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We solve the problem of description of nonsingular pairs of compatible
flat metrics for the general N-component case. The integrable nonlinear
partial differential equations describing all nonsingular pairs of compat-
ible flat metrics (or, in other words, nonsingular flat pencils of metrics)
are found and integrated. The integrating of these equations is based on
reducing to a special nonlinear differential reduction of the Lamé equa-
tions and using the Zakharov method of differential reductions in the
dressing method (a version of the inverse scattering method).

1. Introduction and basic definitions

We use both contravariant metrics gij(u) with upper indices, where u =
(u1, . . . ,uN) are local coordinates, 1 ≤ i, j ≤N, and covariant metrics gij(u)
with lower indices, gis(u)gsj(u) = δi

j . Indices of coefficients of the Levi-
Civita connections Γi

jk
(u) and indices of the tensors of Riemannian cur-

vature Ri
jkl(u) are raised and lowered by the metrics corresponding to

them

Γij
k
(u) = gis(u)Γj

sk
(u),

Γijk(u) =
1
2
gis(u)

(
∂gsk

∂uj
+
∂gjs

∂uk
− ∂gjk

∂us

)
,

R
ij

kl(u) = gis(u)Rj

skl(u),

Ri
jkl(u) =

∂Γijl
∂uk

−
∂Γijk
∂ul

+Γipk(u)Γ
p

jl
(u)− Γipl(u)Γ

p

jk
(u).

(1.1)
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Definition 1.1. Two contravariant flat metrics gij

1 (u) and g
ij

2 (u) are called
compatible if any linear combination of these metrics

gij(u) = λ1g
ij

1 (u) +λ2g
ij

2 (u), (1.2)

where λ1 and λ2 are arbitrary constants such that det(gij(u)) �≡ 0, is also a
flat metric and coefficients of the corresponding Levi-Civita connections
are related by the same linear formula

Γijk (u) = λ1Γ
ij

1,k(u) +λ2Γ
ij

2,k(u). (1.3)

We also say in this case that the flat metrics g
ij

1 (u) and g
ij

2 (u) form a flat
pencil (this definition was proposed by Dubrovin in [6, 7]).

Definition 1.2. Two contravariant metrics g
ij

1 (u) and g
ij

2 (u) of constant
Riemannian curvature K1 and K2, respectively, are called compatible if
any linear combination of these metrics

gij(u) = λ1g
ij

1 (u) +λ2g
ij

2 (u), (1.4)

where λ1 and λ2 are arbitrary constants such that det(gij(u)) �≡ 0, is a
metric of constant Riemannian curvature λ1K1 +λ2K2, and coefficients of
the corresponding Levi-Civita connections are related by the same linear
formula

Γijk (u) = λ1Γ
ij

1,k(u) +λ2Γ
ij

2,k(u). (1.5)

We also say in this case that the metrics g
ij

1 (u) and g
ij

2 (u) form a pencil
of metrics of constant Riemannian curvature.

Definition 1.3. Two Riemannian or pseudo-Riemannian contravariant
metrics g

ij

1 (u) and g
ij

2 (u) are called compatible if, for any linear com-
bination of these metrics

gij(u) = λ1g
ij

1 (u) +λ2g
ij

2 (u), (1.6)

where λ1 and λ2 are arbitrary constants such that det(gij(u)) �≡ 0, coeffi-
cients of the corresponding Levi-Civita connections and components of
the corresponding tensors of Riemannian curvature are related by the
same linear formula

Γijk (u) = λ1Γ
ij

1,k(u) +λ2Γ
ij

2,k(u), (1.7)

R
ij

kl(u) = λ1R
ij

1,kl(u) +λ2R
ij

2,kl(u). (1.8)
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We also say in this case that the metrics g
ij

1 (u) and g
ij

2 (u) form a pencil
of metrics.

Definition 1.4. Two Riemannian or pseudo-Riemannian contravariant
metrics g

ij

1 (u) and g
ij

2 (u) are called almost compatible if, for any linear
combination of the metrics (1.6), relation (1.7) is fulfilled.

Definition 1.5. Two Riemannian or pseudo-Riemannian metrics g
ij

1 (u)
and g

ij

2 (u) are called a nonsingular pair of metrics if the eigenvalues of
this pair of metrics, that is, roots of the equation

det
(
g
ij

1 (u)−λg
ij

2 (u)
)
= 0, (1.9)

are distinct.
A pencil of metrics is called nonsingular if it is formed by a nonsingu-

lar pair of metrics.

These definitions are motivated by the theory of compatible Poisson
brackets of hydrodynamic type. We give a brief survey of this theory in
the next section. In the case if the metrics gij

1 (u) and g
ij

2 (u) are flat, that is,
Ri

1,jkl(u) = Ri
2,jkl(u) = 0, relation (1.8) is equivalent to the condition that

an arbitrary linear combination of the flat metrics gij

1 (u) and g
ij

2 (u) is also
a flat metric. In this case, Definition 1.3 is equivalent to the well-known
definition of a flat pencil of metrics (Definition 1.1) or, in other words, a
compatible pair of local nondegenerate Poisson structures of hydrody-
namic type [6] (see also [7, 8, 13, 25, 26, 27, 28, 29]). In the case if the
metrics g

ij

1 (u) and g
ij

2 (u) are metrics of constant Riemannian curvature
K1 and K2, respectively, that is,

R
ij

1,kl(u) =K1

(
δi
lδ

j

k
− δi

kδ
j

l

)
, R

ij

2,kl(u) =K2

(
δi
lδ

j

k
− δi

kδ
j

l

)
, (1.10)

relation (1.8) gives the condition that an arbitrary linear combination of
the metrics g

ij

1 (u) and g
ij

2 (u), (1.6), is a metric of constant Riemannian
curvature λ1K1 + λ2K2. In this case, Definition 1.3 is equivalent to our
Definition 1.2 of a pencil of metrics of constant Riemannian curvature or,
in other words, a compatible pair of the corresponding nonlocal Poisson
structures of hydrodynamic type, which were introduced and studied by
the author and Ferapontov in [30]. Compatible metrics of more general
type correspond to a compatible pair of nonlocal Poisson structures of
hydrodynamic type that were introduced and studied by Ferapontov in
[12]. They arise, for example, if we use a recursion operator generated
by a pair of compatible Poisson structures of hydrodynamic type. Such
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recursion operators determine, as is well known, infinite sequences of
corresponding (generally speaking, nonlocal) Poisson structures.

As noted earlier by the author in [26, 27, 28, 29], condition (1.8) fol-
lows from condition (1.7) in the case of certain special reductions con-
nected with the associativity equations (see also Theorem 3.5 below). Of
course, it is not by chance. Under certain very natural and quite general
assumptions on metrics (it is sufficient but not necessary, in particular,
that eigenvalues of the pair of metrics under consideration are distinct),
compatibility of the metrics follows from their almost compatibility, but,
generally speaking, in the general case, it is not true even for flat met-
rics (we will present the corresponding counterexamples below). Corre-
spondingly, we would like to emphasize that condition (1.7), which is
considerably more simple than condition (1.8), almost guarantees com-
patibility of metrics and deserves a separate study, but, in the general
case, it is also necessary to require the fulfillment of condition (1.8) for
compatibility of the corresponding Poisson structures of hydrodynamic
type. It is also interesting to find out whether condition (1.8) guarantees
the fulfillment of condition (1.7).

This paper is devoted to the problem of description of all nonsingular
pairs of compatible flat metrics and to integrability of the corresponding
nonlinear partial differential equations by the inverse scattering method.

2. Compatible local Poisson structures of hydrodynamic type

Any local homogeneous first-order Poisson bracket, that is, a Poisson
bracket of the form{

ui(x),uj(y)
}
= gij(u(x))δx(x−y) + b

ij

k

(
u(x)

)
uk
xδ(x −y), (2.1)

where u1, . . . ,uN are local coordinates on a certain smooth N-dimen-
sional manifold M, is called a local Poisson structure of hydrodynamic type
or Dubrovin-Novikov structure [9]. Here, ui(x), 1 ≤ i ≤ N, are functions
(fields) of a single independent variable x, and coefficients gij(u) and
b
ij

k
(u) of bracket (2.1) are smooth functions of local coordinates.
In other words, for arbitrary functionals I[u] and J[u] on the space of

fields ui(x), 1 ≤ i ≤N, a bracket of the form

{I,J} =
∫

δI

δui(x)

(
gij(u(x)) d

dx
+ b

ij

k

(
u(x)

)
uk
x

)
δJ

δuj(x)
dx (2.2)

is defined, and it is required that this bracket is a Poisson bracket, that is,
it is skew-symmetric

{I,J} = −{J,I} (2.3)
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and satisfies the Jacobi identity{{I,J},K}+ {{J,K}, I}+ {{K,I}, J} = 0 (2.4)

for arbitrary functionals I[u], J[u], and K[u]. The skew-symmetry (2.3)
and the Jacobi identity (2.4) impose very restrictive conditions on coeffi-
cients gij(u) and b

ij

k (u) of bracket (2.2) (these conditions will be consid-
ered below). For bracket (2.2), the Leibniz identity

{IJ,K} = I{J,K}+ J{I,K} (2.5)

is automatically fulfilled in accordance with the following property of
variational derivative of functionals

δ(IJ)
δui(x)

= I
δJ

δui(x)
+ J

δI

δui(x)
. (2.6)

Recall that variational derivative of an arbitrary functional I[u] is de-
fined by

δI ≡ I[u+ δu]− I[u] =
∫

δI

δuk(x)
δuk(x)dx + o(δu). (2.7)

The definition of a local Poisson structure of hydrodynamic type does
not depend on a choice of local coordinates u1, . . . ,uN on the manifold M.
Actually, the form of brackets (2.2) is invariant under local changes of
coordinates ui = ui(v1, . . . ,vN), 1 ≤ i ≤N, on M∫

δI

δui(x)

(
gij(u(x)) d

dx
+ b

ij

k

(
u(x)

)
uk
x

)
δJ

δuj(x)
dx

=
∫

δI

δvi(x)

(
g̃ij(v(x)) d

dx
+ b̃

ij

k

(
v(x)

)
vk
x

)
δJ

δvj(x)
dx,

(2.8)

since variational derivatives of functionals transform like covector fields

δI

δvi(x)
=

δI

δus(x)
∂us

∂vi
. (2.9)

Correspondingly, coefficients gij(u) and b
ij

k (u) of bracket (2.2) transform
as follows:

g̃sr(v) = gij(u(v))∂vs

∂ui

∂vr

∂uj
,

b̃srl (v) = b
ij

k

(
u(v)

)∂vs

∂ui

∂vr

∂uj

∂uk

∂vl
+ gij(u(v))∂vs

∂ui

∂2vr

∂uj∂up

∂up

∂vl
.

(2.10)
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In particular, the coefficients gij(u) define a contravariant tensor field of
rank 2 (a contravariant “metric”) on the manifold M. For the important
case of a nondegenerate metric gij(u), detgij �= 0, (i.e., in the case of a
pseudo-Riemannian manifold (M,gij)), the coefficients bijk (u) define the
Christoffel symbols of an affine connection Γijk(u) as follows:

b
ij

k (u) = −gis(u)Γjsk(u),

Γ̃ijk(v) = Γprs
(
u(v)

) ∂vi

∂up

∂ur

∂vj

∂us

∂vk
+

∂2us

∂vj∂vk

∂vi

∂us
.

(2.11)

The local Poisson structures of hydrodynamic type (2.1) were intro-
duced and studied by Dubrovin and Novikov in [9], where they pro-
posed a general local Hamiltonian approach (this approach corresponds
to the local structures of the form (2.1)) to the so-called homogeneous sys-
tems of hydrodynamic type, that is, evolutionary quasilinear systems of
first-order partial differential equations

ui
t = V i

j (u)u
j
x. (2.12)

This Hamiltonian approach was motivated by the study of the equa-
tions of Euler hydrodynamics and the Whitham averaging equations,
which describe the evolution of slowly modulated multiphase solutions
of partial differential equations [10].

Local bracket (2.2) is called nondegenerate if det(gij(u)) �≡ 0. For the
general nondegenerate brackets of form (2.2), Dubrovin and Novikov
proved the following important theorem.

Theorem 2.1 (Dubrovin and Novikov [9]). If det(gij(u)) �≡ 0, then bracket
(2.2) is a Poisson bracket, that is, it is skew-symmetric and satisfies the Jacobi
identity, if and only if

(1) gij(u) is an arbitrary flat pseudo-Riemannian contravariant metric (a
metric of zero Riemannian curvature),

(2) bij
k
(u) = −gis(u)Γj

sk
(u), where Γj

sk
(u) is the Riemannian connection

generated by the contravariant metric gij(u) (the Levi-Civita connec-
tion).

Consequently, for any local nondegenerate Poisson structure of hy-
drodynamic type, there always exist local coordinates v1, . . . ,vN (flat co-
ordinates of the metric gij(u)) in which all coefficients of the bracket are
constant:

g̃ij(v) = ηij = const, Γ̃ijk(v) = 0, b̃
ij

k
(v) = 0, (2.13)
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that is, the bracket has the constant form

{I,J} =
∫

δI

δvi(x)
ηij d

dx

δJ

δvj(x)
dx, (2.14)

where (ηij) is a nondegenerate symmetric constant matrix

ηij = ηji, ηij = const, det
(
ηij) �= 0. (2.15)

On the other hand, as early as 1978, Magri proposed a bi-Hamiltonian
approach to the integration of nonlinear systems [22]. This approach
demonstrated that integrability is closely related to the bi-Hamiltonian
property, that is, to the property of a system to have two compatible
Hamiltonian representations. As shown by Magri in [22], compatible
Poisson brackets generate integrable hierarchies of systems of differen-
tial equations. Therefore, the description of compatible Poisson struc-
tures is very urgent and important problem in the theory of integrable
systems. For a system, the bi-Hamiltonian property, in particular, gener-
ates recurrent relations for the conservation laws of this system.

Beginning from [22], quite extensive literature (see, e.g., [5, 15, 16,
18, 34], and the necessary references therein) has been devoted to the
bi-Hamiltonian approach and to the construction of compatible Pois-
son structures for many specific important equations of mathematical
physics and field theory. Apparently, as far as the problem of description
of sufficiently wide classes of compatible Poisson structures of defined
special types is concerned, the first such statement was considered in [23,
24] (see also [2, 3]). In those papers, the author posed and completely
solved the problem of description of all compatible local scalar first- and
third-order Poisson brackets, that is, all Poisson brackets given by arbi-
trary scalar first- and third-order ordinary differential operators. These
brackets generalize the well-known compatible pair of the Gardner-
Zakharov-Faddeev bracket [17, 37] (the first-order bracket) and the
Magri bracket [22] (the third-order bracket) for the Korteweg-de Vries
equation.

In the case of homogeneous systems of hydrodynamic type, many
integrable systems possess compatible Poisson structures of hydrody-
namic type. The problems of description of these structures for partic-
ular systems and numerous examples were considered in many papers
(see, e.g., [1, 14, 19, 31, 33, 35]). In [33] in particular, Nutku studied a
special class of compatible two-component Poisson structures of hydro-
dynamic type and the related bi-Hamiltonian hydrodynamic systems.
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In [11], Ferapontov classified all two-component homogeneous systems
of hydrodynamic type possessing three compatible nondegenerate local
Poisson structures of hydrodynamic type.

In the general form, the problem of description of flat pencils of met-
rics (or, in other words, compatible nondegenerate local Poisson struc-
tures of hydrodynamic type) was considered by Dubrovin in [6, 7] in
connection with the construction of important examples of such flat pen-
cils of metrics generated by natural pairs of flat metrics on the spaces of
orbits of Coxeter groups and on other Frobenius manifolds and asso-
ciated with the corresponding quasi-homogeneous solutions of the as-
sociativity equations. In the theory of Frobenius manifolds introduced
and studied by Dubrovin [6, 7] (they correspond to two-dimensional
topological field theories), a key role is played by flat pencils of metrics,
possessing a number of special additional (and very restrictive) prop-
erties (they satisfy the so-called quasi-homogeneity property). In addi-
tion, Dubrovin proved in [8] that the theory of Frobenius manifolds is
equivalent to the theory of quasi-homogeneous compatible nondegener-
ate local Poisson structures of hydrodynamic type. The general problem
on compatible nondegenerate local Poisson structures of hydrodynamic
type was also considered by Ferapontov in [13].

The present author devoted [25, 26, 27, 28, 29] to the general prob-
lem of classification of all compatible local Poisson structures of hydro-
dynamic type and to the study of the integrable nonlinear systems that
describe the compatible Poisson structures and, mainly, the special re-
ductions connected with the associativity equations.

Definition 2.2 (Magri [22]). Two Poisson brackets { , }1 and { , }2 are
called compatible if an arbitrary linear combination of these Poisson
brackets

{ , } = λ1{ , }1 +λ2{ , }2, (2.16)

where λ1 and λ2 are arbitrary constants, is also a Poisson bracket. In this
case, we also say that the brackets { , }1 and { , }2 form a pencil of Poisson
brackets.

Correspondingly, the problem of description of compatible nondegen-
erate local Poisson structures of hydrodynamic type is pure differential-
geometric problem of description of flat pencils of metrics (see [6, 7]).

In [6, 7], Dubrovin presented all the tensor relations for the general
flat pencils of metrics. First, we introduce the necessary notation. Let ∇1

and ∇2 be the operators of covariant differentiation given by the Levi-
Civita connections Γij1,k(u) and Γij2,k(u) generated by the metrics g

ij

1 (u)
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and g
ij

2 (u), respectively. Indices of the covariant differentials are raised
and lowered by the corresponding metrics

∇i
1 = gis

1 (u)∇1,s, ∇i
2 = gis

2 (u)∇2,s. (2.17)

Consider the tensor

∆ijk(u) = gis
1 (u)g

jp

2 (u)
(
Γk2,ps(u)−Γk1,ps(u)

)
(2.18)

introduced by Dubrovin in [6, 7].

Theorem 2.3 (Dubrovin [6, 7]). If metrics gij

1 (u) and g
ij

2 (u) form a flat pen-
cil, then there exists a vector field fi(u) such that the tensor ∆ijk(u) and the
metric gij

1 (u) have the form

∆ijk(u) =∇i
2∇

j

2f
k(u), (2.19)

g
ij

1 (u) =∇i
2f

j(u) +∇j

2f
i(u) + cg

ij

2 (u), (2.20)

where c is a certain constant, and the vector field fi(u) satisfies the equations

∆ij
s (u)∆sk

l (u) = ∆ik
s (u)∆

sj

l
(u), (2.21)

where

∆ij

k
(u) = g2,ks(u)∆sij(u) =∇2,k∇i

2f
j(u), (2.22)(

gis
1 (u)g

jp

2 (u)− gis
2 (u)g

jp

1 (u)
)
∇2,s∇2,pf

k(u) = 0. (2.23)

Conversely, for the flat metric gij

2 (u) and the vector field fi(u) that is a solution
of the system of (2.21) and (2.23), the metrics g

ij

2 (u) and (2.20) form a flat
pencil.

The proof of this theorem immediately follows from the relations that
are equivalent to the fact that the metrics g

ij

1 (u) and g
ij

2 (u) form a flat
pencil and are considered in flat coordinates of the metric g

ij

2 (u) [6, 7].
In [25], an explicit and simple criterion of compatibility for two lo-

cal Poisson structures of hydrodynamic type is formulated; that is, it is
shown what explicit form is sufficient and necessary for the local Poisson
structures of hydrodynamic type to be compatible.

For the moment, in the general case, we are able to formulate such
an explicit criterion only, namely, in terms of Poisson structures but not
in terms of metrics as in Theorem 2.3. But for nonsingular pairs of the
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Poisson structures of hydrodynamic type (i.e., for nonsingular pairs of
the corresponding metrics), we will, in this paper, get an explicit general
criterion of compatibility, namely, in terms of the corresponding metrics.

Lemma 2.4 (an explicit criterion of compatibility for local Poisson struc-
tures of hydrodynamic type, [25]). Any local Poisson structure of hydro-
dynamic type {I,J}2 is compatible with the constant nondegenerate Poisson
bracket (2.14) if and only if it has the form

{I,J}2 =
∫

δI

δvi(x)

((
ηis ∂h

j

∂vs
+ηjs ∂h

i

∂vs

)
d

dx
+ηis ∂2hj

∂vs∂vk
vk
x

)
δJ

δvj(x)
dx,

(2.24)

where hi(v), 1 ≤ i ≤N, are smooth functions defined on a certain neighbour-
hood.

We do not require in Lemma 2.4 that the Poisson structure of hydro-
dynamic type {I,J}2 is nondegenerate. Besides, it is important to note
that this statement is local.

In 1995, Ferapontov proposed in [13] an approach to the problem of
flat pencils of metrics, which is motivated by the theory of recursion op-
erators and formulated (without any proof) the following theorem as a
criterion of compatibility for nondegenerate local Poisson structures of
hydrodynamic type.

Theorem 2.5 [13]. Two local nondegenerate Poisson structures of hydrody-
namic type given by flat metrics gij

1 (u) and g
ij

2 (u) are compatible if and only if
the Nijenhuis tensor of the affinor vi

j(u) = gis
1 (u)g2,sj(u) vanishes, that is,

Nk
ij(u) = vs

i (u)
∂vk

j

∂us
−vs

j (u)
∂vk

i

∂us
+vk

s (u)
∂vs

i

∂uj
−vk

s (u)
∂vs

j

∂ui
= 0. (2.25)

Besides, in the remark in [13], it is noted that if the spectrum of vi
j(u)

is simple, then the vanishing of the Nijenhuis tensor implies the exis-
tence of coordinates R1, . . . ,RN for which all the objects vi

j(u), g
ij

1 (u), and
g
ij

2 (u) become diagonal. Moreover, in these coordinates, the ith eigen-
value of vi

j(u) depends only on the coordinate Ri. In the case when all
the eigenvalues are nonconstant, they can be introduced as new coor-
dinates. In these new coordinates, ṽi

j(R) = diag(R1, . . . ,RN) and g̃
ij

2 (R) =
diag(g1(R), . . . ,gN(R)), g̃ij

1 (R) = diag(R1g1(R), . . . ,RNgN(R)).
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In this paper, we unfortunately prove that, in the general case,
Theorem 2.5 is not true, and, correspondingly, it is not a criterion of com-
patibility of flat metrics. Generally speaking, compatibility of flat metrics
does not follow from the vanishing of the corresponding Nijenhuis ten-
sor. The corresponding counterexamples will be presented in Section 7.
We also prove that, in the general case, Theorem 2.5 is actually a criterion
of almost compatibility of flat metrics that does not guarantee compat-
ibility of the corresponding nondegenerate local Poisson structures of
hydrodynamic type. But if the spectrum of vi

j(u) is simple, that is, all the
eigenvalues are distinct, then we prove that Theorem 2.5 is not only true
but also can be essentially generalized to the case of arbitrary compatible
Riemannian or pseudo-Riemannian metrics, in particular, the especially
important cases in the theory of systems of hydrodynamic type; namely,
the cases of metrics of constant Riemannian curvature or the metrics gen-
erating the general nonlocal Poisson structures of hydrodynamic type.

Namely, we prove the following theorems for any pseudo-Riemannian
metrics (not only for flat metrics as in Theorem 2.5).

Theorem 2.6. (1) If, for any linear combination (1.6) of two metrics g
ij

1 (u)
and g

ij

2 (u), condition (1.7) is fulfilled, then the Nijenhuis tensor of the affinor

vi
j(u) = gis

1 (u)g2,sj(u) (2.26)

vanishes. Thus, for any two compatible or almost compatible metrics, the corre-
sponding Nijenhuis tensor always vanishes.

(2) If a pair of metrics gij

1 (u) and g
ij

2 (u) is nonsingular, that is, roots of the
equation

det
(
g
ij

1 (u)−λg
ij

2 (u)
)
= 0 (2.27)

are distinct, then it follows from the vanishing of the Nijenhuis tensor of the
affinor vi

j(u) = gis
1 (u)g2,sj(u) that the metrics gij

1 (u) and g
ij

2 (u) are compatible.
Thus, a nonsingular pair of metrics is compatible if and only if the metrics are
almost compatible.

Theorem 2.7. Any nonsingular pair of metrics is compatible if and only if
there exist local coordinates u = (u1, . . . ,uN) such that gij

2 (u) = gi(u)δij and
g
ij

1 (u) = fi(ui)gi(u)δij , where fi(ui), i = 1, . . . ,N, are arbitrary (generally
speaking, complex) functions of single variables (of course, the functions fi(ui)
are not identically equal to zero, and, for nonsingular pairs of metrics, all these
functions must be distinct; and they cannot be equal to one another if they are
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constants but, nevertheless, in this special case, the metrics will also be compat-
ible).

Sections 3 and 4 are devoted to the proof of Theorems 2.6 and 2.7.

3. Almost compatible metrics and the Nijenhuis tensor

Let us consider two arbitrary contravariant Riemannian or pseudo-
Riemannian metrics g

ij

1 (u) and g
ij

2 (u), and also the corresponding co-
efficients of the Levi-Civita connections Γij1,k(u) and Γij2,k(u).

We introduce the tensor

Mijk(u) = gis
1 (u)Γ

jk

2,s(u)− g
js

2 (u)Γik1,s(u)

− g
js

1 (u)Γik2,s(u) + gis
2 (u)Γ

jk

1,s(u).
(3.1)

It follows from the following representation that Mijk(u) is actually a
tensor:

Mijk(u) = gis
1 (u)g

jp

2 (u)
(
Γk2,ps(u)− Γk1,ps(u)

)
− g

js

1 (u)gip

2 (u)
(
Γk2,ps(u)−Γk1,ps(u)

)
.

(3.2)

Lemma 3.1. The tensor Mijk(u) vanishes if and only if the metrics gij

1 (u) and
g
ij

2 (u) are almost compatible.

Proof. Recall that the functions Γijk (u) define the Christoffel symbols of
the Levi-Civita connection for a contravariant metric gij(u) if and only if
the following relations are fulfilled:

∂gij

∂uk
+Γijk (u) + Γjik (u) = 0, (3.3)

that is, the connection is compatible with the metric; and

gis(u)Γjks (u) = gjs(u)Γiks (u), (3.4)

that is, the connection is symmetric.
If gij(u) and Γij

k
(u) are defined by formulas (1.6) and (1.7), respec-

tively, then linear relation (3.3) is automatically fulfilled and relation
(3.4) is exactly equivalent to the relation Mijk(u) = 0. �
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We introduce the affinor

vi
j(u) = gis

1 (u)g2,sj(u) (3.5)

and consider the Nijenhuis tensor of this affinor

Nk
ij(u) = vs

i (u)
∂vk

j

∂us
−vs

j (u)
∂vk

i

∂us
+vk

s (u)
∂vs

i

∂uj
−vk

s (u)
∂vs

j

∂ui
(3.6)

following [13], where the affinor vi
j(u) and its Nijenhuis tensor were sim-

ilarly considered for two flat metrics.

Theorem 3.2. Any two metrics gij

1 (u) and g
ij

2 (u) are almost compatible if and
only if the corresponding Nijenhuis tensor Nk

ij(u) (3.6) vanishes.

Lemma 3.3. The following identities are always fulfilled:

g1,sp(u)N
p
rq(u)gri

2 (u)g
qj

2 (u)gsk
2 (u)

=Mkji(u) +Mikj(u) +Mijk(u),
(3.7)

2
(
Mikj(u) +Mijk(u)

)
= g1,sp(u)N

p
rq(u)gri

2 (u)g
qj

2 (u)gsk
2 (u)

+ g1,sp(u)N
p
rq(u)gri

2 (u)g
qk

2 (u)gsj

2 (u),
(3.8)

2Mkji(u) = g1,sp(u)N
p
rq(u)gri

2 (u)g
qj

2 (u)gsk
2 (u)

− g1,sp(u)N
p
rq(u)gri

2 (u)g
qk

2 (u)gsj

2 (u).
(3.9)

Proof. In the following calculations, using many times both relations
(3.3) and (3.4) for both the metrics gij

1 (u) and g
ij

2 (u), we have

Nk
ij(u) = vs

i

∂vk
j

∂us
−vs

j

∂vk
i

∂us
+vk

s

∂vs
i

∂uj
−vk

s

∂vs
j

∂ui

= g
sp

1 g2,pi
∂

∂us

(
gkl

1 g2,lj

)
− g

sp

1 g2,pj
∂

∂us

(
gkl

1 g2,li

)
+ g

kp

1 g2,ps
∂

∂uj

(
gsl

1 g2,li

)
− g

kp

1 g2,ps
∂

∂ui

(
gsl

1 g2,lj

)
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= −gsp

1 g2,pig2,lj

(
Γkl1,s +Γlk1,s

)
+ g

sp

1 g2,pig
kl
1 g2,lrg2,tj

(
Γrt2,s +Γtr2,s

)
+ g

sp

1 g2,pjg2,li

(
Γkl1,s +Γlk1,s

)
− g

sp

1 g2,pjg
kl
1 g2,lrg2,ti

(
Γrt2,s +Γtr2,s

)
− g

kp

1 g2,psg2,li

(
Γsl1,j +Γls1,j

)
+ g

kp

1 g2,psg
sl
1 g2,lrg2,ti

(
Γrt2,j +Γtr2,j

)
+ g

kp

1 g2,psg2,lj

(
Γsl1,i +Γls1,i

)
− g

kp

1 g2,psg
sl
1 g2,lrg2,tj

(
Γrt2,i +Γtr2,i

)
,

Nk
ijg

in
2 g

jm

2 = −gsn
1

(
Γkm1,s +Γmk

1,s

)
+ gsn

1 gkl
1 g2,lr

(
Γrm2,s +Γmr

2,s

)
+ gsm

1

(
Γkn1,s +Γnk1,s

)
− gsm

1 gkl
1 g2,lr

(
Γrn2,s +Γnr2,s

)
− g

kp

1 g2,psg
jm

2

(
Γsn1,j +Γns1,j

)
+ g

kp

1 g2,psg
sl
1 g2,lrg

jm

2

(
Γrn2,j +Γnr2,j

)
+ g

kp

1 g2,psg
in
2

(
Γsm1,i +Γms

1,i

)
− g

kp

1 g2,psg
sl
1 g2,lrg

in
2

(
Γrm2,i +Γmr

2,i

)
= −gsn

1 Γkm1,s + gsn
1 gkl

1 g2,lr

(
Γrm2,s +Γmr

2,s

)
+ gsm

1 Γkn1,s − gsm
1 gkl

1 g2,lr

(
Γrn2,s +Γnr2,s

)
− g

kp

1 g2,psg
jm

2

(
Γsn1,j +Γns1,j

)
+ g

kp

1 g2,psg
sj

1 Γmn
2,j

+ g
kp

1 g2,psg
in
2

(
Γsm1,i +Γms

1,i

)
− g

kp

1 g2,psg
si
1 Γ

nm
2,i ,

g1,qkN
k
ijg

in
2 g

jm

2 = −Γnm1,q + gsn
1 g2,qr

(
Γrm2,s +Γmr

2,s

)
+Γmn

1,q − gsm
1 g2,qr

(
Γrn2,s +Γnr2,s

)
− g2,qsg

jm

2

(
Γsn1,j +Γns1,j

)
+ g2,qsg

sj

1 Γmn
2,j + g2,qsg

in
2

(
Γsm1,i +Γms

1,i

)
− g2,qsg

si
1 Γ

nm
2,i ,

(3.10)

and, finally,

g1,qkN
k
ijg

in
2 g

jm

2 g
tq

2 = −gtq

2 Γnm1,q + gsn
1

(
Γtm2,s +Γmt

2,s

)
+ g

tq

2 Γmn
1,q − gsm

1

(
Γtn2,s +Γnt2,s

)
− g

jm

2

(
Γtn1,j +Γnt1,j

)
+ g

tj

1 Γ
mn
2,j + gin

2

(
Γtm1,i +Γmt

1,i

)
− gti

1 Γ
nm
2,i

=Mtmn +Mntm +Mnmt.

(3.11)

Note that the tensor Mijk(u), (3.1), is skew-symmetric with respect to
the indices i and j. Permuting the indices k and j in formula (3.7) and
adding the corresponding relation to (3.7), we obtain (3.8). Formula (3.9)
follows from (3.7) and (3.8) straightforward. �
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Corollary 3.4. The tensor Mijk(u) vanishes if and only if the Nijenhuis
tensor (3.6) vanishes.

In [25, 26, 27, 28, 29], the author studied special reductions in the
general problem on compatible flat metrics, namely, the reductions con-
nected with the associativity equations, that is, the following general
ansatz in formula (2.24):

hi(v) = ηis ∂Φ
∂vs

, (3.12)

where Φ(v1, . . . ,vN) is a function of N variables.
Correspondingly, in this case, the metrics have the form

g
ij

1 (v) = ηij , g
ij

2 (v) = ηisηjp ∂2Φ
∂vs∂vp

. (3.13)

Theorem 3.5 [26, 28, 29]. If metrics (3.13) are almost compatible, then they
are compatible. Moreover, in this case, the metric gij

2 (v) also is necessarily flat,
that is, metrics (3.13) form a flat pencil of metrics. The condition of almost
compatibility for metrics (3.13) has the form

ηsp ∂2Φ
∂vp∂vi

∂3Φ
∂vs∂vj∂vk

= ηsp ∂2Φ
∂vp∂vk

∂3Φ
∂vs∂vj∂vi

(3.14)

and coincides with the condition of compatible deformation of two Frobenius
algebras (this condition was derived and studied by the author in [26, 27, 28,
29]).

In particular, in [26, 27, 28, 29], it is proved that, in the two-component
case (N = 2), for ηij = εiδij , εi = ±1, condition (3.14) is equivalent to the
following linear second-order partial differential equation with constant
coefficients:

α

(
ε1 ∂2Φ
∂(v1)2

− ε2 ∂2Φ
∂(v2)2

)
= β

∂2Φ
∂v1∂v2

, (3.15)

where α and β are arbitrary constants that are not equal to zero simulta-
neously.

4. Compatible metrics and the Nijenhuis tensor

We prove the second part of Theorem 2.6. In Section 3, we particularly
proved that it always follows from compatibility (moreover, even from
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almost compatibility) of metrics that the corresponding Nijenhuis tensor
vanishes (Theorem 3.2).

Assume that a pair of metrics gij

1 (u) and g
ij

2 (u) is nonsingular, that is,
the eigenvalues of this pair of metrics are distinct. Furthermore, assume
that the corresponding Nijenhuis tensor vanishes. We prove that, in this
case, the metrics gij

1 (u) and g
ij

2 (u) are compatible (their almost compati-
bility follows from Theorem 3.2).

It is obvious that eigenvalues of the pair of metrics g
ij

1 (u) and g
ij

2 (u)
coincide with eigenvalues of the affinor vi

j(u). But it is well known that
if all eigenvalues of an affinor are distinct, then it always follows from
the vanishing of the Nijenhuis tensor of this affinor that there exist lo-
cal coordinates such that, in these coordinates, the affinor reduces to a
diagonal form in the corresponding neighbourhood [32] (see also [20]).

So, further, we can consider that the affinor vi
j(u) is diagonal in the

local coordinates u1, . . . ,uN , that is,

vi
j(u) = λi(u)δi

j , (4.1)

where there is no summation over the index i. By assumption, the eigen-
values λi(u), i = 1, . . . ,N, coinciding with eigenvalues of the pair of met-
rics gij

1 (u) and g
ij

2 (u), are distinct

λi �= λj if i �= j. (4.2)

Lemma 4.1. If the affinor vi
j(u) in (3.5) is diagonal in certain local coordinates

and all its eigenvalues are distinct, then, in these coordinates, the metrics gij

1 (u)
and g

ij

2 (u) are also necessarily diagonal.

Proof. Actually, we have

g
ij

1 (u) = λi(u)gij

2 (u). (4.3)

It follows from the symmetry of the metrics g
ij

1 (u) and g
ij

2 (u) that, for
any indices i and j,

(
λi(u)−λj(u)

)
g
ij

2 (u) = 0, (4.4)

where tehre is no summation over indices, that is,

g
ij

2 (u) = g
ij

1 (u) = 0 if i �= j. (4.5)
�
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Lemma 4.2. Let an affinor wi
j(u) be diagonal in certain local coordinates u =

(u1, . . . ,uN), that is, wi
j(u) = µi(u)δi

j .
(1) If all the eigenvalues µi(u), i = 1, . . . ,N, of the diagonal affinor are dis-

tinct, that is, µi(u) �= µj(u) for i �= j, then the Nijenhuis tensor of this affinor
vanishes if and only if the ith eigenvalue µi(u) depends only on the coordinate
ui.

(2) If all the eigenvalues coincide, then the Nijenhuis tensor vanishes.
(3) In the general case of an arbitrary diagonal affinor wi

j(u) = µi(u)δi
j , the

Nijenhuis tensor vanishes if and only if

∂µi

∂uj
= 0 (4.6)

for all indices i and j such that µi(u) �= µj(u).

Proof. Actually, for any diagonal affinor wi
j(u) = µi(u)δi

j , the Nijenhuis

tensor Nk
ij(u) has the form

Nk
ij(u) =

(
µi −µk)∂µj

∂ui
δkj − (µj −µk)∂µi

∂uj
δki (4.7)

(no summation over indices). Thus, the Nijenhuis tensor vanishes if and
only if, for any indices i and j,

(
µi(u)−µj(u)

)∂µi

∂uj
= 0, (4.8)

where there is no summation over indices. �

It follows from Lemmas 4.1 and 4.2 that, for any nonsingular pair of
almost compatible metrics, there always exist local coordinates in which
the metrics have the form

g
ij

2 (u) = gi(u)δij , g
ij

1 (u) = λi
(
ui)gi(u)δij , λi = λi

(
ui), i = 1, . . . ,N.

(4.9)

Moreover, we immediately derive that any pair of diagonal metrics
of the form g

ij

2 (u) = gi(u)δij and g
ij

1 (u) = fi(ui)gi(u)δij for any nonzero
functions fi(ui), i = 1, . . . ,N, (here they can be, e.g., coinciding nonzero
constants, i.e., the pair of metrics may be singular) is almost compatible
since the corresponding Nijenhuis tensor always vanishes for any pair
of metrics of this form.

We prove now that any pair of metrics of this form is always compat-
ible. Then, Theorems 2.6 and 2.7 will be completely proved.
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Consider two diagonal metrics of the form g
ij

2 (u) = gi(u)δij and g
ij

1 (u)
= fi(ui)gi(u)δij , where fi(ui), i = 1, . . . ,N, are arbitrary (possibly, com-
plex) nonzero functions of single variables, and consider their arbitrary
linear combination

gij(u) =
(
λ2 +λ1f

i(ui))gi(u)δij , (4.10)

where λ1 and λ2 are arbitrary constants such that det(gij(u)) �≡ 0.
We prove that relation (1.8) is always fulfilled for the corresponding

tensors of Riemannian curvature.
Recall that, for any diagonal metric, Γi

jk
(u) = 0 if all the indices i, j,

k are distinct. Correspondingly, Rij

kl(u) = 0 if all the indices i, j, k, l are
distinct. Besides, as a result of the well-known symmetries of the tensor
of Riemannian curvature, we have

Rii
kl(u) = R

ij

kk(u) = 0,

R
ij

il (u) = −Rij

li (u) = R
ji

li (u) = −Rji

il (u).
(4.11)

Thus, it is sufficient to prove relation (1.8) only for the following com-
ponents of the corresponding tensors of Riemannian curvature: Rij

il (u),
where i �= j, i �= l.

For an arbitrary diagonal metric g
ij

2 (u) = gi(u)δij , we have

Γi2,ik(u) = Γi2,ki(u) = − 1
2gi(u)

∂gi

∂uk
for any i,k,

Γi2,jj(u) =
1
2

gi(u)(
gj(u)

)2

∂gj

∂ui
, i �= j,

R
ij

2,il(u) = gi(u)Rj

2,iil(u)

= gi(u)

∂Γj2,il
∂ui

−
∂Γj2,ii
∂ul

+
N∑
s=1

Γj2,si(u)Γ
s
2,il(u)−

N∑
s=1

Γj2,sl(u)Γ
s
2,ii(u)

 .

(4.12)

It is necessary to consider the following two different cases separately.
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Case 1 (j �= l)

The corresponding components of the Riemannian curvature tensor have
the form

R
ij

2,il(u) = gi(u)

(
−
∂Γj2,ii
∂ul

+Γj2,ii(u)Γ
i
2,il(u)

−Γj2,jl(u)Γ
j

2,ii(u)−Γj2,ll(u)Γ
l
2,ii(u)

)

= −1
2
gi(u)

∂

∂ul

(
gj(u)(
gi(u)

)2

∂gi

∂uj

)
− 1

4
gj(u)(
gi(u)

)2

∂gi

∂uj

∂gi

∂ul

+
1

4gi(u)
∂gi

∂uj

∂gj

∂ul
− 1

4
gj(u)

gi(u)gl(u)
∂gl

∂uj

∂gi

∂ul
.

(4.13)

Respectively, for the metric

gij(u) =
(
λ2 +λ1f

i(ui))gi(u)δij , (4.14)

we obtain (here, we use that all the indices i, j, l are distinct) the follow-
ing relation:

R
ij

il (u) =
(
λ2 +λ1f

j(uj))[− 1
2
gi(u)

∂

∂ul

(
gj(u)(
gi(u)

)2

∂gi

∂uj

)

− 1
4

gj(u)(
gi(u)

)2

∂gi

∂uj

∂gi

∂ul
+

1
4gi(u)

∂gi

∂uj

∂gj

∂ul

− 1
4

gj(u)
gi(u)gl(u)

∂gl

∂uj

∂gi

∂ul

]
= λ1R

ij

1,il(u) +λ2R
ij

2,il(u).

(4.15)

Case 2 (j = l)

The corresponding components of the Riemannian curvature tensor
have the form

R
ij

2,ij(u) = gi(u)

(
∂Γj2,ij
∂ui

−
∂Γj2,ii
∂uj

+Γj2,ii(u)Γ
i
2,ij(u)

+ Γj2,ji(u)Γ
j

2,ij(u)−
N∑
s=1

Γj2,sj(u)Γ
s
2,ii(u)

)
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= −1
2
gi(u)

∂

∂ui

(
1

gj(u)
∂gj

∂ui

)
− 1

2
gi(u)

∂

∂uj

(
gj(u)(
gi(u)

)2

∂gi

∂uj

)

− 1
4

gj(u)(
gi(u)

)2

∂gi

∂uj

∂gi

∂uj
+

1
4

gi(u)(
gj(u)

)2

∂gj

∂ui

∂gj

∂ui

− 1
4gj(u)

∂gj

∂ui

∂gi

∂ui
+
∑
s �=i

1
4

gs(u)
gi(u)gj(u)

∂gj

∂us

∂gi

∂us
.

(4.16)

Respectively, for the metric

gij(u) =
(
λ2 +λ1f

i(ui))gi(u)δij , (4.17)

we obtain (here, we use that the indices i and j are distinct) the following
relation:

R
ij

ij(u) = −1
2
(
λ2 +λ1f

i(ui))gi(u)
∂

∂ui

(
1

gj(u)
∂gj

∂ui

)

− 1
2
gi(u)

∂

∂uj

((
λ2 +λ1f

j
(
uj
))
gj(u)(

gi(u)
)2

∂gi

∂uj

)

− 1
4
(
λ2 +λ1f

j(uj)) gj(u)(
gi(u)

)2

∂gi

∂uj

∂gi

∂uj

+
1
4
(
λ2 +λ1f

i(ui)) gi(u)(
gj(u)

)2

∂gj

∂ui

∂gj

∂ui

− 1
4gj(u)

∂gj

∂ui

∂
((
λ2 +λ1f

i
(
ui
))
gi
)

∂ui

+
1

4gi(u)
∂gi

∂uj

∂
((
λ2 +λ1f

j
(
uj
))
gj
)

∂uj

+
∑

s �=i,s �=j

1
4

(
λ2 +λ1f

s
(
us
))
gs(u)

gi(u)gj(u)
∂gj

∂us

∂gi

∂us

= λ1R
ij

1,ij(u) +λ2R
ij

2,ij(u).

(4.18)
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Theorems 2.6 and 2.7 are proved. Thus, the complete explicit descrip-
tion of nonsingular pairs of compatible and almost compatible metrics is
obtained.

5. Equations for nonsingular pairs of compatible flat metrics

Now, consider in detail the problem of nonsingular pairs of compatible
flat metrics. It follows from Theorem 2.7 that it is sufficient to classify
all pairs of flat metrics of the following special diagonal form g

ij

2 (u) =
gi(u)δij and g

ij

1 (u) = fi(ui)gi(u)δij , where fi(ui), i = 1, . . . ,N, are arbi-
trary (possibly, complex) functions of single variables.

The problem of description of diagonal flat metrics, that is, flat met-
rics gij

2 (u) = gi(u)δij , is a classical problem of differential geometry. This
problem is equivalent to the problem of description of curvilinear or-
thogonal coordinate systems in an N-dimensional pseudo-Euclidean
space, and it was studied in detail and was mainly solved at the be-
ginning of the 20th century (see [4]). Locally, such coordinate systems
are determined by N(N − 1)/2 arbitrary functions of two variables. Re-
cently, Zakharov showed that the Lamé equations describing curvilinear
orthogonal coordinate systems can be integrated by the inverse scatter-
ing method [36] (see also an algebraic-geometric approach in [21]).

The condition that the metric gij

1 (u) = fi(ui)gi(u)δij is also flat exactly
gives N(N − 1)/2 additional equations linear with respect to the func-
tions fi(ui). Note that, in this case, components (4.13) of the correspond-
ing tensor of Riemannian curvature automatically vanish as a result of
formula (4.15). And the vanishing of components (4.16) gives the corre-
sponding N(N − 1)/2 equations. In particular, in the case N = 2, this
completely solves the problem of description of nonsingular pairs of
compatible two-component flat metrics. In the next section, we present
this complete description. It is also very interesting to classify all the N-
orthogonal curvilinear coordinate systems in a pseudo-Euclidean space
(or, in other words, to classify the corresponding functions gi(u)) such
that the functions fi(ui) = (ui)n define the corresponding compatible flat
metrics (for n = 1, n = 1,2, n = 1,2,3, and so on, respectively).

Theorem 5.1. Any nonsingular pair of compatible flat metrics is described by
the following integrable nonlinear system, which is the special reduction of the
following Lamé equations:

∂βij

∂uk
= βikβkj , i �= j, i �= k, j �= k, (5.1)

∂βij

∂ui
+
∂βji

∂uj
+
∑

s �=i,s �=j
βsiβsj = 0, i �= j, (5.2)
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√
fi
(
ui
)∂(√fi

(
ui
)
βij
)

∂ui
+
√
fj
(
uj
)∂(√fj

(
uj
)
βji
)

∂uj

+
∑

s �=i,s �=j
fs(us)βsiβsj = 0, i �= j,

(5.3)

where fi(ui), i = 1, . . . ,N, are given arbitrary (possibly, complex) functions of
single variables (these functions are eigenvalues of the pair of metrics).

Remark 5.2. Equations (5.1) and (5.2) are the famous Lamé equations.
Equations (5.3) define a nontrivial nonlinear differential reduction of the
Lamé equations.

Proof. Consider the conditions of flatness for the diagonal metrics gij

2 (u)
= gi(u)δij and g

ij

1 (u) = fi(ui)gi(u)δij , where fi(ui), i = 1, . . . ,N, are ar-
bitrary (possibly, complex) functions of the given single variables (but
these functions are not identically equal to zero).

As shown in Section 4, for any diagonal metric, it is sufficient to con-
sider the condition R

ij

kl(u) = 0 (the condition of flatness for a metric) only
for the following components of the tensor of Riemannian curvature:
R

ij

il (u), where i �= j, i �= l.

Again as above, for an arbitrary diagonal metric g
ij

2 (u) = gi(u)δij , it is
necessary to consider the following two different cases separately.

Case 1 (j �= l)

In this case the condition of flatness for the metric gives

R
ij

2,il(u) = −1
2
gi(u)

∂

∂ul

(
gj(u)(
gi(u)

)2

∂gi

∂uj

)
− 1

4
gj(u)(
gi(u)

)2

∂gi

∂uj

∂gi

∂ul

+
1

4gi(u)
∂gi

∂uj

∂gj

∂ul
− 1

4
gj(u)

gi(u)gl(u)
∂gl

∂uj

∂gi

∂ul

= 0.

(5.4)

Introducing the standard classical notation

gi(u) =
1(

Hi(u)
)2

, ds2 =
N∑
i=1

(
Hi(u)

)2(
dui)2

,

βik(u) =
1

Hi(u)
∂Hk

∂ui
, i �= k,

(5.5)
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where Hi(u) are the Lamé coefficients and βik(u) are the rotation coefficients,
we derive that (5.4) are equivalent to the equations

∂2Hi

∂uj∂uk
=

1
Hj(u)

∂Hi

∂uj

∂Hj

∂uk
+

1
Hk(u)

∂Hk

∂uj

∂Hi

∂uk
, (5.6)

where i �= j, i �= k, j �= k. Equations (5.6) are equivalent to equations (5.1).

Case 2 (j = l)

In this case the condition of flatness for the metric gives

R
ij

2,ij(u) = −1
2
gi(u)

∂

∂ui

(
1

gj(u)
∂gj

∂ui

)
− 1

2
gi(u)

∂

∂uj

(
gj(u)(
gi(u)

)2

∂gi

∂uj

)

− 1
4

gj(u)(
gi(u)

)2

∂gi

∂uj

∂gi

∂uj
+

1
4

gi(u)(
gj(u)

)2

∂gj

∂ui

∂gj

∂ui

− 1
4gj(u)

∂gj

∂ui

∂gi

∂ui
+
∑
s �=i

1
4

gs(u)
gi(u)gj(u)

∂gj

∂us

∂gi

∂us

= 0.

(5.7)

Equations (5.7) are equivalent to the following equations:

∂

∂ui

(
1

Hi(u)
∂Hj

∂ui

)
+

∂

∂uj

(
1

Hj(u)
∂Hi

∂uj

)

+
∑

s �=i,s �=j

1(
Hs(u)

)2

∂Hi

∂us

∂Hj

∂us
= 0, i �= j.

(5.8)

Equations (5.8) are equivalent to equations (5.2).
The condition that the metric g

ij

1 (u) = fi(ui)gi(u)δij is also flat gives
exactly N(N − 1)/2 additional equations (5.3), which are linear with re-
spect to the given functions fi(ui). Note that, in this case, components
(5.4) of the corresponding tensor of Riemannian curvature automatically
vanish. And the vanishing of components (5.7) gives the corresponding
N(N − 1)/2 additional equations.
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Actually, for the metric g
ij

1 (u) = fi(ui)gi(u)δij , we have

H̃i(u) =
Hi(u)√
fi
(
ui
) ,

β̃ik(u) =
1

H̃i(u)

∂H̃k

∂ui
=

√
fi
(
ui
)

√
fk
(
uk
)( 1

Hi(u)
∂Hk

∂ui

)

=

√
fi
(
ui
)

√
fk
(
uk
)βik(u), i �= k.

(5.9)

Respectively, (5.1) are also fulfilled for the rotation coefficients β̃ik(u) and
(5.2) for the rotation coefficient β̃ik(u) give (5.3), which can be rewritten
as follows (as linear equations with respect to the functions fi(ui)):

fi(ui)∂βij
∂ui

+
1
2
(
fi(ui))′βij + fj(uj)∂βji

∂uj

+
1
2
(
fj(uj))′βji + ∑

s �=i,s �=j
fs(us)βsiβsj = 0, i �= j.

(5.10)

�

6. Two-component compatible flat metrics

Here, we present the complete description of nonsingular pairs of two-
component compatible flat metrics (see also [25, 28, 29], where an inte-
grable four-component nondiagonalizable homogeneous system of hy-
drodynamic type, describing all the two-component compatible flat met-
rics, was derived and investigated).

It is shown above (Theorem 2.7 for N = 2) that, for any nonsingular
pair of two-component compatible metrics g

ij

1 (u) and g
ij

2 (u), there al-
ways exist local coordinates u1,u2 such that

(
g
ij

2 (u)
)
=


ε1(

b1(u)
)2

0

0
ε2(

b2(u)
)2

 ,

(
g
ij

1 (u)
)
=


ε1f1(u1)(
b1(u)

)2
0

0
ε2f2(u2)(
b2(u)

)2

 ,

(6.1)
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where εi = ±1, i = 1,2; bi(u) and fi(ui), i = 1,2, are arbitrary nonzero func-
tions of the corresponding variables.

Lemma 6.1. An arbitrary diagonal metric gij

2 (u), (6.1), is flat if and only if the
functions bi(u), i = 1,2, are solutions of the following linear system:

∂b2

∂u1
= ε1 ∂F

∂u2
b1(u),

∂b1

∂u2
= −ε2 ∂F

∂u1
b2(u), (6.2)

where F(u) is an arbitrary function.

Theorem 6.2. The metrics gij

1 (u) and g
ij

2 (u), (6.1), form a flat pencil of metrics
if and only if the functions bi(u), i = 1,2, are solutions of the linear system (6.2),
where the function F(u) is a solution of the following linear equation:

2
∂2F

∂u1∂u2

(
f1(u1)− f2(u2))+ ∂F

∂u2

df1(u1)
du1

− ∂F

∂u1

df2(u2)
du2

= 0. (6.3)

If eigenvalues of the pair of metrics g
ij

1 (u) and g
ij

2 (u) are distinct and
constant, then we can always choose local coordinates such that f1(u1) =
u1, f2(u2) = u2 (see also the remark in [13]). In this case, (6.3) has the
form

2
∂2F

∂u1∂u2

(
u1 −u2)+ ∂F

∂u2
− ∂F

∂u1
= 0. (6.4)

We continue this recurrent procedure for the metrics G
ij

n+1(u) =
vi
s(u)G

sj
n (u) with the help of the affinor vi

j(u) = uiδi
j .

Theorem 6.3. Three metrics

(
G

ij
n (u)

)
=


ε1(u1)n(
b1(u)

)2
0

0
ε2(u2)n(
b2(u)

)2

 , n = 0,1,2, (6.5)

form a flat pencil of metrics (pairwise compatible) if and only if the functions
bi(u), i = 1,2, are solutions of linear system (6.2), where

F(u) = c ln
(
u1 −u2) (6.6)
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and c is an arbitrary constant. The metrics Gij
n (u), n = 0,1,2,3, are flat only in

the most trivial case when c = 0 and, respectively, b1 = b1(u1) and b2 = b2(u2).
The metrics G

ij
n (u), n = 0,1,2, are flat and the metric G

ij

3 (u) is a metric of
nonzero constant Riemannian curvature K �= 0 (in this case, the metrics G

ij
n ,

n = 0,1,2,3, form a pencil of metrics of constant Riemannian curvature) if and
only if

(
b1(u)

)2 =
(
b2(u)

)2 =
ε2

4K
(
u1 −u2), ε1 = −ε2, c = ±1

2
. (6.7)

7. Almost compatible metrics that are not compatible

Lemma 7.1. Two-component diagonal conformally Euclidean metric

gij(u) = exp
(
a(u)

)
δij , 1 ≤ i, j ≤ 2, (7.1)

is flat if and only if the function a(u) is harmonic, that is,

∆a ≡ ∂2a

∂
(
u1
)2

+
∂2a

∂
(
u2
)2

= 0. (7.2)

In particular, the metric g
ij

1 (u) = exp(u1u2)δij ,1 ≤ i, j ≤ 2, is flat. It is
obvious that the flat metrics gij

1 (u) = exp(u1u2)δij , 1 ≤ i, j ≤ 2, and g
ij

2 (u) =
δij , 1 ≤ i, j ≤ 2, are almost compatible, since the corresponding Nijenhuis
tensor (3.6) vanishes. But it follows from Lemma 7.1 that these metrics
are not compatible and their sum is not a flat metric.

Similarly, it is also possible to construct other counterexamples to
Theorem 2.5. Moreover, the following statement is true.

Proposition 7.2. Any nonconstant real harmonic function a(u) defines a pair
of almost compatible metrics g

ij

1 (u) = exp(a(u))δij , 1 ≤ i, j ≤ 2, and g
ij

2 (u) =
δij , 1 ≤ i, j ≤ 2, which are not compatible. These metrics are compatible if and
only if a = a(u1 ± iu2).

We also construct almost compatible metrics of constant Riemannian
curvature that are not compatible.

Lemma 7.3. Two-component diagonal conformally Euclidean metric

gij(u) = exp
(
a(u)

)
δij , 1 ≤ i, j ≤ 2, (7.3)
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is a metric of constant Riemannian curvature K if and only if the function a(u)
is a solution of the Liouville equation

∆a ≡ ∂2a

∂
(
u1
)2

+
∂2a

∂
(
u2
)2

= 2Ke−a(u). (7.4)

Proposition 7.4. For the metrics g
ij

1 (u) = exp(a(u))δij , 1 ≤ i, j ≤ 2, and
g
ij

2 (u) = δij , 1 ≤ i, j ≤ 2, the corresponding Nijenhuis tensor vanishes, that is,
they are always almost compatible. But they are real compatible metrics of con-
stant Riemannian curvature K and 0, respectively, only in the most trivial case
when the function a(u) is constant and, consequently, K = 0. Complex metrics
are compatible if and only if a(u) = a(u1 ± iu2) and, in this case, also K = 0.

Note that all the one-component “metrics” are always compatible,
and all the one-component local Poisson structures of hydrodynamic
type are also always compatible. Let us construct examples of almost
compatible metrics that are not compatible for any N > 1.

Proposition 7.5. The metrics gij

1 (u) = b(u)δij , 1 ≤ i, j ≤N, and g
ij

2 (u) = δij ,
1 ≤ i, j ≤N, where b(u) is an arbitrary function, are always almost compatible,
since the corresponding Nijenhuis tensor vanishes. But they are compatible real
metrics only in the most trivial case when the function b(u) is constant. Com-
plex metrics are compatible if and only if either the function b(u) is constant or
N = 2 and b(u) = b(u1 ± iu2).

8. Compatible flat metrics and the Zakharov method
of differential reductions

Recall the Zakharov method for integrating the Lamé equations (5.1)
and (5.2) [36].

We must choose a matrix function Fij(s,s′,u) and solve the following
linear integral equation:

Kij(s,s′,u) = Fij(s,s′,u) +
∫∞

s

∑
l

Kil(s,q,u)Flj(q,s′,u)dq. (8.1)

Then, we obtain a one-parameter family of solutions of the Lamé equa-
tions by the formula

βij(s,u) =Kji(s,s,u). (8.2)
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In particular, if Fij(s,s′,u) = fij(s − ui,s′ − uj), where fij(x,y) is an ar-
bitrary matrix function of two variables, then formula (8.2) produces so-
lutions of (5.1). To satisfy (5.2), Zakharov proposed to impose on the
dressing matrix function Fij(s − ui,s′ − uj) a certain additional linear dif-
ferential relation. If Fij(s−ui,s′ −uj) satisfy the Zakharov differential re-
lation, then the rotation coefficients βij(u) additionally satisfy (5.2).

We present a scheme for integrating all the system (5.1), (5.2), and
(5.3).

Lemma 8.1. If both the function Fij(s−ui,s′ −uj) and the function

F̃ij

(
s−ui,s′ −uj) =

√
fj
(
uj − s′

)
√
fi
(
ui − s

) Fij

(
s−ui,s′ −uj) (8.3)

satisfy the Zakharov differential relation, then the corresponding rotation coeffi-
cients βij(u) (8.2) satisfy all the equations (5.1), (5.2), and (5.3).

Proof. Actually, if Kij(s,s′,u) is the solution of the linear integral equa-
tion (8.1) corresponding to the function Fij(s−ui,s′ −uj), then

K̃ij(s,s′,u) =

√
fj
(
uj − s′

)
√
fi
(
ui − s

) Kij(s,s′,u) (8.4)

is the solution of (8.1) corresponding to function (8.3). It is easy to prove
multiplying the integral equation (8.1) by

√
fj
(
uj − s′

)
√
fi
(
ui − s

) . (8.5)

The relation

Kij(s,s′,u) = Fij

(
s−ui,s′ −uj)

+
∫∞

s

∑
l

Kil(s,q,u)Flj

(
q −ul,s′ −uj)dq (8.6)
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implies

√
fj
(
uj − s′

)
√
fi
(
ui − s

) Kij(s,s′,u) =

√
fj
(
uj − s′

)
√
fi
(
ui − s

) Fij

(
s−ui,s′ −uj)

+
∫∞

s

∑
l

√
fl
(
ul − q

)
√
fi
(
ui − s

)Kil(s,q,u)

×

√
fj
(
uj − s′

)
√
fl
(
ul − q

) Flj

(
q−ul,s′ −uj)dq

(8.7)

and, finally, we have

K̃ij(s,s′,u) = F̃ij

(
s−ui,s′ −uj)

+
∫∞

s

∑
l

K̃il(s,q,u)F̃lj

(
q−ul,s′ −uj)dq. (8.8)

Then both β̃ij(s,u) = K̃ji(s,s,u) and βij(s,u) = Kji(s,s,u) satisfy the
Lamé equations (5.1) and (5.2). Besides, we have

β̃ij(s,u) = K̃ji(s,s,u) =

√
fi
(
ui − s

)
√
fj
(
uj − s

)Kji(s,s,u)

=

√
fi
(
ui − s

)
√
fj
(
uj − s

)βij(s,u).
(8.9)

Thus, in this case, the rotation coefficients βij(u) exactly satisfy all the
equations (5.1), (5.2), and (5.3), that is, they generate the corresponding
compatible flat metrics. �

9. Integrability of the equations for nonsingular pairs of compatible
flat metrics

The Zakharov differential reduction can be written as follows [36]:

∂Fij(s,s′,u)
∂s′

+
∂Fji(s′, s,u)

∂s
= 0. (9.1)
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Thus, to resolve these differential relations for the matrix function
Fij(s − ui,s′ − uj), we can introduce N(N − 1)/2 arbitrary functions of
two variables Φij(x,y), i < j and put for i < j

Fij

(
s−ui,s′ −uj) = ∂Φij

(
s−ui,s′ −uj

)
∂s

,

Fji

(
s−ui,s′ −uj) = −∂Φij

(
s′ −ui,s−uj

)
∂s

,

Fii

(
s−ui,s′ −ui) = ∂Φii

(
s−ui,s′ −ui

)
∂s

, for any i,

(9.2)

where Φii(x,y), i = 1, . . . ,N, are arbitrary skew-symmetric functions of
two variables:

Φii(x,y) = −Φii(y,x) (9.3)

(see [36]).
For the function

F̃ij

(
s−ui,s′ −uj) =

√
fj
(
uj − s′

)
√
fi
(
ui − s

) Fij

(
s−ui,s′ −uj), (9.4)

the Zakharov differential relation (9.1) exactly gives the following N(N−
1)/2 linear partial differential equations of the second order for N(N −
1)/2 functions Φij(s−ui,s′ −uj), i < j, of two variables:

∂

∂s′


√
fj
(
uj − s′

)
√
fi
(
ui − s

) ∂Φij

(
s−ui,s′ −uj

)
∂s


− ∂

∂s


√
fi
(
ui − s

)
√
fj
(
uj − s′

) ∂Φij

(
s−ui,s′ −uj

)
∂s′

 = 0, i < j,

(9.5)

or, equivalently,

2
∂2Φij

(
s−ui,s′ −uj

)
∂ui∂uj

(
fi(ui − s

)− fj(uj − s′
))

+
∂Φij

(
s−ui,s′ −uj

)
∂uj

dfi
(
ui − s

)
dui

− ∂Φij

(
s−ui,s′ −uj

)
∂ui

dfj
(
uj − s′

)
duj

= 0, i < j.

(9.6)
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It is very interesting that all these equations (9.6), for the functions
Φij(s − ui,s′ − uj), are of the same type as in the two-component case.
In fact, these equations coincide with the corresponding single equation
(6.3) for the two-component case.

Besides, for N functions Φii(s − ui,s′ − ui), we also have the follow-
ing N linear partial differential equations of the second order from the
Zakharov differential relation (9.1):

∂

∂s′


√
fi
(
ui − s′

)
√
fi
(
ui − s

) ∂Φii

(
s−ui,s′ −ui

)
∂s



+
∂

∂s


√
fi
(
ui − s

)
√
fi
(
ui − s′

) ∂Φii

(
s′ −ui,s−ui

)
∂s′

 = 0

(9.7)

or, equivalently,

2
∂2Φii

(
s−ui,s′ −ui

)
∂s∂s′

(
fi(ui − s

)− fi(ui − s′
))

− ∂Φii

(
s−ui,s′ −ui

)
∂s

dfi
(
ui − s′

)
ds′

+
∂Φii

(
s−ui,s′ −ui

)
∂s′

dfi
(
ui − s

)
ds

= 0.

(9.8)

Any solution of linear partial differential equations (9.6) and (9.8)
generates a one-parameter family of solutions of system (5.1), (5.2), and
(5.3) by linear relations and formulas (9.2), (8.1), and (8.2). Thus, our
problem is linearized.

Acknowledgment

This work was supported by the Alexander von Humboldt Foundation
(Germany), the Russian Foundation for Basic Research (project no. 99-
01-00010), and INTAS (project no. 02-01-00803).

References

[1] M. Arik, F. Neyzi, Y. Nutku, P. J. Olver, and J. M. Verosky, Multi-Hamiltonian
structure of the Born-Infeld equation, J. Math. Phys. 30 (1989), no. 6, 1338–
1344.



368 Compatible flat metrics

[2] D. B. Cooke, Classification results and the Darboux theorem for low-order Hamil-
tonian operators, J. Math. Phys. 32 (1991), no. 1, 109–119.

[3] , Compatibility conditions for Hamiltonian pairs, J. Math. Phys. 32 (1991),
no. 11, 3071–3076.

[4] G. Darboux, Leçons sur les Systèmes Orthogonaux et les Coordonnées Curvilignes,
2nd ed., Gauthier-Villars, Paris, 1910 (French).

[5] I. Dorfman, Dirac Structures and Integrability of Nonlinear Evolution Equations,
John Wiley & Sons, Chichester, 1993.

[6] B. Dubrovin, Geometry of 2D topological field theories, Integrable Systems and
Quantum Groups (Montecatini Terme, 1993), Lecture Notes in Mathe-
matics, vol. 1620, Springer, Berlin, 1996, pp. 120–348.

[7] , Differential geometry of the space of orbits of a Coxeter group, Surveys
in Differential Geometry: Integral Systems [Integrable Systems], Surveys
in Differential Geometry, vol. 4, International Press, Massachusetts, 1998,
pp. 181–211.

[8] , Flat pencils of metrics and Frobenius manifolds, Integrable Systems and
Algebraic Geometry (Kobe/Kyoto, 1997), World Scientific Publishing,
New Jersey, 1998, pp. 47–72.

[9] B. Dubrovin and S. P. Novikov, Hamiltonian formalism of one-dimensional sys-
tems of the hydrodynamic type and the Bogolyubov-Whitham averaging method,
Dokl. Akad. Nauk SSSR 270 (1983), no. 4, 781–785, translated in Soviet
Math. Dokl. 27 (1983), 665–669.

[10] , Hydrodynamics of weakly deformed soliton lattices. Differential geometry
and Hamiltonian theory, Uspekhi Mat. Nauk 44 (1989), no. 6, 29–98, trans-
lated in Russian Math. Surveys 44 (1989), no. 6, 35–124.

[11] E. V. Ferapontov, Hamiltonian systems of hydrodynamic type and their realizations
on hypersurfaces of a pseudo-Euclidean space, Problems in Geometry, Vol. 22
(Russian), Akad. Nauk SSSR Vsesoyuz. Inst. Nauchn. i Tekhn. Inform.,
Moscow, 1990, translated in J. Soviet Math. 55 (1991), no. 5, 1970–1995,
pp. 59–96.

[12] , Differential geometry of nonlocal Hamiltonian operators of hydrodynamic
type, Funktsional. Anal. i Prilozhen. 25 (1991), no. 3, 37–49, translated in
Funct. Anal. Appl. 25 (1991), no. 3, 195–204.

[13] , Nonlocal Hamiltonian operators of hydrodynamic type: differential geom-
etry and applications, Topics in Topology and Mathematical Physics (S. P.
Novikov, ed.), Amer. Math. Soc. Transl. Ser. 2, vol. 170, American Mathe-
matical Society, Rhode Island, 1995, pp. 33–58.

[14] E. V. Ferapontov and M. V. Pavlov, Quasiclassical limit of coupled KdV
equations. Riemann invariants and multi-Hamiltonian structure, Phys. D 52
(1991), no. 2-3, 211–219.

[15] A. S. Fokas and B. Fuchssteiner, On the structure of symplectic operators and
hereditary symmetries, Lett. Nuovo Cimento (2) 28 (1980), no. 8, 299–303.

[16] B. Fuchssteiner, Application of hereditary symmetries to nonlinear evolution equa-
tions, Nonlinear Anal. 3 (1979), no. 6, 849–862.

[17] C. S. Gardner, Korteweg-de Vries equation and generalizations. IV. The Korteweg-
de Vries equation as a Hamiltonian system, J. Mathematical Phys. 12 (1971),
1548–1551.



Oleg I. Mokhov 369

[18] I. M. Gel’fand and I. Dorfman, Hamiltonian operators and algebraic structures
associated with them, Funktsional. Anal. i Prilozhen. 13 (1979), no. 4, 13–30,
translated in Funct. Anal. Appl. 13 (1979), 246–262.

[19] H. Gümral and Y. Nutku, Multi-Hamiltonian structure of equations of hydrody-
namic type, J. Math. Phys. 31 (1990), no. 11, 2606–2611.

[20] J. Haantjes, On forming sets of eigenvectors, Indag. Math. 17 (1955), 158–162.
[21] I. M. Krichever, Algebraic-geometric n-orthogonal curvilinear coordinate systems

and the solution of associativity equations, Funktsional. Anal. i Prilozhen. 31
(1997), no. 1, 32–50, translated in Funct. Anal. Appl. 31 (1997), no. 1, 25–
39.

[22] F. Magri, A simple model of the integrable Hamiltonian equation, J. Math. Phys.
19 (1978), no. 5, 1156–1162.

[23] O. I. Mokhov, Local third-order Poisson brackets, Uspekhi Mat. Nauk 40 (1985),
no. 5, 257–258, translated in Russian Math. Surveys 40 (1985), 233–234.

[24] , Hamiltonian differential operators and contact geometry, Funktsional.
Anal. i Prilozhen. 21 (1987), no. 3, 53–60, translated in Funct. Anal. Appl.
21 (1987), 217–223.

[25] , On compatible Poisson structures of hydrodynamic type, Uspekhi Mat.
Nauk 52 (1997), no. 6, 171–172, translated in Russian Math. Surveys 52
(1997), no. 6, 1310–1311.

[26] , On compatible potential deformations of Frobenius algebras and associa-
tivity equations, Uspekhi Mat. Nauk 53 (1998), no. 2, 153–154, translated
in Russian Math. Surveys 53 (1998), no. 2, 396–397.

[27] , Symplectic and Poisson structures on loop spaces of smooth manifolds, and
integrable systems, Uspekhi Mat. Nauk 53 (1998), no. 3, 85–192, translated
in Russian Math. Surveys 53 (1998), no. 3, 515–622.

[28] , Compatible Poisson structures of hydrodynamic type and associativity
equations, Tr. Mat. Inst. Steklova 225 (1999), 284–300, translated in Proc.
Steklov Inst. Math. 225 (1999), no. 2, 269–284.

[29] , Compatible Poisson structures of hydrodynamic type and the equations of
associativity in two-dimensional topological field theory, Rep. Math. Phys. 43
(1999), no. 1-2, 247–256.

[30] O. I. Mokhov and E. V. Ferapontov, Nonlocal Hamiltonian operators of hydrody-
namic type that are connected with metrics of constant curvature, Uspekhi Mat.
Nauk 45 (1990), no. 3(273), 191–192, translated in Russian Math. Surveys
45 (1990), no. 3, 218–219.

[31] F. Neyzi, Diagonalization and Hamiltonian structures of hyperbolic systems, J.
Math. Phys. 30 (1989), no. 8, 1695–1698.

[32] A. Nijenhuis, Xn−1-forming sets of eigenvectors, Indag. Math. 13 (1951), 200–
212.

[33] Y. Nutku, On a new class of completely integrable nonlinear wave equations. II.
Multi-Hamiltonian structure, J. Math. Phys. 28 (1987), no. 11, 2579–2585.

[34] P. J. Olver, Applications of Lie Groups to Differential Equations, Graduate Texts
in Mathematics, vol. 107, Springer-Verlag, New York, 1986.

[35] P. J. Olver and Y. Nutku, Hamiltonian structures for systems of hyperbolic con-
servation laws, J. Math. Phys. 29 (1988), no. 7, 1610–1619.

[36] V. E. Zakharov, Description of the n-orthogonal curvilinear coordinate systems and
Hamiltonian integrable systems of hydrodynamic type. I. Integration of the Lamé
equations, Duke Math. J. 94 (1998), no. 1, 103–139.



370 Compatible flat metrics

[37] V. E. Zakharov and L. D. Faddeev, The Korteweg-de Vries equation is a fully
integrable Hamiltonian system, Funkcional. Anal. i Priložen. 5 (1971), no. 4,
18–27, translated in Funct. Anal. Appl. 5 (1971), 280–287.

Oleg I. Mokhov: Centre for Nonlinear Studies, L.D. Landau Institute for Theo-
retical Physics, Russian Academy of Sciences, 2 Kosygina Street, 117940 Moscow,
Russia

E-mail address: mokhov@mi.ras.ru

mailto:mokhov@mi.ras.ru

