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Existence and Boundedness of Second-order Karush-Kuhn-Tucker

Multipliers for Set-valued Optimization with Variable Ordering Structures

Quoc Khanh Phan and Minh Tung Nguyen*

Abstract. In this paper we investigate second-order Karush-Kuhn-Tucker multipli-

ers for both local nondominated and local minimal points of set-valued optimization

with variable ordering structures. We prove calculus rules of second-order contingent

derivatives of index γ ∈ {0, 1} and use them to establish improved Karush-Kuhn-

Tucker multiplier rules of nonclassical forms which involve separately such deriva-

tives of the objective, constraint and ordering maps. The equivalence between the

nonemptiness and boundedness of the multiplier sets in these rules and second-order

constraint qualifications of the Kurcyusz-Robinson-Zowe and Mangasarian-Fromovitz

types is demonstrated.

1. Introduction

Let X, Y and Z be real Banach spaces. In this paper we address the following set-valued

vector optimization problem with variable ordering structure:

MinC(x)F (x) such that G(x) ∩ (−D) 6= ∅,

where F : X ⇒ Y , G : X ⇒ Z, C : X ⇒ Y are nonempty-valued and D is a closed convex

cone with nonempty interior in Z. Suppose that C(x) is a closed convex cone in Y for

each x ∈ X. Then, C defines a variable partial order on Y by

y1 ≤C(x) y2 ⇐⇒ y2 − y1 ∈ C(x).

A vector optimization problem with such a variable ordering is usually referred to as a

problem with variable ordering structure. This type of problem was introduced by Yu and

Berstreeser in [5, 38]. In this framework, a point being local nondominated means that it

is the best with respect to the order of any point in a neighborhood. This concept is more

general than the local Pareto point and is crucial in many applications to medical image

registration, decision making, location theory, game theory etc, see [5, 14, 15, 39] and the
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references therein. Besides the concept of nondominated point, another optimality notion

was considered by Chen and Yang [6]. Namely, a point is local minimal if it is the best in

a neighborhood with respect to only the order at this point. In the literature, there have

been only a few contributions to necessary optimality conditions for vector optimization

with variable ordering structures. Based on advanced tools of variational analysis and gen-

eralized differentiation, Bao and Mordukhovich [4] established some necessary conditions

for nondominated points of sets and nondominated solutions of constrained multiobjective

optimization problems with respect to general variable ordering structures. For uncon-

strained set-valued optimization, Durea et al. [12] employed the contingent derivative and

Mordukhovich generalized differentiation objects to obtain generalized Fermat multiplier

rules. Eichfelder and Ha in [16] considered generalized Fermat and Lagrange multiplier

rules for set-valued optimization problems with respect to the Bishop-Phelps variable or-

dering structure. All these papers dealt with only first-order conditions. To the best of our

knowledge, there are no publications devoted to second-order optimality conditions, while

second-order conditions are always of a great interest because they refine the first-order

ones by second-order information which is very helpful for recognizing solutions as well as

for designing numerical algorithms to compute them.

Besides optimality conditions, boundedness of Karush-Kuhn-Tucker (KKT) multiplier

sets is also important, e.g., for studies of stability and numerical algorithms (see [1,18] and

the references therein). As far as we know, there have been only first-order considerations

of this boundedness for the fixed ordering case so far. Namely, in [17] Gauvin considered

the nonemptiness and boundedness of first-order KKT multiplier sets for finite-dimensional

scalar problems with smooth data under the Mangasarian-Fromovitz constraint qualifica-

tion. For vector problems in finite dimensions, Dutta and Lalitha [13] got corresponding

results for nonsmooth problems and Li and Zhang [28] investigated this topic in terms of

upper convexificators of locally Lipschitz functions. For vector problems in infinite dimen-

sions, Durea et al. [10] showed that the Mangasarian-Fromovitz constraint qualification

ensures the boundedness of first-order KKT multipliers for single-valued optimization with

smooth data. They also studied corresponding results for a set-valued problem in terms

of Mordukhovich coderivatives. All the aforementioned contributions to the bounded-

ness topic are only for first-order multiplier sets and in cases with nonvariable ordering

structures.

Motivated by the preceding discussions, in this paper we consider the existence and

boundedness of second-order KKT multiplier sets for problems with variable ordering

structures. After Section 2 presenting preliminary facts, in Section 3 we establish calcu-

lus rules for second-order contingent derivatives of index γ ∈ {0, 1}. We obtain explicit

formulas for the sum and product of these derivatives by both imposing the known defi-
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nition of pseudo-Lipschitz property and proto-differentiability and proposing new notions

of directional metric subregularity of index γ, directional compactness and Shi contingent

derivative. Section 4 contains main results. First, we investigate second-order KKT nec-

essary conditions of nonclassical forms for both nondominated points and minimal points

of a set-valued problem with generalized inequality constraints. Thanks to the usage

of the calculus rules obtained in Section 3, in our KKT multiplier rules, the derivatives

of the objective, constraint and ordering maps are involved separately, and we can im-

pose constraint qualifications in terms of only the constraint map (these facts make the

rules sharper). Regarding the boundedness of multipliers, we propose a relaxed second-

order Mangasarian-Fromovitz constraint qualification and prove the equivalence between

this qualification, the second-order Kurcyusz-Robinson-Zowe (KRZ) qualification and the

nonemptiness and boundedness of KKT multiplier sets when the aforementioned assump-

tions for our calculus rules are satisfied.

2. Preliminaries

Throughout the paper, if not otherwise stated, let X, Y and Z be real Banach spaces,

N, Rn and Rn+ be the set of the natural numbers, an n-dimensional vector space and

its nonnegative orthant, respectively. BX denotes the open unit ball of X and BX(x, r)

the open ball with center x and radius r. For M ⊆ X, intM , clM and bdM stand

for its interior, closure and boundary, respectively, of M . The distance from x to M is

d(x,M) := inf{‖x − a‖ | a ∈ M}, with the convention d(x, ∅) = ∞. The cone generated

by M is coneM := {λx | λ ≥ 0, x ∈ M}. X∗ stands for the topological dual of X and

〈 · , · 〉 for the canonical pairing of any pair of dual spaces. For a cone C ⊆ Y , the dual

cone is C∗ := {y∗ ∈ Y ∗ | 〈y∗, c〉 ≥ 0, ∀ c ∈ C}. We denote D(z0) := cone(D + z0). Then,

for z0 ∈ −D, [D(z0)]
∗ = N(−D, z0), the normal cone of −D at z0. Furthermore, if D is a

convex cone, N(−D, z0) = {d∗ ∈ D∗ | 〈d∗, z0〉 = 0}.
We recall that D ⊆ Z is called dually compact (see [40]) if there exists a compact set

M ⊆ Z such that

D∗ ⊆
{
z∗ ∈ Z∗

∣∣∣ ‖z∗‖ ≤ sup
z∈M
〈z∗, z〉

}
.

Here are several basic properties of dually compact cones (see [10,40]):

• a cone with nonempty interior in a normed space is dually compact (in general, the

converse does not hold, see Example 2.1 in [10]);

• if D is dually compact, every w∗-convergent-to-0 sequence {dn} ⊆ D∗ also converges

strongly to 0.
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For a set-valued map F : X ⇒ Y , the domain and graph are, respectively, domF :=

{x ∈ X | F (x) 6= ∅} and gphF := {(x, y) ∈ X × Y | y ∈ F (x)}. F is said to be pseudo-

Lipschitz at (x0, y0) ∈ gphF (see [2]) if there exist neighborhoods U of x0, V of y0 and

L > 0 such that F (x) ∩ V ⊆ F (x′) + L‖x − x′‖ clBY , ∀x, x′ ∈ U . (This property is also

called the Aubin property.) F is called compact at x0 (see [32]) if, for (xn, yn) ∈ gphF

with xn → x0, there exist (xnk , ynk)→ (x0, y) for some y ∈ F (x0). F is said to be second-

order directionally compact with index γ at (x0, y0) with respect to (u, v) in direction

x ∈ X (see [37]) if for any (tn, rn) ↓ (0, 0), tn
rn
→ γ and xn → x, every sequence yn ∈ Y

satisfying y0 + tnv + 1
2 tnrnyn ∈ F (x0 + tnu+ 1

2 tnrnxn) has a convergent subsequence.

Definition 2.1. Let Φ: X ⇒ Y and (x0, y0) ∈ gph Φ. Φ is called metrically regular

at (x0, y0) if there exist α > 0, neighborhoods U of x0 and V of y0 such that, for all

(x, y) ∈ U × V ,

d(x,Φ−1(y)) ≤ αd(y,Φ(x)).

By fixing y = y0, we obtain a weaker property called metric subregularity. For de-

velopments of linear and nonlinear models of regularity with applications, the reader is

referred to [2, 7, 8, 20, 23, 30, 34, 35] and the references therein. Here, we use the following

directional metric subregularity.

Definition 2.2. Let Φ: X ⇒ Y , (x0, y0) ∈ gph Φ, S ⊆ X and u ∈ X. Then, Φ is said to

be directionally metrically subregular at (x0, y0) in direction u with respect to S if there

are a neighborhood U of x0, α ≥ 0 and r > 0 such that, for all t ∈ (0, r) and v ∈ BX(u, r)

with x0 + tv ∈ S ∩ U ,

d(x0 + tv,Φ−1(y0) ∩ S) ≤ αd(y0,Φ(x0 + tv)).

We extend this notion relative to a second-order direction w besides the direction u as

follows.

Definition 2.3. Let Φ: X ⇒ Y , (x0, y0) ∈ gph Φ, S ⊆ X and u,w ∈ X. Then, Φ is said

to be (u,w)-directionally metrically subregular of index γ at (x0, y0) with respect to S if

there are a neighborhood U of x0 and α ≥ 0 such that, for any (tn, rn, wn)→ (0+, 0+, w)

with tn
rn
→ γ and x0 + tnu+ 1

2 tnrnwn ∈ S ∩ U ,

d(x0 + tnu+ 1
2 tnrnwn,Φ

−1(y0) ∩ S) ≤ αd(y0,Φ(x0 + tnu+ 1
2 tnrnwn)).

If this property is satisfied for all w ∈ X, we replace (u,w) by u in the saying.

Next, we recall notions of tangent cones and second-order tangent sets.

Definition 2.4. Let M ⊆ X, x0, u ∈ X and γ ∈ {0, 1}.
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(i) The contingent cone, adjacent cone and interior cone of M at x0 are

T (M,x0) := {u ∈ X | ∃ tn ↓ 0, ∃un → u,∀n ∈ N, x0 + tnun ∈M},

T [(M,x0) := {u ∈ X | ∀ tn ↓ 0, ∃un → u,∀n ∈ N, x0 + tnun ∈M},

IT (M,x0) := {u ∈ X | ∀ tn ↓ 0, ∀un → u,∀n large, x0 + tnun ∈M}.

(ii) The second-order contingent set of index γ of M at (x, u) is

T 2
γ (M,x, u)

:= {w ∈ X | ∃ (tn, rn) ↓ (0, 0), tnrn → γ,∃wn → w, x+ tnu+ 1
2 tnrnwn ∈M, ∀n ∈ N}.

(iii) The second-order adjacent set of index γ of M at (x, u) is

T [2γ (M,x, u)

:= {w ∈ X | ∀ (tn, rn) ↓ (0, 0), tnrn → γ,∃wn → w, x+ tnu+ 1
2 tnrnwn ∈M, ∀n ∈ N}.

(iv) The second-order interior tangent set of index γ of M at (x, u) is

IT 2
γ (M,x, u)

:= {w ∈ X | ∀ (tn, rn) ↓ (0, 0), tnrn → γ,∀wn → w, x+ tnu+ 1
2 tnrnwn ∈M,∀n large}.

Note that, if x0 /∈ clM , then all the above tangent sets are empty; and if u /∈ T (M,x0),

then all the second-order tangent sets are empty. Hence, we always assume conditions like

x0 ∈ clM , u ∈ T (M,x0). When γ = 1, the sets T 2
1 (M,x, u), T [21 (M,x, u) and IT 2

1 (M,x, u)

are said to be the second-order contingent, adjacent and interior tangent sets, respectively.

They are closed sets, but not necessarily cones. If M is convex, then T [21 (M,x0, u) is con-

vex, while T 2(M,x0, u) may not be convex. When γ = 0, the sets T 2
0 (M,x, u), T [20 (M,x, u)

and IT 2
0 (M,x, u) are cones and called the asymptotic second-order contingent, adjacent

and interior tangent cones, respectively. The cones T 2
0 (M,x0, u), T [20 (M,x0, u) were pro-

posed by Penot [33]. If X is a reflexive Banach space and u ∈ T (M,x0), then either

T 2
1 (M,x0, u) or T 2

0 (M,x0, u) is nonempty. Some known properties of second-order tan-

gent sets are collected in the following (see more in [7, 19,21,24,33]).

Proposition 2.5. Let M ⊆ X, x0, u ∈ X and γ ∈ {0, 1}.

(i) T 2
γ (M,x0, 0) = T (M,x0) and T [2γ (M,x0, 0) = T [(M,x0).

(ii) IT 2
γ (M,x0, u) ⊆ T [2γ (M,x0, u) ⊆ T 2

γ (M,x0, u) ⊆ clcone(cone(M − x0)− u).

Let, in addition, M be convex and u ∈ T (M,x0). Then, the following assertions hold.

(iii) T (T (M,x0), u) = clcone(cone(M −x0)−u), and hence T 2
1 (M,x0, u) ⊆ T (T (M,x0),

u). Additionally, if 0 ∈ T 2
1 (M,x0, u), then T 2

1 (M,x0, u) = T (T (M,x0), u). If

T 2
0 (M,x0, u) 6= ∅, then T 2

0 (M,x0, u) = T (T (M,x0), u), and hence T 2
1 (M,x0, u) ⊆

T 2
0 (M,x0, u).
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(iv) If T [2γ (M,x0, u) 6= ∅, then IT [2γ (M,x0, u) = intT [2γ (M,x0, u), cl IT [2γ (M,x0, u) =

T [2γ (M,x0, u) and

T [2γ (M,x0, u) + T (T (M,x0), u) ⊆ T [2γ (M,x0, u).

Definition 2.6. [2, 22] Let F : X ⇒ Y , x ∈ X, (x0, y0) ∈ gphF , (u, v) ∈ X × Y and

γ ∈ {0, 1}.

(i) The contingent derivative of F at (x0, y0) is a set-valued map DF (x0, y0) : X ⇒ Y

defined by

DF (x0, y0)(x)

:= {y ∈ Y | ∃ tn ↓ 0, (xn, yn)→ (x, y), y0 + tnyn ∈ F (x0 + tnxn), ∀n ∈ N}.

(ii) The second-order contingent derivative of index γ of F at (x0, y0) in direction (u, v)

is a set-valued map D2
γF (x0, y0, u, v) : X ⇒ Y defined by

D2
γF (x0, y0, u, v)(x)

:= {y ∈ Y | ∃ (tn, rn) ↓ (0, 0), tnrn → γ,∃ (xn, yn)→ (x, y),

y0 + tnv + 1
2 tnrnyn ∈ F (x0 + tnu+ 1

2 tnrnxn),∀n ∈ N}.

(iii) The second-order adjacent contingent derivative of index γ of F at (x0, y0) in direc-

tion (u, v) is a set-valued map D[2
γ F (x0, y0, u, v) : X ⇒ Y defined by

D[2
γ F (x0, y0, u, v)(x)

:= {y ∈ Y | ∀ (tn, rn) ↓ (0, 0), tnrn → γ,∃ (xn, yn)→ (x, y),

y0 + tnv + 1
2 tnrnyn ∈ F (x0 + tnu+ 1

2 tnrnxn),∀n ∈ N}.

Remark 2.7. (i) It is easy to see that, for every x ∈ X,

D[2
γ F (x0, y0, u, v)(x) ⊆ D2

γF (x0, y0, u, v)(x).

In general the reverse inclusion does not hold.

(ii) Obviously, gphDF (x0, y0) = T (gphF, (x0, y0)), gphD2
γF (x0, y0, u, v) = T 2

γ (gphF,

(x0, y0), (u, v)) and gphD[2
γ F (x0, y0, u, v) = T [2γ (gphF, (x0, y0), (u, v)). Then, it follows

from Proposition 2.5(i) that, for x ∈ X, D2
γF (x0, y0, 0, 0)(x) = DF (x0, y0)(x).

(iii) (see [26]) We say that F is second-order proto-differentiable at (x0, y0) in direction

(u, v) if D[2
γ F (x0, y0, u, v) = D2

γF (x0, y0, u, v). If gphF is convex and (u, v) ∈ gphF −
(x0, y0), one has T 2

γ (gphF, (x0, y0), (u, v)) = T [2γ (gphF, (x0, y0), (u, v)) (see [27]) and then,

by Remark 2.7(i), F is second-order proto-differentiable at (x0, y0) in direction (u, v).
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(iv) If gphF is convex, (0, 0) ∈ T 2
γ (gphF, (x0, y0), (u, v)) and D2

γF (x0, y0, u, v) is

compact at x, then F is second-order directionally compact with index γ at (x0, y0)

with respect to (u, v) in the direction x. Indeed, because gphF is convex and (0, 0) ∈
T 2
γ (gphF, (x0, y0), (u, v)), by Proposition 2.5(iii), one has

T 2
γ (gphF, (x0, y0), (u, v)) = T (T (gphF, (x0, y0)), (u, v))

= cl(cone(cone(gphF − (x0, y0))− (u, v))).

For any sequences (tn, rn) ↓ (0, 0) with tn
rn
→ γ, xn → x and yn with

y0 + tnv + 1
2 tnrnyn ∈ F (x0 + tnu+ 1

2 tnrnxn),

one has (x0 + tnu+ 1
2 tnrnxn, y0 + tnv + 1

2 tnrnyn) ∈ gphF . This implies that

(xn, yn) ∈ 2r−1n
(
t−1n (gphF − (x0, y0))− (u, v)

)
⊆ cl(cone(cone(gphF − (x0, y0))− (u, v))).

Hence, (xn, yn) ∈ T 2
γ (gphF, (x0, y0), (u, v)), i.e., yn ∈ D2

γF (x0, z0, u, v)(xn). As D2
γF (x0,

z0, u, v) is compact at x, yn has a convergent subsequence. So, F is second-order direc-

tionally compact with index γ at (x0, y0) with respect to (u, v) in the direction x.

3. Calculus rules of second-order derivatives

For F : X ⇒ Y , (x0, y0) ∈ gphF and (u, v) ∈ X × Y , we impose the following condition

(A(F, x0, y0, u, v)) F is second-order proto-differentiable at (x0, y0) in direction (u, v)

and F is pseudo-Lipschitz at (x0, y0).

Proposition 3.1. Let F1, F2 : X ⇒ Y , x, u ∈ X, y1, y2, v1, v2 ∈ Y and γ ∈ {0, 1}. If

either (A(F1, x, y1, u, v1)) or (A(F2, x, y2, u, v2)) is satisfied, then for any x ∈ X,

(i) D2
γF1(x, y1, u, v1)(x) +D2

γF2(x, y2, u, v2)(x) ⊆ D2
γ(F1 +F2)(x, y1 + y2, u, v1 + v2)(x);

(ii) D2
γF1(x, y1, u, v1)(x)×D2

γF2(x, y2, u, v2)(x) = D2
γ(F1, F2)(x, (y1, y2), u, (v1, v2))(x).

Proof. By reasons of similarity, we assume that (A(F1, x, y1, u, v1)) holds.

(i) Let y1 ∈ D2
γF1(x, y1, u, v1)(x) and y2 ∈ D2

γF2(x, y2, u, v2)(x). Since F1 is second-

order proto-differentiable at (x, y1) in direction (u, v1), there are (tn, rn) ↓ (0, 0), tn
rn
→ γ,

(x′n, y
′
1n)→ (x, y1) and (xn, y2n)→ (x, y2) such that

y1 + tnv1 + 1
2 tnrny

′
1n ∈ F1(x+ tnu+ 1

2 tnrnx
′
n),

y2 + tnv2 + 1
2 tnrny2n ∈ F2(x+ tnu+ 1

2 tnrnxn).
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Because F1 is pseudo-Lipschitz at (x, y1), there exist a neighborhood V of y1 and L > 0

such that, for large n,

F1(x+ tnu+ 1
2 tnrnx

′
n) ∩ V ⊆ F1(x+ tnu+ 1

2 tnrnxn) + 1
2Ltnrn‖x

′
n − xn‖ clBY .

Hence, there is bn ∈ clBY such that, for large n,

y1 + tnv1 + 1
2 tnrn(y′1n − L‖x′n − xn‖bn) ∈ F1(x+ tnu+ 1

2 tnrnxn).

By setting y1n := y′1n − L‖x′n − xn‖bn, one has y1n → y1 and

y1 + tnv1 + 1
2 tnrny1n ∈ F1(x+ tnu+ 1

2 tnrnxn).

Adding the above relations, one has

y1 + y2 + tn(v1 + v2) + 1
2 tnrn(y1n + y2n) ∈ (F1 + F2)(x+ tnu+ 1

2 tnrnxn).

Hence, y1 + y2 ∈ D2
γ(F1 + F2)(x, y1 + y2, u, v1 + v2)(x).

(ii) It is easy to see that D2
γ(F1, F2)(x, (y1, y2), u, (v1, v2)) ⊆ D2

γF1(x, y1, u, v1)×
D2
γF2(x, y2, u, v2). For the reverse inclusion, let (y1, y2) be in the right-hand side. Similar

to the proof of part (i), there are (tn, rn) ↓ (0, 0), tn
rn
→ γ, (xn, y1n) → (x, y1) and

(xn, y2n)→ (x, y2) such that

y1 + tnv1 + 1
2 tnrny1n ∈ F1(x+ tnu+ 1

2 tnrnxn),

y2 + tnv2 + 1
2 tnrny2n ∈ F2(x+ tnu+ 1

2 tnrnxn).

Hence,

(y1, y2) + tn(v1, v2) + 1
2 tnrn(y1n, y2n) ∈ (F1, F2)(x+ tnu+ 1

2 tnrnxn).

This means that (y1, y2) ∈ D2
γ(F1, F2)(x, (y1, y2), u, (v1, v2)) and completes the proof.

Note that Proposition 3.1(ii) is also true for F2 : X ⇒ Z with Z 6= Y .

Definition 3.2. The second-order Shi contingent derivative of F at (x0, y0) in direction

(u, v) is a set-valued map D2
SF (x0, y0, u, v) : X ⇒ Y defined by

D2
SF (x0, y0, u, v)(x)

:= {y ∈ Y | ∃ tn ↓ 0, ∃ rn > 0,∃ (xn, yn)→ (x, y), tnrnxn → 0,

y0 + tnv + 1
2 tnrnyn ∈ F (x0 + tnu+ 1

2 tnrnxn), ∀n ∈ N}.

By imposing other assumptions (different from (A(F, x0, y0, u, v))), we have the fol-

lowing rule including equality instead of the inclusion in Proposition 3.1(i).
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Proposition 3.3. Let F1, F2 : X ⇒ Y , x, u ∈ X, y1, y2, v1, v2 ∈ Y and γ ∈ {0, 1}.
Suppose that either F1 is second-order proto-differentiable at (x, y1) in direction (u, v1)

or F2 is second-order proto-differentiable at (x, y2) in direction (u, v2), and the function

g : (X×Y )2 → X, defined by g(a, b, c, d) = a−c, is ((u, v1), (u, v2))-directionally metrically

subregular of index γ at ((x, y1), (x, y2), 0) with respect to gphF1 × gphF2. Then, for any

x ∈ X,

(i) D2
γF1(x, y1, u, v1)(x)+D2

γF2(x, y2, u, v2)(x) ⊆ D2
γ(F1+F2)(x, y1+y2, u, v1+v2)(x). If

additionally, either of the following conditions is fulfilled, then the inclusion becomes

equality:

(i1) Fi is second-order directionally compact with index γ at (x0, yi) with respect to

(u, vi) in the direction x for i = 1, 2;

(i2) Y is finite-dimensional and

D2
SF1(x, y1, u, v1)(0) ∩

(
−D2

SF2(x, y2, u, v2)(0)
)

= {0}.

(ii) D2
γF1(x, y1, u, v1)(x)×D2

γF2(x, y2, u, v2)(x) = D2
γ(F1, F2)(x, (y1, y2), u, (v1, v2))(x).

Proof. We assume that F1 is second-order proto-differentiable at (x, y1) in direction (u, v1).

(i) Let y1 ∈ D2
γF1(x, y1, u, v1)(x) and y2 ∈ D2

γF2(x, y2, u, v2)(x). It follows from the

proto-differentiability that there are (tn, rn) ↓ (0, 0), tn
rn
→ γ, (x1n, y1n) → (x, y1) and

(x2n, y2n)→ (x, y2) such that

y1 + tnv1 + 1
2 tnrny1n ∈ F1(x+ tnu+ 1

2 tnrnx1n),

y2 + tnv2 + 1
2 tnrny2n ∈ F2(x+ tnu+ 1

2 tnrnx2n).

Setting

(an, bn, cn, dn) = (x, y1, x, y2) + tn(u, v1, u, v2) +
1

2
tnrn(x1n, y1n, x2n, y2n),

by the assumed subregularity of g, one gets α > 0 such that, for large n,

d((an, bn, cn, dn), g−1(0) ∩ gphF1 × gphF2) ≤ αd(0, g(an, bn, cn, dn)).

Because g(an, bn, cn, dn) = an − cn = 1
2 tnrn(x1n − x2n), one has

d((an, bn, cn, dn), g−1(0) ∩ gphF1 × gphF2) ≤
1

2
αtnrn‖x1n − x2n‖+ o(tnrn).

Hence, there are ((x̂n, ŷ1n), (x̂n, ŷ2n)) ∈ g−1(0) ∩ gphF1 × gphF2 such that∥∥∥∥x+ tnu+
1

2
tnrnx1n − x̂n

∥∥∥∥ ≤ 1

2
αtnrn‖x1n − x2n‖+ o(tnrn),∥∥∥∥y1 + tnv1 +

1

2
tnrny1n − ŷ1n

∥∥∥∥ ≤ 1

2
αtnrn‖x1n − x2n‖+ o(tnrn),∥∥∥∥y2 + tnv1 +

1

2
tnrny2n − ŷ2n

∥∥∥∥ ≤ 1

2
αtnrn‖x1n − x2n‖+ o(tnrn).
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Consequently,

xn :=
x̂n − x− tnu

1
2 tnrn

→ x, y1n :=
ŷ1n − y1 − tnv1

1
2 tnrn

→ y1

and

y2n :=
ŷ2n − y2 − tnv2

1
2 tnrn

→ y2.

Furthermore, as ((x̂n, ŷ1n), (x̂n, ŷ2n)) ∈ gphF1 × gphF2, one has

y1 + tnv1 + 1
2 tnrny1n ∈ F1(x+ tnu+ 1

2 tnrnxn),

y2 + tnv2 + 1
2 tnrny2n ∈ F2(x+ tnu+ 1

2 tnrnxn).

By adding the two relations, one has

y1 + y2 + tn(u1 + v1) + 1
2 tnrn(y1n + y2n) ∈ (F1 + F2)(x+ tnu+ 1

2 tnrnxn).

Therefore, y1 + y2 ∈ D2
γ(F1 + F2)(x, y1 + y2, u, v1 + v2)(x).

Now we prove the reverse inclusion under each of the additional assumptions.

(i1) Let y ∈ D2
1(F1 + F2)(x, y1 + y2, u, v1 + v2)(x), (tn, rn) ↓ (0, 0), tn

rn
→ γ, (xn, yn)→

(x, y) such that

y1 + y2 + tn(v1 + v2) + 1
2 tnrnyn ∈ (F1 + F2)(x+ tnu+ 1

2 tnrnxn).

Hence,

yn ∈
F1(x+ tnu+ 1

2 tnrnxn)− y1 − tnv1
1
2 tnrn

+
F2(x+ tnu+ 1

2 tnrnxn)− y2 − tnv2
1
2 tnrn

.

Therefore, there are y1n ∈ F1(x + tnu + 1
2 tnrnxn), y2n ∈ F2(x + tnu + 1

2 tnrnxn), y1n =

(12 tnrn)−1(y1n− y1− tnv1), and y2n = (12 tnrn)−1(y2n− y2− tnv2) such that yn = y1n + y2n

and

y1 + tnv1 + 1
2 tnrny1n ∈ F1(x+ tnu+ 1

2 tnrnxn),

y2 + tnv2 + 1
2 tnrny2n ∈ F2(x+ tnu+ 1

2 tnrnxn).

By the directional compactness of F1 and F2, one has (for subsequences)

y1n → y1 ∈ D2
γF1(x, y1, u, v1)(x) and y2n → y2 ∈ D2

γF2(x, y2, u, v2)(x).

(i2) We have to show that both y1n and y2n obtained as in part (i) have convergent

subsequences. Suppose that {y1n} has no convergent subsequence. Then, we can assume

that ‖y1n‖ → ∞. We have

(3.1)
yn
‖y1n‖

=
y1n
‖y1n‖

+
y2n
‖y1n‖

,
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y1n
‖y1n‖

=
y1n − y1 − tnv1

1
2 tnrn‖y1n‖

∈
F1(x+ tnu+ 1

2 tnrnxn)− y1 − tnv1
1
2 tnrn‖y1n‖

,

y2n
‖y1n‖

=
y2n − y2 − tnv2

1
2 tnrn‖y1n‖

∈
F2(x+ tnu+ 1

2 tnrnxn)− y2 − tnv2
1
2 tnrn‖y1n‖

.

By setting r′n = rn‖y1n‖, x′n = ‖y1n‖−1xn, one has

y1n
‖y1n‖

∈
F1(x+ tnu+ 1

2 tnr
′
nx
′
n)− y1 − tnv1

1
2 tnr

′
n

,

y2n
‖y1n‖

∈
F2(x+ tnu+ 1

2 tnr
′
nx
′
n)− y2 − tnv2

1
2 tnr

′
n

.

By taking a subsequence if necessary, we may assume that ‖y1n‖−1(y1n) → y for some y

of norm one. As x′n = ‖y1n‖−1xn → 0, we have y ∈ D2
SF1(x, y1, u, v1)(0). Furthermore, as

‖y1n‖−1yn → 0, by the equation (3.1), ‖y1n‖−1(y2n)→ −y. Therefore,

y ∈ D2
SF1(x, y1, u, v1)(0) ∩

(
−D2

SF2(x, y2, u, v2)(0)
)
.

This is a contradiction.

(ii) Similar to Proposition 3.1, we have to check only that the left-hand side is contained

in the right-hand one. Take the first part of the proof of (i) to obtain (3.1). Then, one

has

(y1, y2) + tn(v1, v2) + 1
2 tnrn(y1n, y2n) ∈ (F1, F2)(x+ tnu+ 1

2 tnrnxn).

With y1n → y1, y2n → y2, we conclude that (y1, y2) ∈ D2
γ(F1, F2)(x, (y1, y2), u, (v1, v2))(x).

The proof is complete.

Remark 3.4. (i) The condition (A(F1, x, y1, u, v1)) (or (A(F2, x, y2, u, v2))) in Proposi-

tion 3.1 and the subregularity of g in Proposition 3.3 are not comparable, because the con-

dition on g depends on gphF1× gphF2, while (A(F1, x, y1, u, v1)) (or (A(F2, x, y2, u, v2)))

only depends on F1 (or F2).

(ii) Proposition 3.3(i) improves Theorem 3.7(b) in [11], where the metric subregularity

(of order 1 and not “directional”) of g is imposed and γ = 1.

(iii) In the special case F2(x) = C for all x ∈ X, where C is a closed convex cone, for

x, u ∈ X, y1, y2, v1, v2 ∈ Y with y2 + v2 ∈ C, we claim for every x ∈ X that

(3.2) D2
γF (x, y1, u, v1)(x) + T 2

γ (C, y2, v2) ⊆ D2
γF+(x, y1 + y2, u, v1 + v2)(x),

where F+(x) := F (x) + C. Indeed, clearly F2 = C is pseudo-Lipschitz at (x, y2). As

gphF2 = X × C is convex and y2 + v2 ∈ C, one has (x, y2) ∈ gphF2 − (u, v2). By

Remark 2.7(iii), F2 is second-order proto-differentiable at (x, y2) in direction (u, v2).

Hence, condition (A(F2, x, y2, u, v2)) is satisfied. By applying Proposition 3.1(i) with
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D2
γF2(x, y2, u, v2)(x) = T 2

γ (C, y2, v2), we obtain (3.2). This relation (3.2) is new. When

applied to the simple case: y2 = v2 = 0, it collapses to (because T 2
γ (C, y2, v2) = C) the

classical result

D2
γF (x, y1, u, v1)(x) + C ⊆ D2

γF+(x, y1, u, v1)(x).

(iv) Instead of the assumed directional compactness in Proposition 3.3(i) for the equal-

ity, in Proposition 2 of [26], with γ = 1 only, the authors imposed a second-order lower

semidifferentiability assumption. However, the following example shows that this assertion

is inadequate. Let F1, F2 : R ⇒ R be defined by

F1(x) =

R+ if x ≥ 0,

{x2} if x < 0,
F2(x) =

{−1} ∪ {−x} if x ≥ 0,

{−x} if x < 0.

Consider x = 0, y1 = y2 = 0, u = v1 = v2 = 0, x ∈ R and γ = 1. It is easy to check

that all the assumptions of Proposition 2 of [26] are satisfied. Straightforward calculations

yield

(F1 + F2)(x) =

{y ∈ R | y ≥ −1} ∪ {y ∈ R | y ≥ −x} if x ≥ 0,

{x2 − x} if x < 0,

D2
1F1(x, y1, u, v1)(x) = R+, D2

1F2(x, y2, u, v2)(x) = {−x} andD2
1(F1+F2)(x, y1+y2, u, v1+

v2)(x) = R. Hence, D2
1(F1 + F2)(x, y1 + y2, u, v1 + v2)(x) * D2

1F1(x, y1, u, v1)(x) +

D2
1F2(x, y2, u, v2)(x). For a reading convenience, we also mention here the inadequate

reasoning by mistake in the proof in [26]. For y ∈ D2
1(F1 + F2)(x, y1 + y2, u, v1 + v2)(x),

(tn, rn) ↓ (0, 0), tn
rn
→ 1, and (xn, yn)→ (x, y) such that

y1 + y2 + tn(v1 + v2) + 1
2 tnrnyn ∈ (F1 + F2)(x0 + tnu+ 1

2 tnrnxn),

by the second-order lower semidifferentiability of F1, one has y1n such that

y1 + tnv1 + 1
2 tnrny1n ∈ F1(x0 + tnu+ 1

2 tnrnxn).

From this one cannot derive as in [26] that y2 + tnv2 + 1
2 tnrn(yn − y1n) ∈ F2(x0 + tnu +

1
2 tnrnxn), because the image of (F1 + F2)− F1 may not be contained in F2.

4. Second-order KKT multipliers

In this section, let F : X ⇒ Y , G : X ⇒ Z, C : X ⇒ Y be nonempty-valued and D be

a closed convex cone with nonempty interior in Z. Suppose that C(x) is a closed convex

cone in Y for all x ∈ X. Then, C defines a variable partial order on Y by

y1 ≤C(x) y2 ⇐⇒ y2 − y1 ∈ C(x).
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Our set-valued vector optimization problem is

(4.1) MinC(x)F (x) such that G(x) ∩ (−D) 6= ∅.

Let Ω := {x ∈ X | G(x)∩(−D) 6= ∅} denote the feasible set and D(z0) := cone(D+z0).

Definition 4.1. Let x0 ∈ Ω and (x0, y0) ∈ gphF .

(i) (see [38]) Assume that there exists a neighborhood V of x0 such that int C(x) 6= ∅
for every x ∈ V . A point (x0, y0) is called a local weak nondominated point for

problem (4.1) if there is a neighborhood U ⊆ V of x0 such that, for every x ∈ U ∩Ω,

(F (x)− y0) ∩ (− int C(x)) = ∅.

(ii) (see [6]) If int C(x0) 6= ∅, (x0, y0) is termed a local weak minimal point for (4.1) if

there is a neighborhood U of x0 such that, for every x ∈ U ∩ Ω,

(F (x)− y0) ∩ (− int C(x0)) = ∅.

In case C(x) := C for every x in a neighborhood of x0, where C ⊆ Y is a closed convex

cone with nonempty interior, the above notions reduce to the classical weak Pareto point.

In general the two notions are different, see, e.g., [12, 14, 15]. It is easy to check the

following

• if (x0, y0) is a local weak minimal point and int C(x) ⊆ int C(x0) for all x in a

neighborhood of x0, then it is a local weak nondominated point;

• if (x0, y0) is a local weak nondominated point and int C(x0) ⊆ int C(x) for all x in a

neighborhood of x0, then it is a local weak minimal point.

A first-order necessary condition for local weak nondominated points in a primal form

is as follows.

Proposition 4.2. Let (x0, y0) be a local weak nondominated point of (4.1) and z0 ∈
G(x0)∩(−D). Assume that there is a neighborhood V of x0 such that C := int

⋂
x∈V C(x) 6=

∅. Then, for every u ∈ X one has

D((F + C), G)(x0, (y0, z0))(u) ∩ (−C)× (− intD(z0)) = ∅.

Proof. There is a neighborhood U of x0 such that U ⊆ V and for every x ∈ U ∩ Ω,

(F (x)− y0) ∩ (− int C(x)) = ∅.

Suppose there exist u ∈ X and (v, w) ∈ D((F+C), G)(x0, (y0, z0))(u)∩(−C)×(− intD(z0)).

Then, one has (tn, un, vn, wn) → (0+, u, v, w) such that y0 + tnvn ∈ (F + C)(x0 + tnun)
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and z0 + tnwn ∈ G(x0 + tnun). As w ∈ − intD(z0) = IT (−D, z0), z0 + tnwn ∈ −D for

large n. Hence, G(x0 + tnun) ∩ (−D) 6= ∅ and so x0 + tnun ∈ U ∩ Ω for large n. Since

y0 + tnvn ∈ (F + C)(x0 + tnun), one has

(F (x0 + tnun)− y0) ∩ (−C(x0 + tnun) + tnvn) 6= ∅.

As v ∈ −C, one has for large n,

tnvn ∈ − int
⋂
x∈V
C(x) ⊆ − int C(x0 + tnun).

Because C(x0 + tnun) is a convex cone, − int C(x0 + tnun) − C(x0 + tnun) ⊆ − int C(x0 +

tnun). Therefore, (F (x0 + tnun) − y0) ∩ (− int C(x0 + tnun)) 6= ∅ for large n. This is a

contradiction.

Remark 4.3. (i) Proposition 4.2 generalizes Proposition 3.1 in [12] to constrained problems.

(ii) In the above proof, we need intD 6= ∅. When intD = ∅ we impose the following

assumptions

• the map H(·) := G(·) + D is directionally metrically subregular at (x0, 0) in the

direction u;

• the map F + C is pseudo-Lipschitz at (x0, y0)

to get the conclusion (instead of that in Proposition 4.2)

D((F + C), G)(x0, (y0, z0))(u) ∩ (−C)× T [(−D, z0) = ∅.

Indeed, suppose there exist u ∈ X and (v, w) ∈ D((F + C), G)((x0, y0), z0)(u) ∩ (−C) ×
T [(−D, z0). Then, one has (tn, un, vn, wn, w

′
n) → (0+, u, v, w,w) such that y0 + tnvn ∈

(F + C)(x0 + tnun), z0 + tnwn ∈ G(x0 + tnun) and z0 + tnw
′
n ∈ −D. Hence, tn(wn−w′n) ∈

G(x0 + tnun) +D, i.e., tn(wn − w′n) ∈ H(x0 + tnun). Because of the assumed directional

subregularity of H, there is α > 0 such that (for large n)

d(x0 + tnun, H
−1(0)) ≤ αd(0, H(x0 + tnun).

Therefore, one has a point x′n ∈ H−1(0) such that ‖x0+tnun−x′n‖ ≤ αtn‖wn−w′n‖+o(tn).

Since ‖wn − w′n‖ → 0, by setting un = t−1n (x′n − x0), one has x0 + tnun = x′n ∈ H−1(0),

i.e., x0 + tnun ∈ Ω and un → u. Because F + C is pseudo-Lipschitz at (x0, y0), there are

a neighborhood V of y0 and L > 0 such that

(F + C)(x0 + tnun) ∩ V ⊆ (F + C)(x0 + tnun) + Ltn‖un − un‖ clBY .
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There exists en ∈ clBY such that, for large n,

y0 + tn(vn − L‖un − un‖en) ∈ (F + C)(x0 + tnun).

As vn − L‖un − un‖en → v ∈ C, by arguing similarly as for Proposition 4.2, one obtains

the result.

Now, we present a second-order condition involving the critical directions u satisfying

the preceding first-order necessary condition in a critical way in the sense that v ∈ D(F +

C)(x0, y0)(u) ∩ (− clC) and w ∈ DG(x0, z0)(u) ∩ (− clD(z0)). Note that such a critical

direction w was considered in [24, 25], while in many results on second-order conditions

(with only fixed ordering cones), it was not employed, for instance, w was only in −D
in [27] and in intD−R+z0 in [9].

Proposition 4.4. Let (x0, y0) be a local weak nondominated point of (4.1), z0 ∈ G(x0)∩
(−D) and γ ∈ {0, 1}. Assume that there exists a neighborhood V of x0 such that C :=

int
⋂
x∈V C(x) 6= ∅. Then, for every u ∈ X with v ∈ D(F + C)(x0, y0)(u) ∩ (− clC),

w ∈ DG(x0, z0)(u) ∩ (− clD(z0)), and x ∈ X,

(4.2) D2
γ((F + C), G)(x0, (y0, z0))(u, (v, w))(x) ∩ IT (−C, v)× IT 2

γ (−D, z0, w) = ∅.

Proof. There is a neighborhood U of x0 such that U ⊆ V and, for every x ∈ U ∩ Ω,

(F (x)− y0) ∩ (− int C(x)) = ∅.

Suppose to the contrary the existence of x ∈ X and (y, z) ∈ Y × Z such that

(y, z) ∈ D2
γ(F,G)(x0, (y0, z0), u, (v, w))(x) ∩ IT (−C, v)× IT 2

γ (−D, z0, w).

Since (y, z) ∈ D2
γ(F + C, G)(x0, (y0, z0), u, (v, w))(x), one has (tn, rn) ↓ (0, 0), tnr

−1
n → γ,

xn → x, yn → y and zn → z such that

y0 + tnv + 1
2 tnrnyn ∈ (F + C)(x0 + tnu+ 1

2 tnrnxn),

z0 + tnw + 1
2 tnrnzn ∈ G(x0 + tnu+ 1

2 tnrnxn).

As z ∈ IT 2
γ (−D, z0, w), z0 + tnw + 1

2 tnrnzn ∈ −D (for large n). Hence, G(x0 + tnu +
1
2 tnrnxn) ∩ (−D) 6= ∅, i.e., x0 + tnu + 1

2 tnrnxn ∈ Ω ∩ U . Since y0 + tnv + 1
2 tnrnyn ∈

(F + C)(x0 + tnu+ 1
2 tnrnxn),

(F (x0 + tnu+ 1
2 tnrnxn)− y0) ∩ (−C(x0 + tnu+ 1

2 tnrnxn) + tnv + 1
2 tnvnyn) 6= ∅.

Because y ∈ IT (−C, v), one has tnv + 1
2 tnrnyn ∈ −C for large n. Hence,

tnv + 1
2 tnrnyn ∈ − int C(x0 + tnu+ 1

2 tnrnxn).
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Therefore, for large n,

(F (x0 + tnu+ 1
2 tnrnxn)− y0) ∩ (− int C(x0 + tnu+ 1

2 tnrnxn)) 6= ∅.

This contradiction completes the proof.

Remark 4.5. (i) Note that, by arguing similarly as for Proposition 4.4, using C(x0) instead

of C, we obtain a second-order condition for a local weak minimal point in a primal form

as follows

D2
γ((F + C(x0)), G)(x0, (y0, z0))(u, (v, w))(x) ∩ IT (−C(x0), v)× IT 2

γ (−D, z0, w) = ∅.

(ii) In case intD = ∅, under the additional assumptions

• the map H(·) := G(·) +D is (u, x)-directionally metrically subregular of index γ at

(x0, 0);

• the map F + C is pseudo-Lipschitz at (x0, y0)

the conclusion corresponding to that of Proposition 4.4 is

D2
γ((F + C), G)(x0, (y0, z0))(u, (v, w))(x) ∩ IT (−C, v)× T [2γ (−D, z0, w) = ∅.

Indeed, suppose (y, z) ∈ D2
γ(F,G)(x0, (y0, z0), u, (v, w))(x) ∩ IT (−C, v)× T [2γ (−D, z0, w).

Then, there are (tn, rn) ↓ (0, 0), tnr
−1
n → γ, xn → x and zn, z

′
n → z such that

z0 + tnw + 1
2 tnrnzn ∈ G(x0 + tnu+ 1

2 tnrnxn), z0 + tnw + 1
2 tnrnz

′
n ∈ −D.

Hence, 1
2 tnrn(zn − z′n) ∈ G(x0 + tnu+ 1

2 tnrnxn) +D, i.e., 1
2 tnrn(zn − z′n) ∈ H(x0 + tnu+

1
2 tnrnxn). Because of the assumed directional subregularity of H, there is α > 0 such

that, for large n,

d(x0 + tnu+ 1
2 tnrnxn, H

−1(0)) ≤ αd(0, H(x0 + tnu+ 1
2 tnrnxn)).

Therefore, for large n one has a point x′n ∈ H−1(0) such that∥∥∥∥x0 + tnu+
1

2
tnrnxn − x′n

∥∥∥∥ ≤ 1

2
αtnrn‖zn − z′n‖+ o(tnrn).

Since ‖zn−z′n‖ → 0, by setting xn = (12 tnrn)−1(x′n−x0−tnu), one has x0+tnu+ 1
2 tnrnxn =

x′n ∈ H−1(0), i.e., x0+ tnu+ 1
2 tnrnxn ∈ Ω, and xn → x. By the pseudo-Lipschitz property,

the rest of this proof is similar to Remark 4.3(ii).

By the standard separation theorem and a qualification condition of the KRZ type,

we obtain the following second-order KKT multiplier rule.
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Theorem 4.6. Let (x0, y0) be a local weak nondominated point of (4.1), z0 ∈ G(x0) ∩
(−D) and γ ∈ {0, 1}. Assume that there exists a neighborhood V of x0 such that C :=

int
⋂
x∈V C(x) 6= ∅. For every u ∈ X with v ∈ D(F + C)(x0, y0)(u) ∩ (− clC) and w ∈

DG(x0, z0)(u)∩ (− clD(z0)) such that D2
γ((F +C), G)(x0, (y0, z0))(u, (v, w))(X) is convex,

there exist multipliers (c∗, d∗) ∈ (clC)∗×N(−D, z0)\{(0, 0)} such that 〈c∗, v〉 = 〈d∗, w〉 = 0

and

〈c∗, y〉+ 〈d∗, z〉 ≥ sup
d∈T [2γ (−D,z0,w)

〈d∗, d〉

for all (y, z) ∈ D2
γ((F + C), G)(x0, (y0, z0))(u, (v, w))(X). Moreover, if the KRZ qualifica-

tion condition

{z ∈ Z | (y, z) ∈ D2
γ((F + C), G)(x0, (y0, z0))(u, (v, w))(X)}− T [2γ (−D, z0, w) +D(z0) = Z

is satisfied, then c∗ 6= 0.

Proof. From the equality (4.2), by the convexity assumption and the standard separation

theorem, we obtain (c∗, d∗) ∈ Y ∗ × Z∗ \ {(0, 0)} such that

(4.3) 〈c∗, y〉+ 〈d∗, z〉 ≥ 〈c∗, c〉+ 〈d∗, d〉

for all (y, z) ∈ D2
γ((F + C), G)(x0, (y0, z0))(u, (v, w))(X), c ∈ cl IT (−C, v) and d ∈ cl

IT 2
γ (−D, z0, w). Because C is a convex cone, IT (−C, v) = int(cone(−C − v)). It fol-

lows from (4.3) that 〈c∗, c〉 ≤ 0 for all c ∈ cone(−C − v), and so c∗ ∈ [cone(C + v)]∗.

As v ∈ − clC, one has c∗ ∈ (clC)∗ and 〈c∗, v〉 = 0. According to Proposition 2.5,

one has cl IT [2γ (−D, z0, w) = T [2γ (−D, z0, w) and T [2γ (−D, z0, w) + T (T (−D, z0), w) ⊆
T [2γ (−D, z0, w). Then, (4.3) becomes, for all d ∈ T [2γ (−D, z0, w) and d′ ∈ T (T (−D, z0), w),

〈c∗, y〉+ 〈d∗, z〉 ≥ 〈d∗, d〉+ 〈d∗, d′〉.

Because T (T (−D, z0), w) is a cone, d∗ ∈ [T (T (−D, z0), w)]∗, i.e., d∗ ∈ N(−D, z0) and

〈d∗, w〉 = 0. By letting d′ = 0, we obtain

〈c∗, y〉+ 〈d∗, z〉 ≥ sup
d∈T [2γ (−D,z0,w)

〈d∗, d〉.

Now, suppose to the contrary that the qualification condition holds but c∗ = 0. One

has

〈d∗, z〉 ≥ sup
d∈T [2γ (−D,z0,w)

〈d∗, d〉

for every (y, z) ∈ D2
γ((F + C), G)(x0, (y0, z0))(u, (v, w))(X). Take arbitrarily z ∈ Z.

By the qualification condition, there exist t ≥ 0, z ∈ {z′ ∈ Z | (y′, z′) ∈ D2
γ((F +
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C), G)(x0, (y0, z0))(u, (v, w))(X)}, d1 ∈ T [2γ (−D, z0, w) and d2 ∈ D such that z = z − d1 +

t(d2 + z0). Since d∗ ∈ D∗ and 〈d∗, z0〉 = 0,

〈d∗, z〉 = 〈d∗, z〉 − 〈d∗, d1〉+ t〈d∗, d2 + z0〉 ≥ sup
d∈T [2γ (−D,z0,w)

〈d∗, d〉 − 〈d∗, d1〉 ≥ 0.

Hence, d∗ = 0, a contradiction because (c∗, d∗) 6= (0, 0). The proof is complete.

Next, we apply calculus rules provided in Propositions 3.1 and 3.3 to obtain a sharper

second-order conditions in terms of the derivatives of the data F , G and C in a separate

way. Here, we can use a constraint qualification which is not a qualification condition in

terms of (F + C, G) as in Theorem 4.6.

Theorem 4.7. Let (x0, y0) be a local weak nondominated point of (4.1), z0 ∈ G(x0) ∩
(−D) and γ ∈ {0, 1}. Assume that there exists a neighborhood V of x0 such that C :=

int
⋂
x∈V C(x) 6= ∅. For every u ∈ X with v ∈ D(F + C)(x0, y0)(u) ∩ (− clC) and

w ∈ DG(x0, z0)(u) ∩ (− clD(z0)), assume that D2
γ((F + C), G)(x0, (y0, z0))(u, (v, w))(X)

is convex and the following conditions are satisfied.

(i) (A(G, x0, z0, u, w)) holds;

(ii) either of the following conditions holds, for y1 + y2 = y0 and v1 + v2 = v,

(a) (A(F, x0, y1, u, v1)) or (A(C, x0, y2, u, v2)) holds,

(b) F is pseudo-Lipschitz at (x0, y0) or C is pseudo-Lipschitz at (x0, 0) and g : (X×
Y )2 → X, defined by g(a, b, c, d) = a− c, is ((u, v1), (u, v2))-directionally metri-

cally subregular of index γ at ((x0, y1), (x0, y2), 0) with respect to gphF ×gph C.

Then, there exist multipliers (c∗, d∗) ∈ (clC)∗ × N(−D, z0) \ {(0, 0)} such that 〈c∗, v〉 =

〈d∗, w〉 = 0 and

〈c∗, y〉+ 〈c∗, y〉+ 〈d∗, z〉 ≥ sup
d∈T [2γ (−D,z0,w)

〈d∗, d〉

for all (y, y, z) ∈ D2
γF (x0, y1, u, v1)(X) × D2

γC(x0, y2, u, v2)(X) × D2
γG(x0, z0, u, w)(X).

Moreover, c∗ 6= 0 if the following constraint qualification is fulfilled:

(4.4) D2
γG(x0, z0, u, w)(X)− T [2γ (−D, z0, w) +D(z0) = Z.

Proof. By Proposition 4.4, one has (4.2). It follows from assumption (i) and Proposi-

tion 3.1(ii) that

D2
γ((F + C), G)(x0, (y0, z0))(u, (v, w))(x)

= D2
γ((F + C)(x0, y0, u, v))(x)×D2

γG(x0, z0, u, w)(x).
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In view of assumption (ii)(a) or (ii)(b), respectively, we employ Proposition 3.1(i) or

Proposition 3.3(i), respectively, for some y1, y2, v1, v2 satisfying y1 + y2 = y0, v1 + v2 = v

to get

D2
γF (x0, y1, u, v1)(x) +D2

γC(x0, y2, u, v2)(x) ⊆ D2
γ((F + C)(x0, y0, u, v))(x).

Hence, in this case (4.2) becomes(
D2
γF (x0, y1, u, v1)(x) +D2

γC(x0, y2, u, v2)(x)
)
×D2

γG(x0, z0, u, w)(x)

∩ (IT (−C, v))× IT 2
γ (−D, z0, w) = ∅.

Therefore, arguing similarly as for Theorem 4.6, one obtains the result.

By Remark 4.5(i), we also obtain a second-order condition for local weak minimal

points as follows.

Theorem 4.8. Let (x0, y0) be a local weak minimal point of (4.1), z0 ∈ G(x0) ∩ (−D)

and γ ∈ {0, 1}. For every u ∈ X with v ∈ D(F + C)(x0, y0)(u) ∩ (− cl C(x0)) and w ∈
DG(x0, z0)(u)∩ (− clD(z0)) such that D2

γ((F + C), G)(x0, (y0, z0))(u, (v, w))(X) is convex

and the assumptions of Theorem 4.7 are satisfied. Then, there exist multipliers (c∗, d∗) ∈
C(x0)∗ ×N(−D, z0) \ {(0, 0)} such that 〈c∗, v〉 = 〈d∗, w〉 = 0 and

(4.5) 〈c∗, y〉+ 〈c∗, y〉+ 〈d∗, z〉 ≥ sup
d∈T [2γ (−D,z0,w)

〈d∗, d〉

for all (y, y, z) ∈ D2
γF (x0, y1, u, v1)(X) × D2

γC(x0, y2, u, v2)(X) × D2
γG(x0, z0, u, w)(X).

Moreover, c∗ 6= 0 if the following constraint qualification is fulfilled:

D2
γG(x0, z0, u, w)(X)− T [2γ (−D, z0, w) +D(z0) = Z.

Remark 4.9. (i) Since

T [2γ (−D, z0, w) ⊆ cl[cone(cone(−D − z0)− w)],

d∗ ∈ −[T (T (−D, z0), w)]∗ = −[cl(cone(cone(−D − z0)− w))]∗,

one has

sup
d∈T [2γ (−D,z0,w)

〈d∗, d〉 ≤ 0.

For γ = 0, T [20 (−D, z0, w) is a cone and hence supd∈T 2
0 (−D,z0,w)〈d

∗, d〉 = 0. While for

γ = 1, this supremum can be strictly negative, i.e., the envelope-like effect occurs. Of

course, it vanishes if 0 ∈ A2(−D, z0, w). So, for direction w satisfying this, the multiplier

rule in Theorem 4.7 (resp. Theorem 4.8) takes the classical form (with zero on the right-

hand side). For example, if w ∈ −D(z0), then 0 ∈ T 2
1 (−D, z0, w). However, Theorem 4.7



1020 Quoc Khanh Phan and Minh Tung Nguyen

(resp. Theorem 4.8) also considers critical directions w ∈ − clD(z0). For w ∈ −(clD(z0)\
D(z0)), the envelope-like effect can occur.

(ii) In case C(x) := C, where C ⊆ Y is a closed and convex cone with nonempty inte-

rior, any local weak minimal point of (4.1) reduces to a weak Pareto point, Theorem 4.8

improves Theorem 3.4 in [24], in which F and G are assumed pseudo-Lipschits and the

derivative of G is an adjacent derivative. Furthermore, if y2 + v2 ∈ C, by Remark 3.4(iii),

one has D2
γF (x0, y1, u, v1)(x) + T 2

γ (C, y2, v2) ⊆ D2
γ(F + C)(x0, y1 + y2, u, v1 + v2)(x).

Hence, the inequality (4.5) holds for all (y, y, z) ∈ D2
γF (x0, y1, u, v1)(X)× T 2

γ (C, y2, v2)×
D2
γG(x0, z0, u, w)(X). This leads to

〈c∗, y〉+ inf
y∈T 2

γ (C,y2,v2)
〈c∗, y〉+ 〈d∗, z〉 ≥ sup

d∈T [2γ (−D,z0,w)
〈d∗, d〉

for all (y, z) ∈ D2
γF (x0, y1, u, v1)(X)×D2

γG(x0, z0, u, w)(X).

Obviously, as a direct consequence of Theorem 4.7 with (u, (v, w)) = (0, (0, 0)), we

immediately obtain

Corollary 4.10. Let (x0, y0) be a local weak nondominated point of (4.1) and z0 ∈ G(x0)∩
(−D). Assume that there exists a neighborhood V of x0 such that C := int

⋂
x∈V C(x) 6= ∅.

If D((F + C), G)(x0, (y0, z0))(X) is convex and the following conditions are satisfied

(i) (A(G, x0, z0, 0, 0)) holds;

(ii) either of the following conditions holds for y1 + y2 = y0

(a) (A(F, x0, y1, 0, 0)) or (A(C, x0, y2, 0, 0)) holds;

(b) F is pseudo-Lipschitz at (x0, y0) or C is pseudo-Lipschitz at (x0, 0) and g : (X×
Y )2 → X, defined by g(a, b, c, d) = a−c, is ((0, 0), (0, 0))-directionally metrically

subregular of index γ at ((x0, y1), (x0, y2), 0) with respect to gphF × gph C.

Then, there exist multipliers (c∗, d∗) ∈ (clC)∗ ×N(−D, z0) \ {(0, 0)} such that

〈c∗, y〉+ 〈c∗, y〉+ 〈d∗, z〉 ≥ 0

for all (y, y, z) ∈ DF (x0, y1)(X) × DC(x0, y2)(X) × DG(x0, z0)(X). Moreover, c∗ 6= 0 if

the following constraint qualification is satisfied

DG(x0, z0)(X)− T [γ(−D, z0) +D(z0) = Z.

Remark 4.11. (i) For problems with variable ordering cones, we have found in the literature

only first-order multiplier rules using the coderivative. This generalized derivative has

important advantages, but the usage of its second-order is not convenient here. Hence, we



Second-order KKT Multipliers for Optimization with Variable Order 1021

prove the new rule in Proposition 4.2 using the contingent derivative in order to develop

second-order rules (note that there have not been any second-order rules in the literature).

Furthermore, our first-order rule with directions being concerned explicitly helps to define

critical directions for getting nonclassical second-order rules.

(ii) Note that, in terms of the limiting/Mordukhovich coderivative, the first-order

conditions in [3,4,12] only use the coderivatives of F at (x0, y0) and of C at (x0, 0), while

in Corollary 4.10 the derivatives of F at (x0, y1) and of C at (x0, y2) for any y1, y2 satisfying

y1 + y2 = y0 are employed. Hence, our results may be more applicable.

Now, we illustrate Theorem 4.7 by the following.

Example 4.12. Let X = R, Y = R2, Z = R, C(x) = {(y1, y2) ∈ R2 | y1 ≥ −x2, y2 ≥ 0},
D = R+, F (x) = {(y1, y2) ∈ R2 | y1 + y2 ≥ −x} and G(x) = {z ∈ R | z ≥ x2 − 2x}.
Consider x0 = 0, y0 = (0, 0) and z0 = 0. Direct computations yield (F + C)(x) =

{(y1, y2) ∈ R2 | y1 + y2 ≥ −x − x2}, DG(x0, z0)(u) = {w ∈ R | w ≥ −2u}, and D(F +

C)(x0, y0)(u) = {(v′1, v′2) ∈ R2 | v′1+v′2 ≥ −u}. For any neighborhood V of x0, C = intR2
+.

Taking u = 1, v = (0,−1) and w = 2, one has v ∈ D(F + C)(x0, y0)(u) ∩ (− clC) and

w ∈ DG(x0, z0)(u) ∩ (− clD(z0)).

We employ Theorem 4.7 with γ = 0. First, we see thatG is pseudo-Lipschitz at (x0, z0),

and D2
0G(x0, z0, u, w)(x) = D[2

0 G(x0, z0, u, w)(x) = {z ∈ R | z ≥ −2x}. Hence, G is

second-order proto-differentiable at (x0, z0) in direction (u,w) and then (A(G, x0, z0, u, w))

holds. We can check that D2
γG(x0, z0, u, w)(X) = Z. Hence, the constraint qualification

(4.4) is satisfied. Secondly, we check assumption (ii) of Theorem 4.7 with y1 = y0, y2 = 0,

v1 = v and v2 = 0. It is easy to see that (A(F, x0, y1, u, v1)) holds with

D2
0F (x0, y1, u, v1)(x) = D2

0F (x0, y0, u, v)(x) = {(y′1, y′2) ∈ R2 | y′1 + y′2 ≥ −x},

and D2
0C(x0, y2, u, v2)(x) = D2

0C(x0, 0, u, 0)(x) = R2
+. Then, the convexity condition is

also fulfilled.

Take x = 1, y = (−1, 0) ∈ D2
0F (x0, y1, u, v1)(x), y = (0, 0) ∈ D2

0C(x0, y2, u, v2)(x) and

z = −2 ∈ D2
0G(x0, z0, u, w)(x). To check the necessary condition given in this theorem

with (clC)∗ = R2
+, we discuss all c∗ = (c1, c2) ∈ R2

+ \ {(0, 0)} and d∗ ∈ N(−D, z0)
with 〈c∗, v〉 = 0 and 〈d∗, w〉 = 0. We have c1 > 0, c2 = 0 and d∗ = 0. Then, for any

c∗ = (c1, c2) ∈ R2
+ with c1 > 0 and d∗ = 0, 〈c∗, y + y〉 + 〈d∗, z〉 = −c1 < 0. According to

Theorem 4.7, (x0, y0) is not a local weak nondominated point of problem (4.1).

A few first-order conditions were established in [3,4,12,16] (in terms of coderivatives).

Theorem 4.2 in [4] is for multiobjective optimization problems with single-valued objectives

subject to geometric constraints, Theorem 1 in [3] is for set-valued optimization with set

constraints. Hence, they cannot be in use for Example 4.12. Theorems 4.8 and 4.10 in [12]

are for unconstrained problems and cannot be applied either. Theorem 4.11 in [16] is for
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constrained problems but is inapplicable either, because here G is not metrically regular

at (x0, z0) as required.

In the rest of our paper, we discuss constraint qualifications and the boundedness

of multiplier sets in Theorem 4.7. We restrict ourselves to the case γ = 0 leaving the

case γ = 1 to a possible coming paper because it requires different techniques. Since

T [20 (−D, z0, w) is a cone, (4.4) is implied by the following constraint qualification

(4.6) D2
0G(x0, z0, u, w)(X) +D(z0) = Z.

For the special case with G = g, a differentiable single-valued map, and u = w = 0,

(4.6) becomes g′(x0)(X) + D(z0) = Z, which is the first-order Kurcyusz-Robinson-Zowe

constraint qualification (see [41]). Our constraint qualification in Theorems 4.7 and 4.8

extends this to the second-order case.

Next, we give a sufficient condition for the qualification (4.6). If the graph of D2
0G(x0,

z0, u, w) is closed and convex, 0 ∈ coreD2
0G(x0, z0, u, w)(X) (core(·) stands for the alge-

braic interior of a set (·)), then the qualification (4.6) is satisfied. Indeed, the graph of

Φ defined by Φ(x) := D2
0G(x0, z0, u, w)(x) + D(z0) is closed and convex, 0 ∈ core Φ(X)

and Φ(X) is a convex set. By the Robinson-Ursescu open mapping theorem (see [8,

34, 36]), for x ∈ X with 0 ∈ Φ(x), there exists ε > 0 such that εB(0, 1) ⊆ Φ(x +

B(0, 1)) ⊆ D2
0G(x0, z0, u, w)(X) +D(z0). It is easy to check that tD2

0G(x0, z0, u, w)(x) =

D2
0G(x0, z0, u, w)(tx) for all t ≥ 0 and x ∈ X. As D(z0) is a cone, one has tεB(0, 1) ⊆

tD2
0G(x0, z0, u, w)(X) + tD(z0) ⊆ D2

0G(x0, z0, u, w)(X) + D(z0) for all t ≥ 0, i.e., (4.6)

holds.

For problem (4.1), we propose a relaxed second-order Mangasarian-Fromovitz con-

straint qualification as follows.

(MFCQ) (Relaxed Mangasarian-Fromovitz constraint qualification) There exists x ∈ X
such that

D2
0G(x0, z0, u, w)(x) ∩ IT (−D, z0) 6= ∅.

For the special case with G = g, a differentiable single-valued map, and u = w = 0,

this is weaker than dg(x0, u) ∈ − intD, the well-known first-order Mangasarian-Fromovitz

constraint qualification (see [10,17,29]), because − intD ⊆ IT (−D, z0).
Observe that if (c∗, d∗) satisfies (4.5), then (λc∗, λd∗) does for all λ > 0. Hence, we fix

c∗ and consider the following Karush-Kuhn-Tucker multiplier set

Λ(x0, y0, z0, c
∗)

:= {d∗ ∈ N(−D, z0) | 〈c∗, y〉+ 〈c∗, y〉+ 〈d∗, z〉 ≥ 0,

∀ (y, y, z) ∈ D2
0F (x0, y1, u, v1)(X)×D2

0C(x0, y2, u, v2)(X)×D2
0G(x0, z0, u, w)(X)}.
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The following theorem includes a necessary and sufficient condition for the nonempti-

ness and boundedness of the set Λ(x0, y0, z0, c
∗) and also shows relations between some

second-order constraint qualifications and KKT multiplier sets.

Theorem 4.13. Let (x0, y0) be a local weak nondominated point of (4.1), z0 ∈ G(x0) ∩
(−D) and γ = 0. Assume that there exists a neighborhood V of x0 such that C :=

int
⋂
x∈V C(x) 6= ∅ and, for every u ∈ X with v ∈ D(F + C)(x0, y0)(u) ∩ (− clC), w ∈

DG(x0, z0)(u) ∩ (− clD(z0)), and the assumptions of Theorem 4.7 hold. Assume further

that the closed unit ball of Z∗ is w∗-sequentially compact. Then, the following assertions

are equivalent:

(a) (4.6) holds;

(b) (MFCQ) holds;

(c) there exists c∗ ∈ (clC)∗ \ {0} such that Λ(x0, y0, z0, c
∗) is nonempty and bounded.

Proof. (b) ⇒ (a). By (MFCQ), for z ∈ D2
0G(x0, z0, u, w)(x) ∩ IT (−D, z0), z ∈ Z, and

large n ∈ N, one has −z0 − 1
n(z − 1

nz) ∈ D. As D2
0G(x0, z0, u, w) is strictly positively

homogeneous, nz ∈ D2
0G(x0, z0, u, w)(nx). Then,

z = nz + n2
(
−z0 −

1

n
z +

1

n2
z + z0

)
∈ D2

0G(x0, z0, u, w)(X) +D(z0).

Because z ∈ Z is arbitrary, we have (4.6).

(a) ⇒ (c). By Theorem 4.7, one has c∗ ∈ (clC)∗ \ {0} such that Λ(x0, y0, z0, c
∗) is

nonempty. Suppose that Λ(x0, y0, z0, c
∗) is unbounded. Then, there exist d∗n ∈ Λ(x0, y0, z0,

c∗) with ‖d∗n‖ → ∞. Take arbitrarily z ∈ Z. By the constraint qualification (4.6), there

are t ≥ 0, z ∈ D2
0G(x0, z0, u, w)(X) and d ∈ D such that z = z − t(d+ z0). Consequently,

Theorem 4.7 says that, for all y ∈ D2
0F (x0, y1, u, v1)(X) and y ∈ D2

0C(x0, y2, u, v2)(X),

〈c∗, y〉+ 〈c∗, y〉+ 〈d∗n, z − t(d+ z0)〉 = 〈c∗, y〉+ 〈c∗, y〉+ 〈d∗n, z〉 ≥ 0,

that is

〈c∗, y〉+ 〈c∗, y〉+ 〈d∗n, z〉 ≥ 〈d∗n, t(d+ z0)〉.

Since d ∈ D and 〈d∗n, z0〉 = 0, one has 〈c∗, y〉 + 〈c∗, y〉 + 〈d∗n, z〉 ≥ 0 and, by dividing by

‖d∗n‖,

(4.7) 〈‖d∗n‖−1c∗, y〉+ 〈‖d∗n‖−1c∗, y〉+ 〈‖d∗n‖−1d∗n, z〉 ≥ 0.

Because the closed unit ball of Z∗ is w∗-sequentially compact, we assume that ‖d∗n‖−1d∗n
w∗
−−→ d∗. Since intD 6= ∅, D is dually compact (according to [40]). If d∗ = 0, the dual
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compactness of D implies that ‖d∗n‖−1d∗n → 0 in norm, which contradicts the fact that∥∥‖d∗n‖−1d∗n∥∥ = 1. Hence, d∗ 6= 0. By fixing y, y and letting n → ∞ in (4.7), one has

〈d∗, z〉 ≥ 0. By the arbitrariness of z, one gets the contradiction that d∗ = 0.

(c)⇒ (b). Suppose that (MFCQ) does not hold, i.e., D2
0G(x0, z0, u, w)(X)∩IT (−D, z0)

= ∅. By the standard separation theorem, we obtain d∗ ∈ Z∗ \ {0} such that 〈d∗, z〉 ≥
〈d∗, d〉 for all z ∈ D2

0G(x0, z0, u, w)(X) and d ∈ cl IT (−D, z0). Hence, d∗ ∈ N(−D, z0)
and 〈d∗, z〉 ≥ 0 for all z ∈ D2

0G(x0, z0, u, w)(X). Taking d
∗ ∈ Λ(x0, y0, z0, c

∗) we have, for

every α > 0,

〈d∗ + αd∗, z0〉 = 〈d∗, z0〉+ α〈d∗, z0〉 = 0

and, for all (y, y, z) ∈ D2
0F (x0, y1, u, v1)(X)×D2

0C(x0, y2, u, v2)(X)×D2
0G(x0, z0, u, w)(X),

〈c∗, y〉+ 〈c∗, y〉+ 〈d∗ + αd∗, z〉 = 〈c∗, y〉+ 〈c∗, y〉+ 〈d∗, z〉+ α〈d∗, z〉 ≥ 0.

Consequently, d
∗
+αd∗ ∈ Λ(x0, y0, z0, c

∗) for all α > 0 and so Λ(x0, y0, z0, c
∗) is unbounded,

a contradiction. The proof is complete.

Remark 4.14. Up to our knowledge, the boundedness of second-order KKT multipliers,

even for the fixed ordering structure case, has not been considered in the literature. Note

that Theorem 4.13 also asserts that the KRZ constraint qualification (4.6) is equivalent

to the (MFCQ) when the second-oder KKT multiplier set is nonempty and bounded.

We observe several contributions to the boundedness of first-order KKT multiplier

sets. For vector optimization, the papers [10,17] studied a case with Fréchet differentiable

maps, and [13,28,31] with Lipschitz maps. Note also that in our KKT multiplier sets, we

consider d∗ ∈ N(−D, z0), i.e., d∗ ∈ D∗ and 〈d∗, z0〉 = 0; while in [10, 28] the authors only

considered d∗ ∈ D∗.

The following examples illustrate Theorem 4.13.

Example 4.15. Let X = Z = R2, Y = R, C(x1, x2) = {y ∈ R | y ≥ x21}, D = R2
+,

F (x1, x2) =

{y ∈ R | y ≥ 0} if x1x2 ≥ 0,

∅ if x1x2 < 0,

and

G(x1, x2) =

{(x1, x2), (−x1,−x2)} if x1x2 ≥ 0,

∅ if x1x2 < 0.

Consider x0 = (0, 0), y0 = 0 and z0 = (0, 0). We check that (x0, y0) is a local weak

nondominated point. Let V = U = (10−1, 10−1)×(10−1, 10−1). Then, for every x ∈ U∩Ω,

(F (x)− y0) ∩ (− int C(x)) = ∅. Direct calculations provide that

(F + C)(x) =

{y ∈ R | y ≥ x21} if x1x2 ≥ 0,

∅ if x1x2 < 0,
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and for u ∈ X,

D(F + C)(u) =

{v ∈ R | v ≥ 0} if u1u2 ≥ 0,

∅ if u1u2 < 0,

DG(x0, z0)(u) =

{(u1, u2), (−u1,−u2)} if u1u2 ≥ 0,

∅ if u1u2 < 0.

One has C := int
(⋂

x∈V C(x)
)

= {y ∈ R | y > 10−2}. For u = (1, 1), v = 0 and w =

(−1,−1), one has v ∈ D(F +C)(x0, y0)(u)∩(− clC) and w ∈ DG(x0, z0)(u)∩(− clD(z0)).

Now we check Theorem 4.13 with y1 = y0, y2 = 0, v1 = v, and v2 = 0. Straightforward

calculations give that

D2
0F (x0, y1, u, v1)(x) = {y ∈ R | y ≥ 0},

D[2
0 C(x0, 0, u, 0)(x) = D2

0C(x0, 0, u, 0)(x) = {y ∈ R | y ≥ 0},

D[2
0 G(x0, z0, u, w)(x) = D2

0G(x0, z0, u, w)(x) = {(z1, z2) ∈ R2 | z1 ≥ −x1, z2 ≥ −x2}.

It is easy to see that C is pseudo-Lipschitz at (x0, 0), G is pseudo-Lipschitz at (x0, z0), all

(A(G, x0, z0, u, w)), (A(C, x0, y2, u, v2)), and the assumed convexity are satisfied. Further-

more, the closed unit ball of Z∗ is w∗-sequentially compact.

As D2
0G(x0, z0, u, w)(X) + D(z0) = R2, the constraint qualification (4.6) holds. We

see that D2
0G(x0, z0, u, w)(1, 1) ∩ IT (−D, z0) 6= ∅ and hence (MFCQ) holds. By taking

c∗ ∈ (clC)∗ \ {0}, i.e., c∗ > 0, one has

Λ(x0, y0, z0, c
∗) = {(0, 0)},

which is a nonempty and bounded set. So, all the assumptions and conclusions of Theo-

rem 4.13 hold.

Example 4.16. Let X = Y = R2, Z = R, C(x) ≡ R2
+, D = R+

F (x) = {(y1, y2) ∈ R2 | y1 = |x1|, y2 ≥ −x2} and G(x) := {z ∈ R | z ≥ x2|x1|}.

Consider x0 = (0, 0), y0 = (0, 0) and z0 = 0. It is easy to check that (x0, y0) is a

local weak nondominated point of (4.1). For (u, v, w) = ((1, 1), (0,−1), 0), by direct

computations, one has v ∈ D(F + C)(x0, y0)(u) ∩ (− clR2
+) and w ∈ DG(x0, z0)(u) ∩

(− clD(z0)). Now we apply Theorem 4.13 with y1 = y0, y2 = 0, v1 = v and v2 = 0. We

have D2
0F (x0, y1, u, v1)(x) = {(y1, y2) ∈ R2 | y1 ≥ 0, y2 ≥ −x2}, D2

0C(x0, 0, u, 0)(x) = B2
+

and D2
0G(x0, z0, u, w)(x) = {z ∈ R | z ≥ 0}. We can check that all the assumptions of

Theorem 4.13 stated before the conclusion about the equivalence are satisfied. If we choose

c∗ = (c1, 0) ∈ (clC)∗ = R2
+ and d∗ ∈ D∗ = R+ with c1 > 0, then 〈c∗, v〉 = 〈d∗, w〉 = 0 and

〈c∗, y〉+ 〈c∗, y〉+ 〈d∗, z〉 ≥ 0
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for all (y, y, z) ∈ D2
0F (x0, y1, u, v1)(X)×D2

0C(x0, 0, u, 0)(X)×D2
0G(x0, z0, u, w)(X). But,

the second-order KKT multiplier set Λ(x0, y0, z0, c
∗) = R+ is unbounded. The cause is

that the constraint qualification (4.6) does not hold:

D2
0G(x0, z0, u, w)(X) +D(z0) = R+.

Perspectives. The results of this paper can be developed in several directions. First,

equivalent relations between the nonemptiness and boundedness of multiplier sets and

constraint qualifications (counterparts of Theorem 4.13) can be expectedly obtained also

for the case γ = 1 (different techniques may be needed because of the nonclassical form

of the multiplier rules). Secondly, particular cases of the variable ordering cones C(·) such

as the Bishop-Phelps or Laurent cones may be interesting and deserve careful studies.

Further, we think that, instead of weak solutions, other types ones such as Pareto or

proper (in the sense of Henig, Borwein, Benson, etc) solutions are also important objects

of considerations.

Finally, we note that second-order optimality conditions in multiobjecttive optimiza-

tion have been also applied to algorithm design and convergence analysis (besides to recog-

nizing optimal solutions), concerning Newton-type algorithms for unconstrained problems.

However, we have not found any contribution to this topic for problems with variable or-

dering structures. So, this may be a promising theme for future research.
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