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Exact Controllability for Wave Equations with Switching Controls

Yong He

Abstract. In this paper, we analyze the exact controllability problem for wave equa-

tions endowed with switching controls. The goal is to control the dynamics of the

system by switching among different actuators such that, in each instant of time,

there are as few active actuators as possible. We prove that the system is exactly

controllable under suitable geometric control conditions.

1. Introduction

Let (M, g) be an n-dimensional compact smooth Riemannian manifold with a boundary

∂M . Let T > 0. Denote by ∆ the Laplace-Beltrami operator on M .

The main purpose of this paper is to study the exact controllability problems of the

wave equation with switching controls. Let us consider the following two controlled wave

equations

(1.1)


ytt −∆y =

∑m
i=1 χEiχωifi in (0, T )×M,

y = 0 on (0, T )× ∂M,

y(0) = y0, yt(0) = y1 in M

and

(1.2)


ztt −∆z = 0 in (0, T )×M,

z =
∑m

i=1 χFiχΓihi on (0, T )× ∂M,

z(0) = z0, zt(0) = z1 in M.

In (1.1) (resp. (1.2)), (y0, y1) ∈ H1
0 (M) × L2(M) (resp. (z0, z1) ∈ L2(M) × H−1(M)),

m ∈ N, and for i = 1, . . . ,m, ωi is an open subset of M (resp. Γi is an open subset of Γ),

Ei (resp. Fi) is an open subset of (0, T ) such that Ei∩Ej = ∅ (resp. Fi∩Fj = ∅) for i 6= j,

fi ∈ L2(Ei × ωi) (resp. hi ∈ L2(Fi × Γi)).

The exact controllability of (1.1) and (1.2) are formulated respectively as follows.
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Definition 1.1. For any given initial data (y0, y1) ∈ H1
0 (M) × L2(M) and (y2, y3) ∈

H1
0 (M) × L2(M), one can find controls {fi}mi=1 such that the corresponding solution to

(1.1) satisfies that (y(T ), yt(T )) = (y2, y3).

Definition 1.2. For any given initial data (z0, z1) ∈ L2(M) × H−1(M) and (z2, z3) ∈
L2(M)×H−1(M), one can find controls {hi}mi=1 such that the corresponding solution to

(1.1) satisfies that (z(T ), zt(T )) = (z2, z3).

To guarantee the exact controllability of systems (1.1) and (1.2), we introduce the

following two conditions, respectively.

Condition 1.3. Every optics associated with the symbol of the wave operator issued at

t = 0 intersects the set
⋃m
i=1(Ei × ωi).

Condition 1.4. Every optics associated with the symbol of the wave operator issued at

t = 0 intersects the set
⋃m
i=1(Fi × Γi) at a non-diffractive point.

Some detailed descriptions are given in Section 2 for readers who are not familiar with

concepts such as “optics associated with the wave operator” and “non-diffractive point”.

We have the following results for the exact controllability of (1.1) and (1.2).

Theorem 1.5. System (1.1) is exactly controllable, provided that Condition 1.3 holds.

Theorem 1.6. System (1.2) is exactly controllable, provided that Condition 1.4 holds.

By the standard Hilbert Uniqueness Method (see [9] for example), in order to prove

Theorems 1.5 and 1.6, we only need to establish an internal observability estimate and a

boundary observability estimate for the corresponding adjoint systems, respectively. Now,

let us formulate the observability problems.

First, we consider a wave equation as follows:

(1.3)


vtt −∆v = 0 in (0, T )×M,

v = 0 on (0, T )× ∂M,

v(0) = v0, vt(0) = v1 in M,

where (v0, v1) ∈ L2(M) × H−1(M). The exact controllability of system (1.1) is implied

by the following observability estimate

(1.4) |v0|2L2(M) + |v1|2H−1(M) ≤ C
m∑
i=1

∫
Ei

∫
ωi

|v|2 dxdt,

where C is a constant which is independent of (v0, v1).
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Next, we introduce the following wave equation:

(1.5)


wtt −∆w = 0 in (0, T )×M,

w = 0 on (0, T )× ∂M,

w(0) = w0, wt(0) = w1 in M,

where (w0, w1) ∈ H1
0 (M)× L2(M). Once we prove that

(1.6) |w0|2H1
0 (M) + |w1|2L2(M) ≤ C

m∑
i=1

∫
Fi

∫
Γi

∣∣∣∣∂w∂ν
∣∣∣∣2 dΓdt,

where C is a constant independent of (z0, z1), we obtain the exact controllability of (1.2)

immediately.

We have the following two results.

Theorem 1.7. Inequality (1.4) is true, provided that Condition 1.3 holds.

Theorem 1.8. Inequality (1.6) is true, provided that Condition 1.4 holds.

Remark 1.9. By the classical result of Gaussian beam (see [12]), we know that if Con-

dition 1.3 (resp. Condition 1.4) is untrue, inequality (1.4) (resp. inequality (1.6)) cannot

hold. Therefore, system (1.1) (resp. system (1.2)) is not exactly controllable.

Control systems in real applications are often endowed with several actuators. Switch-

ing controllers arise in many fields of applications (see [4, 10, 11, 13, 14, 17] for example).

There are many reasons for using switching controls, such as to minimize the control cost,

to optimize the control time, to decouple disturbances, etc. The main motivation to con-

sider systems (1.1) and (1.2) is that in many control systems governed by wave equations,

one actor cannot work for a long time. One should stop it if it works for some time.

Otherwise it may be destroyed. Then, one should put at least two actors on the system.

When one is stopped, the other works. Controllability problems for wave equations have

been studied extensively in the literature (see [1–3,5,6,8,9,15,16] and the rich references

therein). As far as we know, there is no result about the controllability problems for wave

equations with switching controls. Although the main idea of proofs of Theorems 1.7 and

1.8 are the same as the one in [2,3], we believe that it deserves to provide complete proofs

for them.

2. Some preliminaries

In this section, for the convenience of readers, we recall some useful results for the prop-

agation of singularities of the solution to a wave equation involved in a manifold with a
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nonempty boundary. Although there is nothing new, we present it here for the sake of

completeness and the readers’ convenience. More details can be found in [7].

For a smooth manifold N , write Ṫ ∗N for the set T ∗N \ (N × {0}). Write Q for the

interior of the cylinder (−∞,+∞)×M , ∂Q for the set (−∞,+∞)× ∂M , and Q for the

closure of Q. Let O be a neighborhood of Q such that Q ⊂⊂ O. Denote by Ṫ ∗Q the

restriction of Ṫ ∗O on Q. Let Ṫ ∗b Q = Ṫ ∗Q∪ Ṫ ∗∂Q and write Ṫ ∗∂Q for the conormal bundle

to ∂Q in O. Let π be the canonical projection

π : Ṫ ∗Q \ Ṫ ∗∂Q → Ṫ ∗b Q.

Equip Ṫ ∗b Q with the topology induced by π. For any ξ ∈ T ∗M , denoted by |ξ|g the norm

of ξ with respect to the metric g. Let p = τ2 − |ξ|2g and

Char(p) =
{

(t, x, τ, ξ) : (t, x, τ, ξ) ∈ Ṫ ∗Q, τ2 − |ξ|2g = 0
}
, Σb = π(Char(p)).

The cotangent bundle to the boundary is the disjoint union of the elliptic set E , the

hyperbolic set H and the glancing set G, which are consisted by points ρ ∈ Ṫ ∗∂Q such

that p has, respectively, no zero in π−1(ρ), two simple zeroes in π−1(ρ) and a double zero

in π−1(ρ).

Let ρ0 ∈ G and p0 ∈ Char(p) such that π(β0) = ρ0. Let γ : s → Ṫ ∗b Q be the integral

curve of

Hp
4
=

(
∂p

∂τ

∂

∂t
,
∂p

∂ξ1

∂

∂x1
, . . . ,

∂p

∂ξn
∂

∂xn
,−∂p

∂t

∂

∂τ
,− ∂p

∂x1

∂

∂ξ1
, . . . ,− ∂p

∂xn
∂

∂ξn

)
such that γ(0) = β0. Then, γ is tangent to ∂Q at β0. Denote by Gk (k ≥ 2) the set such

that the order of the contact of γ with ∂Q is exactly k. Let Σ2,−
b be the set such that

β(s) ∈ Ṫ ∗Q for 0 < |s| ≤ δ with δ small enough, and Σ2,+
b the set such that β(s) /∈ Ṫ ∗Q

for 0 < |s| ≤ δ, where δ is an arbitrary positive number.

Now we recall the definition of a ray associated with p.

Definition 2.1. A ray associated with p is a continuous curve γ : I → Σb, where I ⊂ R
is an open interval, such that the following conditions hold:

(1) If γ(s0) ∈ Σb ∩ Ṫ ∗Q, then γ is differentiable at s0 and γ′(s0) = Hp(γ(s0)).

(2) If γ(s0) ∈ (Σb ∩ Ṫ ∗Q) ∪ Σ2,−
b , then there is a δ > 0 such that γ(s0) ∈ Σb ∩ Ṫ ∗Q for

0 < |s− s0| < δ.

(3) If γ(s0) ∈ Σ2,+
b , then there is a δ > 0 such that γ(s) ∈ Σ2,+

b for |s − s0| < δ.

Further, γ is differentiable at s0 (as a curve in Σ2,+
b ) and γ′(s0) = Hq(γ(s0)), where

q(t, x; τ, ξ) = |ξ|2b − τ2, where |ξ|b is the length of ξ ∈ T ∗Γ for the metric induced by

(M, g) on the boundary Γ.
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(4) If γ(s0) ∈ G3 and {γ̃+(s), γ̃−(s)} are the (at most) two points in Char(p) such that

π(γ̃+(s)) = π(γ̃−(s)) = γ(s) and γ̃+(s0) = γ̃−(s0), then

lim
s→s0

γ̃+(s)− γ̃+(s0)

s− s0
= Hp(γ̃

+(s0)) and lim
s→s0

γ̃−(s)− γ̃−(s0)

s− s0
= Hp(γ̃

−(s0)).

Definition 2.2. The projection of a ray γ to Q is called an optics associated with the

symbol p.

Let u be an extendible distribution on Q. Let us give the definition of the wavefront

set up to the boundary.

Definition 2.3. For any s ∈ R, if ρ /∈WFsb(u) then

(1) ρ /∈WFs(u) for ρ ∈ Ṫ ∗Q;

(2) there exists a tangential pseudodifferential operator A, which is elliptic at ρ, such

that Au ∈ Hs(Q) for ρ ∈ Ṫ ∗∂Q.

At last, we recall the definition for a non-diffractive point.

Definition 2.4. A point ρ ∈ Ṫ ∗∂Q is non-diffractive if ρ ∈ E ∪ H, or if ρ ∈ G and

β ∈ Char(p) is the unique point such that π(β) = ρ, the ray γ through β with γ(0) = β

satisfies that for any ε > 0, there exists an s ∈ (−ε, ε) such that γ(s) /∈ Ṫ ∗Q.

With the above notations, we give the following results. Proofs of them can be found

in [2].

Lemma 2.5. Let u be an extendible distribution in Q such that utt −∆u = 0 in Q and

u = 0 on ∂Q. Let γ be a ray. If ρ ∈ γ ⊂ Σb satisfies that ρ /∈ WFs(u) (s = 0, 1), then

γ ∩WFs(u) = ∅ (s = 0, 1).

Lemma 2.6. Let u be an extendible distribution in Q such that utt − ∆u = 0 and ρ a

non-diffractive point. If ρ /∈WF1(u|∂Q) ∪WF0(∂u∂ν |∂Q), then ρ /∈WF1
b(u).

3. Proofs of Theorems 1.7 and 1.8

This section is devoted to the proofs of Theorems 1.7 and 1.8.

Proof of Theorem 1.7. Without loss of generality, we assume that m = 2. To begin with,

let us define the following spaces:

X 4=
{
v : v solves equation (1.3) with some (v0, v1) ∈ L2(M)×H−1(M)

}
,
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endowed with the norm

|v|X =
(
|v0|2L2(M) + |v1|2H−1(M)

)1/2
,

and

Y 4=
{
v ∈ H−1((0, T )×M) : vtt −∆v = 0, v = 0 on (0, T )× ∂M,

v ∈ L2((E1 × ω1) ∪ (E2 × ω2))
}
,

endowed with the norm

|v|Y
4
=

(∫
E1

∫
ω1

|v|2 dxdt+

∫
E2

∫
ω2

|v|2 dxdt+ |v|2H−1((0,T )×M)

)1/2

.

It is a simple matter to see that X is embedded into Y continuously. Further, by Lemma 2.5

and noting that (E1 × ω1) ∪ (E2 × ω2) satisfies Condition 1.3, we know that Y is also

embedded into X . Therefore, we find that X = Y.

Next, we show that Y is a Banach space. Indeed, let {vn}∞n=1 be a Cauchy sequence

in Y. From the definition of the norm of Y, we see {vn}∞n=1 is also a Cauchy sequence in

H−1((0, T )×M). Then, there is a v ∈ H−1((0, T )×M) such that

(3.1) lim
n→∞

vn = v in H−1((0, T )×M).

This shows that vtt −∆v = 0 in D′((0, T )×M).

Further, by the definition of the norm in Y again, we know that {χE1×ω1vn}∞n=1 is a

Cauchy sequence in L2(E1 × ω1). Hence, there is a ṽ ∈ L2(E1 × ω1) such that

lim
n→∞

χE1×ω1vn = ṽ in L2(E1 × ω1).

On the other hand, from (3.1), we know that for any ϕ ∈ H1
0 (E1×ω1) ⊂ H1

0 ((0, T )×M),

it holds that

(ṽ, ϕ)L2(E1×ω1) = lim
n→∞

(χE1×ω1vn, ϕ)L2(E1×ω1)

= lim
n→∞

(χE1×ω1vn, ϕ)H−1(E1×ω1),H1
0 (E1×ω1)

= lim
n→∞

(vn, ϕ)H−1((0,T )×M),H1
0 ((0,T )×M)

= (v, ϕ)H−1((0,T )×M),H1
0 ((0,T )×M),

which gives

ṽ = vin H−1(E1 × ω1).

Thus, we see that

v|E1×ω1 ∈ L2(E1 × ω1).
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Similarly, we get

v|E2×ω2 ∈ L2(E2 × ω2).

Therefore, we obtain that v ∈ X , which completes the proof of our claim.

Now, by means of the closed graph theorem, we know the identity map between X
and Y is bicontinuous. Hence, we know that there is a constant C > 0 such that for every

(v0, v1) ∈ L2(M)×H−1(M),

|v|X ≤ C|v|Y ,

which implies that

|v0|2L2(M) + |v1|2H−1(M)

≤ C
(∫

E1

∫
ω1

|v|2 dxdt+

∫
E2

∫
ω2

|v|2 dxdt+ |v|2H−1((0,T )×M)

)
.

(3.2)

It remains to get rid of the second terms on the right-hand side of (3.2). For this, we only

need to show that

|v|2H−1((0,T )×M) ≤ C
(∫

E1

∫
ω1

|v|2 dxdt+

∫
E2

∫
ω2

|v|2 dxdt
)

for a constant C which does not depend on v ∈ X . We complete this task by a contradiction

argument. Assume that there is a sequence
{

(v
(n)
0 , v

(n)
1 )
}∞
n=1
⊂ L2(M) × H−1(M) such

that ∣∣(v(n)
0 , v

(n)
1 )
∣∣
L2(M)×H−1(M)

= 1 for all n ∈ N

and that ∫
E1

∫
ω1

∣∣v(n)
∣∣2 dxdt+

∫
E2

∫
ω2

∣∣v(n)
∣∣2 dxdt ≤ 1

n

∣∣v(n)
∣∣2
H−1((0,T )×M)

.

Since |v(n)|X = 1, we know that {v(n)}∞n=1 is bounded in L2((0, T )×M). Then, there exist

a v ∈ L2((0, T )×M) and a subsequence {v(nk)}∞k=1 ⊂ {v(n)}∞n=1 such that

v(nk) converges to v weakly in L2((0, T )×M) as k →∞.

It is clear that v satisfies that
vtt −∆v = 0 in D′((0, T )×M),

v = 0 on (0, T )× Γ,

v = 0 in (E1 × ω1) ∪ (E2 × ω2).

Let us define the following space:

N 4
=
{
v ∈ X : vtt −∆v = 0, v = 0 in (E1 × ω1) ∪ (E2 × ω2)

}
.
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The task now is to prove that N = {0}. Since

v = 0 in (E1 × ω1) ∪ (E2 × ω2),

we have

v ∈ H1((E1 × ω1) ∪ (E2 × ω2)).

From Lemma 2.5 and the assumption that (E1 × ω1) ∪ (E2 × ω2) satisfies Condition 1.3,

we see

N ⊂ H1((0, T )×M).

Then, by the Sobolev embedding theorem, we know any bounded subset of N is compact

in L2((0, T )×M). This implies that N is a finite dimensional subspace of L2((0, T )×M).

Further, since v = vt satisfies
vtt −∆v = 0 in D′((0, T )×M),

v = 0 on (0, T )× Γ,

v = 0 in (E1 × ω1) ∪ (E2 × ω2),

we find that ∂tv ∈ N . Therefore, if N 6= {0}, we know the restriction of ∂t on N must

have an eigenvalue λ and an eigenfunction ξ 6= 0 in (0, T )×M . Then, we get∂tξ = λξ in (0, T )×M,

ξ(0) = η in M,

where η ∈ H1(M). Hence, we see

ξ = eλtη in (0, T )×M.

Moreover, from ξ = 0 in (E1 × ω1) ∪ (E2 × ω2), we get η = 0 in ω1 ∪ ω2. On the other

hand, thanks to ξ ∈ N , we know that η solves
(−∆ + λ2)η = 0 in M,

η = 0 on Γ,

η = 0 in ω1 ∪ ω2.

From the classical unique continuation property for solutions of elliptic equations, we get

that η = 0 in M . This contradicts our assumptions that N 6= {0}.
By means of N = {0}, we know

v(nk) converges to 0 weakly in L2((0, T )×M) as k →∞.
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Thus, we find

v(nk) converges to 0 strongly in H−1((0, T )×M) as k →∞.

Therefore, we obtain

lim
k→∞

(∫
E1

∫
ω1

∣∣v(nk)
∣∣2 dxdt+

∫
E2

∫
ω2

∣∣v(nk)
∣∣2 dxdt+

∣∣v(nk)
∣∣2
H−1((0,T )×M)

)
= 0,

which contradicts the fact that
∣∣(v(nk)

0 , v
(nk)
0 )

∣∣ = 1 and the inequality (3.2). This completes

the proof of Theorem 1.7.

Proof of Theorem 1.8. Let

Z 4=
{
w : w solves equation (1.5) with some (w0, w1) ∈ H1

0 (M)× L2(M)
}
,

endowed with the norm

|w|Z =
(
|w0|2H1

0 (M) + |w1|2L2(M)

)1/2
,

and

W 4
=

{
w ∈ L2((0, T )×M) : wtt −∆w = 0, w|(0,T )×∂M = 0,

∂w

∂ν

∣∣∣
(F1×Γ1)∪(F2×Γ2)

∈ L2((F1 × Γ1) ∪ (F2 × Γ2))

}
endowed with the norm

|w|W
4
=

(∫
E1

∫
Γ1

∣∣∣∣∂w∂ν
∣∣∣∣2 dΓdt+

∫
E2

∫
Γ2

∣∣∣∣∂w∂ν
∣∣∣∣2 dΓdt+ |w|2L2((0,T )×M)

)1/2

.

It is clear that Z is a Banach space. Further, by an argument similar to proving that Y
is a Banach space, we can easily get that W is a Banach space.

It is clear that Z can be embedded into W continuously. On the other hand, for

any w ∈ W, we claim that w ∈ Z. For showing this, we need to prove that for any

w ∈ W and ρ ∈ T ∗b (Q) ∩ {t = 0}, it holds that ρ /∈ WF1(w). If ρ /∈ Σb, noting that

wtt − ∆w = 0 and w|∂Q = 0, one has ρ /∈ WF1(w). If ρ ∈ Σb, let γ(s, ρ) be the ray

through ρ. By Condition 1.4, there exists a non-diffractive point ρ0 = γ(s0, ρ) such that

ρ0 ∈ T ∗∂Q|(F1×Γ1)∪(F2×Γ2). Since w|∂Q = 0 and

∂w

∂ν

∣∣∣
(F1×Γ1)∪(F2×Γ2)

∈ L2((F1 × Γ1) ∪ (F2 × Γ2)),

we get

ρ0 /∈WF1
b(w|∂Q) ∪WF0

b

(
∂w

∂ν

∣∣∣
∂Q

)
.
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From Lemma 2.6, we obtain that ρ0 /∈ WF1
b(w). Then, from Lemma 2.5, we get ρ /∈

WF1
b(w). Hence, the claim is proved. Then, by the closed graph theorem, we know there

is a constant C > 0 such that for any w ∈ Z,

(3.3) |w|Z ≤ C|w|W .

Now we only need to prove that there is a constant C > 0 such that for any w ∈ Z,

(3.4) |w|2L2((0,T )×M) ≤ C

(∫
F1

∫
Γ1

∣∣∣∣∂w∂ν
∣∣∣∣2 dΓdt+

∫
F2

∫
Γ2

∣∣∣∣∂w∂ν
∣∣∣∣2 dΓdt

)
.

We achieve this goal by a contradiction argument. If (3.4) is untrue, then we can find

a sequence
{

(w
(n)
0 , w

(n)
1 )
}∞
n=1
⊂ H1

0 (M) × L2(M) such that the corresponding solutions

{w(n)}∞n=1 ⊂ Z satisfying

(3.5)
∣∣w(n)

∣∣
L2((0,T )×M)

= 1 for n = 1, 2, . . .

and

(3.6)

∫
F1

∫
Γ1

∣∣∣∣∣∂w(n)

∂ν

∣∣∣∣∣
2

dΓdt+

∫
F2

∫
Γ2

∣∣∣∣∣∂w(n)

∂ν

∣∣∣∣∣
2

dΓdt ≤ 1

n
.

From (3.3), (3.5) and (3.6), we have that {w(n)}∞n=1 is a bounded subset of H1((0, T )×M).

Therefore, there is a subsequence
{
w(nk)

}∞
k=1
⊂
{
w(n)

}∞
n=1

and a w ∈ H1((0, T ) ×M)

such that

w(nk) → w weakly in H1((0, T )×M) as k →∞

and
∂w

∂ν

∣∣∣
(F1×Γ1)∪(F2×Γ2)

= 0.

Thus, we have

w(nk) → w strongly in L2((0, T )×M) as k →∞.

This, together with (3.5), implies that

|w|L2((0,T )×M) = 1.

Let

O 4=
{
w ∈ W :

∂w

∂ν

∣∣∣
(F1×Γ1)∪(F2×Γ2)

= 0

}
.

Now we only need to prove that O = {0}. For any w ∈ O, by (3.3), we know w ∈
H1((0, T )×M). Hence, we find

v = wt ∈ L2((0, T )×M),

vtt −∆v = 0 in (0, T )×M,

∂v
∂ν

∣∣∣
(F1×Γ1)∪(F2×Γ2)

= 0,

v|(0,T )×∂M = 0.
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Therefore, we get v ∈ O, which means that ∂tO ⊂ O. Utilizing (3.3) again, we find the two

norms | · |H1((0,T )×M) and | · |L2((0,T )×M) are equivalent in O. Thus, O is finite dimensional.

Let λ be an eigenvalue of ∂t on O and ζ the corresponding eigenfunction. Then we see∂tζ = λζ in (0, T )×M,

ζ(0) = ς in (0, T )×M,

where ς ∈ H1
0 (M). Since ζ is a solution to (1.3), we know that ς solves(λ2 −∆)ς = 0 in M,

ς = 0 on Γ.

Since ∂ζ
∂ν

∣∣
(F1×Γ1)∪(F2×Γ2)

= 0, we have that ∂ς
∂ν = 0 on Γ1 × Γ2. Then, from the unique

continuation property for elliptic equations, we conclude that ς = 0, which implies that

ζ = 0. Hence, we prove that O = {0}.
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