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Algebraic Surfaces with Zero-dimensional Cohomology Support Locus

Botong Wang

Abstract. Using the theory of cohomology support locus, we give a necessary condi-

tion for the Albanese map of a smooth projective surface to be a submersion. More

precisely, assuming that the cohomology support locus of any finite abelian cover of

a smooth projective surface consists of finitely many points, we prove that the sur-

face has trivial first Betti number, or is a ruled surface of genus one, or is an abelian

surface.

1. Introduction

Let X be a connected finite CW-complex. Denote the moduli space of rank one C-local

systems on X by Char(X). Then Char(X) is a commutative linear algebraic group (not

necessarily connected). As algebraic groups,

Char(X) ∼= Hom(π1(X),C∗)

which is isomorphic to the product of the affine torus (C∗)b1(X) and a finite abelian group.

Denote the connected component of Char(X) containing the origin by Char0(X).

The cohomology support locus of X is defined to be

Σ(X) := {L ∈ Char(X) | H i(X,L) 6= 0, for some i ∈ N}.

The cohomology support locus Σ(X) is always an algebraic subset of Char(X). It is a

theorem of Carlos Simpson [7] that when X is a smooth projective variety, each irreducible

component of Σ(X) is a translate of a subtorus by a torsion point.

We are interested in the varieties with zero-dimensional cohomology support locus.

Such condition gives strong consequences of the topology of X. For example, if Σ(X) (
Char(X), then the Euler characteristic χ(X) = 0. This is because the Euler characteristic

of X can be computed using any rank one local system on X, i.e.,

χ(X) =
∑
i≥0

(−1)i dimH i(X,L)
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where L is any rank one local system on X.

Before stating our main theorem, we recall that a connected covering space X ′ of X

is called an abelian cover, if the image of p∗ : π1(X
′) → π1(X) is a normal subgroup and

π1(X)/p∗(π1(X
′)) is an abelian group.

Theorem 1.1. Let X be a smooth projective surface over C. Suppose that for any finite

abelian cover X ′ of X, Σ(X ′) ∩ Char0(X ′) consists of finitely many points. Then the

Albanese map of X

aX : X → Alb(X)

is a submersion, or in algebraic terms, smooth and surjective. In particular, one of the

following statements applies to X,

• The first Betti number of X is zero. Or equivalently, the Albanese variety of X is a

point.

• X is a ruled surface of genus one.

• X is an abelian surface.

As we will see in the next section, the local systems in Char0(X) have better geometric

interpretation. They are pull-backs from the Albanese variety of X.

It is essential that we require Σ(X ′)∩Char0(X ′) consists of finitely many points for all

abelian cover X ′ of X. The next proposition gives a counter-example if we only require

Σ(X)∩Char0(X) consists of finitely many points. The example is based on an answer on

Mathoverflow by Jason Starr and communication with Christian Schnell.

Proposition 1.2. There exists a smooth surface Y such that Σ(Y ) ∩ Char0(Y ) consists

of finitely many points, but the Albanese map of Y is not a submersion.

Our example of such Y has torsion in H1(Y,Z). Hence Char(Y ) has multiple connected

components. In fact, one can show that Σ(Y ) contains a connected component of Char(Y ),

which is not Char0(Y ). We don’t know whether we can replace Σ(Y )∩Char0(Y ) by Σ(Y )

in the preceding proposition. Moreover, we don’t know how much of our main theorem

generalizes to higher dimension. So let us conclude the introduction with two questions.

Question 1.3. Does there exist a smooth surface Y such that Σ(Y ) consists of finitely

many points, but the Albanese map of Y is not a submersion?

Question 1.4. Does Theorem 1.1 generalize to higher dimension?
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2. Cohomology support locus and Fourier-Mukai transformation

Let X be a smooth projective variety over C. The following theorem is proved implicitly

by Christian Schnell in [6].

Theorem 2.1. Suppose Σ(X) ∩ Char0(X) consists of finitely many points. Then the

Albanese map aX : X → Alb(X) is surjective, and RaiX∗(CX) are local systems on X for

all i ∈ N.

Before proving the theorem, we review some of the basic ideas of [6]. For simplicity of

notations, we will simply denote aX and Alb(X) by a and A respectively.

Since the Albanese map a induces an isomorphism H1(X,Q) ∼= H1(A,Q), the map

a? : Char(A)→ Char(X) induces an isomorphism between Char(A) and Char0(X). Now,

we define the relative cohomology support locus.

Definition 2.2. Let F • be a constructible complex on A. We define

Σ(A,F •) = {L ∈ Char(A) | Hi(A,F • ⊗C L) 6= 0 for some i ∈ N}

where Hi denotes the i-th hypercohomology group.

Next, we will review some of the arguments in [6]. Fix the smooth projective variety

X. Let A\ be the moduli space of rank one flat bundles on A. Here we recall that a flat

bundle is a complex vector bundle with an integrable connection. Then analytically A\ is

isomorphic to Char(A), but algebraically they are different. The isomorphism between A\

and Char(A) is given by the Riemann-Hilbert correspondence between flat bundles and

local systems. We denote this analytic isomorphism by Φ: A\ → Char(A).

Definition 2.3. In A\, we can define the relative cohomology support locus of a complex

of holonomic DA-modules M• by

S(A,M•) := {(E,∇) ∈ A\ | Hi(A,DRA(A,M• ⊗OA
(E,∇))) 6= 0 for some i ∈ Z}.

Here DRA : Db
h(DA) → Db

c(CA) is the Riemann-Hilbert functor from the bounded de-

rived category of holonomic DA modules to the bounded derived category of constructible

complexes on A.

The Fourier-Mukai transformation of algebraic D-modules is introduced by Laumon [4]

and Rothstein [5]. It is an equivalence of categories,

FMA : Db
coh(DA)→ Db

coh(OA\)

between the bounded derived category of coherent DA-modules and the bounded derived

category of coherent sheaves on A\.
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The Fourier-Mukai transformation is useful for the study of cohomology support locus,

because it follows from the base change theorem that

(2.1) Supp(FMA(M•)) = S(A,M•)

where by definition

Supp(FMA(M•)) =
⋃
i∈Z

Supp(H i(FMA(M•))).

Proof of Theorem 2.1. Notice that in Definition 2.3, the cohomology support locus relative

to a complex of D-modules is defined via the corresponding constructible complex. Thus,

(2.2) Φ(S(A,M•)) = Σ(A,DRA(M•)).

Here we recall that Φ: A\ → Char(A) is the Riemann-Hilbert correspondence between

rank one flat bundles and rank one local systems.

Given a rank one local system LA on A,

H i(X, a∗(LA)) ∼= Hi(A,Ra∗(a
∗(LA))) ∼= Hi(A,Ra∗(CX)⊗C LA)

where the first isomorphism is because derived push-forward is associative (see [3, Corol-

lary 2.3.4]), and the second isomorphism follows from the projection formula (see [3, The-

orem 2.3.29]). Therefore,

Σ(X) ∩ a?(Char(A)) = a?(Σ(A,Ra∗(CX)))

where the pull-back map a? : Char(A) → Char(X) induces an isomorphism between

Char(A) and Char0(X).

By assumption, Σ(X)∩Char0(X) consists of finitely many points. So, Σ(A,Ra∗(CX))

also consists of finitely many points. Since the Riemann-Hilbert correspondence is com-

patible with pushforward,

(2.3) Ra∗(CX) ∼= Ra∗(DRX(OX)) ∼= DRA(a†(OX))

where the last pushforward a† : D
b
h(DX) → Db

h(DA) is the pushforward in the derived

category.

Therefore, we have

Σ(A,Ra∗(CX)) = Σ(A,DRA(a†(OX))) = Φ(S(A, a†(OX)))

where the last equality follows from (2.2). Since Φ is an analytic isomorphism, and since

Σ(A,Ra∗(CX)) consists of finitely many points, S(A, a†(OX)) also consists of finitely
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many points. By (2.1), this means that the cohomology sheaves of FMA(a†(OX)) are all

skyscraper sheaves. By (2.3), to show Rai∗(CX) are local systems on A for all i, it suffices

to show that H i(a†(OX)) are smooth DA-modules for all i.

Since FMA : Db
coh(DA)→ Db

coh(OA\) is an equivalence of category, to prove the theo-

rem, it suffices to show that for any C• ∈ Db
coh(OA\) which is supported on finitely many

points in A\, H i(FM−1A (C•)) are local systems on A. Here FM−1A is the quasi-inverse of

the Fourier-Mukai functor (see [4, Section 3]).

By the definition of FM−1A , when N is a coherent skyscraper sheaf on A\ considered

as a complex in degree zero, FM−1A (N) is a flat bundle on A considered as a complex in

degree zero. Apply FM−1A to the the sequence,

· · · → τ≥1(C•)→ τ≥0(C•)→ τ≥−1(C•)→ · · ·

we obtain a sequence of objects in Db
h(DA),

· · · → M•1 →M•0 →M•−1 → · · ·

where M•i = 0 when i� 0 and M•i = FM−1A (C•) when i� 0.

Since for any i the mapping cone of τ≥i+1(C•) → τ≥i(C•) is a skyscraper sheaf con-

sidered as a complex in degree i, the mapping cone of M•i+1 → M•i is a local system

considered as a complex in degree i. Using induction on

min{i | M•i = FM−1A (C•)} −max{i | M•i = 0}

one can easily prove that the cohomology of FM−1A (C•) are local systems on A. Therefore,

the theorem follows.

3. Proof of Theorem 1.1

We will prove Theorem 1.1 in this section. Let X be a smooth projective surface over

C throughout the section. As in Theorem 1.1, we will assume that for any finite abelian

cover X ′ of X, Σ(X ′) ∩ Char0(X ′) consists of finitely many points.

Since the cohomology support locus Σ(X)∩Char0(X) consists of finitely many points,

by Theorem 2.1, Rai∗(CX) are local systems on X for all i. Assume that Alb(X) has

dimension at least two. Since Ra0∗(CX) is a local system, the number of connected com-

ponents of a−1(t) is constant for t ∈ Alb(X). Thus, the Albanese map a : X → Alb(X)

is surjective, and hence dim Alb(X) = 2. Since dimX = dim Alb(X) = 2, Rai∗(CX) are

supported on a proper subvariety of Alb(X) for i ≥ 1. Thus, Rai∗(CX) = 0 for all i ≥ 1.

In other words, a : X → Alb(X) cannot have any positive dimensional fiber. Since X is

projective, a : X → Alb(X) being quasi-finite implies that it is a finite morphism. Now,
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since Ra0∗(CX) is a local system, every fiber of a : X → Alb(X) has the same number of

points. Thus, a : X → Alb(X) is a finite unramified covering map. Thus, X is an abelian

surface.

Now, suppose Alb(X) has dimension one. Consider the Stein factorization X
f→ Z

g→
Alb(X) of a : X → Alb(X). Since f has connected fibers,

Ra0∗(CX) = R(g ◦ f)0∗(CX) = Rg0∗(Rf
0
∗ (CX)) = Rg0∗(CZ).

Since Ra0∗(CX) is a local system on Alb(X), by the argument in the previous paragraph,

g : Z → Alb(X) is an unramified covering map. Thus, Z is an abelian variety. By the

universality of the Albanese variety, g : Z → Alb(X) is an isomorphism. Thus, a : X →
Alb(X) has connected fibers.

Next, we will show that Ra1∗(CX) is trivial. Since π1(Alb(X)) is abelian, every local

systems on Alb(X) is an extension of rank one local systems. According to Simpson’s

theorem [7], Σ(X) ∩ Char0(X) consists of torsion points only. Thus, Ra1∗(CX) is an

extension of torsion local systems. Suppose Ra1∗(CX) 6= 0. Then there exists a finite

cover p : A′ → Alb(X), such that p∗(Ra1∗(CX)) has at least one global section. Let X ′ =

X ×Alb(X) A
′. By choosing p to be minimal, we can assume that X ′ is connected. Then

X ′ is an abelian cover of X. Moreover, by projection formula, Ra′1∗ (CX′) ∼= p∗(Ra1∗(CX)),

where a′ : X ′ → A′ is the projection. Now, by the degeneration of the Leray spectral

sequence (see [8, Corollary 15.15]),

dimCH
1(X ′,CX′) = dimCH

1(A′, Ra′0∗ (CX′)) + dimCH
0(A′, Ra′1∗ (CX′)).

Since p∗(Ra1∗(CX)) has at least one global section, and since Ra′1∗ (CX′) ∼= p∗(Ra1∗(CX)),

dimCH
0(A′, Ra′1∗ (CX′)) = dimCH

0(A′, p∗(Ra1∗(CX))) ≥ 1.

Since a : X → Alb(X) has connected fibers, so does a′ : X ′ → A′, and hence

dimCH
1(A′, Ra′0∗ (CX′)) = dimCH

1(A′,CA′) = 2.

Therefore, dimCH
1(X ′,CX′) ≥ 3, and hence Alb(X ′) has dimension at least two. By the

previous arguments, Σ(X ′) ∩ Char(X ′) consisting of finitely many points implies that X ′

is an abelian surface. Thus, X is an abelian surface too. This is a contradiction to the

assumption that Alb(X) has dimension one. Hence, Ra1∗(CX) = 0.

Thus, we have shown that the general fiber of a : X → Alb(X) is isomorphic to P1.

Next, we show that X is a minimal surface. In fact, suppose X is not minimal, i.e., there

exists a blow-down map f : X → X0. Then the Albanese map a : X → Alb(X) factors

as X
f→ X0

g→ Alb(X). Since f is a blow-down map, Rf2∗ (CX) has a skyscraper sheaf

as a direct summand. In fact, by the decomposition theorem [2], Rf∗(CX) has a direct
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summand, which is supported at a point. The image of this direct summand under Rg∗

will be a direct summand of Rg∗(Rf∗(CX)) ∼= Ra∗(CX). This contradicts that Rai∗(CX)

are local systems for all i. So X is a minimal surface.

By the adjunction formula, the canonical bundle of X is not nef. By [1, VI, Proposi-

tion 3.3], X is either P2 or a ruled surface. Since Alb(X) has dimension one, X is a ruled

surface of genus one.

The last case is when Alb(X) has dimension zero. The statement of Theorem 1.1 is

vacuous in this case.

4. Constructing examples for Proposition 1.2

We will construct an example to show Proposition 1.2.

Let π : C → E be a double cover of an elliptic curve E ramified at two points P and

Q. Let σ : C → C be the Galois map relative to π : C → E. Let VZ be a rank one Z
coefficient local system on E such that VZ is nontrivial, but VZ⊗ZVZ is trivial. Denote the

C coefficient local system VZ ⊗Z C by VC. Equivalently, we can define VC as a non-trivial

rank one C-local system on E, whose monodromy group is {1,−1}, and we define VZ as

the Z-sections of VC. Denote π∗(VZ) and π∗(VC) by WZ and WC respectively. Clearly,

WC/(WZ ⊗Z Z[
√
−1]) is a principal C/Z[

√
−1]-bundle over C with a zero section. Here

Z[
√
−1] = Z⊕Z ·

√
−1 is the subring generated by

√
−1 over Z. Denote the total space of

this principal bundle by Ỹ . Then Ỹ is an isotrivial family of elliptic curves over C with a

zero section.

On Ỹ , there are a few order two actions. The first one is induced by the Galois action

σ, which by abusing notations we also denote by σ. Notice that “±1
2” is a double section

of VC, where the two sections differ by a translation by VZ. Thus, it descents to a global

section of Ỹ → C, which we denote by s. Then addition by s along the fibers defines a

fixed point free action on Ỹ of order two. We denote the second action by τ . Evidently,

the two actions σ and τ commute with each other. Thus, σ ◦ τ is also an action of order

two on Ỹ , which is obviously fixed point free. We define Y to be the quotient of Ỹ by the

action σ ◦ τ .

Since σ ◦ τ preserves each fiber of Ỹ → E, we have a map φ : Y → E. It is easy to

check that away from P and Q, φ : Y → E is smooth with fiber isomorphic to the elliptic

curve C/Z[
√
−1]. However, over P and Q, φ has non-reduced fiber. The fibers over P and

Q have multiplicity two and are isomorphic to C/
(
Z[
√
−1] + 1

2Z[
√
−1]
)
.

Notice that the map φ : Y → E defined above is the Albanese map of Y . In fact, let F

be a general fiber of φ. One can easily check that the map H1(F,Q)→ H1(Y,Q) induced

by the inclusion is zero. Therefore, the Albanese map contracts the fiber F to a point.

Thus, φ : Y → E is the Albanese map of Y . It follows from straightforward computation
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that Rφi∗(CY ) are local systems on E for all i. By the decomposition theorem [2], it follows

that

Rφ∗(CY ) ∼=
⊕
i≥0

Rφi∗(CY )[i].

Notice that any local system on an elliptic curve is obtained by extensions of rank one local

systems. Therefore, by the arguments in Section 2, Σ(Y )∩Char0(Y ) = φ?Σ(E,Rφ∗(CY ))

consists of finitely many points.
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Norm. Sup. (4) 26 (1993), no. 3, 361–401.

[8] S. Zucker, Hodge theory with degenerating coefficients: L2 cohomology in the Poincaré
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