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Abstract. In this paper, we study the Lp solutions of the Fredholm integral equations

with Chandrasekhar kernels. The Hilbert type inequality is resorted to establish an

existence and uniqueness result for the Fredholm integral equation associated with

Chandrasekhar kernel. A couple of examples well support the condition and extend

the classical results in the literature with one generalizing the classical Chandrasekhar

kernel. In order to approximate the original solution, a truncated operator is intro-

duced to overcome the non-compactness of the integral operator. An error estimate

of the convergence is made in terms of the truncated parameter, the upper bounds of

the symbolic function constituting the integral kernel and initial data to the equation.

1. Introduction

I. Fredholm (1900) proposed a new theory for integral equations containing a parameter

of the form

x(t) + λ

∫ b

a
k(t, s)x(s) ds = y(t).

Fredholm’s theory generalizes the solvability of a linear system x + λAx = b in finite-

dimensional vector space to the infinite-dimensional one, which sets up the framework

of linear functional analysis with the most valuable sources. At the beginning of last

century, a number of celebrated mathematicians such as E. Picard (1906), E. Schmidt

(1907), H. Poincaré (1909), H. Weyl (1909), M. Fréchet (1912) and D. Hilbert (1912),

substantially developed Fredholm’s theory and extensively connected to other disciplines

of sciences. Evidently, the theory of equations with symmetric kernel was considerably

enriched, and systematic method of the orthogonal series were profoundly developed.

Following the remarkable mathematical notion of Banach space, F. Riesz (1952) proceeds

to the extension of Fredholm’s theory to linear operators in abstract normed spaces.
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The Chandrasekhar’s integral equation

x(t) = 1 + x(t)

∫ 1

0

t

t+ s
ω(s)x(s) ds

initiated the study of radiative transfer theory in a plane-parallel atmosphere. Chan-

drasekhar’s remarkable work [10] in 1950s formulated the radiative transferring process

and derived the integral equation for the scattering function and transmitted functions,

which was promptly developed as a major scientific subject across astrophysics and math-

ematics. Besides the radiative transfer theory, the so-called quadratic integral equations

are extensively applicable to many research areas: the kinetic theory of gases, neutron

transport, traffic model and the queuing theory [2]. Readers may consult more recent ref-

erences [9,18,19,26,28] for excellent exposition on this topic. It is instructive to notice that

Chandrasekar’s H-function is closely related to the angular pattern or single scattering,

which formulates the solution to the Chandrasekar’s integral equation as the characteristic

function ω is an even polynomial in s. The restriction that
∫ 1
0 ω(s) ds ≤ 1/2 is treated as

a necessary condition in astrophysical applications. The theory of nonlinear quadratic in-

tegral equations was substantially developed by exploiting the techniques on the measure

of noncompactness, see e.g., [3–5,9, 10,15–17] as well as fixed point theorem [24].

Fredholm’s solution is in the form of a ratio of two infinite series, each term containing

the multiple integrals of determinants of higher order than the previous one. Tricomi [27]

pointed out that the solution were so complicated for numerical calculations due to the

multiple integrals in various terms. Even computing power is greatly enhanced nowadays,

Prem et al. [21] described no computational method managing to evaluate Fredholm’s

solution numerically. The effort in finding the approximation solutions to Chandrasekhar’s

integral equation was made by several efficient methods, see e.g., [6, 20] for an updated

discussion on this topic. The common approach is to use iterative method such as the

classical Newton’s method [13, 23]. However, an iteration turns to be expensive since it

requires to compute and store the Jacobian matrix, as well as solving Newton’s system

which is a linear system in each iteration (see e.g., [8, 13, 22]). Moreover, the existence of

solutions to Chandrasekhar’s integral equation is still concerned, especially in some cases

where the solutions are not unique [7].

In virtue of the essential difficulties in the existence theory and numerical accessibility

of the nonlinear integral equations of Chandrasekhar type, we consider the Fredholm

integral equation defined on (0,∞)

(1.1) ϕ(y) = ψ(y) + λ

∫ ∞
0

k(x, y)ϕ(x) dx

with ϕ an unknown function, whereas ψ is an initial data in some certain function spaces.

By special forms of the integral kernel, i.e., k(x, y) = µ(x, y)/(x+ y), the above equation
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covers the linearized Chandrasekhar’s integral equation. In recent research on the Fred-

holm integral equation [11], the authors discuss the continuous and L2 solutions. The

aim of this paper is to continue our study on the Lp solutions to the Fredholm integral

equation. In Section 2, we review classical results on Hilbert type inequalities and estab-

lish an existence and uniqueness result of the Lp solutions to the Fredholm equation with

the integral kernels fulfilling some certain limit conditions. A couple of examples listed in

Section 3 support the assumed conditions in Section 2 quite well and extend the integral

kernels to various classes. In Section 4, we introduce a bilateral truncated operator to

approximate the original operator and find the solution to the approximating equation.

An error bound estimate is carried out as long as the symbolic function and initial data

are polynomial decay at infinity. As a conclusion in Section 5, we make final remarks for

this paper.

2. Lp solutions (1 < p <∞)

2.1. Hilbert inequalities

In this section, we recall some basic facts on Hilbert inequalities. The work originates

from D. Hilbert, G. Hardy and followed by many other mathematicians during the last

110 years. We commend interested readers consult [12, 31] and the references therein for

an excellent exposition of this direction.

Given nonnegative real sequences {an} and {bn} such that
∑∞

n=1 a
2
n <∞ and

∑∞
n=1 b

2
n

<∞, D. Hilbert (cf. [29]) established a well-known inequality

(2.1)
∞∑
n=1

∞∑
m=1

ambn
m+ n

< π

( ∞∑
n=1

a2n

∞∑
n=1

b2n

)1/2

,

where the bound π is the best constant, and it was called Hilbert inequality. I. Schur [25]

proved the optimality of Hilbert inequality and obtained a functional analog. Specifically,

given f(x) and g(x) nonnegative square integrable functions on half line (0,∞), it follows

that

(2.2)

∫ ∞
0

∫ ∞
0

f(x)g(y)

x+ y
dxdy < π

(∫ ∞
0

f2(x) dx

∫ ∞
0

g2(x) dx

)1/2

,

where the bound π remains the best, and it was called Hilbert integral inequality.

For any a = {am}∞m=1 ∈ l2 with the norm ‖a‖2 =
(∑∞

n=1 a
2
n

)1/2
, the Hilbert operator

L : l2 → l2 is defined by c = {cn}∞n=1 ∈ l2 with

cn = (La)(n) =

∞∑
m=1

am
m+ n

, n ∈ N.
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For b = {bn}∞n=1 ∈ l2, the inner product is given by

(La, b) =

∞∑
n=1

( ∞∑
m=1

am
m+ n

)
bn.

Equation (2.1) rewritten as

|(La, b)| < π‖a‖2‖b‖2

with ‖a‖2 > 0 and ‖b‖2 > 0, asserts that L is bounded on l2 and its operator norm is

‖L‖2 = π. Equivalently, ‖La‖2 < π‖a‖2, namely
∞∑
n=1

( ∞∑
m=1

am
m+ n

)2


1/2

< π

( ∞∑
n=1

a2n

)1/2

.

Similarly, for f ∈ L2(0,∞) with norm ‖f‖2 =
( ∫∞

0 |f
2(x)|2 dx

)
1
2 in real Hilbert space

L2(0,∞), one defines Hilbert integral operator T on L2(0,∞) into itself by

(Tf)(y) =

∫ ∞
0

f(x)

x+ y
dx, y ∈ (0,∞).

For g ∈ L2(0,∞), one also defines inner product

(Tf, g) =

∫ ∞
0

(∫ ∞
0

f(x)

x+ y
dx

)
g(y) dy =

∫ ∞
0

∫ ∞
0

f(x)g(y)

x+ y
dxdy.

Given ‖f‖2 > 0 and ‖g‖2 > 0, (2.2) would read as

|(Tf, g)| < π‖f‖2‖g‖2,

or ‖Tf‖2 < π‖f‖2, namely{∫ ∞
0

(∫ ∞
0

f(x)

x+ y
dx

)2

dy

}1/2

< π

(∫ ∞
0
|f(x)|2 dx

)1/2

,

and the operator norm ‖T‖2 = π is the best bound for the above Hilbert integral inequality.

Remark 2.1. The norms of Hilbert-type integral operators could be exactly estimated,

casting a light on the sharp bound of the parameter λ in the linear Fredholm integral

equation to ensure the existence of the solutions. Moreover, one may extend the basic

models to a relatively wide class of integral kernels.

2.2. An existence result

We consider the Lp solutions (1 < p <∞) of the linear Fredholm integral equation of the

second kind (1.1), where ψ ∈ Lp(0,∞). In order to achieve this goal, we resort to the

following Lemma 2.2 which was established in [30].
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For 1 < p <∞, 1/p+ 1/p′ = 1, the integral kernel k(x, y) = k(y, x) is symmetric and

nonnegative almost every on (0,∞)× (0,∞). Given f ∈ Lp(0,∞) and g ∈ Lp′(0,∞), one

defines

Kf(y) :=

∫ ∞
0

k(x, y)f(x) dx, y ∈ (0,∞)

and

Kg(x) :=

∫ ∞
0

k(x, y)g(y) dy, x ∈ (0,∞).

For any ε > 0 and x > 0, we define

kε(r, x) :=

∫ ∞
0

k(x, y)

(
x

y

)(1+ε)/r

dy, r = p or p′

and

k0(r, x) :=

∫ ∞
0

k(x, y)

(
x

y

)1/r

dy, r = p or p′.

Lemma 2.2. The following statements hold.

(1) If k0(p) = k0(r, x) (r = p or p′) is independent of x > 0, then K : Lp(0,∞) →
Lp(0,∞) is a continuous linear operator and ‖K‖Lp→Lp ≤ k0(p).

(2) If kε(p) = kε(r, x) (r = p or p′) is independent of x > 0 and kε(p) = k0(p) + o(1)

(ε→ 0+), then ‖K‖Lp→Lp = k0(p).

(3) Moreover, if the conditions in (2) are fulfilled, for any f ∈ Lp(0,∞) and ‖f‖Lp > 0,

then the strict inequality ‖Kf‖Lp < ‖K‖Lp→Lp‖f‖Lp holds.

We put the linear Fredholm integral equation (1.1) in the previous notations as

ϕ = ψ + λKϕ

and define an operator T from Lp(0,∞) into itself by

Tϕ = ψ + λKϕ.

Noticing that

‖Tϕ1 − Tϕ2‖Lp = |λ|‖K(ϕ1 − ϕ2)‖Lp ≤ |λ|k0(p)‖ϕ1 − ϕ2‖Lp ,

one claims that T is a contraction operator if |λ|k0(p) < 1 and thus by means of contraction

mapping principle, one reaches the following

Theorem 2.3. For the linear Fredholm integral equation (1.1) if the kernel k(x, y) is

symmetric and nonnegative almost every on (0,∞) × (0,∞) and fulfils the condition in

Lemma 2.2, i.e., kε(p) = kε(r, x) (r = p or p′) is independent of x > 0 and kε(p) =

k0(p) + o(1) (ε → 0+), then the linear Fredholm integral equation (1.1) exists the unique

solution in ϕ ∈ Lp(0,∞) as long as |λ| < 1/k0(p).
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Remark 2.4. If f ∈ Lp(0,∞), g ∈ Lp′(0,∞), as an equivalent statement of Lemma 2.2,

one has∣∣∣∣∫ ∞
0

∫ ∞
0

k(x, y)f(x)g(y) dxdy

∣∣∣∣ ≤ k0(p){∫ ∞
0
|f(x)|p dx

}1/p{∫ ∞
0
|g(y)|p′ dy

}1/p′

.

One may consider K : Lp
′
(0,∞)→ Lp

′
(0,∞) by the same way to yield

‖K‖Lp→Lp = ‖K‖Lp′→Lp′ = k0(p).

In Lemma 2.2, the condition k0(p) = k0(p
′) ensures that the linear operator K is

bounded from Lr(0,∞) into itself (r = p or p′). In next section, we would make several

examples to support such condition.

3. Sharp bounds

For the linear Fredholm integral equation of the second kind (1.1), taking k(x, y) =

µ(x, y)/ν(x, y), we call µ(x, y) characteristic function, ν(x, y) symbolic function and (1.1)

Chandrasekhar integral equation or Fredholm integral equation with Chandrasekhar kernel.

The prototype of Chandrasekhar’s equation corresponds to µ(x, y) = 1 and ν(x, y) = x+y.

In this section, we illustrate several examples to support the conditions in Lemma 2.2.

For more applications, one needs to handle two kinds of Eulerian integrals, beta function

(Eulerian integral of first kind) and gamma function (Eulerian integral of second kind).

For p > 0, q > 0 and s > 0, one defines the beta function

B(p, q) =

∫ 1

0
xp−1(1− x)q−1 dx

and the gamma function

Γ(s) =

∫ +∞

0
xs−1e−x dx.

The two kinds of Eulerian integrals are related by

(3.1) B(p, q) =
Γ(p)Γ(q)

Γ(p+ q)
, p > 0, q > 0

and satisfy some useful equalities

B(p, q) =

∫ +∞

0

tp−1

(1 + t)p+q
dt =

∫ 1

0

tp−1 + tq−1

(1 + t)p+q
dt = B(q, p), p > 0, q > 0,(3.2)

Γ(a+ 1)

(b+ 1)a+1
=

∫ 1

0
(− lnu)aub du, a > −1, b > −1,

Γ(s)Γ(1− s) =
π

sin(sπ)
, 0 < s < 1.(3.3)

The proofs and more properties of Eulerian integrals could be found in classical analysis

[32].
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Example 3.1. Consider k(x, y) = 1
(xα+yα)1/α

with α > 0.

Putting u = y/x, v = uα and making use of (3.2), one observes that

kε(p, x) =

∫ ∞
0

1

(xα + yα)1/α

(
x

y

)(1+ε)/p

dy =

∫ ∞
0

1

[1 + ( yx)α]1/αx

(
x

y

)(1+ε)/p

dy

=

∫ ∞
0

1

(1 + uα)1/α
u−(1+ε)/p du ε→ 0+−−−−→

∫ ∞
0

1

(1 + uα)1/α
u−1/p du

=
1

α

∫ ∞
0

v1/(p
′α)−1

(1 + v)1/α
dv =

1

α
B

(
1

pα
,

1

p′α

)
= k0(p) = k0(p

′).

In virtue of Lemma 2.2 and Theorem 2.3, one has{∫ ∞
0

∣∣∣∣∫ ∞
0

f(x)

(xα + yα)1/α
dx

∣∣∣∣p dy}1/p

≤ 1

α
B

(
1

pα
,

1

p′α

){∫ ∞
0
|f(x)|p dx

}1/p

,

and the linear Chandrasekhar integral equation

ϕ(y) = ψ(y) + λ

∫ ∞
0

ϕ(x)

(xα + yα)1/α
dx

has a unique solution in ϕ ∈ Lp(0,∞) as long as |λ| <
{

1
αB
(

1
pα ,

1
p′α

)}−1
.

Taking α = 1, by means of (3.1) and (3.3), one has

k0(p) = B

(
1

p
,

1

p′

)
= Γ

(
1

p

)
Γ

(
1

p′

)
=

π

sin(π/p)
.

Consequently, one recovers the well-known Hardy-Hilbert inequality{∫ ∞
0

∣∣∣∣∫ ∞
0

f(x)

x+ y
dx

∣∣∣∣p dy}1/p

≤ π

sin(π/p)

{∫ ∞
0
|f(x)|p dx

}1/p

,

and the linear Chandrasekhar integral equation

ϕ(y) = ψ(y) + λ

∫ ∞
0

ϕ(x)

x+ y
dx

has a unique solution in ϕ ∈ Lp(0,∞) as long as |λ| <
{

π
sin(π/p)

}−1
.

In particular when p = p′ = 2, it leads to{∫ ∞
0

∣∣∣∣∫ ∞
0

f(x)

(xα + yα)1/α
dx

∣∣∣∣2 dy
}1/2

≤ 1

α
B

(
1

2α
,

1

2α

){∫ ∞
0
|f(x)|2 dx

}1/2

,

and the linear Chandrasekhar integral equation

ϕ(y) = ψ(y) + λ

∫ ∞
0

ϕ(x)

(xα + yα)1/α
dx
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has a unique solution in ϕ ∈ L2(0,∞) as long as |λ| <
{

1
αB
(

1
2α ,

1
2α

)}−1
. Moreover, taking

α = 1, one yields{∫ ∞
0

∣∣∣∣∫ ∞
0

f(x)

x+ y
dx

∣∣∣∣2 dy
}1/2

≤ π
{∫ ∞

0
|f(x)|2 dx

}1/2

,

and the linear Chandrasekhar integral equation

ϕ(y) = ψ(y) + λ

∫ ∞
0

ϕ(x)

x+ y
dx

has a unique solution in ϕ ∈ L2(0,∞) as long as |λ| < 1/π.

Example 3.2. Consider k(x, y) = 1
|x−y|α(max{x,y})1−α with α < 1.

Putting u = y/x and u = x/y, one observes that

kε(p, x) =

∫ ∞
0

1

|x− y|α(max{x, y})1−α

(
x

y

)(1+ε)/p

dy

=

∫ x

0

1

(x− y)αx1−α

(
x

y

)(1+ε)/p

dy +

∫ ∞
x

1

(y − x)αy1−α

(
x

y

)(1+ε)/p

dy

=

∫ 1

0

1

(1− u)α
u−(1+ε)/p du+

∫ 1

0

1

(1− u)α
u(1+ε)/p−1 du

ε→ 0+−−−−→

∫ 1

0

1

(1− u)α
(u−1/p + u−1/p

′
) du

= B

(
1

p
, 1− α

)
+B

(
1

p′
, 1− α

)
= k0(p) = k0(p

′).

In virtue of Lemma 2.2 and Theorem 2.3, one has{∫ ∞
0

∣∣∣∣∫ ∞
0

f(x)

|x− y|α(max{x, y})1−α
dx

∣∣∣∣p dy}1/p

≤
[
B

(
1

p
, 1− α

)
+B

(
1

p′
, 1− α

)]{∫ ∞
0
|f(x)|p dx

}1/p

,

and the linear Chandrasekhar integral equation

ϕ(y) = ψ(y) + λ

∫ ∞
0

ϕ(x)

|x− y|α(max{x, y})1−α
dx

has a unique solution in ϕ ∈ Lp(0,∞) as long as

|λ| <
{[
B

(
1

p
, 1− α

)
+B

(
1

p′
, 1− α

)]}−1
.

Taking α = 0, one has

k0(p) = B

(
1

p
, 1

)
+B

(
1

p′
, 1

)
= pp′,
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and hence, {∫ ∞
0

∣∣∣∣∫ ∞
0

f(x)

max{x, y}
dx

∣∣∣∣p dy}1/p

≤ pp′
{∫ ∞

0
|f(x)|p dx

}1/p

,

and the linear Chandrasekhar integral equation

ϕ(y) = ψ(y) + λ

∫ ∞
0

ϕ(x)

max{x, y}
dx

has a unique solution in ϕ ∈ Lp(0,∞) as long as |λ| < 1/(pp′).

In particular when p = p′ = 2 and α = 0, we have{∫ ∞
0

∣∣∣∣∫ ∞
0

f(x)

max{x, y}
dx

∣∣∣∣2 dy
}1/2

≤ 4

{∫ ∞
0
|f(x)|2 dx

}1/2

,

and the linear Chandrasekhar integral equation

ϕ(y) = ψ(y) + λ

∫ ∞
0

ϕ(x)

max{x, y}
dx

has a unique solution in ϕ ∈ L2(0,∞) as long as |λ| < 1/4.

Example 3.3. Consider k(x, y) = 1
(x+y)1−α(max{x,y})α with 0 < α < 1.

Putting u = y/x and u = x/y, one observes that

kε(p, x) =

∫ ∞
0

1

(x+ y)1−α(max{x, y})α

(
x

y

)(1+ε)/p

dy

=

∫ x

0

1

(x+ y)1−αxα

(
x

y

)(1+ε)/p

dy +

∫ ∞
x

1

(x+ y)1−αyα

(
x

y

)(1+ε)/p

dy

=

∫ 1

0

1

(1 + u)1−α
u−(1+ε)/p du+

∫ 1

0

1

(1 + u)1−α
u(1+ε)/p−1 du

ε→ 0+−−−−→

∫ 1

0
(1 + u)α−1(u−1/p + u−1/p

′
) du

=

∫ 1

0

∞∑
k=0

Ckα−1(u
k−1/p + uk−1/p

′
) du =

∞∑
k=0

Ckα−1

∫ 1

0
(uk−1/p + uk−1/p

′
) du

=
∞∑
k=0

Ckα−1
(2k + 1)pp′

(pk + 1)(p′k + 1)
= k0(p) = k0(p

′).

In virtue of Lemma 2.2 and Theorem 2.3, one has{∫ ∞
0

∣∣∣∣∫ ∞
0

f(x)

(x+ y)1−α(max{x, y})α
dx

∣∣∣∣p dy}1/p

≤
∞∑
k=0

Ckα−1
(2k + 1)pp′

(pk + 1)(p′k + 1)

{∫ ∞
0
|f(x)|p dx

}1/p

,
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and the linear Chandrasekhar integral equation

ϕ(y) = ψ(y) + λ

∫ ∞
0

ϕ(x)

(x+ y)1−α(max{x, y})α
dx

has a unique solution in ϕ ∈ Lp(0,∞) as long as

|λ| <

{ ∞∑
k=0

Ckα−1
(2k + 1)pp′

(pk + 1)(p′k + 1)

}−1
.

Example 3.4. Consider k(x, y) = 1
(x1−α+y1−α)(min{x,y})α with α < min{1/p, 1/p′}.

Putting u = y/x and u = x/y, one observes that

kε(p, x) =

∫ ∞
0

1

(x1−α + y1−α)(min{x, y})α

(
x

y

)(1+ε)/p

dy

=

∫ x

0

1

(x1−α + y1−α)yα

(
x

y

)(1+ε)/p

dy +

∫ ∞
x

1

(x1−α + y1−α)xα

(
x

y

)(1+ε)/p

dy

=

∫ 1

0

1

1 + u1−α
u−α−(1+ε)/p du+

∫ 1

0

1

1 + u1−α
u−α+(1+ε)/p−1 du

ε→ 0+−−−−→

∫ 1

0

1

1 + u1−α
(u−α−1/p + u−α−1/p

′
) du

=

∫ 1

0

∞∑
k=0

(−1)k(u(1−α)k−α−1/p + u(1−α)k−α−1/p
′
) du

=

∞∑
k=0

(−1)k
∫ 1

0
(u(1−α)k−α−1/p + u(1−α)k−α−1/p

′
) du

=

∞∑
k=0

(−1)k
[(2k + 1)− 2(k + 1)α]pp′

[(1− α)k + 1/p− α][(1− α)k + 1/p′ − α]

= k0(p) = k0(p
′).

In virtue of Lemma 2.2 and Theorem 2.3, one has{∫ ∞
0

∣∣∣∣∫ ∞
0

f(x)

(x1−α + y1−α)(min{x, y})α
dx

∣∣∣∣p dy}1/p

≤
∞∑
k=0

(−1)k
[(2k + 1)− 2(k + 1)α]pp′

[(1− α)k + 1/p− α][(1− α)k + 1/p′ − α]

{∫ ∞
0
|f(x)|p dx

}1/p

,

and the linear Chandrasekhar integral equation

ϕ(y) = ψ(y) + λ

∫ ∞
0

ϕ(x)

(x1−α + y1−α)(min{x, y})α
dx

has a unique solution in ϕ ∈ Lp(0,∞) as long as

|λ| <

{ ∞∑
k=0

(−1)k
[(2k + 1)− 2(k + 1)α]pp′

[(1− α)k + 1/p− α][(1− α)k + 1/p′ − α]

}−1
.
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Remark 3.5. Example 3.1 generalizes the classical Chandrasekhar kernel, replacing (x +

y)−1 by [(xα + yα)1/α]−1. The norm of the integral operator

Kf(y) =

∫ ∞
0

f(x)

(xα + yα)1/α
dx

defined on Lp(0,∞) equals to

‖K‖Lp→Lp =
1

α
B

(
1

pα
,

1

p′α

)
.

4. Approximating solutions

In this section, we consider the approximating solution to (1.1), where we shall not stress

that the integral kernel k(x, y) is symmetric or the parameter λ is sufficiently small to

ensure the existence of the resolvent (I −λK)−1. The main difficulty arises from the non-

compactness of the operator K. An efficient way is to construct a compact approximation

operator as in [14], where the converging properties of the related operator are concerned.

We follow this approach and pay particular attention to the case where the characteristic

and symbolic function are polynomials since it serves as an original model to the linearized

Chandrasekhar equation.

4.1. Truncation operator

In L2[0,∞), we consider the approximating solutions to the following integral equation

(4.1) ϕ(x) = ψ(x) +

∫ ∞
0

k(x, y)ϕ(y) dy

shortly rewritten by

(4.2) ϕ = ψ +Kϕ,

where

Kϕ(x) :=

∫ ∞
0

k(x, y)ϕ(y) dy

with k(x, y) being a measurable real-valued function on [0,∞)× [0,∞). Apparently, if the

kernel k(x, y) is symmetric, (4.1) is in the exact form of (1.1).

One introduces a bilateral truncation operator

KT = M[0,T ]KM[0,T ],

where MD is defined by

MDϕ(x) = χD(x)ϕ(x)
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for any ϕ ∈ L2[0,∞) and χD is the characteristic function for a subset D. The integral

equation associated to the truncation operator KT follows that

(4.3) ϕ = ψ +KTϕ.

If (I − K)−1 and (I − KT )−1 exist for any T > 0, the solutions to (4.2) and (4.3) are

respectively denoted by

ϕ = (I −K)−1ψ, ϕT = (I −KT )−1ψ.

For k(x, y) = k1(x, y)k2(x, y), setting

A :=

{
sup
x≥0

∫ ∞
0

k21(x, y) dy

}1/2

, B :=

{
sup
y≥0

∫ ∞
0

k22(x, y) dx

}1/2

, C := sup
x≥0,y≥0

|k2(x, y)|,

one notices that [14] establishes the following

Proposition 4.1. Suppose that A < ∞, B < ∞ and C < ∞, the integral operator K in

(4.2) and KT in (4.3) hold.

(1) K is bounded on L2[0,∞).

(2) For any T > 0, KT is a compact operator on L2[0,∞).

(3) If (I − KT )−1 exists and is uniformly bounded in T , then (I − K)−1 exists and

ϕT → ϕ as T →∞.

4.2. Error estimates

One needs a general result from [1] to estimate the bound of the resolvent of the original

operator and the truncated operator in terms of the integral kernel.

Lemma 4.2. Let K and L be linear bounded operators on L2[0,∞), (I −K)−1 exist and

Λ := ‖(I −K)−1(L−K)L‖ < 1, then (I − L)−1 exists, bounded on L2[0,∞) with norm

‖(I − L)−1‖ ≤ 1 + ‖(I −K)−1‖‖L‖
1− Λ

and for any f ∈ L2[0,∞), it follows that

‖(I − L)−1f − (I −K)−1f‖ ≤ ‖(I −K)−1‖‖Lf −Kf‖+ Λ‖(I −K)−1f‖
1− Λ

.

Set

Ω(T ) :=

{∫ ∞
T

∫ T

0
k22(x, y) dydx

}1/2

,
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and for any f ∈ L2[0,∞)

Ωf (T ) :=

{∫ ∞
T

∫ T

0
k22(x, y)f2(y) dydx

}1/2

, ωf (T ) :=

{∫ ∞
T

f2(y) dy

}1/2

.

The integral representation of the twist operator (I − K)−1(L − K)L in Lemma 4.2

attributes the bound to behavior of the integral kernel. In particular, we are concerned

with the case that the symbolic function and initial data are functions of polynomial

growth at infinity, where our conditions improve the order of convergence in [14].

Theorem 4.3. For integral equation ϕ = ψ + Kϕ, suppose that (I − K)−1 exists in

L2[0,∞), A <∞, B <∞ and C <∞. If

(4.4) |k2(x, y)|2 ≤ 1

(1 + x)p(1 + y)q
, |ψ(y)|2 ≤ 1

(1 + y)r
, x ≥ 0, y ≥ 0

for some p > 1, q > 1 and r > 1, then for sufficiently large T > 0, it follows that

‖ϕ− ϕT ‖ ≤
A
√

(p− 1)(q − 1)(1 + T )(p−1)/2‖(I −K)−1‖√
(p− 1)(q − 1)(1 + T )(p−1)/2 −A2C‖(I −K)−1‖

×

[
1 +AC‖ϕ‖√

(p− 1)(q − 1)(1 + T )(p−1)/2
+

B√
r − 1(1 + T )(r−1)/2

]
.

Proof. A direct computation yields

(KT −K)ψ(x) = −χ[T,∞)(x)

∫ T

0
k(x, y)ψ(y) dy −

∫ ∞
T

k(x, y)ψ(y) dy,

thus

‖(KT −K)ψ‖

≤

{∫ ∞
T

∣∣∣∣∫ T

0
k(x, y)ψ(y) dy

∣∣∣∣2 dx
}1/2

+

{∫ ∞
0

∣∣∣∣∫ ∞
T

k(x, y)ψ(y) dy

∣∣∣∣2 dx
}1/2

=: I1 + I2.

Noticing that

I21 ≤ A2

∫ ∞
T

∫ T

0
|k2(x, y)|2|ψ(y)|2 dydx = A2Ω2

ψ(T )

and

I22 ≤
∫ ∞
0

(∫ ∞
T
|k1(x, y)||k2(x, y)||ψ(y)| dy

)2

dx

≤ A2

∫ ∞
0

∫ ∞
T
|k2(x, y)|2|ψ(y)|2 dydx

≤ A2B2

∫ ∞
T
|ψ(y)|2 dy = A2B2ω2

ψ(T ),
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one immediately has

‖(KT −K)ψ‖ ≤ A(Ωψ(T ) +Bωψ(T )).

On the other hand,

(KT −K)KTϕ = (M[0,T ]KM[0,T ] −K)χ[0,T ]

∫ T

0
k(x, y)ϕ(y) dy

= (M[0,T ] − I)

∫ T

0
k(z, x)

[∫ T

0
k(x, y)ϕ(y) dy

]
dx,

hence

‖(I −K)−1(KT −K)KTϕ‖

≤ ‖(I −K)−1‖‖(KT −K)KTϕ‖

≤ ‖(I −K)−1‖

{∫ ∞
T

[∫ T

0
|k(z, x)|

(∫ T

0
|k1(x, y)||k2(x, y)||ϕ(y)| dy

)
dx

]2
dz

}1/2

≤ ‖(I −K)−1‖

[∫ ∞
T

(∫ T

0
|k1(x, y)||k2(x, y)| dx

)2

(AC‖ϕ‖)2 dz

]1/2
≤ A2C‖ϕ‖‖(I −K)−1‖Ω(T ).

As long as Ω(T ) � 1 for sufficiently large T , by taking L = KT and making use of

Lemma 4.2, one reaches that

(4.5) ‖ϕ− ϕT ‖ ≤
A‖(I −K)−1‖

1−A2C‖(I −K)−1‖Ω(T )
[AC‖ϕ‖Ω(T ) + Ωψ(T ) +Bωψ(T )].

The polynomial decay in (4.4) implies that

Ω2(T ) ≤
∫ ∞
T

∫ T

0

dydx

(1 + x)p(1 + y)q
≤ 1

(p− 1)(q − 1)(1 + T )p−1
,

Ω2
ψ(T ) ≤

∫ ∞
T

∫ T

0

dydx

(1 + x)p(1 + y)q+r
≤ 1

(p− 1)(q + r − 1)(1 + T )p−1
,

ω2
ψ(T ) ≤

∫ ∞
T

dy

(1 + y)r
≤ 1

(r − 1)(1 + T )r−1
,

and a substitution the above bounds into (4.5) completes the proof.

5. Conclusion

The Fredholm integral equations generalize the linearized Chandrasekhar integral equa-

tion to associate with a much wider class of kernels, which attain their sharp bounds of

norms. The real symmetric integral kernel k(x, y) ensures that the associated operator K
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is symmetric and ‖K‖Lp→Lp = ‖K‖Lp′→Lp′ . A couple of examples well fulfill the condition

that k0(p) = k0(p
′) with one generalizing the classical Chandrasekhar kernel. In L2 sense,

the approximation solution is constructed by the associated truncation operator and the

error bound is shown to have polynomial decay as long as the symbolic function and initial

data are of polynomial decay at infinity.
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[5] J. Banaś and B. Rzepka, Monotonic solutions of a quadratic integral equation of

fractional order, J. Math. Anal. Appl. 332 (2007), no. 2, 1371–1379.

[6] P. B. Bosma and W. A. de Rooij, Efficient methods to calculate Chandrasekhar’s

H-functions, Astron. Astrophys. 126 (1983), 283–292.

[7] I. W. Busbridge, The Mathematics of Radiative Transfer, Cambridge University

Press, Cambridge, 1960.

[8] , On solutions of Chandrasekhar’s integral equation, Trans. Amer. Math. Soc.

105 (1962), 112–117.

[9] J. Caballero, A. B. Mingarelli and K. Sadarangani, Existence of solutions of an in-

tegral equation of Chandrasekhar type in the theory of radiative transfer, Electron. J.

Differential Equations 2006 (2006), no. 57, 11 pp.



424 Sheng-Ya Feng and Der-Chen Chang

[10] S. Chandrasekhar, Radiative Transfer, Oxford University Press, London, 1950.

[11] D.-C. Chang and S.-Y. Feng, On integral equations of Chandrasekhar type, J. Non-

linear Convex Anal. 19 (2018), no. 3, 525–541.

[12] Q. Chen and B. Yang, A survey on the study of Hilbert-type inequalities, J. Inequal

Appl. 2015, 2015:302, 29 pp.

[13] J. E. Dennis and R. B. Schnabel, Numerical Methods for Unconstrained Optimiza-

tion and Nonlinear Equations, Prentice Hall Series in Computational Mathematics,

Prentice Hall, Englewood Cliffs, NJ, 1983.

[14] J. Di and Z. Shi, Approximate solution of the integral equation on the half line, J.

Zhe Jiang Univ. Tech. 37 (2009), 326–331.

[15] A. M. A. El-Sayed and H. H. G. Hashem, Integrable solution for quadratic Ham-

merstein and quadratic Urysohn functional integral equations, Comment. Math. 48

(2008), no. 2, 199–207.

[16] , A coupled system of fractional order integral equations in reflexive Banach

spaces, Comment. Math. 52 (2012), no. 1, 21–28.

[17] A. M. A. El-Sayed, H. H. G. Hashem and E. A. A. Ziada, Picard and Adomian de-

composition methods for a coupled system of quadratic integral equations of fractional

order, J. Nonlinear Anal. Optim. 3 (2012), no. 2, 171–183.

[18] J. A. Ezquerro and M. A. Hernández, On the application of a fourth-order two-point

method to Chandrasekhar’s integral equation, Aequationes Math. 62 (2001), no. 1-2,

39–47.

[19] H. H. G. Hashem and A. M. A. El-Sayed, Stabilization of coupled systems of quadratic

integral equations of Chandrasekhar type, Math. Nachr. 290 (2017), no. 2-3, 341–348.

[20] J. Juang, K.-Y. Lin and W.-W. Lin, Spectral analysis of some iterations in the Chan-

drasekhar’s H-function, Numer. Funct. Anal. Optim. 24 (2003), no. 5-6, 575–586.

[21] P. K. Kythe and P. Puri, Computational Methods for Linear Integral Equations,
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