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Nonseparating Independent Sets of Cartesian Product Graphs

Fayun Cao and Han Ren*

Abstract. A set of vertices S of a connected graph G is a nonseparating independent

set if S is independent and G−S is connected. The nsis number Z(G) is the maximum

cardinality of a nonseparating independent set of G. It is well known that computing

the nsis number of graphs is NP-hard even when restricted to 4-regular graphs. In

this paper, we first present a new sufficient and necessary condition to describe the

nsis number. Then, we completely solve the problem of counting the nsis number

of hypercubes Qn and Cartesian product of two cycles Cm�Cn, respectively. We

show that Z(Qn) = 2n−2 for n ≥ 2, and Z(Cm�Cn) = n + b(n + 2)/4c if m = 4,

m + b(m + 2)/4c if n = 4 and bmn/3c otherwise. Moreover, we find a maximum

nonseparating independent set of Qn and Cm�Cn, respectively.

1. Introduction

Graphs considered in this paper are connected and simple. Throughout the paper, the

letter G denotes a graph, and the cycle with n vertices is denoted by Cn. For W ⊆ V (G),

by G−W and G[W ] we mean the subgraphs induced by V (G)−W and W , respectively.

It is expected that the reader is somewhat familiar with topological graph theory. For

general background, see Gross and Tucker [4], or Mohar and Thomassen [8].

An independent set of a graph is a set of vertices in which no two of them are adjacent.

A maximum independent set is an independent set of largest possible size for a given graph.

This size is called the independence number of G and denoted α(G). We say that a set

S ⊆ V (G) is a nonseparating independent set (or nsis in short) of a graph G if S is

independent and G−S is connected. The maximum cardinality of a nsis of G is called the

nsis number of G and is denoted by Z(G). Furthermore, we call a nsis containing exactly

Z(G) vertices a Z-set. Finding a Z-set of graphs is called the nsis problem.

A set S ⊆ V (G) is a vertex cover of G if for every edge uv of E(G), u ⊆ S or v ⊆ S.

The connected vertex cover (or cvc in brief) problem is the variation of the vertex cover
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problem, where given a graph G, we find a vertex cover S ⊆ V (G) of minimum cardinality

such that the induced subgraph G[S] is connected. In fact, the cvc problem is a classic

problem in combinatorial optimization and operation research having many important

applications in many fields. For example, in the field of wireless network design [9], the

vertices and the edges represent the network nodes and transmission links, respectively.

Some relay stations will be placed on some network nodes such that they form a connected

subnetwork and every transmission link is incident to a relay station. People want to

minimize the number of relay stations. This is exactly the cvc problem. In theory, the

nsis problem is closely related with cvc problem. One may easily observe that S is a cvc

if and only if V (G)− S is a nsis.

In recent years, the nsis problem has been intensively studied from the algorithmic

perspective because of their extensive applications. Garey and Johnson [3] had shown

that this problem is NP-hard even for planar graphs with no degree exceeding 4. In

particular, counting the nsis number of a 4-regular graph is also very hard [6]. Since then,

researchers proved that it is also NP-complete in planar bipartite graphs of maximum

degree 4 [2] and 3-connected graphs [12]. On the other hand, Ueno et al. [11] proved that

this problem can be solved in polynomial time for graphs with no vertex degree exceeding

3. In addition, Escoffier et al. [1] showed that this problem is polynomial-time solvable

in chordal graphs. From the literature, one may see that researchers only went an initial

step towards the research of nsis problem. In fact, determining the nsis number of many

certain graphs has been little studied. There is still much revolutionary work to do in the

future.

In this paper, we shall determine the nsis numbers of hypercubes and Cartesian prod-

ucts of two cycles. As we will see in Sections 3 and 4, a maximum nsis of hypercubes and

Cartesian products of two cycles is constructed, respectively. Therefore, a minimum cvc

follows.

We first introduce a sufficient and necessary condition which is viewed to be a new way

to describe the nsis number. Let T be a spanning tree of a graph G, we denote by α1(T )

the independence number of the subgraph induced by its leaves (i.e., those of degree 1) of

T . Then, we have the following result.

1. Z(G) = maxT {α1(T ) : T is a spanning tree of G}, where the “max” is taken among

all the possible spanning trees in G.

A spanning tree T attaining the “max” is called an optimal tree of G. It is easy to see

that finding optimal trees for general graphs is NP-hard. Computationally, this implies

that determining the nsis number is a very hard problem for general graphs. However, it

may work well for some types of graphs such as cubic graphs and hypercubes Qn. Based

on the result above, we deduce that
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2. Z(Qn) = 2n−2 for n ≥ 2.

Finally, by construction of a Z-set of the Cartesian product of two cycles Cm�Cn. We

obtain that

3.

Z(Cm�Cn) =


n+ b(n+ 2)/4c if m = 4,

m+ b(m+ 2)/4c if n = 4,

bmn/3c otherwise.

2. Sufficient and necessary condition

In this section, we shall establish a new description for the nsis number of general graphs,

as the following theorem shows.

Theorem 2.1. For any graph G,

Z(G) = max
T
{α1(T ) : T is a spanning tree of G}.

Proof. Let S be a Z-set of G. Then G − S is connected. Therefore, there is a spanning

tree Ts of G − S. Since G is connected and S is independent, every vertex of S has a

neighbor in Ts. Thus, we can construct a spanning tree of T ′ such that each vertex of S

is a leaf of T ′. It follows that

Z(G) ≤ α1(T
′) ≤ max

T
α1(T ).

Now we prove the converse inequality. Select an arbitrary spanning tree T0 of G.

Suppose that S0 is a maximum independent set of the subgraph induced by leaves of

T0. One may easily verify that S0 is a nsis of G. Thus, Z(G) ≥ α1(T0). Based on the

arbitrariness of T0, we conclude that

Z(G) ≥ max
T

α1(T ).

This finishes the proof.

Theorem 2.1 reveals a new relation between the nsis number and spanning trees. In

other words, finding a spanning tree T of G such that α1(T ) achieves its maximum is

crucial in computing the nsis number of G.

It is possible to find an optimal tree T (i.e., α1(T ) = Z(G)) for some types of graphs

such as cubic graphs. Here, we have to introduce some notations and results about topo-

logical graphs.

A surface is a compact connected 2-dimensional manifold without boundary. Surfaces

are partitioned into two classes: orientable surfaces and nonorientable surfaces. The
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orientable surface Sg can be obtained from the sphere with 2g pairwise disjoint holes

attached with g tubes such that each tube welds two holes. The nonorientable surface

Nk (k ≥ 1) can be obtained from the sphere with k pairwise disjoint discs replaced by k

Möbius bands. Recall that g and k are called the genus of Sg and Nk, respectively. A

graph is said to be embeddable on a surface if it can be drawn on that surface in such a

way that no two edges cross. Such a drawing is called an embedding. An embedding Π of

G in a surface S is called a 2-cell embedding if each component of S−Π is homeomorphic

to an open disc. The maximum genus γM (G) of G is defined to be the maximum integer

k such that there exists a cellular embedding of G into an orientable surface of genus k.

Given a spanning tree T of a graph G, the subgraph G−E(T ) is called a co-tree of G.

A component of a co-tree G− E(T ) is called odd if it contains odd number of edges. We

use w(T ;G) to denote the number of odd components of G− E(T ). The Betti deficiency

ξ(G) is defined to be the minimum w(T ;G) over all spanning trees. A spanning tree T of

G such that w(T ;G) = ξ(G) is said to be a Xuong-tree of G. The following results shows

a relation between spanning tree and maximum genus.

(1) To compute the maximum genus of graphs, Xuong [13] gave the following edge-

partition of co-trees. Let G be a connected graph with a Xuong-tree TX . Then there

exists an edge-partition of G− E(TX) as follows:

E(G)− E(TX) = {e1, e2} ∪ {e3, e4} ∪ · · · ∪ {e2m−1, e2m} ∪ {f1, f2, . . . , fs},

where (a) m = γM (G), s = ξ(G); (b) for any i with 1 ≤ i ≤ m, e2i−1 ∩ e2i 6= ∅ and

{f1, f2, . . . , fs} is a matching of G.

An edge-partition of K4 is shown in Figure 2.1.

Figure 2.1: An edge-partition of K4.

(2) Huang and Liu [5], and Ren and Long [7], respectively, proved that Z(G) = γM (G)

holds for each cubic graph G.

Let TX be a Xuong-tree of a cubic graph G with edge-partition as described in (1).

Then the vertex set {ui : ui ∈ e2i−1 ∩ e2i, 1 ≤ i ≤ γM (G)} is an independent set of

G. Furthermore, for every i with 1 ≤ i ≤ γM (G), ui is a leaf of TX . Thereby, S =

{u1, u2, . . . , uγM (G)} is a nsis of G. Together with (2), these imply that S is a Z-set. It

follows that the Xuong-tree TX is an optimal tree of G.



Nonseparating Independent Sets of Cartesian Product Graphs 5

It follows from the above statement that, for a cubic graph G, computing its maximum

genus, computing its nsis number Z(G) and fining a Xuong-tree are mutually equivalent.

In Section 3, we will show spanning trees like Xuong-trees also play an important role in

solving the nsis problem of hypercubes.

3. Hypercubes

In this section, we shall solve the nsis problem of hypercubes. Before proving our theorems,

we need to introduce some basic terminologies and notations.

The Cartesian product G�H of two disjoint graphs G and H is the graph with the

vertex set V (G) × V (H) and for which (x, u)(y, v) is an edge if x = y and uv ∈ E(H),

or xy ∈ E(G) and u = v. The hypercube, denoted by Qn, of dimension n (≥ 1) is

a graph obtained by taking Cartesian product of the complete graph K2 with itself n

times; that is, Qn = K2�K2 · · ·�K2 (n times) (see Figure 3.1 for instance). Apparently,

Qn = K2�Qn−1 and Qn is an n-regular, n-connected, bipartite graph with 2n vertices. It

is one of the most popular interconnection network topologies.

Figure 3.1: Q2 and Q3.

Before stating our result, we should calculate the independence number α(Qn).

Lemma 3.1. α(Qn) = 2n−1 for n ≥ 1.

Proof. Since every hypercube is bipartite, α(Qn) ≥ |V (Qn)|/2. That is

(3.1) α(Qn) ≥ 2n/2 = 2n−1.

We prove the converse inequality by induction on n. There is nothing to prove for

n ≤ 2. Suppose that n ≥ 3. Recall that Qn is obtained from two copies of Qn−1, say Q1
n−1,

Q2
n−1. Let S be an independent set of Qn. Then the sets S∩V (Q1

n−1) and S∩V (Q2
n−1) are

independent sets of Q1
n−1 and Q2

n−1, respectively. It follows that |S∩V (Q1
n−1)| ≤ α(Q1

n−1)

and |S ∩ V (Q2
n−1)| ≤ α(Q2

n−1). By the induction hypothesis,

(3.2) |S| = |S ∩ V (Q1
n−1)|+ |S ∩ V (Q2

n−1)| ≤ 2 · α(Qn−1) ≤ 2 · 2n−2 = 2n−1.

Using (3.1) and (3.2), we get that |S| = α(Qn) = 2n−1.
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We now put all of the above together to count the value of Z(Qn).

Theorem 3.2. Z(Qn) = α(Qn−1) = 2n−2 for n ≥ 2.

Proof. We use Q1
n−1 and Q2

n−1 to denote the two copies of Qn−1 which constitute Qn. Let

Tn−1 be a spanning tree of Q1
n−1. Then, we get a spanning tree Tn of Qn by adding the

edges between the corresponding vertices in Q1
n−1 and Q2

n−1 (see Figure 3.2 for Q4 and

T4). Note that the leaves of Tn consist of the vertices of Q1
n−1. Using Theorem 2.1, one

may see that

Z(Qn) ≥ α1(T ) = α(Qn−1).

Figure 3.2: Q4 and T4.

To prove the converse inequality, we use induction n. The inequality is true for n = 2.

So, assume that n ≥ 3 and S a Z-set of Qn. Suppose that S = A1 ∪ C2, where A1 ⊆
V (Q1

n−1) and C2 ⊆ V (Q2
n−1). Denote by C1 the copy of C2 in V (Q1

n−1). Then V (Q1
n−1)

is divided into three parts A1, B1, C1, in other words, V (Q1
n−1) = A1 ∪ B1 ∪ C1, where

B1 = V (Q1
n−1) − (A1 ∪ C1). Analogously, V (Q2

n−1) = A2 ∪ B2 ∪ C2 (for an intuitive

perception, see Figure 3.3).

Figure 3.3: A partition of Qn.

We claim that A1 is a nsis ofQ1
n−1. To see its validity, it suffices to prove thatQ1

n−1[B1∪
C1] is a connected subgraph of Q1

n−1. Since Qn[B1∪C1∪A2∪B2] is connected, and edges

between Q1
n−1[B1 ∪C1] and Q2

n−1[A2 ∪B2] are those joining B1 and B2, Q
1
n−1[B1 ∪C1] is

connected. Similarly, C2 is a nsis of Q2
n−1. This means that

Z(Qn) = |S| = |A1|+ |C2| ≤ Z(Q1
n−1) + Z(Q2

n−1) = 2 · Z(Qn−1).
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By the induction hypothesis,

Z(Qn) ≤ 2 · Z(Qn−1) ≤ 2 · α(Qn−2).

Using Lemma 3.1, we derive that Z(Qn) ≤ α(Qn−1). The proof is completed.

Remark 3.3. By virtue of the proof of Theorem 3.2, we obtain that every maximum

independent set of Qn−1 is a maximum nsis of Qn. Note that Qn−1 is balanced bipartite,

which together with Lemma 3.1 implies that each part of the bipartition of Qn−1 is a

maximum independent set of Qn−1, as well as a maximum nsis of Qn.

Recalling Theorem 2.1, there exists a spanning tree T of Qn such that α1(T ) = 2n−2.

In fact, some Xuong-tree of Qn could be chosen as such a tree T . In order to find the

Xuong-tree more effectively, we need to character the value of ξ(Qn).

Proposition 3.4. ξ(Qn) = 1 for n ≥ 2.

Proof. We prove it by induction on n. Clearly, ξ(Q2) = 1. Now, we assume that n ≥ 3.

Also, we use Q1
n−1 and Q2

n−1 to denote the two copies of Qn−1 which constitute Qn. Let

Tn−1 be a Xuong-tree of Q1
n−1, i.e., w(Tn−1;Q

1
n−1) = 1. Then, we could construct a

spanning tree Tn of Qn by adding the edges between the corresponding vertices in Q1
n−1

and Q2
n−1. Since the number of edges in Q2

n−1 is even, w(Tn;Qn) = 1. It means that Tn

is a Xuong-tree of Qn. Therefore, ξ(Qn) = 1. We finish the proof.

In Proposition 3.4, one may easily deduce that α1(Tn) = 2n−2. That is to say, the

Xuong-tree Tn is an optimal tree of Qn.

4. Cartesian product of two cycles

In this section, we shall solve the nsis problem of Cm�Cn. The general idea of the proof

is as follows. First, we establish an upper bound on the nsis number in Cm�Cn. Second,

we construct nonseparating independent sets (nsiss for short) achieving this bound.

Figure 4.1: C3�C5.

We use the following standard labeling for the vertices of Cm�Cn and choose one that

corresponds to matrix notation: the i-th vertex in the j-th copy of Cm will be denoted by
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ui,j . For example, in Figure 4.1 the vertex labelled by “•” is denoted by u2,3. Carrying

the matrix analogy further, we sometimes also speak of the copies of Cm and Cn as the

columns and rows, respectively, of Cm�Cn. In order to recognize the nsis more easily in

our figures, we only show the vertices to be explicitly removed.

Before going into details, we lay out a useful result, due to Pike and Zou [10], about

the decycling number ∇(G) of a graph G, namely, the minimum number of vertices that

have to be deleted in order to turn G into a forest.

Theorem 4.1. [10]

∇(Cm�Cn) =


d3n/2e if m = 4,

d3m/2e if n = 4,

d(mn+ 2)/3e otherwise.

Based on the above theorem, we build an upper bound on the nsis number of Cm�Cn.

Lemma 4.2.

Z(Cm�Cn) ≤


n+ b(n+ 2)/4c if m = 4,

m+ b(m+ 2)/4c if n = 4,

bmn/3c otherwise.

Proof. Let S be a Z-set of Cm�Cn. For brevity, suppose that |S| = k. Then,

4k + (mn− k − 1 + c) = 2mn,

where 4k is the number of edges incident to S, 2mn is the number of edges of Cm�Cn
and mn− k − 1 is the number of edges of a spanning tree in Cm�Cn − S, and c ≥ 0 is a

parameter. This implies that

(4.1) 3k = mn+ 1− c.

Notice that for any graph, its j (≥ 0) edges can be covered by at most j vertices.

Let T be a spanning tree of Cm�Cn − S. Then, c is the number of edges in the co-tree

(Cm�Cn − S)−E(T ). Thus, we can choose a set of vertices Sc of Cm�Cn − S such that

Sc covers the edges of (Cm�Cn − S)− E(T ) with |Sc| ≤ c. It is straightforward to verify

that the deletion Sc from Cm�Cn − S leads to a forest. Now we deal with the following

cases.

Case 1: m = 4. Applying the definition of the decycing number and Theorem 4.1, we

deduce that

(4.2) k + c ≥ |S ∪ Sc| ≥
⌈

3n

2

⌉
≥ 3n

2
.
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Putting (4.1) and (4.2) together, we obtain that

(4n+ 1− c) + (k + c) ≥ 3k +
3n

2
.

Therefore, 2k ≤ 4n + 1 − 3n/2, and so k ≤ n + (n + 2)/4. Since k is a positive integer,

k ≤ n+ b(n+ 2)/4c.
Case 2: n = 4. By the symmetry of Cm�Cn and Case 1, it is easily seen that

k ≤ m+ b(m+ 2)/4c.
Case 3: m 6= 4 and n 6= 4. Under this case, we claim that c ≥ 1. Suppose on the

contrary that c = 0. Then S is decycling set with size (mn+ 1)/3. This is contradictory

to Theorem 4.1. Hence, k ≤ bmn/3c.

Observing Lemma 4.2, the result in C4�Cn is different from other cases. Therefore,

we first deal with this case.

Lemma 4.3. Z(C4�Cn) = n+ b(n+ 2)/4c.

Proof. By Lemma 4.2, Z(C4�Cn) ≤ n + b(n + 2)/4c. We now construct nsiss with that

size. Let r = bn/4c and

M =

r⋃
i=1

{u1,4i−3, u3,4i−3, u2,4i−2, u1,4i−1, u3,4i−1}.

Then, M is a nsis of C4�Cn, when n ≡ 0 (mod 4); M ∪{u4,n−1} is a nsis of C4�Cn, when

n ≡ 1 (mod 4); M ∪ {u4,n−2, u1,n−1, u3,n−1} is a nsis of C4�Cn, when n ≡ 2 (mod 4);

M ∪ {u1,n−2, u3,n−2, u2,n−1, u4,n−1} is a nsis of C4�Cn, when n ≡ 3 (mod 4) (as depicted

in Figure 4.2 for n = 15).

Figure 4.2: A Z-set of C4�C15.

It is not hard to check that each nsis above has size n+ b(n+ 2)/4c. Thus, the proof

is finished.

In the rest part of this section, we devote to general cases, starting with several specific

cases. By the symmetry of Cm�Cn, from now on, we assume that 4 /∈ {m,n}.
First, we treat the cases C3�Cn and C8�Cn.

Lemma 4.4. Z(C3�Cn) = n.
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Proof. By Lemma 4.2, Z(C3�Cn) ≤ n. Let k = bn/3c and M =
⋃k
i=1{u1,3i−2, u2,3i−1,

u3,3i}. It is not hard to verify that S = M is a nsis of C3�Cn, where n ≡ 0 (mod 3);

S = M ∪ {u2,n} is a nsis of C3�Cn, where n ≡ 1 (mod 3) (see Figure 4.3 for C3�C10);

S = M ∪ {u1,n−1, u2,n} is a nsis of C3�Cn, where n ≡ 2 (mod 3).

Figure 4.3: A Z-set of C3�C10.

In each case, |S| = n. So, S is a Z-set of C3�Cn. This lemma is proved.

Lemma 4.5. Z(C8�Cn) = b8n/3c.

Proof. Again by Lemma 4.2, Z(C8�Cn) ≤ b8n/3c. We further construct nsiss which

achieve this bound. Let k = bn/3c and

M =
k⋃
i=1

{u1,3i−2, u4,3i−2, u7,3i−2, u2,3i−1, u5,3i−1, u3,3i, u6,3i, u8,3i}.

For n ≡ 0 (mod 6), (M−{u2,n−1, u3,n})∪{u3,n−1, u2,n} is a nsis. For n ≡ 1 (mod 6), M ∪
{u2,n, u5,n} is a nsis. For n ≡ 2 (mod 6), (M − {u3,n−2, u6,n−2, u8,n−2}) ∪ {u1,n−2, u4,n−2,
u7,n−2, u2,n−1, u6,n−1, u8,n−1, u3,n, u5,n} is a nsis. For n ≡ 3 (mod 6), M is a nsis. For

n ≡ 4 (mod 6), (M −{u3,n−1, u6,n−1, u8,n−1})∪{u1,n−1, u4,n−1, u7,n−1, u2,n, u6,n} is a nsis.

For n ≡ 5 (mod 6), M ∪ {u2,n−1, u5,n−1, u7,n−1, u3,n, u8,n} is a nsis.

Note that all of these nsiss have size b8n/3c. Thus, we build the lemma.

Next, we give a result that will be frequently used later.

Lemma 4.6 (Double Expanding Lemma). Suppose that S is a nsis of Cm�Cn. Let

T = {u2i,2j : i = 1, 2, . . . ,m, j = 1, 2, . . . , n} and S′ = {u2i−1,2j−1 : ui,j ∈ S}. Then T ∪ S′

is a nsis of C2m�C2n.

Proof. Obviously, C2m�C2n − T is homeomorphic to a subdivision of Cm�Cn. Hence,

C2m�C2n − T − S′ is connected. Note that u2i,2j is not adjacent to u2k−1,2h−1 for any

i, j, k, h ≥ 1. It follows that T ∪ S′ is independent. We conclude that T ∪ S′ is a nsis of

C2m�C2n.
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Figure 4.4 shows the expansion from C3�C3 to C6�C6.

Figure 4.4: The expansion from C3�C3 to C6�C6.

Based on Lemmas 4.4, 4.5 and 4.6, the case m ≡ 0 (mod 3) turns out to be easy.

Lemma 4.7. Z(Cm�Cn) = rn, where m = 3r.

Proof. According to Lemma 4.2, Z(Cm�Cn) ≤ rn. If n is odd, we define

M =
r⋃
i=1

(
{u3i−2,1} ∪

k⋃
j=1

{u3i−1,2j , u3i,2j+1}
)
,

where n = 2k + 1 (see Figure 4.5 for C6�C7). Considering the subgraph (C3r�Cn)−M ,

rows 3i− 2, 3i− 1 and 3i have a path from u3i−2,2 to u3i,2, for each 1 ≤ i ≤ r. By joining

these paths we have a cycle C. Each vertex beyond the cycle C and M has one neighbor

in C. So, (C3r�Cn)−M is connected. It is clear that M is a nsis.

Figure 4.5: A Z-set of C6�C7.

If n is even and r is odd, set

M =

r⋃
i=1

(
{u3i−2,1, u3i−2,n−2, u3i,n−1, u3i−1,n} ∪

k⋃
j=1

{u3i,2j , u3i−1,2j+1}
)
,

where n = 2k+ 4. By an argument similar to above discussion, we have that M is a nsis.

In both cases above, |M | = rn.

Now suppose that both of r and n are even and k the minimum nonegative integer

such that r/2k or n/2k is odd, or n/2k equals 8. Let mi = m/2k−i and ni = n/2k−i for
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each i = 0, 1, . . . , k. By means of Lemma 4.5 and the discussion above, we may obtain a

nsis with size rn/22k in Cm0�Cn0 . Now for each i = 0, 1, . . . , k − 1, by using Lemma 4.6

we could construct a nsis with size Z(Cm0�Cn0) + mn
22k

∑i
j=0 4j in Cmi+1�Cni+1 . Finally,

after a sequence of construction, we get a nsis with size rn of Cm�Cn. As a consequence,

Z(Cm�Cn) = rn.

In the rest, we devote to the other cases. Since we have already handled the case m ≡ 0

(mod 3), we only need to consider the cases m ≡ i (mod 6), i = 1, 2, 4, 5. By Lemma 4.7

and the symmetry of Cm�Cn, we don’t have to consider the case n ≡ 0 (mod 3) for any

m.

Now, we start to deal with C6r+1�Cn, r ≥ 1. First, we turn our attention to C7�Cn.

Lemma 4.8. Z(C7�Cn) = b7n/3c.

Proof. By Lemma 4.2, Z(C7�Cn) ≤ b7n/3c. Let k = bn/3c.
For n ≡ 1 (mod 3), S1

1 =
⋃k−1
i=1 {u2,3i−2, u6,3i−2, u3,3i−1, u5,3i−1, u7,3i−1, u1,3i, u4,3i} ∪

{u3,n−3, u7,n−3, u2,n−2, u5,n−2, u1,n−1, u3,n−1, u6,n−1, u4,n, u7,n} is a nsis.

For n ≡ 2 (mod 3), S2
1 =

⋃k
i=1{u1,3i−2, u5,3i−2, u2,3i−1, u4,3i−1, u7,3i−1, u3,3i, u6,3i} ∪

{u1,n−1, u4,n−1, u3,n, u6,n} is a nsis.

Furthermore, both of S1
1 and S2

1 have size b7n/3c. Thus, the proof is finished.

In Figure 4.6, we depicts a nsis of C7�C7 and C7�C8, respectively.

Figure 4.6: Z-sets of C7�C7 and C7�C8.

Next, we construct a Z-set of C6r+1�Cn for r ≥ 2.

Lemma 4.9. If m = 6r + 1, then Z(Cm�Cn) = 2rn+ bn/3c.

Proof. If r = 1, then the result follows from Lemma 4.8. For r > 1, we construct a Z-set

by employing the idea as follows. We first choose the Z-set of C7�Cn as described in

Lemma 4.8, and then add additional 6 new rows to C7�Cn and select 2n vertices from

these 6 new rows to add to the chosen Z-set as a new Z-set of C7+6�Cn. Repeat this

operation until we get a Z-set with size 2rn + bn/3c in Cm�Cn. The detailed operation

is depicted as follows.
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We further consider two cases.

(a) n ≡ 1 (mod 3). Let n = 3t+ 1. We start with the Z-set S1
1 of C7�Cn as described

in Lemma 4.8. We say that a row is type-5 if its deleted vertices are in the same columns

as those of the fifth row of C7�Cn in Lemma 4.8. Type-6 and type-7 rows are defined

analogously. Focusing on the three consecutive rows: type-5, 6, 7 in C7�Cn, we now

illustrate how to insert six new rows and obtain a Z-set of C7+6�Cn. Following the row

of type-5 in C7�Cn, we insert three new rows, the first two being of type-6 and type-

7, respectively. For the third, we select the vertices in columns 3i (i = 1, 2, . . . , t − 1)

and n − 2 to add to S1
1 . Now, following the original type-6 row, we insert another three

new rows. For the first of these three new rows, we select the vertices in columns 3i

(i = 1, 2, . . . , t − 1), n − 2 and n. For the second row, we select the vertices in columns

3i− 1 (i = 1, 2, . . . , t− 1) and n− 3 to add to S1
1 . We select the type-6 row as the third

row. Thus, we have a nsis S2 of C7+6�Cn. Obviously, |S2| = 4n + bn/3c. Hence, S2 is

a Z-set of C7+6�Cn. Note that the new graph C7+6�Cn contains three consecutive rows

that are of type-5, 6, 7 (Figure 4.7 shows the insertion process for n = 13).

Figure 4.7: n = 13.

So, the insertion process may be repeated until we get a Z-set of Cm�Cn whose size

is 2rn+ bn/3c.
(b) n ≡ 2 (mod 3). Let n = 3t+ 2. As before, we begin with the Z-set S2

1 of C7�Cn.

A row is type-4 if its deleted vertices are in the same columns as those of the fourth row

of C7�Cn. Similarly, a row is type-5 (resp. type-6) if its deleted vertices are in the same

columns as those of the fifth (resp. sixth) row of C7�Cn.

Figure 4.8: n = 14.
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Focusing on the three consecutive rows: type-4, 5, 6 in C7�Cn, we are ready to insert

six new rows and obtain a Z-set of C7+6�Cn. Following the row of type-4 in C7�Cn,

we insert three new rows, being of type-5, type-4, and type-6 in that order. Following

the original type-5 row, we insert another three new rows, being of type-6, type-4, and

type-5 in that order. After the insertion, we obtain a nsis S2 of C7+6�Cn. Of course,

|S2| = 4n+ bn/3c (see Figure 4.8 for an example of the case n = 14). That is to say, S2 is

a Z-set of C7+6�Cn. Note that the new graph, C7+6�Cn contains three consecutive rows

that are of type-4, 5, 6 in that order. Hence we can repeat insertion procedure. Finally,

we get a Z-set of Cm�Cn with size 2rn+ bn/3c.

A similar argument can be used to count Z(C6r+5�Cn), r ≥ 1. Also, we first treat

Z(C5�Cn).

Lemma 4.10. Z(C5�Cn) = b5n/3c.

Proof. Making use of Lemma 4.2, one may have that Z(C5�Cn) ≤ b5n/3c. Let k = bn/3c
and

M =
k⋃
i=1

{u1,3i−2, u3,3i−2, u2,3i−1, u4,3i−1, u5,3i}.

Then S1
1 = M ∪{u4,n} is a nsis for n ≡ 1 (mod 3) and S2

1 = M ∪{u1,n−1, u3,n−1, v4,n}
is a nsis for n ≡ 2 (mod 3). Notice that both of the nsiss above have size b5n/3c. The

proof is finished.

Lemma 4.11. If m = 6r + 5, then Z(Cm�Cn) = 2rn+ b5n/3c.

Proof. The proof is similar to that of Lemma 4.9. We start with C5�Cn and repeatedly

insert 6 new rows each time. There are two cases to be handled.

(a) n ≡ 1 (mod 3). Let n = 3t + 1. We start from the Z-set S1
1 of C5�Cn. A

row is type-3 if its deleted vertices are in the same columns as those of the third row of

C5�Cn. Type-4 and type-5 rows are defined in a similar way. We now insert three new

rows following the type-3 row in C5�Cn, being of type-4, type-5 and type-3 in that order.

Following the original type-4 row, we insert another three new rows. For the first of these

rows, we select the vertices in columns 3i+ 1 (i = 1, 2, 3, . . . , t− 1) and 3t. For the second

row, we select the vertices in columns 1 and 3i (i = 1, 2, 3, . . . , t−1). For the third row, use

the type-4 row. Thus, we get a nsis S2 with size 2n+b5n/3c in C5+6�Cn. In other words,

S2 is a Z-set of C5+6�Cn. Note that the new graph C5+6�Cn contains three consecutive

rows that are of type-3, 4, 5 (Figure 4.9 depicts the insertion process for the case n = 10).

Therefore we repeated the insertion process until we obtain a Z-set of Cm�Cn whose size

is 2rn+ b5n/3c.
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Figure 4.9: n = 10.

(b) n ≡ 2 (mod 3). Let n = 3t+ 2. As before, we begin with the Z-set S2
1 of C5�Cn.

A row is type-2 if its deleted vertices are in the same columns as those of the second row

of C5�Cn. Type-3 and type-4 rows are defined analogously. We now start to insert new

rows. Following the type-2 row, we insert three new rows, the first two being type-3 and

type-4, respectively. For the third, we select the vertices in columns 3i (i = 1, 2, 3, . . . , t)

to add to S2
1 . Then, after the original type-3 row, we insert another three new rows. For

the first, we select the vertices in columns 3i (i = 1, 2, 3, . . . , t) and n. The second and

third are type-2 and type-3, respectively. We now have a Z-set of C5+6�Cn (The insertion

operation for n = 11 is illustrated in Figure 4.10).

Figure 4.10: n = 11.

Here, the new graph C5+6�Cn contains three consecutive rows that are of type-2, 3,

4. Therefore we can repeatedly perform the insertion procedure to obtain a Z-set of size

2rn+ b5n/3c in Cm�Cn.

For the remaining cases, both m and n are even. In such cases, we employ the Double

Expanding Lemma (i.e., Lemma 4.6).

Lemma 4.12. If m ≡ 2 or 4 (mod 6), and n ≡ 2 or 4 (mod 6), then Z(Cm�Cn) =

bmn/3c.

Proof. Let k be the minimum nonnegative integer such that m/2k or n/2k is odd, or equals

8 and let mi = m/2k−i, ni = n/2k−i for each i = 0, 1, . . . , k. Then we can find a nsis S0 of
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cardinality bm0n0/3c in Cm0�Cn0 . Now, for each i = 0, 1, . . . , k− 1, applying Lemma 4.6

to Cmi�Cni to construct a nsis Si+1 of size Z(Cm0�Cn0) + mn
22k

∑i
j=0 4j in Cmi+1�Cni+1 .

Consequently, we can construct a nsis of Cm�Cn with size bmn/3c.

Putting results above together, we are now in a position to state our main result in

this section.

Theorem 4.13.

Z(Cm�Cn) =


n+ b(n+ 2)/4c if m = 4,

m+ b(m+ 2)/4c if n = 4,

bmn/3c otherwise.
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