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Time-asymptotic Dynamics of Hermitian Riccati Differential Equations

Yueh-Cheng Kuo, Huey-Er Lin* and Shih-Feng Shieh

Abstract. The matrix Riccati differential equation (RDE) raises in a wide variety of
applications for science and applied mathematics. We are particularly interested in
the Hermitian Riccati Differential Equation (HRDE). Radon’s lemma gives a solution
representation to HRDE. Although solutions of HRDE may show the finite escape time
phenomenon, we can investigate the time asymptotic dynamical behavior of HRDE by
its extended solutions. In this paper, we adapt the Hamiltonian Jordan canonical form
to characterize the time asymptotic phenomena of the extended solutions for HRDE
in four elementary cases. The extended solutions of HRDE exhibit the dynamics
of heteroclinic, homoclinic and periodic orbits in the elementary cases under some

conditions.

1. Introduction

The matrix Riccati differential equation (RDE) is the quadratic differential equation
W = My (t) + Moo ()W — W My (t) — W Mo (t)W

where W(t) and Mi(t), Mia(t), Mai(t), Maa(t) are matrices of dimensions m x n, n x n,
nxm, mxn and m X m, respectively. The RDE plays an important role in a wide variety
of applications for science and applied mathematics. We are particularly interested in the
Hermitian Riccati Differential Equation (HRDE) which arises in optimal controls [5,{12H14]

and in two-point boundary value problems [2.|36,|7]. It has the form
(1.1) W=-WSW+WA+ AYW + D with W(0) = W,

where A, S and D are n x n complex-valued constant matrices with S = S and D = D.
There is an important relationship between a linear system of differential equations and
HRDE. We can use it to obtain a solution representation formula for HRDE explicitly.
This relation has been known at least since the work of Radon [16,[17]. Suppose that the
solution W (t) of HRDE (I.1)) exists for ¢ € (tg,%1), 0 € (to,¢1) and W (0) = Wy. We first

introduce the following important properties.
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Theorem 1.1 (Radon’s lemma in [1]). Let A,S,D € C™" with S = S and DY = D,
then the following statements hold.

(i) Let W (t) be a solution of HRDE in (to,t1). If Q(t) is a solution of the IVP
Q(t) = (SW(t) — A)Q(t) with initial value Q(0) = I, and P(t) := W (t)Q(t), then
Y(t)=[Q#)T,P(t)T]" is the solution of the linear IVP

(1.2) Y(t)=HY(t), Y(0)=[L,W]",
where

(1.3) N I

' | D oaf

is a 2n X 2n complex Hamiltonian matriz.

(ii) Let Y(t) = [Q(t)T,P(t)T]" be the solution of (1.2). If Q(t) is invertible for t €
(to,t1) C R, then

(1.4) W(t)=PH)Q()™
is a solution of HRDE (1.1]).

It is clear from ((1.4]) that the nonsingularity of Q(¢) determines whether the solution
W (t) of HRDE exists. Define the set

Jw = {t € R| Q(t) is invertible}.

Since
Q) TR
Q(t) = [In70n><n] = [[naOan]th " )
P(t) Wo
the function det(Q(t)) is analytic and not the zero function. This implies all zeros of
det(Q(t)) are isolated. It follows 7, is the set that R subtracts some isolated points. 7,

can be written as a union of open intervals, say

jw - U (%\k7?k+1)a
keZ
which is an unbounded set in R. Since P(¢) and () are analytic functions on R, W (t) =
P(t)Q(t)~! is a meromorphic function. The singularities of W (t) are poles. This means
that the solutions W (t) of HRDE (1.1)) may show the finite escape time phenomenon,

i.e., the solutions may blow up on a finite interval. However, it is noted that the solution
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representation for W (t) in (T.4)) holds not only for ¢ € (tp,%;) but also for ¢t € 7,,. Hence,
we can define the extended solution of HRDE (1.1)) by

(1.5) W(t) = P)QE)™), te T

Moreover, Radon’s lemma also leads to a geometric version which gives connection between
the solution for HRDE and the flow defined on the Grassmann manifold. The
embedding of trajectories of HRDE into trajectories of a flow on the Grassmann manifold
is stated in Appendix A. This flow on the Grassmann manifold is analytic and exists for
all ¢ € R. Therefore, the investigation of time asymptotic phenomena for the extended
solutions of HRDE (|L.1)) is meaningful.

The main results (main theorem) of this paper is to give a characterization of dynamical
behavior for the extended solutions of HRDE (.1 and to study the time asymptotic
estimates. The time asymptotic behavior of the solutions for RDE was also studied in
[4/8,9,18] and the literature cited therein. The matrix Riccati equations is closely related,
via compactification of the phase space, to the differential equations on the Grassmann
manifold and the Lagrange-Grassmann manifold. In [18], the author characterized the
nonwandering set and its stable/unstable manifolds of the extended Riccati differential
equations. Rather than the topological structure of the invariant sets and stabilities of
HRDE, we shall focus on the convergent rates of the solutions. In this paper, the explicit
representations of the solutions W (t) = P(t)Q~1(t) are obtained by using matrix analysis,
and then the time convergent rates to the asymptotic solutions can be estimated.

Based on the special structure, a canonical form of a Hamiltonian matrix under sym-
plectic similarity transformations has been widely studied in [15]. Instead of the Jordan
canonical form, we shall use the Hamiltonian Jordan canonical form J of H to investigate
the time asymptotic behavior for the extended solution of HRDE (|L.1]). The structure of
et for the general cases are complicated. Therefore, four elementary cases are studied in
this paper. All general cases can be generated by using direct sums of these four elementary
cases. However, combinations of some of the elementary cases need more sophisticated

analysis and is the future work. We obtain the following results:

1. If H has only eigenvalues A and —\ with nonzero real part and each of the two
eigenvalues has only one Jordan block, the trajectory of the extended solution W (t)
for HRDE ([1.1]) is a hetroclinic orbit;

2. If H has one pure imaginary eigenvalue which has one Jordan block of size 2n, then

the trajectory of the extended solution W (t) is a homoclinic orbit;

3. If H has one pure imaginary eigenvalue but it has two Jordan blocks with multiplic-
ities 2n1 + 1 and 2ng + 1 (n1 4+ na + 1 = n), respectively, then the trajectory of the

extended solution W (t) also forms a homoclinic orbit;
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4. If H has two distinct pure imaginary eigenvalues i and iy (§ # ~) with partial
multiplicities 2n; + 1 and 2ng + 1, respectively, then the extended solution W (t)
converges to a limit cycle which is a periodic solution with period 27 /(6 — «y) and

its convergent rate to the limit cycle is O(t~1).

The paper is organized as follows. In Section [2] the main theorem is presented. In
Section there are preliminaries for the proof of the main theorem. We prove the main
theorem in Section A simple combination of elementary cases is given in Section [4]

It is also noticed that the notations used in this paper basically follow the rules:
e (Capital letters denote matrices;

e Lowercase letters denote vectors or scalars;

Greek letters are used for auxiliary variables;

Hats are used for variables transformed by a matrix Pg;

Tildes denote matrices that have been extended in some way.

2. Main theorem

A canonical form of a Hamiltonian matrix under symplectic similarity transformations has

been investigated in [15]. Let S be the symplectic matrix such that

(2.1) J=5"'1S

where J is the Hamiltonian Jordan canonical form of the Hamiltonian matrix A in (1.3).
01

Let Nj, = be the k x k nilpotent matrix, let Ni(\) = A + N, be the Jordan

-
0
block of the eigenvalue A with size k, and let e, denote the n-th unit vector.

Throughout this paper, we assume that the Hamiltonian Jordan canonical form

R| D
(2.2) J= € Cnx2n
G| —RH

for H is one of the following four elementary cases:
Case 1: R = Np(\), D =G =0 and Re(A) > 0;
Case 2: R = N,(ia), D = Bepell, G=0and a € R, g € {-1,1};
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Case3: n=n1+ny+1,neR ge{-1,1}, G=0 and

Ny, (in) 0 —gem Y 0 0 ep,
R= 0 N, (in) _genz , D= 716 0 0 —eny |
0 0 in —ell el 0

Case 4: n=n; +ny+1, € {-1,1}, 7,6 € R with v # § and

N (i) 0 —YZe, 00 0
R=| 0  N,@) —Len|, G=8[0 0 0 :
0 0 Ly +96) 00 —i(v—9)
0 0 €n,
D:?iﬁ 0 0 —€ny
el e, ¢ -9)

I,
(2.3) = = Sedtgt
P(t) Wo Wo

Now, we are ready to state our main results.

Theorem 2.1 (Main theorem). Suppose that H is symplectically similar to one of the four
Hamiltonian Jordan canonical forms J mentioned above. Let Y (t) = [Q(t)", P(#)T]" and
W(t) = P(t)Q(t)~! for t € J be the solution of IVP and be the extended solution
of HRDE (1.1)), respectively. Define

(2.4) Wi Wy T = S L, Wy
Then the following assertions hold.

(i) Suppose that the symplectic matriz S in (2.1)) is partitioned as

Uy |\
(2.5) S = ,
Us | Vo

where Uy, Us, V1, Vo € C™*™,

Case 1: Assume Re(\) > 0 and W1, Uy are nonsingular. Then

W(t) — UQUfl + O(e—2Re()\)tt2(n—1))
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as t — 0o. On the other hand, if Wy and Vi are nonsingular, then
W(t) _ ‘/'2‘/1—1 + 0(62 Re()\)tt2(n71))

as t — —oo. Therefore, the trajectory of the extended solution W (t) is a hetroclinic
orbit that starts from the equilibrium VoVt to UsU " which are hermitian.

Case 2: Assume Wo and Uy are nonsingular. Then
W(t)=UU; 4+ 0™
as t — +o0o. In this case, the trajectory of the solution W (t) is a homoclinic orbit.

Suppose that the symplectic matriz S in (2.1)) is further partitioned as

Ui Ul‘V1 U1

(2.6) S = € C2nxan,

Us u2‘V2 ()

where Uy, Uy, Vi, Vo € C*(m1412) 40 g vy, 09 € C™ and n = nq + no + 1.
Case 3: Assume Wy is nonsingular. Then there are constants fu, fv, gu, go € C with

U; = [U; | fuui + fovi] € C**™ and ¢; = gyui + gyvi € C", i = 1,2 such that

_ =1 H
W(t) — UQ + (CQ [UQU’} fl)en
1+ efUT G

) Uit + o™

as t — oo, whenever Uy is nonsingular and 1 + ef@flﬁ % 0. The trajectory of

the solution W (t) is a homoclinic orbit.

Case 4: Assume Wy is nonsingular. Then there are constants fu, fv, gu, go € C with

U; = [U; | fuui + fovi] € C™™ and ¢; = gyui + gov; € C", i = 1,2 such that
0t

_ — Uy )l U + ot
1+ei9te,’§U1‘1C1(€2 Uy Qe Uy ()

W(t) = UUT! +

as t — oo, provided that Uy is nonsingular and 1 + effjflcl #0. Here 0 =6 — .
In this case, the trajectory of the extended solution W (t) approaches the limit cycle

ez@t

1+ ewtenHT[jl_lﬁ

We(t) = ®2®f1 + (2 — ﬁzﬁflﬁ)efﬁfl

with period 27 /0.
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We first introduce some notations. For 1 <4, 5 < k,

(Pr)ij =

Q’k(t) £ €th =

(=1)’
0

12k1—ko

3. Proof of main theorem

3.1. Preliminaries

forj=k+4+1—1,

otherwise,

1

| (2k1—k2)! i
Op(t) 2 POy (1) Py, TH Y1) 2 T2 Y 0)P, 1) 2 1) Py

t2
togr

1 ¢

-tk

N -

~

with k1 < kg < 2k,
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It is also noticed that the time-dependency of the above notations is omitted where no

confusion can arise.

Lemma 3.1. We have

(1) eNk()\)t — e)\teth — e)\lf(I)k’.

(i) P! =PH, P7'NPy = —NE;

(iii) By = P 0B, = e Ni't = @1

Proof. The proof is straightforward by direct calculation.

O

The following lemmas show the expression for e* when A is one of the elementary

cases.

Lemma 3.2. Let A denote the Hamiltonian matrix

Ny (i) ‘ ﬂekekH

0 \ —Ni(ia)H

where 8 € {—1,1} and o € R. Then for every t € R, e is of the form

At

e =€

@, | —pTH!

-H
0\ o)

2k x 2k
€ Carxek
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Proof. Let © = I, ® (—BP;) where @ means the direct sum. We have Nog(ia) = QA0

Then by Lemma 3.1 we have

eAt — 6“”@716]\]2’“756

M k—1 k 2k—1
Lot ey S e ey
tk—l tk t2k—2
1 k—1)! & (2k—2)!
t : . :
k
_ i Ik‘ 0 1 t s Ik‘ 0
= — k—1
0| -pp! 1t i 0 | -pP;
1
t
1
o Iy \ 0 i \ -t I \ 0
0 \—ﬁp,;l 0 \ Dy, 0 \—ﬂPk
} i o ‘ _gp2k-1 i
=l Y . O
0 ‘ o

For simplicity of expression for e4’ in the next lemma, we introduce the following

notations
Dn(t) 2 e, @ 0D,
(/I\)m,n(t) é ei’yt(I)T—nH @ €i6t(I);H _ ei’ytp;lq)mpm @ ei(stpn—l(bnpn’
1 ) a _@ eivtd)m 9 ) a ﬁzﬂ eivtqu
mn 2 ist oo 2 ist ’
€ an —€ ¢n
—~H V2o N NI .
(32)  Vlnalt) 2 5B G | = 2B [etgli P, eyl
—H V27 V2T .
¢2m7n(t) L _7 [el’ytw{z ez&twi]} — _7 [ewtwgpm ezétwﬁlpn] ,
fiﬂmﬂ(ﬂ 2 i/B[ - emf%ﬁl ©® ei‘”f?ﬁrl] = Zﬂ[ - e”thn’ile ©® eiétfiﬁan],
wll(t) W12(t) A 1 €wt + ei&t *i,@(ei’yt — eiét)
wor(t) waa(t)| 2 [if(eNt — et et + it

Similarly, the time variable of the notations introduced in (3.2)) will be omitted wherever

it is not necessary to specify it.
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R| D
Lemma 3.3. Let A denote the Hamiltonian matriz , where
G| —-RH"
Nn(iv) 0 —¥Ze, 00 0
R=| 0  N(id) —%e, |, G=pB]0 0 0
0 0 i(v+9) 00 —4(v—9)

€m

p="2g

—€n s

0
0
—efl el —i2(y - 0)

B € {—1,1} and v,0 € R. Therefore, for every t € R, et is of the form

1 ~2m,2n 2
(I)m,n (Zsm,n Fm+1,n+1 m,n
—~H
B ‘ D 0 w11 ’l/}lmm, w12
At _
e = =
G|E =
0 0 By 0
/BH
L 0 wa 1/1 mn W22 |
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Proof. In order to transform A to a block diagonal matrix, we introduce the matrices ©

and ©9 with
(1, 0 0o |0 0o 0
0 0 —2]0 0o g
I7n,+1 S (—Z,BPm) ‘ 0 0 O O [m O O
91 - @2 =
0 | L1 ® (iBPy) 0O I, 0 |0 0 0
0 0 -0 0 —%2ip
L0 0 0 |0 I, 0

O, is a combination of a permutation matrix and a 2 X 2 unitary matrix. The mechanism

of ©3 is to let A be similar to an upper block matrix. That is

Np(i7)  em 0 0 0 0
0 iy iBel 0 0 0
0,405" = 0 0 —NH(iv) 0 0 0
0 0 0 N, (i0) e 0
0 0 0 0 i0  —ipel
0 0 0 0 0 —NH(i6)
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The mechanism of O is to transform —N (iy) and —N(i6) to Ny, (i) and N, (id),
respectively, in ©,A0, ! Then we have

_ Nopy1(iy) ‘ 0
01024(0:05) 7 = : ;
0 | Nowss(i6)
and
€N2m+1(i’Y)t 0
et =(0,0y)7" ‘ ‘ 010,
O ‘ eN2n+1(“5)t
o, 0 —?e”tqﬁm (—iﬂ)e”tf%ﬁl 0 g(iﬂ)ewwm
0 eiét@n 7?62'&(,25“ 0 (iﬂ)eidtrzﬁi_l 772(2-6)61'&(;5”
_ 0 0 %(ei'yt 4 ei5t) g(zﬁ)ezvtwg _g(lﬁ)ezétwﬁl _ (lZB) (ei'yt ez5t)
0 0 0 e”t@;bH 0 0
0 0 0 0 ety —H 0
I 0 0 (iéi) (em _ eiét) _?emt@i _gem@l{ %(emt + ei&t)
B|D
G|E |

For integers k, [, k1 and ko that satisfies 0 < k, 0 <[, k # [ and 0 < k1 < ko < 2kq,
we denote

- _ diag(th tF+1 ..t if k<,
:‘k,l = ‘:‘k,l( = ) . l ‘
diag(t®, t*=1 ... th) if k> 1,
[ 1 1 1]
(3.3) k1! ((ZES) %ol
L 1 . 1
FZQ — | =D kil (hz—1)!
1 . .
S S
_(le—kg)! k1! ]

To give a useful expression for the inverse of the matrix I’kf, we prove that the matrix F lZf

is invertible in the following lemma.

Lemma 3.4. Let k1, ko be positive integers that satisfy 0 < k1 < ko < 2ky and k = ko —k;1.
Then

Elk—1)!--- 1!
kol(ky — 1)1+ k!

det(F2) =

Hence, F],zf 1s invertible.
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Proof. To prove this lemma, we need the so-called Pascal’s law:

n n—1

— o, :raf:ll forn,reNandn>r

where 6" =n(n—1)---(n—r+1) = —2 . Let D = diag(ks!, (ko — 1)!,...,k1!). Set

- (n—m)!"

ko ka2 k2
0' 0’ .« e . 0’
k k—1 0
ko—1  _ko—1 ko —1
O’ o’ “ e O’
~ko _ k k k—1 0
F2=DFy? = e RUFDx(k+1),
k k k
L oyl oply o 0g i

Let e; denote the jth column vector of the matrix Iy and E; £ I 1 — ejejfil. Then by

w, we hav
Pascal’s law, we have

k:a,]?__ll 1052_1 0
Ey-- BB F 12 =
! kalljl_l 10'51 0
011:1 e alfl 1 |
[ ~ko—1
F 0
= |k diag(k, (k —1),...,1,1).
* 1

Due to det(E;) = 1, it is easy to get det(F’Z"l’) = k! det(Fﬁffl). Then we can get
det(F}2) = kI(k — 1)1+ 1 det(F ') = kl(k — 1)1+ 1L,

Hence, we have
det(F)2) Kk —1)!---1!

det(Fr2) = = . O
¢ (Fkl) det(D) kg!(kz — 1)' - k!

Then the matrix FZ? defined in (3.1]) and its inverse can be written in terms of Zj

and F Zf in (3.3)) as

ko __ 12k1—ko— ko=
Fkl =t Qszfkl,OFkl—'O,szkla

(3.4) (sz)il = ¢tk (EO,kz—kl)71(F£?)71(Ek2—k1,0)71

by the invertibility of FZT in Lemma H The matrices (Zgx—1)"' and (Z_1,0) " shall
be used to help eliminate the ¢ powers of ®; and ¢ as done in the proofs of Lemmas 3.5

and B.6]

Lemma 3.5. Let n € N. Then
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(i) 271, = O™, &,(T2 11 = Ot™) and &,(T2 1) 1@, = O(t™");

(i) @, (®,C £T2-1)~1 = Ot )
as t — oo, where C € C"*™ is a constant matriz.
Proof. (i) Using (3.4) and Lemma [3.1fiii), we have
T2, =t P (0,0 1) P2 ) T (Eno10) ] = OTY),
(pn(r n— 1)71 — (P;lCI)nP )Pfl(Iw?Lnfl 1
=t B, @ )~
o, (T2 e, = (P10, PP (T2
=t P 00 (Zon—1) N(F ) T (Enm10) @0 = O

Hon—1

due to
(ZEn_10)"'®, = 0(1), ®,(Zp,1)""=0().

For the proof of assertion (ii),

B, (,C — 21~ = @, [[2 (T2 1)1, 0 — I,)]

[e.9]
== |In+ Z((Fin_l)_lq)nc)k (Fin_l)_l
k=1

= =0, (I )7 = D ea (M) @O (T3 !
=0@t™).
Similarly, ®,,(®,W + f%"_l)_l =0(t™1). O

Lemma 3.6. Let ni,no € N. Then

(C+Tone )t =007, (C + T )7 60, = O,

(T + T ) By, = O(t72), D (T T2 )7t = 0@,

) nyma (L + Fi?ﬁ%ﬂ) =0(t™), s TLQ(T + Ffﬁﬁ%ﬂ) 1‘I’n1,n2 =0(t™),
By (T AT )7 By = O(E72), By (T AT )N, = O

72n1,2n2 3 j i :
as t — Foo, where j = 1,2, Fn1+1 iyt 17 Dt nos Pryngs Onyne and Yn, n, are defined in

and T = @y 5, W + ¢} W, W e Cltn2)x(mtn2) gpg o € Ctn2. Moreover,

we also have

~2n1,2n. -1,k 2n 2n —1 .k —1
wm nz(T + Fmirl n22+1) qumz wm,nz( n1ir1 77?2+1) ¢n17n2 + O(t )

as t — +oo, where j, k € {1,2}.
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Proof. Using the notations in (3.2)) and the expression (3.4), we can obtain

“2n,2 _ —
(FnTirlzferl) b= O(t 2)7

"2n1,2 — _

(35) (FnTirlzlngrl) 1q>n1,n2 = O(t Z)a
~ong,2 1 _ .
(Fn?il-lzbé—&-l) ! ni,ne O(t 1)’ Jj=12

due to
(Zni10) ' ®n, = 0(), i=1,2, (Zn,10) ‘bn, = O(t), i=1,2.
These imply

“2n1 2 _ _
(T ¥ T mt1) 'rT=00"

and

(,r + 1_‘27“72712 )71 _ [(f2n1,2n2 )((f2n1,2n2 )71T 4 I)]fl

n1+1,n2+1 n1+1,n2+1 n1+1,n2+1
~2n1,2 1 2 ,2 —1
= [I+ (Fn?}klri?2+l) T] ( TLTlLikl’n?fQ#»l)
fi2n1,2 1 fi2n1,2 —1
= |1+ Z (T Tmr) ™ k| (T it Lrt1)
= (’)(t’Q).
We can also obtain
~H S R2ng 2 -1 -1
7]11,712 (Fn?}‘,—lzfz-i-l) = O(t )’
2n1,2n2 1 -1
nl,ng( n1+1, TL2+1) q)n17n2 = O(t )7
2 ,2 1
(3 6) n1,n2( nrll}i-lrr;b’fg—i-l) ¢n1,’n2 = 0(1)7
’ ‘I’ (F2n1,2n2 )—1 _ O(t 2)
ni,n2 ni1+1,n2+1 - ’
~ fi2n1,2 1 -2
(I) ( n?}s—lyifg-i-l) (I)m,nz = O(t )7
= »2n,2 1 -1
(I)m,nz( n’,ll}i-lcbfg—i-l) ¢n1,n2 = O(t )

The rest of the lemma can be proved by using and ( .
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O]

Lemma 3.7. Givenn € N. Let ky, = ¢n (I‘n+1) L., where O | ¢ and F2+1 are defined

m . Then

2 ifn is odd,
(3.7) K =
0 ifn is even.

Proof By the definitions of @f , ¢n and f?ﬁrl in (3.1)), it follows from that k, =

H
(Fn_H) ly .., where x, = [1,%,...,%] , Yn = [%,ﬁ,..., ] and Fn_H is given
in . It is obvious that
Fn = Yn Fn+1
1 xH



144 Yueh-Cheng Kuo, Huey-Er Lin and Shih-Feng Shieh

From Lemma we have that f 2" | is invertible. It is well-defined to set

L o
E =
_(F%11)71Yn 1
Then we have
0 \ Fon
L=x (P2 ) tyn | xf

From Lemma we can obtain that

nl(n—1)! -1
2n)!(2n —1)!---n!

= det(F 2") = det(F 2"E)

= (~1)"2(1 — kn) det(F3%)

— (=1)" (n—1)!(n—2)!---1!
=(-1) (1_’%)(271)!(271—1)!...(n+1)!'

This implies that (—1)"(1 — k) = 1 and then (3.7) is proved.

3.2. Proof of main theorem

In this subsection, we shall prove each case of Theorem
Proof of Case 1. Since J = N, () @ (=N, (A\)H), then from (2.3), (2.4) and (2.5)),

Nn (A
QY| _ g [In| _g]e ()t‘ 0 Wi
P(t) Wo 0 MW | Wy
U | V1 eMeNnt Ty,

Recall the notations

Then

Q(t) = MUL B, W + e MV1d, H W,
P(t) = MU, W + e M1, T,

Due to Re(\) > 0, W is invertible and

1@l @5 = O(lt"~),
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we have for t > 0,
He—(A—i—X)tVl(I);HW2WI—1¢,T—Ll” _ O(€—2Re(/\)tt2(n—1)).
Then by using Sherman-Morrison-Woodbury formula (see Appendix B), we have
U + e’(’\g)tVl(I);HWngltI);l]’l _ U1—1 + O(efZRe()\)ttQ(nfl))
for t sufficiently large if U; is invertible. Then
W(t) = PH)Q) ™
= [Uy + 6_(’\+X)tV2<I>;HW2Wf1<I>;1][Ul + e—(A+X)tV1(I);HW2Wfl(I);1]—1

_ [U2 + O(e_gRe()‘)ttQ(n_l))][Ufl + O(e—QRe(A)ttQ(n—l))]
— U2U1_1 + 0(6_2Re(>\)tt2(n_1))

as t — oo. Similarly, if V1 and W5 are invertible, we have
W(t) = PH)QE)™

= [V + AV, W W5 @[V + ATV @, W Wy )
— Vv2vv171 + 0(62 Re()\)tt2(n—1))

as t — —oo.
Ny (i) ‘ Benef

Proof of Case 2. For J = € C?"*2" we have, by Lemma (3.2

0 \ — N, (ia)"
2n—1
eJt _ eiat oy, _5P”n
0 ‘ oM

Since Ws is invertible, the solution of IVP (1.2)) is

t - I,
Q) =Y(t) = Sedtg—1
P(t) Wo
ot | U1 [ V1 @, | —pT21 | (W
=e
Us | Vo 0 ‘ (I);LH Wo
i 1T -1 ~2n—1
_ iat U, |1 ¢, W Wy - — Iy W
U2 V2 @;H

Define
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201 is invertible for ¢ # 0 and [|(T2"~1)~1, || = O(|t|"!) by Lemma[3.5] Hence Q(t) is
well-defined for |¢| large. Then
Qt) = Ui~ ()W + Vi@ W]
= w‘t[Ul + Vi@, Q)]0 ()W,
P(t) = " U7 (¢ )W2 + Vo, HWy]
= ' Us + Va®, Q1)) () W2
as |t| is large. Applying the time asymptotic estimate ®;7Q(t) = ©,Q(t) = O(t™1) by
Lemma, we can obtain
W(t) = Pt)Q()™" = [Uz + V2@, TQ(1)][U1 + 1@, Q1)
=UU ' + o™
as t — too0.
Case 3 is a special case of Case 4 withn =9 =~

Proof of Case 4. H is symplectically similar to the canonical form J in (2.2) for Case 4.
By Lemma we have

1 2n1,2n2 2
(PnlanQ ¢n1,n2 Fn1+1,n2+1 ni,ne

0 w1 Vloym w2 B \ D

3t _ a

[ = =
0 0 Dpyny O G ‘ E

/\ZH
i 0 wa U2 ny W22 |

where ®,,, s Pryinas Dl s djinl’m, fi?ﬁrifﬁl and w;; are defined in (3.2). From (2.3),
(2.4) and ({2.6]), the solution for IVP (|1.2) is

I,
=Y(t) = Sedts!
P(t) Wo

U1 ul‘Vl V1 B‘D Wl
UQ ’U,Q‘VQ () G‘E W2

By the assumption that W5 is invertible, we have from above

¢ U uw |V v BW, W, ! +D
(3.8) Q1) Wil = 1w ‘ 1 v Wy
P(t) Us us ‘ Vo vy GW1W;1 +E

Set

W
W=wwyl= |—2

Wa1 | W22
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where Wy 1 € C(n1+n2)><(n1+n2)7 Wi € C(n1+n2)><1, wo 1 € Clx(m+n2) and woo € C. By

direct computation,

(3.9)

where

BW W, ' +D =

BW +D
o, or Wi ‘ W12
1,12 ni,n ’ )
1 2 + D
0 ‘ w11 W21 ‘ W22
[ 1
Tn1,n2 ‘ (I)nl,ngwl,Q + ¢n1,n2w2,2 i D
w11W2 1 W11W22
i 7[2n1,2n2
Tm,nz + Fn1+l,n2+1 ‘ pm,m
—~H
T,Z)lnlm + w11wWa1 ‘ W11W22 + W12

A 1 Y 1 2
Tn17n2 = ®n17n2W171 + ¢n1,ngw2,1? pn17n2 - (Dn17n2W172 + ¢n1,n2w272 + ¢n1,n2‘

Similarly,

(3.10)

GWiW, ' +E

GW +E
0 ‘ 0 Wl,l ‘ Wi,2
+ E
0 ‘ w1 Wo 1 ‘ W2 2
@Tll,ng 0
i 7/)2n1,n2 + wa1wa 1 ‘ W21 W22 + W22

Plugging (3.9) and (3.10) into (3.8]), we have

Ui w ‘ Vi n

~

2n1,2ng
Tnhnz + Fn1+1,n2+1 Pning

—~H

Yl ny FW1IW21 wW1I W22 + wi2

Us s ‘ Voo v

~

0

ni,n2

Y2,y T WA W21 WoIWa 2+ wao

~

27’1,1,2712

_l’_

Uh ‘ Vi Tn1,n2 + Fn1+1,n2+1 ‘ Pning
Us | Vo Buvws | O
/\1H
up | v Yl TW1IW2 1 | W11 W22 + w12
(! ‘ U2 V2, ny T W Wa ‘ W21 W22 + W22
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Let
[ L) _ 2ong 2 _
Q(t) _ (Tnl,m + Fn?i—lzlzg—i-l) ! ‘ _(Tm,nz + Fn?i—lzzzﬂ—l) 1pn1,n2
0 | |

be the time asymptotic estimates in Lemma Hence Q(t) is well defined for |¢| large.
Then we have

Aq(t Q(t
( ) é ( ) WZ—IQ(t)
As(t) P(t)
0
. Ul Vl In1+n2
Us | Vo 0
('I\) T + f2n1,2n2 )—1 _(’15 T + f2n1,2n2 -1
77417”2( ni,n2 ni+1,ns+1 ’ﬂl,nz( ni,n2 n1+1,n2+1) pnl,nz
_ H -
—~H —( o, FW1IW2 1)
(Pl ny T W11W2,1) Somions 1
T f2n1’2n2 1 X (Tnlma + Fn1+1,n2+1) Pning
X( ni,n2 + n1+1,n2+1)
uy | v1 Fwi11W2 2 + w12
+ H
U | V2 —H _(w2n1,n2 + Wy W)
(w n1,n2 +w21W2,1) ™2n1,2ng -1
T 201,202 1 X(Thymy + Fn1+1,n2+1) Pnyno
X( ni,n2 + n1+1,n2+1)
L +TWa1 W2 2 + Wa2 ]

From the time asymptotic estimates in Lemma we have

~ ~

2n1,2 — -2
(I)nl,ng(Tnl,ng + Fn’rllii-l’,r:fg—&-l) P = O(t )7

= 2n1,2n9 -1 _ —1
®n17n2 (Tn17n2 + Fn1+1,n2+1) pn17n2 - O(t )7

~H B B ‘
(wznl,ng + wilw?,l)(Tn1,n2 + Fi?iij:%-&—l) t= O(t 1)7 1=1,2.

~

Moreover, due to (ngﬁﬁi 1)  Thnyny = O(t™1), we have by Sherman-Morrison-Woodbury

formula

~

2n1,2n9 -1
(Tnlv'nQ + Fn1+1,n2+l)

— (f2n1,2n2 )—1 o (f2n1,2n2 )_lTnth [Ik + (f2n1,2n2 )_lrnl,ng]_l(f2n172n2 )—1

ni1+1,na+1 ni+1,na+1 ni+1,n2+1 ni1+1,n2+1
for t sufficiently large. Then by the above identity, Lemmaand (3.6)), it can be obtained
~H —~

that the time asymptotic leading terms of — (17, .. —i—wile’l)(Tnlm+Fi?ﬁf;22+1)*1pnhn2

+ w;1wo 2 + wi2 are

~

i 12n1,2 —1/,1 2 .
P ng (Fn?il%ﬂ) (¢n17n2W2,2 + Gnymy) TwWilWa2 twig, i=1,2,
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respectively, which are both O(1). In the following, we shall use above asymptotic esti-
mates to decompose A;(t) = O(1) + O(t~!). To this end, we can obtain

0
In1+n2
0
Ai(t) = [ U; | vy v } SH Nomy 2 “1/ 41 2
! ! ' ! O . 0 _wlnl,ng (Fn?}i-lj:lzg—‘rl) (¢n1,ngw272 + ¢n1,n2)
Fw11wa2 + wi2
—~H ~
2n1,2 —1( 41 2
0---0 _¢2”1,n2 (Fn?irlj}fg+l) ((z)m,nzW?»z + qZ)m,m)
i tw21Wa 2 + wao i
+ M5 (¢t)
where

o~ ~

¢ —Vvi.| & 2n1,2n2 -1 & 2n1,2n9 -1
M;(t) = Vi | @py 05 (Tigng + Fn1+1,n2+1) — Py s (Tryns + Fn1+1,n2+1) Pri,ng }

N [wi(P )y +w11W21) +0i(Y2,, ) +woiwa 1))
~ong,2 _
X (Tnl,nz + Fn?}i-l?ni-&-l) ! 0

~

2n1,2n2 -1
—u; W11W2,1( Ty o + 10 T 1) ™ Pra o

) /\1 7~2n1,2n9 1
—u; P ni,no (Tm,nz + Fn1+1,n2+1) (Dnl,nzwlﬁ

~

—~H 2n1,2 _ 22n4,2 _
—Ui¢1n1,n2{(rm,nz + anif:fﬁl) t— (Fn?ilzfz-i—l) 1]

1 2
+ 0 X (¢n1,n2W272 + ¢n1,n2)
nx(ni+n2) ' T f2n1,2n2 _1
Ui w21w271( nimng T n1+1,n2+1) Pnyng
—~H N
12 2n1,2n9 —1
—v; P ni,na (Tnhm + Fn1+1,n2+1) (I)nlﬂuwl,?

~ ~

- 21,2 _ 21,2 _
—U; ¢2n1,n2 [(TnlynQ + Fn’rllilzl,22+1) 1— (Fn’rllil,ﬁ?i#»l) 1]

X (¢7111,ngw2,2 =+ Qﬁgm,ng)

ol

for i = 1,2 by Lemma[3.6] If we focus on the O(1) term of A;(t), using the notations (3.2)

and Lemma a direct calculation yields

~H N
2n1,2n —1/41 2
_wlnhng (Fnli—l,rfg—i-l) (¢n1,ngw272 + ¢n1,n2) +twiiwa2 + w2
~H R
2n1,2n —1/41 2
_w2n1,n2 (Fnli—l,rfg—i-l) (¢n1,ngw272 + ¢n1,n2) T w21 w22 + wi2
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1| (=)™ (w2 —if)  (=1)"(wap+if) | | fu gu| €7
2 1(~1)m(iBwaa +1) (—1)"2(=iBwas +1)| | fo gu| |€°
Here, fu, fu, g and g, are constants independent of ¢. Therefore, we can get for i = 1, 2,
fu Gu et
fo 9v et
|t foon) [+ 0] € (guus + gv) | +MEW)
fuuz + fvvz) } + ewtcl + Me( )) ) (Inl-‘rnz D ei’}’t)
ZatCl + Mg( )) : (In1+n2 @ ei’yt)

At = | Ui| [ur v + M (t)

v
-([u
- (©

Gi = guli+goi, 1/\715(75) = M (1) (Lny 4, @e—iﬁ)’ [Dl = [ Us | (fuwi + fovi) |> f=0—r.

Set
Ai(t) = Ui + e ¢ell + M(t)
for i = 1,2. If Uy is invertible and 1+ttt @;141 # 0, then Sherman-Morrison-Woodbury

formula implies that A, (t) is invertible when [¢] is large and

A7) = (U MEAaJ@+MﬂD ¢ e (U + M (2) !
1 (t) ( 1+ 1(t)) 1+€i0t€nH(U1+Mi( )) ICI

Ul_lewtﬁenHUl_l
1+ 6i9teﬁUf1C1

=07t - +O@t™).

Then due to l\N/Ig(t) = O(t™1), we can obtain

B Ul_lewtCleg[Ul_l
1+ eiatenHUflCl

(T el 1 NiS(1) (6;1 " o<t—1>)

R S U Uy CleHﬁfl
o 1+ efteHUTIG

e (BT ) e T !

i0t ~ Hp1—1
+ e (ae, U

— +0@t !
1 + e“’teHU*lCl ( )
~ U,U; 'Gefl Uy Hrt
_ UQUII _ it 2V Cle 11 + 10t CQen 1 - + O(t_l)
1+ eifteUTI( 1+ efellUT ¢
o 10t o "
=UsUy! + ——— (& — U )l U + ot )

1+ eiftel UG

as |t| is large. The proof is completed.



Asymptotic Dynamics of Hermitian Riccati Differential Equations 151

Remark 3.8. (i) If we assume S = BB and D = CH C for some B € C"*™ and C' € C**",
the equation of the steady state of HRDE (that is, the algebraic Riccati equation) arises
from the optimal control problems [1,[11]. It follows from Theorem 5.3 in [11] that if
(C, A) is detectable, then the Hamiltonian matrix H in has no eigenvalues on the
imaginary axis; if also (A, B) is stabilizable, then the matrix U; given in is invertible
and by Lemma 2.4.1 in [1], UsU; ! is the positive semi-definite steady state of HRDE.
Consequently, under the stabilizable and detectable assumptions, the elementary Cases 2,
3 and 4 in Theorem are absent, and hence, HRDE has heteroclinic orbits.

(ii) In |18], some assumptions are imposed such as eigenvalues of H are distinct and
has no pure imaginary eigenvalue. Therefore, Case 1 in the main theorem holds. In Case 1,
a totally stable equilibrium UsU; L and a totally unstable equilibrium ‘/QVI_I are found and
the heteroclinic orbits connecting these two equilibria are established. The other equilibria
of saddle type and periodic orbits are characterized in [18]. The asymptotic analysis in
this paper can also be applied to these invariant sets whenever the initial points are in the

stable/unstable manifolds.

4. The behavior of the combination of elementary cases

The solution of HRDE depends on the Hamiltonian matrix H. A canonical form of a
Hamiltonian matrix under symplectic similarity transformations has been studied in [15].
We adopt the Hamiltonian Jordan canonical form of H to study the asymptotic behavior of

HRDE. The general Hamiltonian Jordan canonical form is stated in the following theorem.

Theorem 4.1 (Hamiltonian Jordan canonical form [15]). Given a complex Hamiltonian

matrizc ﬁ, there exists a complex symplectic matrix S such that

R, 0
R, D,
R, D.
Ry Dy

G _RH

where the different blocks have the following structures.

(1) The blocks with index r have the form

Rr :diag( ;,...,RZT), 2 :diag(Nko()\k)»-~~aNdk7pk ()\k)), k= 1,...,,UJT,
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where A, are distinct and Re(\g) > 0.
(2) The blocks with index e have the form
= diag(RY,..., Ry, ), R =diag(Ny,, (iag),..., Ny, (o)),
= diag(D5,..., Dj,.),  Di=diag(Bire, el - Brg,Cluy, €y, )

where for k = 1,... ue and 7 = 1,...,qr we have a, € R are distinct and ﬁg,j €
{-1,1}.
(3) The blocks with index ¢ have the form

R. = diag(Rq{,..., R}, ), . = diag(By1,...,Brr,),
D, = diag(Dy, ..., Dy, ), Dy, = diag(Dy 1, - -, Diry ),
where for k=1,...,uc. and j =1,...,r; we have
Ny, (i) 0 — Lo, 7 0 0 emy,
By, = 0 Nu,.,; (i) —genw , Dij= 72}32,]- 0 0 —en,|>
0 0 Mk —eﬁkyj enHM 0

e € R are distinct and B ; € {-1,1}.
(4) The blocks with index d have the form

Ry =diag(R{,...,R% ), Gq=diag(G{,...,G}), Dq=diag(D{,...,D}),

where for k=1,..., uq, we have
N, (i) 0 — L2, 00 0
Ri = 0 N,(i6) —Ley |, Gi=58t]0 0 0 ,
0 0 (v + ) 0 0 —5(y—0)
0 0 sy,
V2,
Dicgl = 71/31? 0 —ey, )

T # O and B € {~1,1}.

It is noted that et has the same block form as J due to the structure of J. Suppose
that the Hamiltonian matrix H has Hamiltonian Jordan canonical form J defined in the

above theorem. Then the solution for IVP ([1.2)) is

Y(t) = = Sedtg!
P(t) Wo
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In the following example, we consider a special case that J is the combination of Cases 1
and 4.

Example 4.2. Assume S = [y and

[ Ny(\) 0 0 0 ]
v 0 =2 0 0 1
0 i =2 0 2(i8) | 0 0 -1
. iy +0) 1 1 —i%E(y-9) |
0 0 —Ny(W)H 0
0 0 0 iy 0 0

0 B0 0 0 0 0 i 0

! 00 S(y-9) S S SR N

where No(X) = [} 1], Re(A) >0, 7,6 € R with v # & and 8 € {1, —1}. Then we have

eN2Vt 0 0
eﬁt _ 0 B 0 D
0 0 |e MWt o |
0 G 0 E
where
52,2 =
B A Dy ¢%,1 . D2 izﬁ %,1 e 0 0 e j{il[,; 0
0 wn Pl wiz 0 wa V21w
Then the solution for IVP (1.2) is represented by
I 0
Q(1) At I5 At 0 I3
P(t) Wo Wo1r Wos
| Wos Wos |

where W) is partitioned into Wo;, i = 1,2, 3,4, with Wy, € C?*2, Wyy € C2*3, W3 € C3*2
and Wys € C3*3. Hence,

[ O O |
Q(t) B DWos B + DWy
P(t) - e~ NNty =NV Tty
EW03 G+ EW04
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If B+ DWjyy, is invertible, then Q(t) is invertible. Moreover,

e*NQ()\)t

Q_l(t) - 1 Nao(M)t ‘ 1
—(B+DWO4)7 DWpyse™ 2() ‘ (B+DWO4)7

02x3

and the solution of HRDE (|1.1]) is

e~ N2V W1 — Woa(B + DWog) "' DWogle N2V ‘ e~ N2V 05 (B + DWoy) !
[E — (G + EWp4)(B + DWyy) "' D]Wyge N2Vt \ (G +EWy4)(B+DWys)~!

Using the analysis same as in Case 4, we have (G + EWyy)(B + DWpy) ™! tends to a
periodic orbit if Wy, is invertible. For ¢ sufficiently large, the other blocks in W (t) tend
to zero due to Re(\) > 0. The analysis for the other combinations of the elementary cases

and the general symplectic matrix S can be done analogously but more complicated.

Appendix A. Embedding of trajectories of HRDE into trajectories of a flow on the

Grassmann manifold

The geometric insight of Radon’s lemma gives the connection between an extended solution

of HRDE and an analytic flow on a Grassmann manifold. Define

A
G™(C?) = { Im A, B € C"" and rank
B B

I
S

where Im([AT, BT] ") is the linear space that is spanned by the matrix [AT, BT]T. G"(C??)
is the Grassmann manifold with an appropriate topology (see, e.g., |[1]). The Grassmann

manifold G"(C?") is compact analytic and of dimension n?. Then C"*" can be embedded
into G™(C?") through (W) = Im([I, WT]T). Set

GR(C®) = {Im([A",BT]") € G™(C*) | A € C™" is invertible}.

We can obtain GI(C?*") = ¢(C"*"), the image of C"*" under the map . Moreover,
GB(C?") is an open dense subset of G™(C?").
Define a flow on the Grassmann manifold G"(C?") by

S(t, S0, t0) = @(t,t0)(So)

where ®(t,1p) is a transition matrix of ([1.2) and ®(¢,%0)(So) denotes the image of the n-
dimensional subspace Sy under the non-singular transformation ®(t,tg). Let W (t, Wy, to)
denote the solution of HRDE with initial value W (ty) = P(to)Q(to) ™' = Wo. Q(to) is
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assumed to be invertible. Through the embedding ), Radon’s lemma also leads to a

geometric version:

(W (t, Wo, 1)) = Im I o [ 190
PHQ() Pt)
Al
- =Im | ®(¢,%0) Wto) = ®(t, 1) Im
P(to) Wo

= w(W(tv W(], tO)) = S(ta w(WO)a tO)'

Equation holds if Q(¢)~! exists. This is equivalent that the trajectory S(t,(Wp), o)
stays in the subset G2 (C*") of G"(C?"). The embedding 1) maps the trajectories of HRDE
onto the restriction of the flow S(t,1 (W), to) to G§(C?").

The transition matrix ®(t, o) associated with the constant matrix H in the system (|1.2))
is holomorphic in C. Hence, the flow S(t, (W), to) on G™(C?") exists and is holomorphic
for all ¢ € C. This infers that the singularities of W (t, Wy, t) are isolated and they
are poles. Therefore, it is meaningful and interesting to investigate the time asymptotic
behavior of HRDE through the extended solution W (t), t € J,, in (1.5).

To clarify the difference between W (t) and the linear flow on the Grassmann manifold,

we can consider the following example.

Example A.1. Let w(t) be the solution of the scalar HRDE
w =1+w? with w(0) = w,

and consider the Grassmann manifold

a
G'(R?) = { Im a,b€R and a® +b* #0
b

The solution of the scalar HRDE is w(t) = tan(t + co) for t € (—mw/2 —co, w/2 — cp), where
tan(cg) = wp. The corresponding linear IVP, i.e., equation (1.2)) in the manuscript, turns

out to be

' 0 -1 0 1
i = W, with 10 _ .
p L 0} |p p(0) wo

Here H = [(1) 51] is Hamiltonian. The solution of the linear IVP is
q(t) |1 cost —sint| | 1
p(t) wo sint  cost | |wy
cost — wpsint 5 | cos(t + co)

sint + wq cost sin(t + ¢)
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p(t)
Grassmann manifold which can be though of an animation of rotating straight lines on

where ¢y = arctan(wp). Therefore, {Im ({Q(t)D ‘ te R} is the analytic orbit on the

the plane.

By applying Radon’s lemma, we see that w(t) = p(t)/q(t) = tan(t + ¢p) for ¢t €
(=m/2 — ¢co,m/2 — ¢p) is the solution of the HRDE. Here, (—7/2 — cp,7/2 — ¢p) is the
maximal interval of the solution and w(t) blows up at the end points of the interval.

Therefore, we extend

for t # (k4 1/2)m — ¢o. This is the so-called extended solution and is also named by
w(t). For a given t, the point (1,w(t)) is the intersection of the line Im <[gg;]> and the
vertical line x = 1. Therefore, the intersection does not exist whenever ¢(t) = 0, i.e.,

t = (k+1/2)m — ¢g. This is the reason why we see that [28] is analytic but w(t) blows
up periodically.

Appendix B. Sherman-Morrison-Woodbury formula [10]

Given a square invertible n x n matrix A, an n X k matrix U, and a k x n matrix V, let B
be an n x n matrix such that B = A+ UV. Then, assuming (I + VA™'U) is invertible,

we have

Bl=a"l'— AU, +vAatu)ytvat
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