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Time-asymptotic Dynamics of Hermitian Riccati Differential Equations

Yueh-Cheng Kuo, Huey-Er Lin* and Shih-Feng Shieh

Abstract. The matrix Riccati differential equation (RDE) raises in a wide variety of

applications for science and applied mathematics. We are particularly interested in

the Hermitian Riccati Differential Equation (HRDE). Radon’s lemma gives a solution

representation to HRDE. Although solutions of HRDE may show the finite escape time

phenomenon, we can investigate the time asymptotic dynamical behavior of HRDE by

its extended solutions. In this paper, we adapt the Hamiltonian Jordan canonical form

to characterize the time asymptotic phenomena of the extended solutions for HRDE

in four elementary cases. The extended solutions of HRDE exhibit the dynamics

of heteroclinic, homoclinic and periodic orbits in the elementary cases under some

conditions.

1. Introduction

The matrix Riccati differential equation (RDE) is the quadratic differential equation

Ẇ = M21(t) +M22(t)W −WM11(t)−WM12(t)W

where W (t) and M11(t), M12(t), M21(t), M22(t) are matrices of dimensions m× n, n× n,

n×m, m×n and m×m, respectively. The RDE plays an important role in a wide variety

of applications for science and applied mathematics. We are particularly interested in the

Hermitian Riccati Differential Equation (HRDE) which arises in optimal controls [5,12–14]

and in two-point boundary value problems [2, 3, 6, 7]. It has the form

(1.1) Ẇ = −WSW +WA+AHW +D with W (0) = W0

where A, S and D are n×n complex-valued constant matrices with SH = S and DH = D.

There is an important relationship between a linear system of differential equations and

HRDE. We can use it to obtain a solution representation formula for HRDE explicitly.

This relation has been known at least since the work of Radon [16,17]. Suppose that the

solution W (t) of HRDE (1.1) exists for t ∈ (t̂0, t̂1), 0 ∈ (t̂0, t̂1) and W (0) = W0. We first

introduce the following important properties.
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Theorem 1.1 (Radon’s lemma in [1]). Let A,S,D ∈ Cn×n with SH = S and DH = D,

then the following statements hold.

(i) Let W (t) be a solution of HRDE (1.1) in (t̂0, t̂1). If Q(t) is a solution of the IVP

Q̇(t) = (SW (t) − A)Q(t) with initial value Q(0) = In and P (t) := W (t)Q(t), then

Y (t) ≡ [Q(t)>, P (t)>]> is the solution of the linear IVP

(1.2) Ẏ (t) = H̃Y (t), Y (0) = [In,W
>
0 ]>,

where

(1.3) H̃ =

−A S

D AH


is a 2n× 2n complex Hamiltonian matrix.

(ii) Let Y (t) ≡ [Q(t)>, P (t)>]> be the solution of (1.2). If Q(t) is invertible for t ∈
(t̂0, t̂1) ⊂ R, then

(1.4) W (t) ≡ P (t)Q(t)−1

is a solution of HRDE (1.1).

It is clear from (1.4) that the nonsingularity of Q(t) determines whether the solution

W (t) of HRDE exists. Define the set

Jw ≡ {t ∈ R | Q(t) is invertible}.

Since

Q(t) = [In, 0n×n]

Q(t)

P (t)

 = [In, 0n×n]eH̃t

 In
W0

 ,
the function det(Q(t)) is analytic and not the zero function. This implies all zeros of

det(Q(t)) are isolated. It follows Jw is the set that R subtracts some isolated points. Jw
can be written as a union of open intervals, say

Jw =
⋃
k∈Z

(t̂k, t̂k+1),

which is an unbounded set in R. Since P (t) and Q(t) are analytic functions on R, W (t) =

P (t)Q(t)−1 is a meromorphic function. The singularities of W (t) are poles. This means

that the solutions W (t) of HRDE (1.1) may show the finite escape time phenomenon,

i.e., the solutions may blow up on a finite interval. However, it is noted that the solution
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representation for W (t) in (1.4) holds not only for t ∈ (t̂0, t̂1) but also for t ∈ Jw. Hence,

we can define the extended solution of HRDE (1.1) by

(1.5) W (t) = P (t)Q(t)−1, t ∈ Jw.

Moreover, Radon’s lemma also leads to a geometric version which gives connection between

the solution for HRDE (1.1) and the flow defined on the Grassmann manifold. The

embedding of trajectories of HRDE into trajectories of a flow on the Grassmann manifold

is stated in Appendix A. This flow on the Grassmann manifold is analytic and exists for

all t ∈ R. Therefore, the investigation of time asymptotic phenomena for the extended

solutions (1.5) of HRDE (1.1) is meaningful.

The main results (main theorem) of this paper is to give a characterization of dynamical

behavior for the extended solutions of HRDE (1.1) and to study the time asymptotic

estimates. The time asymptotic behavior of the solutions for RDE was also studied in

[4,8,9,18] and the literature cited therein. The matrix Riccati equations is closely related,

via compactification of the phase space, to the differential equations on the Grassmann

manifold and the Lagrange-Grassmann manifold. In [18], the author characterized the

nonwandering set and its stable/unstable manifolds of the extended Riccati differential

equations. Rather than the topological structure of the invariant sets and stabilities of

HRDE, we shall focus on the convergent rates of the solutions. In this paper, the explicit

representations of the solutions W (t) = P (t)Q−1(t) are obtained by using matrix analysis,

and then the time convergent rates to the asymptotic solutions can be estimated.

Based on the special structure, a canonical form of a Hamiltonian matrix under sym-

plectic similarity transformations has been widely studied in [15]. Instead of the Jordan

canonical form, we shall use the Hamiltonian Jordan canonical form J of H̃ to investigate

the time asymptotic behavior for the extended solution of HRDE (1.1). The structure of

eJt for the general cases are complicated. Therefore, four elementary cases are studied in

this paper. All general cases can be generated by using direct sums of these four elementary

cases. However, combinations of some of the elementary cases need more sophisticated

analysis and is the future work. We obtain the following results:

1. If H̃ has only eigenvalues λ and −λ with nonzero real part and each of the two

eigenvalues has only one Jordan block, the trajectory of the extended solution W (t)

for HRDE (1.1) is a hetroclinic orbit;

2. If H̃ has one pure imaginary eigenvalue which has one Jordan block of size 2n, then

the trajectory of the extended solution W (t) is a homoclinic orbit;

3. If H̃ has one pure imaginary eigenvalue but it has two Jordan blocks with multiplic-

ities 2n1 + 1 and 2n2 + 1 (n1 + n2 + 1 = n), respectively, then the trajectory of the

extended solution W (t) also forms a homoclinic orbit;
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4. If H̃ has two distinct pure imaginary eigenvalues iδ and iγ (δ 6= γ) with partial

multiplicities 2n1 + 1 and 2n2 + 1, respectively, then the extended solution W (t)

converges to a limit cycle which is a periodic solution with period 2π/(δ − γ) and

its convergent rate to the limit cycle is O(t−1).

The paper is organized as follows. In Section 2, the main theorem is presented. In

Section 3.1, there are preliminaries for the proof of the main theorem. We prove the main

theorem in Section 3.2. A simple combination of elementary cases is given in Section 4.

It is also noticed that the notations used in this paper basically follow the rules:

• Capital letters denote matrices;

• Lowercase letters denote vectors or scalars;

• Greek letters are used for auxiliary variables;

• Hats are used for variables transformed by a matrix Pk;

• Tildes denote matrices that have been extended in some way.

2. Main theorem

A canonical form of a Hamiltonian matrix under symplectic similarity transformations has

been investigated in [15]. Let S be the symplectic matrix such that

(2.1) J = S−1H̃S

where J is the Hamiltonian Jordan canonical form of the Hamiltonian matrix H̃ in (1.3).

Let Nk ≡


0 1

. . .
. . .
. . . 1

0

 be the k×k nilpotent matrix, let Nk(λ) = λIk +Nk be the Jordan

block of the eigenvalue λ with size k, and let en denote the n-th unit vector.

Throughout this paper, we assume that the Hamiltonian Jordan canonical form

(2.2) J =

 R D

G −RH

 ∈ C2n×2n

for H̃ is one of the following four elementary cases:

Case 1: R = Nn(λ), D = G = 0 and Re(λ) > 0;

Case 2: R = Nn(iα), D = βene
H
n , G = 0 and α ∈ R, β ∈ {−1, 1};
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Case 3: n = n1 + n2 + 1, η ∈ R, β ∈ {−1, 1}, G = 0 and

R =


Nn1(iη) 0 −

√
2

2 en1

0 Nn2(iη) −
√

2
2 en2

0 0 iη

 , D =

√
2

2
iβ


0 0 en1

0 0 −en2

−eHn1
eHn2

0

 ;

Case 4: n = n1 + n2 + 1, β ∈ {−1, 1}, γ, δ ∈ R with γ 6= δ and

R =


Nn1(iγ) 0 −

√
2

2 en1

0 Nn2(iδ) −
√

2
2 en2

0 0 i
2(γ + δ)

 , G = β


0 0 0

0 0 0

0 0 −1
2(γ − δ)

 ,

D =

√
2

2
iβ


0 0 en1

0 0 −en2

−eHn1
eHn2

−i
√

2
2 (γ − δ)

 .
Due to (2.1), the solution for IVP (1.2) is

(2.3)

Q(t)

P (t)

 = Y (t) = eH̃t

 In
W0

 = SeJtS−1

 In
W0

 .
Now, we are ready to state our main results.

Theorem 2.1 (Main theorem). Suppose that H̃ is symplectically similar to one of the four

Hamiltonian Jordan canonical forms J mentioned above. Let Y (t) = [Q(t)>, P (t)>]> and

W (t) = P (t)Q(t)−1 for t ∈ Jw be the solution of IVP (1.2) and be the extended solution

of HRDE (1.1), respectively. Define

(2.4) [W>1 ,W
>
2 ]> ≡ S−1[In,W

>
0 ]>.

Then the following assertions hold.

(i) Suppose that the symplectic matrix S in (2.1) is partitioned as

(2.5) S =

 U1 V1

U2 V2

 ,
where U1, U2, V1, V2 ∈ Cn×n.

Case 1: Assume Re(λ) > 0 and W1, U1 are nonsingular. Then

W (t) = U2U
−1
1 +O(e−2 Re(λ)tt2(n−1))
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as t→∞. On the other hand, if W2 and V1 are nonsingular, then

W (t) = V2V
−1

1 +O(e2 Re(λ)tt2(n−1))

as t→ −∞. Therefore, the trajectory of the extended solution W (t) is a hetroclinic

orbit that starts from the equilibrium V2V
−1

1 to U2U
−1
1 which are hermitian.

Case 2: Assume W2 and U1 are nonsingular. Then

W (t) = U2U
−1
1 +O(t−1)

as t→ ±∞. In this case, the trajectory of the solution W (t) is a homoclinic orbit.

(ii) Suppose that the symplectic matrix S in (2.1) is further partitioned as

(2.6) S =

 U1 u1 V1 v1

U2 u2 V2 v2

 ∈ C2n×2n,

where U1, U2, V1, V2 ∈ Cn×(n1+n2), u1, u2, v1, v2 ∈ Cn and n = n1 + n2 + 1.

Case 3: Assume W2 is nonsingular. Then there are constants fu, fv, gu, gv ∈ C with

Ũi = [Ui | fuui + fvvi] ∈ Cn×n and ζi = guui + gvvi ∈ Cn, i = 1, 2 such that

W (t) =

(
Ũ2 +

(ζ2 − Ũ2Ũ−1
1 ζ1)eHn

1 + eHn Ũ−1
1 ζ1

)
Ũ−1

1 +O(t−1)

as t → ±∞, whenever Ũ1 is nonsingular and 1 + eHn Ũ−1
1 ζ1 6= 0. The trajectory of

the solution W (t) is a homoclinic orbit.

Case 4: Assume W2 is nonsingular. Then there are constants fu, fv, gu, gv ∈ C with

Ũi = [Ui | fuui + fvvi] ∈ Cn×n and ζi = guui + gvvi ∈ Cn, i = 1, 2 such that

W (t) = Ũ2Ũ−1
1 +

eiθt

1 + eiθteHn Ũ−1
1 ζ1

(ζ2 − Ũ2Ũ−1
1 ζ1)eHn Ũ−1

1 +O(t−1)

as t→ ±∞, provided that Ũ1 is nonsingular and 1 + eHn Ũ−1
1 ζ1 6= 0. Here θ = δ − γ.

In this case, the trajectory of the extended solution W (t) approaches the limit cycle

W∞(t) = Ũ2Ũ−1
1 +

eiθt

1 + eiθteHn Ũ−1
1 ζ1

(ζ2 − Ũ2Ũ−1
1 ζ1)eHn Ũ−1

1

with period 2π/θ.
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3. Proof of main theorem

3.1. Preliminaries

We first introduce some notations. For 1 ≤ i, j ≤ k,

(Pk)ij =

(−1)i for j = k + 1− i,

0 otherwise,

Φk(t) , eNkt =



1 t t2

2! · · · tk−1

(k−1)!

1 t
. . .

...

. . .
. . . t2

2!

1 t

1


, φk(t) ,


tk

k!
...

t2

2!

t

 , ψk(t) ,


t

t2

2!
...

tk

k!

 ,

Γk2k1(t) ,


tk1
k1!

tk1+1

(k1+1)! · · ·
tk2
k2!

tk1−1

(k1−1)!
tk1
k1! · · · tk2−1

(k2−1)!

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

t2k1−k2

(2k1−k2)! · · · · · · tk1
k1!

 with k1 < k2 ≤ 2k1,

Φ̂k(t) , P−1
k Φk(t)Pk, Γ̂2k−1

k (t) , Γ2k−1
k (t)Pk, ψ̂Hk (t) , ψHk (t)Pk.

(3.1)

It is also noticed that the time-dependency of the above notations is omitted where no

confusion can arise.

Lemma 3.1. We have

(i) eNk(λ)t = eλteNkt = eλtΦk;

(ii) P−1
k = PHk , P−1

k NkPk = −NH
k ;

(iii) Φ̂k = P−1
k ΦkPk = e−N

H
k t = Φ−Hk .

Proof. The proof is straightforward by direct calculation.

The following lemmas show the expression for eAt when A is one of the elementary

cases.

Lemma 3.2. Let A denote the Hamiltonian matrix

 Nk(iα) βeke
H
k

0 −Nk(iα)H

 ∈ C2k×2k,

where β ∈ {−1, 1} and α ∈ R. Then for every t ∈ R, eAt is of the form

eAt = eiαt

 Φk −βΓ̂2k−1
k

0 Φ−Hk

 .
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Proof. Let Θ = Ik⊕ (−βPk) where ⊕ means the direct sum. We have N2k(iα) = ΘAΘ−1.

Then by Lemma 3.1, we have

eAt = eiαtΘ−1eN2ktΘ

= eiαt

 Ik 0

0 −βP−1k





1 t · · · tk−1

(k−1)!
tk

k! · · · · · · t2k−1

(2k−1)!

1
. . .

... tk−1

(k−1)!
tk

k!

. . . t2k−2

(2k−2)!
. . . t

...
. . .

. . .
...

1 t · · · · · · tk

k!

1 t · · · tk−1

(k−1)!

1
. . .

...

. . . t

1



 Ik 0

0 −βPk



= eiαt

 Ik 0

0 −βP−1k

 Φk Γ2k−1
k

0 Φk

 Ik 0

0 −βPk


= eiαt

 Φk −βΓ̂2k−1
k

0 Φ−Hk

 .
For simplicity of expression for eAt in the next lemma, we introduce the following

notations

Φm,n(t) , eiγtΦm ⊕ eiδtΦn,

Φ̂m,n(t) , eiγtΦ−Hm ⊕ eiδtΦ−Hn = eiγtP−1
m ΦmPm ⊕ eiδtP−1

n ΦnPn,

φ1
m,n(t) , −

√
2

2

eiγtφm
eiδtφn

 , φ2
m,n(t) ,

√
2

2
iβ

 eiγtφm
−eiδtφn

 ,
ψ̂1

H

m,n(t) ,

√
2

2
iβ
[
eiγtψ̂Hm −eiδtψ̂Hn

]
=

√
2

2
iβ
[
eiγtψHmPm −eiδtψHn Pn

]
,

ψ̂2
H

m,n(t) , −
√

2

2

[
eiγtψ̂Hm eiδtψ̂Hn

]
= −
√

2

2

[
eiγtψHmPm eiδtψHn Pn

]
,

Γ̂2m,2n
m+1,n+1(t) , iβ

[
− eiγtΓ̂2m

m+1 ⊕ eiδtΓ̂2n
n+1

]
= iβ

[
− eiγtΓ2m

m+1Pm ⊕ eiδtΓ2n
n+1Pn

]
,ω11(t) ω12(t)

ω21(t) ω22(t)

 ,
1

2

 eiγt + eiδt −iβ(eiγt − eiδt)

iβ(eiγt − eiδt) eiγt + eiδt

 .

(3.2)

Similarly, the time variable of the notations introduced in (3.2) will be omitted wherever

it is not necessary to specify it.
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Lemma 3.3. Let A denote the Hamiltonian matrix

 R D

G −RH

, where

R =


Nm(iγ) 0 −

√
2

2 em

0 Nn(iδ) −
√

2
2 en

0 0 i
2(γ + δ)

 , G = β


0 0 0

0 0 0

0 0 −1
2(γ − δ)

 ,

D =

√
2

2
iβ


0 0 em

0 0 −en
−eHm eHn −i

√
2

2 (γ − δ)

 ,
β ∈ {−1, 1} and γ, δ ∈ R. Therefore, for every t ∈ R, eAt is of the form

eAt =

 B D

G E

 =



Φm,n φ1
m,n

0 ω11

 Γ̂2m,2n
m+1,n+1 φ2

m,n

ψ̂1
H

m,n ω12


0 0

0 ω21

  Φ̂m,n 0

ψ̂2
H

m,n ω22




.

Proof. In order to transform A to a block diagonal matrix, we introduce the matrices Θ1

and Θ2 with

Θ1 =

 Im+1 ⊕ (−iβPm) 0

0 In+1 ⊕ (iβPn)

 , Θ2 =



Im 0 0 0 0 0

0 0 −
√
2
2 0 0

√
2
2 iβ

0 0 0 Im 0 0

0 In 0 0 0 0

0 0 −
√
2
2 0 0 −

√
2
2 iβ

0 0 0 0 In 0


.

Θ2 is a combination of a permutation matrix and a 2× 2 unitary matrix. The mechanism

of Θ2 is to let A be similar to an upper block matrix. That is

Θ2AΘ−1
2 =



Nm(iγ) em 0 0 0 0

0 iγ iβeHm 0 0 0

0 0 −NH
m (iγ) 0 0 0

0 0 0 Nn(iδ) en 0

0 0 0 0 iδ −iβeHn
0 0 0 0 0 −NH

n (iδ)


.
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The mechanism of Θ1 is to transform −NH
m (iγ) and −NH

n (iδ) to Nm(iγ) and Nn(iδ),

respectively, in Θ2AΘ−1
2 . Then we have

Θ1Θ2A(Θ1Θ2)−1 =

 N2m+1(iγ) 0

0 N2n+1(iδ)

 ,
and

eAt = (Θ1Θ2)−1

 eN2m+1(iγ)t 0

0 eN2n+1(iδ)t

Θ1Θ2

=



eiγtΦm 0 −
√
2
2 e

iγtφm (−iβ)eiγtΓ̂2m
m+1 0

√
2
2 (iβ)eiγtφm

0 eiδtΦn −
√
2
2 e

iδtφn 0 (iβ)eiδtΓ̂2n
n+1 −

√
2
2 (iβ)eiδtφn

0 0 1
2 (eiγt + eiδt)

√
2
2 (iβ)eiγtψ̂Hm −

√
2
2 (iβ)eiδtψ̂Hn − (iβ)

2 (eiγt − eiδt)

0 0 0 eiγtΦ−Hm 0 0

0 0 0 0 eiδtΦ−Hn 0

0 0 (iβ)
2 (eiγt − eiδt) −

√
2
2 e

iγtψ̂Hm −
√
2
2 e

iδtψ̂Hn
1
2 (eiγt + eiδt)


=

 B D

G E

 .
For integers k, l, k1 and k2 that satisfies 0 ≤ k, 0 ≤ l, k 6= l and 0 < k1 < k2 ≤ 2k1,

we denote

Ξk,l ≡ Ξk,l(t) =

diag(tk, tk+1, . . . , tl) if k < l,

diag(tk, tk−1, . . . , tl) if k > l,

zk2
k1

=



1
k1!

1
(k1+1)! · · ·

1
k2!

1
(k1−1)!

1
k1!

. . . 1
(k2−1)!

...
. . .

. . .
...

1
(2k1−k2)! · · · · · · 1

k1!

 .
(3.3)

To give a useful expression for the inverse of the matrix Γk2k1 , we prove that the matrix zk2
k1

is invertible in the following lemma.

Lemma 3.4. Let k1, k2 be positive integers that satisfy 0 < k1 < k2 ≤ 2k1 and k = k2−k1.

Then

det(zk2
k1

) =
k!(k − 1)! · · · 1!

k2!(k2 − 1)! · · · k1!
.

Hence, zk2
k1

is invertible.
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Proof. To prove this lemma, we need the so-called Pascal’s law:

σnr − σn−1
r = rσn−1

r−1 for n, r ∈ N and n ≥ r

where σnr = n(n− 1) · · · (n− r + 1) = n!
(n−r)! . Let D = diag(k2!, (k2 − 1)!, . . . , k1!). Set

z̃k2
k1
≡ Dzk2

k1
=


σk2k σk2k−1 · · · σk20

σk2−1
k σk2−1

k−1 · · · σk2−1
0

...
...

...

σk1k σk1k−1 · · · σk10

 ∈ R(k+1)×(k+1).

Let ej denote the jth column vector of the matrix Ik+1 and Ej , Ik+1 − ejeHj+1. Then by

Pascal’s law, we have

Ek · · ·E2E1z̃k2
k1

=


kσk2−1

k−1 · · · 1σk2−1
0 0

...
...

...

kσk1k−1 · · · 1σk10 0

σk1k · · · σk11 1


=

 z̃k2−1
k1

0

∗ 1

diag(k, (k − 1), . . . , 1, 1).

Due to det(Ej) = 1, it is easy to get det(z̃k2
k1

) = k! det(z̃k2−1
k1

). Then we can get

det(z̃k2
k1

) = k!(k − 1)! · · · 1! det(z̃k1
k1

) = k!(k − 1)! · · · 1!.

Hence, we have

det(zk2
k1

) =
det(z̃k2

k1
)

det(D)
=

k!(k − 1)! · · · 1!

k2!(k2 − 1)! · · · k1!
.

Then the matrix Γk2k1 defined in (3.1) and its inverse can be written in terms of Ξk,l

and zk2
k1

in (3.3) as

Γk2k1 = t2k1−k2Ξk2−k1,0z
k2
k1

Ξ0,k2−k1 ,

(Γk2k1)−1 = t−2k1+k2(Ξ0,k2−k1)−1(zk2
k1

)−1(Ξk2−k1,0)−1(3.4)

by the invertibility of zk2
k1

in Lemma 3.4. The matrices (Ξ0,k−1)−1 and (Ξk−1,0)−1 shall

be used to help eliminate the t powers of Φk and φk as done in the proofs of Lemmas 3.5

and 3.6.

Lemma 3.5. Let n ∈ N. Then
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(i) (Γ̂2n−1
n )−1Φn = O(t−1), Φ̂n(Γ̂2n−1

n )−1 = O(t−1) and Φ̂n(Γ̂2n−1
n )−1Φn = O(t−1);

(ii) Φ̂n(ΦnC ± Γ̂2n−1
n )−1 = O(t−1)

as t→ ±∞, where C ∈ Cn×n is a constant matrix.

Proof. (i) Using (3.4) and Lemma 3.1(iii), we have

(Γ̂2n−1
n )−1Φn = t−1P−1

n (Ξ0,n−1)−1(z2n−1
n )−1[(Ξn−1,0)−1Φn] = O(t−1),

Φ̂n(Γ̂2n−1
n )−1 = (P−1

n ΦnPn)P−1
n (Γ2n−1

n )−1

= t−1P−1
n [Φn(Ξ0,n−1)−1](z2n−1

n )−1(Ξn−1,0)−1 = O(t−1),

Φ̂n(Γ̂2n−1
n )−1Φn = (P−1

n ΦnPn)P−1
n (Γ2n−1

n )−1Φn

= t−1P−1
n [Φn(Ξ0,n−1)−1](z2n−1

n )−1[(Ξn−1,0)−1Φn] = O(t−1)

due to

(Ξn−1,0)−1Φn = O(1), Φn(Ξ0,n−1)−1 = O(1).

For the proof of assertion (ii),

Φ̂n(ΦnC − Γ̂2n−1
n )−1 = Φ̂n[Γ̂2n−1

n ((Γ̂2n−1
n )−1ΦnC − In)]−1

= −Φ̂n

[
In +

∞∑
k=1

((Γ̂2n−1
n )−1ΦnC)k

]
(Γ̂2n−1
n )−1

= −Φ̂n(Γ̂2n−1
n )−1 −

∞∑
k=1

Φ̂n((Γ̂2n−1
n )−1ΦnC)k(Γ̂2n−1

n )−1

= O(t−1).

Similarly, Φ̂n(ΦnW + Γ̂2n−1
n )−1 = O(t−1).

Lemma 3.6. Let n1, n2 ∈ N. Then

(Υ + Γ̂2n1,2n2
n1+1,n2+1)−1 = O(t−2), (Υ + Γ̂2n1,2n2

n1+1,n2+1)−1φjn1,n2
= O(t−1),

(Υ + Γ̂2n1,2n2
n1+1,n2+1)−1Φn1,n2 = O(t−2), ψ̂j

H

n1,n2
(Υ + Γ̂2n1,2n2

n1+1,n2+1)−1 = O(t−1),

Φ̂n1,n2(Υ + Γ̂2n1,2n2
n1+1,n2+1)−1 = O(t−2), ψ̂j

H

n1,n2
(Υ + Γ̂2n1,2n2

n1+1,n2+1)−1Φn1,n2 = O(t−1),

Φ̂n1,n2(Υ + Γ̂2n1,2n2
n1+1,n2+1)−1Φn1,n2 = O(t−2), Φ̂n1,n2(Υ + Γ̂2n1,2n2

n1+1,n2+1)−1φjn1,n2
= O(t−1)

as t → ±∞, where j = 1, 2, Γ̂2n1,2n2
n1+1,n2+1, Φn1,n2, Φ̂n1,n2, φjn1,n2 and ψ̂j

H

n1,n2 are defined in

(3.2) and Υ = Φn1,n2W + φ1
n1,n2

ωH , W ∈ C(n1+n2)×(n1+n2) and ω ∈ Cn1+n2. Moreover,

we also have

ψ̂j
H

n1,n2
(Υ + Γ̂2n1,2n2

n1+1,n2+1)−1φkn1,n2
= ψ̂j

H

n1,n2
(Γ̂2n1,2n2
n1+1,n2+1)−1φkn1,n2

+O(t−1)

as t→ ±∞, where j, k ∈ {1, 2}.
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Proof. Using the notations in (3.2) and the expression (3.4), we can obtain

(Γ̂2n1,2n2
n1+1,n2+1)−1 = O(t−2),

(Γ̂2n1,2n2
n1+1,n2+1)−1Φn1,n2 = O(t−2),

(Γ̂2n1,2n2
n1+1,n2+1)−1φjn1,n2

= O(t−1), j = 1, 2

(3.5)

due to

(Ξni−1,0)−1Φni = O(1), i = 1, 2, (Ξni−1,0)−1φni = O(t), i = 1, 2.

These imply

(Γ̂2n1,2n2
n1+1,n2+1)−1Υ = O(t−1)

and

(Υ + Γ̂2n1,2n2
n1+1,n2+1)−1 = [(Γ̂2n1,2n2

n1+1,n2+1)((Γ̂2n1,2n2
n1+1,n2+1)−1Υ + I)]−1

= [I + (Γ̂2n1,2n2
n1+1,n2+1)−1Υ]−1(Γ̂2n1,2n2

n1+1,n2+1)−1

=

[
I +

∞∑
k=1

(−1)k((Γ̂2n1,2n2
n1+1,n2+1)−1Υ)k

]
(Γ̂2n1,2n2
n1+1,n2+1)−1

= O(t−2).

We can also obtain

ψ̂j
H

n1,n2
(Γ̂2n1,2n2
n1+1,n2+1)−1 = O(t−1),

ψ̂j
H

n1,n2
(Γ̂2n1,2n2
n1+1,n2+1)−1Φn1,n2 = O(t−1),

ψ̂j
H

n1,n2
(Γ̂2n1,2n2
n1+1,n2+1)−1φjn1,n2

= O(1),

Φ̂n1,n2(Γ̂2n1,2n2
n1+1,n2+1)−1 = O(t−2),

Φ̂n1,n2(Γ̂2n1,2n2
n1+1,n2+1)−1Φn1,n2 = O(t−2),

Φ̂n1,n2(Γ̂2n1,2n2
n1+1,n2+1)−1φjn1,n2

= O(t−1).

(3.6)

The rest of the lemma can be proved by using (3.5) and (3.6).

Lemma 3.7. Given n ∈ N. Let κn = ψ̂Hn (Γ̂2n
n+1)−1φn, where ψ̂Hn , φn and Γ̂2n

n+1 are defined

in (3.1). Then

(3.7) κn =

2 if n is odd,

0 if n is even.

Proof. By the definitions of ψ̂Hn , φn and Γ̂2n
n+1 in (3.1), it follows from (3.4) that κn =

xHn (z2n
n+1)−1yn, where xn =

[
1, 1

2! , . . . ,
1
n!

]H
, yn =

[
1
n! ,

1
(n−1)! , . . . , 1

]H
and z2n

n+1 is given

in (3.3). It is obvious that

z2n
n =

yn z2n
n+1

1 xHn

 .
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From Lemma 3.4, we have that z2n
n+1 is invertible. It is well-defined to set

E =

 1 0

−(z2n
n+1)−1yn I

 .
Then we have

z2n
n E =

 0 z2n
n+1

1− xHn (z2n
n+1)−1yn xHn

 .
From Lemma 3.4, we can obtain that

n!(n− 1)! · · · 1!

(2n)!(2n− 1)! · · ·n!
= det(z2n

n ) = det(z2n
n E)

= (−1)n+2(1− κn) det(z2n
n+1)

= (−1)n(1− κn)
(n− 1)!(n− 2)! · · · 1!

(2n)!(2n− 1)! · · · (n+ 1)!
.

This implies that (−1)n(1− κn) = 1 and then (3.7) is proved.

3.2. Proof of main theorem

In this subsection, we shall prove each case of Theorem 2.1.

Proof of Case 1. Since J = Nn(λ)⊕ (−Nn(λ)H), then from (2.3), (2.4) and (2.5),Q(t)

P (t)

 = SeJtS−1

 In
W0

 = S

 eNn(λ)t 0

0 e−Nn(λ)H t

W1

W2


=

 U1 V1

U2 V2

 eλteNntW1

e−λt(e−Nnt)HW2

 .
Recall the notations

Φn = Φn(t) ≡ eNnt, Φ−Hn ≡ (Φ−1
n )H = (e−Nnt)H .

Then

Q(t) = eλtU1ΦnW1 + e−λtV1Φ−Hn W2,

P (t) = eλtU2ΦnW1 + e−λtV2Φ−Hn W2.

Due to Re(λ) > 0, W1 is invertible and

‖Φn‖, ‖Φ−1
n ‖ = O(|t|n−1),
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we have for t > 0,

‖e−(λ+λ)tV1Φ−Hn W2W
−1
1 Φ−1

n ‖ = O(e−2 Re(λ)tt2(n−1)).

Then by using Sherman-Morrison-Woodbury formula (see Appendix B), we have

[U1 + e−(λ+λ)tV1Φ−Hn W2W
−1
1 Φ−1

n ]−1 = U−1
1 +O(e−2 Re(λ)tt2(n−1))

for t sufficiently large if U1 is invertible. Then

W (t) = P (t)Q(t)−1

= [U2 + e−(λ+λ)tV2Φ−Hn W2W
−1
1 Φ−1

n ][U1 + e−(λ+λ)tV1Φ−Hn W2W
−1
1 Φ−1

n ]−1

= [U2 +O(e−2 Re(λ)tt2(n−1))][U−1
1 +O(e−2 Re(λ)tt2(n−1))]

= U2U
−1
1 +O(e−2 Re(λ)tt2(n−1))

as t→∞. Similarly, if V1 and W2 are invertible, we have

W (t) = P (t)Q(t)−1

= [V2 + e(λ+λ)tU2ΦnW1W
−1
2 ΦH

n ][V1 + e(λ+λ)tU1ΦnW1W
−1
2 ΦH

n ]−1

= V2V
−1

1 +O(e2 Re(λ)tt2(n−1))

as t→ −∞.

Proof of Case 2. For J =

 Nn(iα) βene
H
n

0 −Nn(iα)H

 ∈ C2n×2n, we have, by Lemma 3.2,

eJt = eiαt

 Φn −βΓ̂2n−1
n

0 Φ−Hn

 .
Since W2 is invertible, the solution of IVP (1.2) isQ(t)

P (t)

 = Y (t) = SeJtS−1

 In
W0


= eiαt

 U1 V1

U2 V2

 Φn −βΓ̂2n−1
n

0 Φ−Hn

W1

W2


= eiαt

 U1 V1

U2 V2

 ΦnW1W
−1
2 − βΓ̂2n−1

n

Φ−Hn

W2.

Define

Ω(t) ≡ (ΦnW1W
−1
2 − βΓ̂2n−1

n )−1.
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Γ̂2n−1
n is invertible for t 6= 0 and ‖(Γ̂2n−1

n )−1Φn‖ = O(|t|−1) by Lemma 3.5. Hence Ω(t) is

well-defined for |t| large. Then

Q(t) = eiαt[U1Ω−1(t)W2 + V1Φ−Hn W2]

= eiαt[U1 + V1Φ−Hn Ω(t)]Ω−1(t)W2,

P (t) = eiαt[U2Ω−1(t)W2 + V2Φ−Hn W2]

= eiαt[U2 + V2Φ−Hn Ω(t)]Ω−1(t)W2

as |t| is large. Applying the time asymptotic estimate Φ−Hn Ω(t) = Φ̂nΩ(t) = O(t−1) by

Lemma 3.5, we can obtain

W (t) = P (t)Q(t)−1 = [U2 + V2Φ−Hn Ω(t)][U1 + V1Φ−Hn Ω(t)]−1

= U2U
−1
1 +O(t−1)

as t→ ±∞.

Case 3 is a special case of Case 4 with η = δ = γ.

Proof of Case 4. H̃ is symplectically similar to the canonical form J in (2.2) for Case 4.

By Lemma 3.3, we have

eJt =



Φn1,n2 φ1
n1,n2

0 ω11

 Γ̂2n1,2n2
n1+1,n2+1 φ2

n1,n2

ψ̂1
H

n1,n2
ω12


0 0

0 ω21

  Φ̂n1,n2 0

ψ̂2
H

n1,n2
ω22




,

 B D

G E



where Φn1,n2 , Φ̂n1,n2 , φin1,n2
, ψ̂in1,n2

, Γ̂2n1,2n2
n1+1,n2+1 and ωij are defined in (3.2). From (2.3),

(2.4) and (2.6), the solution for IVP (1.2) isQ(t)

P (t)

 = Y (t) = SeJtS−1

 In
W0


=

 U1 u1 V1 v1

U2 u2 V2 v2

 B D

G E

W1

W2

 .
By the assumption that W2 is invertible, we have from above

(3.8)

Q(t)

P (t)

W−1
2 =

 U1 u1 V1 v1

U2 u2 V2 v2

BW1W
−1
2 + D

GW1W
−1
2 + E

 .
Set

W ≡W1W
−1
2 =

 W1,1 w1,2

w2,1 w2,2


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where W1,1 ∈ C(n1+n2)×(n1+n2), w1,2 ∈ C(n1+n2)×1, w2,1 ∈ C1×(n1+n2) and w2,2 ∈ C. By

direct computation,

BW1W
−1
2 + D = BW + D

=

 Φn1,n2 φ1
n1,n2

0 ω11

 W1,1 w1,2

w2,1 w2,2

+ D

=

 Υn1,n2 Φn1,n2w1,2 + φ1
n1,n2

w2,2

ω11w2,1 ω11w2,2

+ D

=

 Υn1,n2 + Γ̂2n1,2n2
n1+1,n2+1 pn1,n2

ψ̂1
H

n1,n2
+ ω11w2,1 ω11w2,2 + ω12



(3.9)

where

Υn1,n2 , Φn1,n2W1,1 + φ1
n1,n2

w2,1, pn1,n2 , Φn1,n2w1,2 + φ1
n1,n2

w2,2 + φ2
n1,n2

.

Similarly,

GW1W
−1
2 + E = GW + E

=

 0 0

0 ω21

 W1,1 w1,2

w2,1 w2,2

+ E

=

 Φ̂n1,n2 0

ψ̂2
H

n1,n2
+ ω21w2,1 ω21w2,2 + ω22

 .
(3.10)

Plugging (3.9) and (3.10) into (3.8), we have

Q(t)

P (t)

W−1
2 =

 U1 u1 V1 v1

U2 u2 V2 v2




Υn1,n2 + Γ̂2n1,2n2
n1+1,n2+1 pn1,n2

ψ̂1
H

n1,n2
+ ω11w2,1 ω11w2,2 + ω12


 Φ̂n1,n2 0

ψ̂2
H

n1,n2
+ ω21w2,1 ω21w2,2 + ω22




=

 U1 V1

U2 V2

 Υn1,n2 + Γ̂2n1,2n2
n1+1,n2+1 pn1,n2

Φ̂n1,n2 0


+

 u1 v1

u2 v2

 ψ̂1
H

n1,n2
+ ω11w2,1 ω11w2,2 + ω12

ψ̂2
H

n1,n2
+ ω21w2,1 ω21w2,2 + ω22

 .
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Let

Ω(t) ≡

 (Υn1,n2 + Γ̂2n1,2n2
n1+1,n2+1)−1 −(Υn1,n2 + Γ̂2n1,2n2

n1+1,n2+1)−1pn1,n2

0 1


=

 O(t−2) O(t−1)

0 1


be the time asymptotic estimates in Lemma 3.6. Hence Ω(t) is well defined for |t| large.

Then we have Λ1(t)

Λ2(t)

 ,

Q(t)

P (t)

W−12 Ω(t)

=

 U1 V1

U2 V2




In1+n2

0
...

0

Φ̂n1,n2
(Υn1,n2

+ Γ̂2n1,2n2

n1+1,n2+1)−1 −Φ̂n1,n2
(Υn1,n2

+ Γ̂2n1,2n2

n1+1,n2+1)−1pn1,n2



+

 u1 v1

u2 v2





(ψ̂1
H

n1,n2
+ ω11w2,1)

×(Υn1,n2
+ Γ̂2n1,2n2

n1+1,n2+1)−1

−(ψ̂1
H

n1,n2
+ ω11w2,1)

×(Υn1,n2 + Γ̂2n1,2n2

n1+1,n2+1)−1pn1,n2

+ω11w2,2 + ω12

(ψ̂2
H

n1,n2
+ ω21w2,1)

×(Υn1,n2 + Γ̂2n1,2n2

n1+1,n2+1)−1

−(ψ̂2
H

n1,n2
+ ω21w2,1)

×(Υn1,n2
+ Γ̂2n1,2n2

n1+1,n2+1)−1pn1,n2

+ω21w2,2 + ω22


.

From the time asymptotic estimates in Lemma 3.6, we have

Φ̂n1,n2(Υn1,n2 + Γ̂2n1,2n2
n1+1,n2+1)−1 = O(t−2),

Φ̂n1,n2(Υn1,n2 + Γ̂2n1,2n2
n1+1,n2+1)−1pn1,n2 = O(t−1),

(ψ̂i
H

n1,n2
+ ωi1w2,1)(Υn1,n2 + Γ̂2n1,2n2

n1+1,n2+1)−1 = O(t−1), i = 1, 2.

Moreover, due to (Γ̂2n1,2n2
n1+1,n2+1)−1Υn1,n2 = O(t−1), we have by Sherman-Morrison-Woodbury

formula

(Υn1,n2 + Γ̂2n1,2n2
n1+1,n2+1)−1

= (Γ̂2n1,2n2
n1+1,n2+1)−1 − (Γ̂2n1,2n2

n1+1,n2+1)−1Υn1,n2 [Ik + (Γ̂2n1,2n2
n1+1,n2+1)−1Υn1,n2 ]−1(Γ̂2n1,2n2

n1+1,n2+1)−1

for t sufficiently large. Then by the above identity, Lemma 3.6 and (3.6), it can be obtained

that the time asymptotic leading terms of −(ψ̂i
H

n1,n2
+ωi1w2,1)(Υn1,n2+Γ̂2n1,2n2

n1+1,n2+1)−1pn1,n2

+ ωi1w2,2 + ωi2 are

−ψ̂i
H

n1,n2
(Γ̂2n1,2n2
n1+1,n2+1)−1(φ1

n1,n2
w2,2 + φ2

n1,n2
) + ωi1w2,2 + ωi2, i = 1, 2,
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respectively, which are both O(1). In the following, we shall use above asymptotic esti-

mates to decompose Λi(t) = O(1) +O(t−1). To this end, we can obtain

Λi(t) =
[
Ui ui vi

]



In1+n2

0
...

0

0 · · · 0
−ψ̂1

H

n1,n2
(Γ̂2n1,2n2
n1+1,n2+1)−1(φ1

n1,n2
w2,2 + φ2

n1,n2
)

+ω11w2,2 + ω12

0 · · · 0
−ψ̂2

H

n1,n2
(Γ̂2n1,2n2
n1+1,n2+1)−1(φ1

n1,n2
w2,2 + φ2

n1,n2
)

+ω21w2,2 + ω22


+ Mε

i(t)

where

Mε
i(t) = Vi ·

[
Φ̂n1,n2(Υn1,n2 + Γ̂2n1,2n2

n1+1,n2+1)−1 −Φ̂n1,n2(Υn1,n2 + Γ̂2n1,2n2
n1+1,n2+1)−1pn1,n2

]

+

 [ui(ψ̂1
H

n1,n2
+ ω11w2,1) + vi(ψ̂2

H

n1,n2
+ ω21w2,1)]

×(Υn1,n2 + Γ̂2n1,2n2
n1+1,n2+1)−1

0
...

0



+



0n×(n1+n2)

−ui ω11w2,1(Υn1,n2 + Γ̂2n1,2n2
n1+1,n2+1)−1pn1,n2

−ui ψ̂1
H

n1,n2
(Υn1,n2 + Γ̂2n1,2n2

n1+1,n2+1)−1Φn1,n2w1,2

−ui ψ̂1
H

n1,n2
[(Υn1,n2 + Γ̂2n1,2n2

n1+1,n2+1)−1 − (Γ̂2n1,2n2
n1+1,n2+1)−1]

×(φ1
n1,n2

w2,2 + φ2
n1,n2

)

−vi ω21w2,1(Υn1,n2 + Γ̂2n1,2n2
n1+1,n2+1)−1pn1,n2

−vi ψ̂2
H

n1,n2
(Υn1,n2 + Γ̂2n1,2n2

n1+1,n2+1)−1Φn1,n2w1,2

−vi ψ̂2
H

n1,n2
[(Υn1,n2 + Γ̂2n1,2n2

n1+1,n2+1)−1 − (Γ̂2n1,2n2
n1+1,n2+1)−1]

×(φ1
n1,n2

w2,2 + φ2
n1,n2

)


= O(t−1)

for i = 1, 2 by Lemma 3.6. If we focus on the O(1) term of Λi(t), using the notations (3.2)

and Lemma 3.7, a direct calculation yields−ψ̂1
H

n1,n2
(Γ̂2n1,2n2
n1+1,n2+1)−1(φ1

n1,n2
w2,2 + φ2

n1,n2
) + ω11w2,2 + ω12

−ψ̂2
H

n1,n2
(Γ̂2n1,2n2
n1+1,n2+1)−1(φ1

n1,n2
w2,2 + φ2

n1,n2
) + ω21w2,2 + ω12


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=
1

2

 (−1)n1(w2,2 − iβ) (−1)n2(w2,2 + iβ)

(−1)n1(iβw2,2 + 1) (−1)n2(−iβw2,2 + 1)

eiγt
eiδt

 ≡
fu gu

fv gv

eiγt
eiδt

 .
Here, fu, fv, gu and gv are constants independent of t. Therefore, we can get for i = 1, 2,

Λi(t) =

 Ui

[
ui vi

]fu gu

fv gv

eiγt
eiδt

 + Mε
i(t)

=
[
Ui eiγt(fuui + fvvi)

]
+
[

0 eiδt(guui + gvvi)
]

+ Mε
i(t)

=
([

Ui (fuui + fvvi)
]

+ eiθtζie
H
n + M̃ε

i(t)
)
· (In1+n2 ⊕ eiγt)

=
(
Ũi + eiθtζie

H
n + M̃ε

i(t)
)
· (In1+n2 ⊕ eiγt)

where

ζi ≡ guui+gvvi, M̃ε
i(t) ≡Mε

i(t)·(In1+n2⊕e−iγt), Ũi ≡
[
Ui (fuui + fvvi)

]
, θ = δ−γ.

Set

Λ̃i(t) ≡ Ũi + eiθtζie
H
n + M̃ε

i(t)

for i = 1, 2. If Ũ1 is invertible and 1+eiθteHn Ũ−1
1 ζ1 6= 0, then Sherman-Morrison-Woodbury

formula implies that Λ̃1(t) is invertible when |t| is large and

Λ̃−1
1 (t) = (Ũ1 + M̃ε

1(t))−1 − (Ũ1 + M̃ε
1(t))−1eiθtζ1e

H
n (Ũ1 + M̃ε

1(t))−1

1 + eiθteHn (Ũ1 + M̃ε
1(t))−1ζ1

= Ũ−1
1 −

Ũ−1
1 eiθtζ1e

H
n Ũ−1

1

1 + eiθteHn Ũ−1
1 ζ1

+O(t−1).

Then due to M̃ε
2(t) = O(t−1), we can obtain

W (t) = P (t)Q(t)−1 = Λ̃2(t)Λ̃−1
1 (t)

= (Ũ2 + eiθtζ2e
H
n + M̃ε

2(t)) ·

(
Ũ−1

1 −
Ũ−1

1 eiθtζ1e
H
n Ũ−1

1

1 + eiθteHn Ũ−1
1 ζ1

+O(t−1)

)

= Ũ2Ũ−1
1 − e

iθt Ũ2Ũ−1
1 ζ1e

H
n Ũ−1

1

1 + eiθteHn Ũ−1
1 ζ1

+ eiθtζ2e
H
n Ũ−1

1

− eiθteiθt(eHn Ũ−1
1 ζ1)ζ2e

H
n Ũ−1

1

1 + eiθteHn Ũ−1
1 ζ1

+O(t−1)

= Ũ2Ũ−1
1 − e

iθt Ũ2Ũ−1
1 ζ1e

H
n Ũ−1

1

1 + eiθteHn Ũ−1
1 ζ1

+ eiθt
ζ2e

H
n Ũ−1

1

1 + eiθteHn Ũ−1
1 ζ1

+O(t−1)

= Ũ2Ũ−1
1 +

eiθt

1 + eiθteHn Ũ−1
1 ζ1

(ζ2 − Ũ2Ũ−1
1 ζ1)eHn Ũ−1

1 +O(t−1)

as |t| is large. The proof is completed.
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Remark 3.8. (i) If we assume S = BBH and D = CHC for some B ∈ Cn×m and C ∈ C`×n,

the equation of the steady state of HRDE (that is, the algebraic Riccati equation) arises

from the optimal control problems [1, 11]. It follows from Theorem 5.3 in [11] that if

(C,A) is detectable, then the Hamiltonian matrix H̃ in (1.3) has no eigenvalues on the

imaginary axis; if also (A,B) is stabilizable, then the matrix U1 given in (2.5) is invertible

and by Lemma 2.4.1 in [1], U2U
−1
1 is the positive semi-definite steady state of HRDE.

Consequently, under the stabilizable and detectable assumptions, the elementary Cases 2,

3 and 4 in Theorem 2.1 are absent, and hence, HRDE has heteroclinic orbits.

(ii) In [18], some assumptions are imposed such as eigenvalues of H̃ are distinct and H̃
has no pure imaginary eigenvalue. Therefore, Case 1 in the main theorem holds. In Case 1,

a totally stable equilibrium U2U
−1
1 and a totally unstable equilibrium V2V

−1
1 are found and

the heteroclinic orbits connecting these two equilibria are established. The other equilibria

of saddle type and periodic orbits are characterized in [18]. The asymptotic analysis in

this paper can also be applied to these invariant sets whenever the initial points are in the

stable/unstable manifolds.

4. The behavior of the combination of elementary cases

The solution of HRDE depends on the Hamiltonian matrix H̃. A canonical form of a

Hamiltonian matrix under symplectic similarity transformations has been studied in [15].

We adopt the Hamiltonian Jordan canonical form of H̃ to study the asymptotic behavior of

HRDE. The general Hamiltonian Jordan canonical form is stated in the following theorem.

Theorem 4.1 (Hamiltonian Jordan canonical form [15]). Given a complex Hamiltonian

matrix H̃, there exists a complex symplectic matrix S such that

J , S−1H̃S =



Rr 0

Re De

Rc Dc

Rd Dd

0 −RHr
0 −RHe

0 −RHc
Gd −RHd



,

where the different blocks have the following structures.

(1) The blocks with index r have the form

Rr = diag(Rr1, . . . , R
r
µr), Rrk = diag(Ndk,1(λk), . . . , Ndk,pk

(λk)), k = 1, . . . , µr,
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where λk are distinct and Re(λk) > 0.

(2) The blocks with index e have the form

Re = diag(Re1, . . . , R
e
µe), Rek = diag(Nlk,1(iαk), . . . , Nlk,qk

(iαk)),

De = diag(De
1, . . . , D

e
µe), De

k = diag(βek,1elk,1e
H
lk,1
, . . . , βek,qkelk,qk e

H
lk,qk

),

where for k = 1, . . . , µe and j = 1, . . . , qk we have αk ∈ R are distinct and βek,j ∈
{−1, 1}.

(3) The blocks with index c have the form

Rc = diag(Rc1, . . . , R
c
µc), Rck = diag(Bk,1, . . . , Bk,rk),

Dc = diag(Dc
1, . . . , D

c
µc), Dc

k = diag(Dk,1, . . . , Dk,rk),

where for k = 1, . . . , µc and j = 1, . . . , rk we have

Bk,j =


Nmk,j

(iηk) 0 −
√
2
2 emk,j

0 Nnk,j
(iηk) −

√
2
2 enk,j

0 0 iηk

 , Dk,j =

√
2

2
iβck,j


0 0 emk,j

0 0 −enk,j

−eHmk,j
eHnk,j

0

 ,
ηk ∈ R are distinct and βck,j ∈ {−1, 1}.

(4) The blocks with index d have the form

Rd = diag(Rd1, . . . , R
d
µd

), Gd = diag(Gd1, . . . , G
d
µd

), Dd = diag(Dd
1 , . . . , D

d
µd

),

where for k = 1, . . . , µd, we have

Rdk =


Nsk(iηk) 0 −

√
2

2 esk

0 Ntk(iδk) −
√

2
2 etk

0 0 1
i (γk + δk)

 , Gdk = βdk


0 0 0

0 0 0

0 0 −1
2(γk − δk)

 ,

Dd
k =

√
2

2
iβdk


0 0 esk

0 0 −etk
−eHsk eHtk −i

√
2

2 (γk − δk)

 ,
γk 6= δk and βdk,j ∈ {−1, 1}.

It is noted that eJt has the same block form as J due to the structure of J. Suppose

that the Hamiltonian matrix H̃ has Hamiltonian Jordan canonical form J defined in the

above theorem. Then the solution for IVP (1.2) is

Y (t) =

Q(t)

P (t)

 = SeJtS−1

 I

W0

 .
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In the following example, we consider a special case that J is the combination of Cases 1

and 4.

Example 4.2. Assume S = I10 and

J =



N2(λ) 0 0 0

0


iγ 0 −

√
2

2

iδ −
√

2
2

i
2(γ + δ)

 0
√

2
2 (iβ)


0 0 1

0 0 −1

−1 1 −i
√

2
2 (γ − δ)


0 0 −N2(λ)H 0

0 β


0 0 0

0 0 0

0 0 −1
2 (γ − δ)

 0


iγ 0 0

0 iδ 0
√

2
2

√
2

2
i
2(γ + δ)





,

where N2(λ) =
[
λ 1
0 λ

]
, Re(λ) > 0, γ, δ ∈ R with γ 6= δ and β ∈ {1,−1}. Then we have

eH̃t =


eN2(λ)t 0 0 0

0 B 0 D

0 0 e−N2(λ)H t 0

0 G 0 E

 ,

where

B ,

Φ1,1 φ1
1,1

0 ω11

 , D ,

 Γ̂2,2
2,2 φ2

1,1

ψ̂1
H

1,1 ω12

 , G ,

0 0

0 ω21

 , E ,

 Φ̂1,1 0

ψ̂2
H

1,1 ω22

 .
Then the solution for IVP (1.2) is represented by

 Q(t)

P (t)

 = eH̃t

 I5

W0

 = eH̃t


I2 0

0 I3

W01 W02

W03 W04


where W0 is partitioned into W0i, i = 1, 2, 3, 4, with W01 ∈ C2×2, W02 ∈ C2×3, W03 ∈ C3×2

and W04 ∈ C3×3. Hence,

 Q(t)

P (t)

 =


eN2(λ)t 02×3

DW03 B + DW04

e−N2(λ)H tW01 e−N2(λ)H tW02

EW03 G + EW04

 .
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If B + DW04 is invertible, then Q(t) is invertible. Moreover,

Q−1(t) =

 e−N2(λ)t 02×3

−(B + DW04)−1DW03e
−N2(λ)t (B + DW04)−1

 ,
and the solution of HRDE (1.1) is

W (t) = P (t)Q−1(t)

=

 e−N2(λ)
Ht[W01 −W02(B + DW04)−1DW03]e−N2(λ)t e−N2(λ)

HtW02(B + DW04)−1

[E− (G + EW04)(B + DW04)−1D]W03e
−N2(λ)t (G + EW04)(B + DW04)−1

 .
Using the analysis same as in Case 4, we have (G + EW04)(B + DW04)−1 tends to a

periodic orbit if W04 is invertible. For t sufficiently large, the other blocks in W (t) tend

to zero due to Re(λ) > 0. The analysis for the other combinations of the elementary cases

and the general symplectic matrix S can be done analogously but more complicated.

Appendix A. Embedding of trajectories of HRDE into trajectories of a flow on the

Grassmann manifold

The geometric insight of Radon’s lemma gives the connection between an extended solution

of HRDE and an analytic flow on a Grassmann manifold. Define

Gn(C2n) =

Im

A
B

 ∣∣∣∣ A,B ∈ Cn×n and rank

A
B

 = n


where Im([A>, B>]>) is the linear space that is spanned by the matrix [A>, B>]>. Gn(C2n)

is the Grassmann manifold with an appropriate topology (see, e.g., [1]). The Grassmann

manifold Gn(C2n) is compact analytic and of dimension n2. Then Cn×n can be embedded

into Gn(C2n) through ψ(W ) = Im([I,W>]>). Set

Gn0 (C2n) = {Im([A>, B>]>) ∈ Gn(C2n) | A ∈ Cn×n is invertible}.

We can obtain Gn0 (C2n) = ψ(Cn×n), the image of Cn×n under the map ψ. Moreover,

Gn0 (C2n) is an open dense subset of Gn(C2n).

Define a flow on the Grassmann manifold Gn(C2n) by

S(t, S0, t0) = Φ(t, t0)(S0)

where Φ(t, t0) is a transition matrix of (1.2) and Φ(t, t0)(S0) denotes the image of the n-

dimensional subspace S0 under the non-singular transformation Φ(t, t0). Let W (t,W0, t0)

denote the solution of HRDE with initial value W (t0) = P (t0)Q(t0)−1 = W0. Q(t0) is
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assumed to be invertible. Through the embedding ψ, Radon’s lemma also leads to a

geometric version:

ψ(W (t,W0, t0)) = Im

 I

P (t)Q(t)−1

 = Im

Q(t)

P (t)


= Im

Φ(t, t0)

Q(t0)

P (t0)

 = Φ(t, t0) Im

 I

W0


=⇒ ψ(W (t,W0, t0)) = S(t, ψ(W0), t0).

(A.1)

Equation (A.1) holds if Q(t)−1 exists. This is equivalent that the trajectory S(t, ψ(W0), t0)

stays in the subset Gn0 (C2n) of Gn(C2n). The embedding ψ maps the trajectories of HRDE

onto the restriction of the flow S(t, ψ(W0), t0) to Gn0 (C2n).

The transition matrix Φ(t, t0) associated with the constant matrix H̃ in the system (1.2)

is holomorphic in C. Hence, the flow S(t, ψ(W0), t0) on Gn(C2n) exists and is holomorphic

for all t ∈ C. This infers that the singularities of W (t,W0, t0) are isolated and they

are poles. Therefore, it is meaningful and interesting to investigate the time asymptotic

behavior of HRDE (1.1) through the extended solution W (t), t ∈ Jw in (1.5).

To clarify the difference between W (t) and the linear flow on the Grassmann manifold,

we can consider the following example.

Example A.1. Let w(t) be the solution of the scalar HRDE

w′ = 1 + w2 with w(0) = w0,

and consider the Grassmann manifold

G1(R2) =

Im

a
b

 ∣∣∣∣ a, b ∈ R and a2 + b2 6= 0

 .

The solution of the scalar HRDE is w(t) = tan(t+ c0) for t ∈ (−π/2− c0, π/2− c0), where

tan(c0) = w0. The corresponding linear IVP, i.e., equation (1.2) in the manuscript, turns

out to be q̇
ṗ

 =

0 −1

1 0

q
p

 , with

q(0)

p(0)

 =

 1

w0

.
Here H̃ =

[
0 −1
1 0

]
is Hamiltonian. The solution of the linear IVP isq(t)
p(t)

 = eH̃t

 1

w0

 =

cos t − sin t

sin t cos t

 1

w0


=

cos t− w0 sin t

sin t+ w0 cos t

 =
√

1 + w2
0

cos(t+ c0)

sin(t+ c0)

 ,
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where c0 = arctan(w0). Therefore,
{

Im
([

q(t)
p(t)

]) ∣∣ t ∈ R
}

is the analytic orbit on the

Grassmann manifold which can be though of an animation of rotating straight lines on

the plane.

By applying Radon’s lemma, we see that w(t) = p(t)/q(t) = tan(t + c0) for t ∈
(−π/2 − c0, π/2 − c0) is the solution of the HRDE. Here, (−π/2 − c0, π/2 − c0) is the

maximal interval of the solution and w(t) blows up at the end points of the interval.

Therefore, we extend

w(t) =
p(t)

q(t)

for t 6= (k + 1/2)π − c0. This is the so-called extended solution and is also named by

w(t). For a given t, the point (1, w(t)) is the intersection of the line Im
([

q(t)
p(t)

])
and the

vertical line x = 1. Therefore, the intersection does not exist whenever q(t) = 0, i.e.,

t = (k + 1/2)π − c0. This is the reason why we see that
[
q(t)
p(t)

]
is analytic but w(t) blows

up periodically.

Appendix B. Sherman-Morrison-Woodbury formula [10]

Given a square invertible n×n matrix A, an n× k matrix U , and a k×n matrix V , let B

be an n× n matrix such that B = A+ UV . Then, assuming (Ik + V A−1U) is invertible,

we have

B−1 = A−1 −A−1U(Ik + V A−1U)−1V A−1.

References

[1] H. Abou-Kandil, G. Freiling, V. Ionescu and G. Jank, Matrix Riccati Equations

in Control and Systems Theory, Systems & Control: Foundations & Applications,
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