) de < C.
0

Proof. First, similar to (3.38) and (3.39), we have
(3.44) IVollrzare < 2(Veollr2nra-

Next, multiplying (3.32)) by (e, we get after using Gronwall’s inequality, (3.9), (3.10]),
(3-23), and (3.24) that

T
a45) s Gt (puls + IV + [ e (IVula + 1Adi) e < C.

Combining this, (3.20)), (3.21]), and (3.40) gives

sup €7 (C|[VullFn + CIIPIFn + Va7 + CIVPd])72)
0<t<T
(3.46) -
+/ IVl + P2 + [V3d]%) dt < C.
0

Moreover, by H*-estimate of (1.1))4, using Poincaré’s inequality, we have

IVl 2 < Clldell g2 + Cllu- Vdl g2 + C[[[V*d] e
< Clldellz + Clllul(IVd] + [V2d| + [V2d]) || 12 + Cll[Vul (V] + [Vd])]| 2
+ ClIV*ul[Vdll g2 + CllIVAP| 22 + CllIV|[V2d|| 2 + C|[V2d[| 2
+C|Vd|[V2d]|| 2
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< Clldil| g2 + Cllull = || Vd|| g2 + C||Vd]| oo | V|| g1 + C||Vul| g1 || V3| 2
+ C||Vd| 1o ||Vd]| g2 + C|| V2| 3
< Cl|Adyl| e + C(IV3d|| 12 + |Vl gr2) || V3d| 12 + C||Vd| 22

which along with (3.45)), and (3.46|) leads to

T
/ C2et|VHd||2, dt < C.
0

Finally, it follows from (3.20)), (3.21)), (3.35)), (3.40)), and (3.4} that for r € (2, min{q, 3}),

7
IVullzrewrs + 1Pl aewrs < ClIVud| g2 + C[[Vull 2 + €| V3| 75
< OVl g2 + ClIVul g2 + C(IVpuel 2 + [ Vde 22)7°,

which together with (3.45)) and (3.5)) implies
T
/0 O IVl + 1Pl .r) dt < C.
This combined with (3.45)—(3.46) gives (3.43) and completed the proof of Lemma[3.6] [

4. Proof of Theorem

With all the a priori estimates obtained in Section [3| at hand, we are now in a position to
prove Theorem

Proof of Theorem [I.1] First, by Lemma there exists a T, > 0 such that the initial
boundary value problem f has a unique local strong solution (p,u,d, P) on Q X
(0,Ty]. It follows from that there exists a 77 € (0,7%] such that holds for
T="1T.

Next, set

(4.1)  T* :=sup{T| (p,u,d, P) is a strong solution on  x (0,7 and (3.1]) holds}.

First, for any 0 < 7 < T < T*, one deduces from (3.2), (3.5), and (3.43|) that for any
q>2,

(4.2) Vu, Vd, Ad € C([r,T); L> N LY),
where one has used the standard embedding theory

L®(r,T; HY N HY (7, T; H™Y) — C([r, T]; L) for any qg € [2,00).
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Moreover, it follows from , , , and [21, Lemma 2.3] that
(4.3) peC([0, T H nWh),  Vu(p) € C([0,T]; LY).
Now, we claim that
(4.4) T* = .

Otherwise T* < oo. Proposition implies that (3.2)) holds at T" = T™*. It follows from
(32, (3-5), (4.2), and (4.3) that

(", u”s d")(x) = (p,u, d)(x, T7) (P, u, d)(z,1)

= lim
t—T™*
satisfies
pte H'nWh, w*e€Hj,, deH
Therefore, one can take (p*, p*u*, d*) as the initial data and apply Lemma to extend
the local strong solution beyond T*. This contradicts the assumption of T in .

Hence, (4.4) holds. We thus finish the proof of Theorem since ((1.8) and ({1.9)) follow
directly from ([3.44), and (3.43]), respectively. O

Acknowledgments

The author was supported by the Postdoctoral Research Foundation of Jiangsu Province
(No. 2018K183C), Postdoctoral Science Foundation of China (No. 2018M642202), National
Natural Science Foundation of China (No. 11901288).

References

[1] S. Ding, J. Huang and F. Xia, Global existence of strong solutions for incompressible
hydrodynamic flow of liquid crystals with vacuum, Filomat 27 (2013), no. 7, 1247—
1257.

[2] J. L. Ericksen, Hydrostatic theory of liquid crystals, Arch. Rational Mech. Anal. 9
(1962), 371-378.

[3] J. Gao, Q. Tao and Z.-a. Yao, Strong solutions to the density-dependent incompressible
nematic liquid crystal flows, J. Differential Equations 260 (2016), no. 4, 3691-3748.

[4] C. He, J. Li and B. Lii, On the Cauchy problem of 3D nonhomogeneous Navier-Stokes

equations with density-dependent viscosity and vacuum, arXiv:1709.05608.

[5] J. L. Hineman and C. Wang, Well-posedness of nematic liquid crystal flow in
L3, (R3), Arch. Ration. Mech. Anal. 210 (2013), no. 1, 177-218.

uloc



[6]

[11]

[12]

[13]

[14]

[15]

[16]

[18]

Global Existence and Exponential Decay of Solutions 1227

D. Hoff, Compressible flow in a half-space with Navier boundary conditions, J. Math.
Fluid Mech. 7 (2005), no. 3, 315-338.

X. Hu and D. Wang, Global solution to the three-dimensional incompressible flow of
liquid crystals, Comm. Math. Phys. 296 (2010), no. 3, 861-880.

J. Huang, C. Wang and H. Wen, Time decay rate of global strong solutions to nematic
liquid crystal flows in R3., J. Differential Equations 267 (2019), no. 3, 1767-1804.

T. Huang and C. Wang, Blow up criterion for nematic liquid crystal flows, Comm.
Partial Differential Equations 37 (2012), no. 5, 875-884.

X. Huang, J. Li and Z. Xin, Global well-posedness of classical solutions with large os-
cillations and vacuum to the three-dimensional isentropic compressible Navier-Stokes
equations, Comm. Pure Appl. Math. 65 (2012), no. 4, 549-585.

X. Huang and Y. Wang, Global strong solution with vacuum to the two dimensional
density-dependent Navier-Stokes system, SITAM J. Math. Anal. 46 (2014), no. 3, 1771-
1788.

F. M. Leslie, Some constitutive equations for liquid crystals, Arch. Rational Mech.
Anal. 28 (1968), no. 4, 265-283.

J. Li, Liquid crystal equations with infinite energy local well-posedness and blow up
criterion, arXiv:1309.0072.

., Global strong and weak solutions to inhomogeneous nematic liquid crystal
flow in two dimensions, Nonlinear Anal. 99 (2014), 80-94.

, Global strong solutions to the inhomogeneous incompressible nematic liquid
crystal flow, Methods Appl. Anal. 22 (2015), no. 2, 201-220.

, Local existence and uniqueness of strong solutions to the Navier-Stokes equa-
tions with nonnegative density, J. Differential Equations 263 (2017), no. 10, 6512—
6536.

L. Li, Q. Liu and X. Zhong, Global strong solution to the two-dimensional density-
dependent nematic liquid crystal flows with vacuwm, Nonlinearity 30 (2017), no. 11,
4062-4088.

X. Li, Global strong solution for the incompressible flow of liquid crystals with vacuum
in dimension two, Discrete Contin. Dyn. Syst. 37 (2017), no. 9, 4907-4922.



1228

[19]

[20]

[21]

22]

[24]

[25]

[26]

[27]

Yang Liu

X. Li and D. Wang, Global strong solution to the density-dependent incompressible
flow of liquid crystals, Trans. Amer. Math. Soc. 367 (2015), no. 4, 2301-2338.

F. Lin and C. Wang, Global ezistence of weak solutions of the nematic liquid crystal
flow in dimension three, Comm. Pure Appl. Math. 69 (2016), no. 8, 1532-1571.

P.-L. Lions, Mathematical Topics in Fluid Mechanics I: Incompressible Models, Ox-
ford Lecture Series in Mathematics and its Applications 3, Oxford Science Publica-
tions, The Clarendon Press, Oxford University Press, New York, 1996.

Q. Liu, S. Liu, W. Tan and X. Zhong, Global well-posedness of the 2D nonhomo-
geneous incompressible nematic liquid crystal flows, J. Differential Equations 261
(2016), no. 11, 6521-6569.

S. Liu and J. Zhang, Global well-posedness for the two-dimensional equations of non-
homogeneous incompressible liquid crystal flows with nonnegative density, Discrete
Contin. Dyn. Syst. Ser. B 21 (2016), no. 8, 2631-2648.

B. Lii and S. Song, On local strong solutions to the three-dimensional nonhomoge-
neous Navier-Stokes equations with density-dependent viscosity and vacuum, Nonlin-

ear Anal. Real World Appl. 46 (2019), 58-81.

C. Wang, Well-posedness for the heat flow of harmonic maps and the liquid crystal
flow with rough initial data, Arch. Ration. Mech. Anal. 200 (2011), no. 1, 1-19.

H. Wen and S. Ding, Solutions of incompressible hydrodynamic flow of liquid crystals,
Nonlinear Anal. Real World Appl. 12 (2011), no. 3, 1510-1531.

H. Yu and P. Zhang, Global reqularity to the 3D incompressible nematic liquid crystal
flows with vacuum, Nonlinear Anal. 174 (2018), 209-222.

Yang Liu
College of Mathematics, Changchun Normal University, Changchun 130032, China

and

Department of Mathematics, Nanjing University, Nanjing 210093, China
E-mail address: 1iuyang19850524@163. com



	Introduction
	Preliminaries
	A priori estimates
	Proof of Theorem 1.1

