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We establish nonexistence results to systems of differential inequalities on the (2N + 1)-
Heisenberg group. The systems considered here are of the type (ESm). These nonexistence
results hold for N less than critical exponents which depend on pi and γi, 1≤ i≤m. Our
results improve the known estimates of the critical exponent.

1. Introduction

For the reader’s convenience, we recall some background facts used here. The Heisenberg
group HN , whose points will be denoted by η = (x, y,τ), is the Lie group (R2N+1,◦) with
the group operation ◦ defined by

η ◦ η̃= (x+ x̃, y + ỹ,τ + τ̃ + 2
(〈x, ỹ〉− 〈x̃, y〉)), (1.1)

where 〈·,·〉 is the usual inner product in RN . The Laplacian ∆H over HN is obtained, from
the vector fields Xi = ∂xi + 2yi∂τ and Yi = ∂yi − 2xi∂τ , by

∆H =
N∑
i=1

(
X2
i +Y 2

i

)
. (1.2)

Observe that the vector field T = ∂τ does not appear in (1.2). This fact makes us presume
a “loss of derivative” in the variable τ. The compensation comes from the relation

[
Xi,Yj

]=−4T , j,k ∈ {1,2, . . . ,N}. (1.3)

The relation (1.3) proves that HN is a nilpotent Lie group of order 2. Incidently, (1.3)
constitutes an abstract version of the canonical relations of commutation of Heisenberg
between momentums and positions. Explicit computation gives the expression

∆H =
N∑
i=1

(
∂2

∂x2
i

+
∂2

∂y2
i

+ 4yi
∂2

∂xi∂τ
− 4xi

∂2

∂yi∂τ
+ 4
(
x2
i + y2

i

) ∂2

∂τ2

)
. (1.4)
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A natural group of dilatations on HN is given by

δλ(η)= (λx,λy,λ2τ
)
, λ > 0, (1.5)

whose Jacobian determinant is λQ, where

Q = 2N + 2 (1.6)

is the homogeneous dimension of HN .
The operator ∆H is a degenerate elliptic operator. It is invariant with respect to the left

translation of HN and homogeneous with respect to the dilatations δλ. More precisely,
we have

∆H

(
u(η ◦ η̃)

)= (∆Hu
)
(η ◦ η̃),

∆H

(
u◦ δλ

)= λ2(∆Hu
)◦ δλ ∀(η, η̃)∈H

N ×H
N .

(1.7)

It is natural to define a distance from η to the origin by

|η|H =
(
τ2 +

N∑
i=1

(
x2
i + y2

i

)2
)1/4

. (1.8)

In [7], Pohozaev and Véron gave another proof of the result of Birindelli et al. [1] con-
cerning the nonexistence of weak solutions of the differential inequality

∆H(au) + |η|γH|v|p ≤ 0 in H
N (1.9)

for γ >−2, 1 < p ≤ (Q+ γ)/(Q− 2), and a∈ L∞(HN ).
They then addressed the question of nonexistence of weak solutions of the system

(ES2):

−∆H

(
a1u

)≥ |η|γ1

H |v|p1 , −∆H

(
a2v

)≥ |η|γ2

H |u|p2 , (1.10)

where ai, i∈ {1,2}, are measurable and bounded functions defined on HN , and pi > 1 and
γi, i= 1,2, are real numbers. They showed that this system admits no solution defined in
HN whenever γi >−2 and 1 < pi ≤ (Q+ γi)/(Q− 2), i= 1,2. The estimates on pi, i= 1,2,
are obtained using Young’s inequality and are not optimal. Using the Hölder inequality,
we obtain better estimates on pi, 1 ≤ i ≤ m. The same strategy is suitable to study the
systems (PSm) and (HSm).

We also studied the following systems:

(PSm) ∂ui/∂t−∆H(aiui)≥ |η|γi+1

H |ui+1|pi+1 , η ∈HN , 1≤ i≤m, um+1 = u1,
(HSm) ∂2ui/∂t2−∆H(aiui)≥ |η|γi+1

H |ui+1|pi+1 , η ∈HN , 1≤ i≤m, um+1 = u1,

and showed the following results.
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Theorem 1.1. Assume that the initial data u(0)
i ∈ L1(R2N+1) and

∫
u(0)
i (η)dη ≥ 0, 1≤ i≤

m. If

Q ≤max
{
X1,X2, . . . ,Xm

}
, (1.11)

where the vector (X1,X2, . . . ,Xm)T is the solution of (3.1), then there is no nontrivial global
weak solution (u1, . . . ,um) of the system (PSm).

Theorem 1.2. Assume that initial data (for the first derivatives of ui, 1 ≤ i ≤ m) u(1)
i ∈

L1(R2N+1) and
∫
u(1)
i (η)dη ≥ 0, 1≤ i≤m. If

Q≤ 1 + max
{
X1,X2, . . . ,Xm

}
, (1.12)

where the vector (X1,X2, . . . ,Xm)T is the solution of (3.1), then there is no nontrivial global
weak solution (u1, . . . ,um) of the system (HSm).

In [2], the first author and Obeid presented results for systems of evolution type with
higher-order time derivatives. Their results are the generalized versions of our previous
results (Theorems 1.1 and 1.2) on (PSm) and (HSm).

For interesting results on elliptic equations and systems, we refer to the recent papers
of Kartsatos and Kurta [3], Kurta [4, 5], and Mitidieri and Pohozaev [6].

To render the presentation very clear, we start with the case of systems of two inequal-
ities.

2. Systems of two inequalities

In this section, we treat the case m= 2 and consider the system (ES2).
We identify points in HN with points in R2N+1. We also recall that the Haar measure on

HN is identical to the Lebesgue measure dη = dxdydτ on R2N+1 =RN ×RN ×R. In the
sequel, the integral

∫
R2N+1 will be simply denoted by

∫
; however, the measure of integration

will be specified.

Definition 2.1. Let a1 and a2 be two bounded measurable functions on R2N+1. A weak
solution (u,v) of the system (ES2) on R2N+1 is a pair of locally integrable functions (u,v)
such that

u∈ L
p2

loc

(
R

2N+1,|η|γ2

Hdη
)
, v ∈ L

p1

loc

(
R

2N+1,|η|γ1

Hdη
)
, (2.1)

satisfying

∫
R2N+1

(
a1u∆Hϕ+ |η|γ1

H |v|p1ϕ
)
dη ≤ 0,

∫
R2N+1

(
a2v∆Hϕ+ |η|γ2

H |u|p2ϕ
)
dη ≤ 0

(2.2)

for any nonnegative test function ϕ∈ C2
c (R2N+1).
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Theorem 2.2. Assume that

Q ≤Q∗e = 2 +
1

p1p2− 1
max

{(
γ1 + 2

)
+ p1

(
γ2 + 2

)
; p2
(
γ1 + 2

)
+
(
γ2 + 2

)}
. (2.3)

Then there is no nontrivial weak solution (u,v) of the system (ES2).

Proof. Let ϕR ∈�(HN ) be a nonnegative function such that

ϕR(η)=Φλ

(
τ2 + |x|4 + |y|4

R4

)
, (2.4)

where λ
 1, R > 0, and Φ∈�([0,+∞[) is the “standard cutoff function”

Φ(r)=

1, if 0≤ r ≤ 1,

0, if r ≥ 2.
0≤Φ(r)≤ 1, (2.5)

Note that supp(ϕR) is a subset of

ΩR =
{
η ≡ (x, y,τ)∈H

N ; 0≤ τ2 + |x|4 + |y|4 ≤ 2R4} (2.6)

and supp(∆HϕR) is included in

�R =
{
η ≡ (x, y,τ)∈H

N ; R4 ≤ τ2 + |x|4 + |y|4 ≤ 2R4}. (2.7)

Let

ρ = τ2 + |x|4 + |y|4
R4

, (2.8)

then

∆HϕR(η)= 4(N + 4)Φ′(ρ)
R4

λΦλ−1(ρ)
(|x|2 + |y|2)

+
16Φ′′(ρ)

R8
λΦλ−1(ρ)

× ((|x|6 + |y|6)+ τ2(|x|2 + |y|2)+ 2τ〈x, y〉(|x|2−|y|2))

+
16Φ′2(ρ)

R8
λ(λ− 1)Φλ−2(ρ)

×
((|x|6 + |y|6)+

τ2

4

(|x|2 + |y|2)+ 2τ〈x, y〉(|x|2−|y|2)).

(2.9)

It follows that there is a positive constant C > 0, independent of R, such that

∣∣∆HϕR(η)
∣∣≤ C

R2
∀η ∈ΩR. (2.10)
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Let (u,v) be a nontrivial weak solution of (ES2). Using (2.2) with ϕ= ϕR, one has
∫
|η|γ1

H |v|p1ϕRdη ≤−
∫
a1u∆HϕRdη

≤ ∥∥a1
∥∥
L∞

∫
|u|∣∣∆HϕR

∣∣dη
≤ ∥∥a1

∥∥
L∞

(∫
|η|γ2

H |u|p2ϕR

)1/p2(∫ ∣∣∆HϕR

∣∣p′2(ϕR|η|γ2

H

)1−p′2
)1/p′2

,

(2.11)

∫
|η|γ2

H |u|p2ϕRdη ≤−
∫
a2v∆HϕRdη

≤ ∥∥a2
∥∥
L∞

(∫
|η|γ1

H |v|p1ϕR

)1/p1(∫ ∣∣∆HϕR

∣∣p′1(ϕR|η|γ1

H

)1−p′1
)1/p′1

,
(2.12)

thanks to the Hölder inequality. Setting

I(R)=
∫
|η|γ2

H |u|p2ϕRdη, J(R)=
∫
|η|γ1

H |v|p1ϕRdη, (2.13)

we have

J(R)≤ C1I(R)1/p2 �p2,γ2 (R)1/p′2 , (2.14)

where

�p2,γ2 (R)=
∫ ∣∣∆HϕR

∣∣p′2(ϕR|η|γ2

H

)1−p′2dη (2.15)

and C1 is a positive constant independent of R. Similarly, we have

I(R)≤ C2J(R)1/p1 �p1,γ1 (R)1/p′1 , (2.16)

where

�p1,γ1 (R)=
∫ ∣∣∆HϕR

∣∣p′1(ϕR|η|γ1

H

)1−p′1dη (2.17)

and C2 is a positive constant independent of R.
Note that for λ sufficiently large, the integrals �pi,γi(R), i∈ {1,2}, are convergent. In-

deed, in the expression �pi,γi(R), i∈ {1,2}, we have |η|H ≥ R4, and the exponent of ϕR is
positive for λ large enough.

In order to estimate the integrals �pi,γi(R), i∈ {1,2}, we introduce the scaled variables

τ̃ = R−2τ, x̃ = R−1x, ỹ = R−1y. (2.18)

Using the fact that suppϕR ⊂ΩR, we conclude that

�pi,γi(R)≤ CR2N+2−2p′i +γi(1−p′i ), i∈ {1,2}. (2.19)

Using (2.16) and (2.19) in (2.14), we obtain

J(R)1−1/p1 p2 ≤ C�p1,γ1 (R)1/p′1p2 �p2,γ2 (R)1/p′2 ≤ CRσJ , (2.20)
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where

σJ = 1
p′2

(
2N + 2− 2p2 + γ2

(
1− p′2

))
+

1
p′1p2

(
2N + 2− 2p1 + γ1

(
1− p′1

))

=Q

(
1− 1

p1p2

)
−
(
2p2 + 2 + γ2

)
p1 + γ1

p1p2
.

(2.21)

Similarly, we have

I(R)1−1/p1p2 ≤ C�p1,γ1 (R)1/p′1 �p2,γ2 (R)1/p1p
′
2 ≤ CRσI , (2.22)

where

σI =Q

(
1− 1

p1p2

)
−
(
2p1 + 2 + γ1

)
p2 + γ2

p1p2
. (2.23)

Now, we require that σI ≤ 0 or σJ ≤ 0, which is equivalent to

Q ≤Q∗e =
1

p1p2− 1
max

{
p1
(
2
(
p2 + 1

)
+ γ2

)
+ γ1; p2

(
2
(
p1 + 1

)
+ γ1

)
+ γ2

}

= 2 +
1

p1p2− 1
max

{(
γ1 + 2

)
+ p1

(
γ2 + 2

)
; p2
(
γ1 + 2

)
+
(
γ2 + 2

)}
.

(2.24)

In this case, the integrals I(R) and J(R), increasing in R, are bounded uniformly with
respect to R. Using the monotone convergence theorem, we deduce that |η|γ1

H |v|p1 and
|η|γ2

H |u|p2 are in L1(R2N+1). Note that instead of (2.11) we have, more precisely,

∫
|η|γ1

H |v|p1ϕRdη ≤
∥∥a1

∥∥
L∞

(∫
�R

|η|γ2

H |u|p2ϕRdη
)1/p2

�p2,γ2 (R)1/p′2

≤ C
∫

�R

|η|γ2

H |u|p2ϕRdη.

(2.25)

Finally, using the dominated convergence theorem, we obtain that

lim
R→+∞

∫
�R

|η|γ2

H |u|p2ϕRdη = 0. (2.26)

Hence,
∫
|η|γ1

H |v|p1dη = 0, (2.27)

which implies that v ≡ 0 and u ≡ 0 via (2.12). This contradicts the fact that (u,v) is a
nontrivial weak solution of (ES2), which achieves the proof. �

Remark 2.3. The critical exponent Q∗e can be written as

Q∗e = 2 + max
{
X1,X2

}
, (2.28)
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where the vector (X1,X2)T is the solution of the linear system

(−1 p1

p2 −1

)(
X1

X2

)
=
(
γ1 + 2
γ2 + 2

)
. (2.29)

Comment 2.4. In their paper, Pohozaev and Véron [7] showed that if

1 < pj ≤
Q+ γj
Q− 2

, j ∈ {1,2}, (2.30)

then the system (ES2) has no nontrivial weak solution. The condition (2.30) is equiva-
lent to

Q ≤ 2 + min

{
γ1 + 2
p1− 1

;
γ2 + 2
p2− 1

}
. (2.31)

Theorem 2.2 gives a better estimate of the exponent. Indeed,

(
γ1 + 2

)
+ p1

(
γ2 + 2

)
p1p2− 1

− γ2 + 2
p2− 1

=− p2
(
γ1 + 2

)
+
(
γ2 + 2

)
p1p2− 1

+
γ1 + 2
p1− 1

, (2.32)

which implies that

max

{(
γ1 + 2

)
+ p1

(
γ2 + 2

)
p1p2− 1

;
p2
(
γ1 + 2

)
+
(
γ2 + 2

)
p1p2− 1

}
≥min

{
γ1 + 2
p1− 1

;
γ2 + 2
p2− 1

}
. (2.33)

3. Systems of m semilinear inequalities

In this section, we give generalizations of the last results to systems with m inequalities,
m∈N∗.

Let (X1,X2, . . . ,Xm) be the solution of the linear system




1 −p1 0 0 ··· 0 0 0
0 1 −p2 0 ··· 0 0 0
...

...
...

... ··· ...
...

...
0 0 0 0 ··· 0 1 −pm−1

−pm 0 0 0 ··· 0 0 1







X1

X2
...

Xm−1

Xm



=




−γ1− 2
−γ2− 2

...
−γm−1− 2
−γm− 2




, (3.1)

where pi > 1 and γi are given real numbers, i∈ {1,2, . . . ,m}.
Consider the system (ESm):

−∆H

(
aiui

)≥ |η|γi+1

H

∣∣ui+1
∣∣pi+1 , η ∈H

N , 1≤ i≤m, um+1 = u1, (3.2)

where pm+1 = p1, γm+1 = γ1.
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Definition 3.1. Let ai, i∈ {1,2, . . . ,m}, be m bounded measurable functions on R2N+1. A
weak solution (u1, . . . ,um) of the system (ESm) on R2N+1 is a vector of locally integrable
functions (u1, . . . ,um) such that

ui ∈ L
pi
loc

(
R

2N+1,|η|γiHdη
)
, i∈ {1,2, . . . ,m}, (3.3)

satisfying

∫
R2N+1

(
aiu∆Hϕ+ |η|γi+1

H

∣∣ui+1
∣∣pi+1ϕ

)
dη ≤ 0, i∈ {1,2, . . . ,m− 1},∫

R2N+1

(
amum∆Hϕ+ |η|γ1

H |u|p1ϕ
)
dη ≤ 0

(3.4)

for any nonnegative test function ϕ∈ C2
c (R2N+1).

Theorem 3.2. IfQ≤ 2+max{X1,X2, . . . ,Xm}, then system (ESm) has no nontrivial solution.

Proof. In order to simplify the proof, we treat only the case m= 3; the general case can be
established in the same manner.

Let (u1,u2,u3) be a nontrivial weak solution of (ESm). The inequalities (3.4), with ϕ=
ϕR defined by (2.4), imply that

∫
|η|γ1

H

∣∣u1
∣∣p1ϕRdη

≤ ∥∥a3
∥∥
L∞

(∫
|η|γ3

H

∣∣u3
∣∣p3ϕR

)1/p3(∫ ∣∣∆HϕR

∣∣p′3(ϕR|η|γ3

H

)1−p′3
)1/p′3

,∫
|η|γ2

H

∣∣u2
∣∣p2ϕRdη

≤ ∥∥a1
∥∥
L∞

(∫
|η|γ1

H

∣∣u1
∣∣p1ϕR

)1/p1(∫ ∣∣∆HϕR

∣∣p′1(ϕR|η|γ1

H

)1−p′1
)1/p′1

,∫
|η|γ3

H

∣∣u3
∣∣p3ϕRdη

≤ ∥∥a2
∥∥
L∞

(∫
|η|γ2

H

∣∣u2
∣∣p2ϕR

)1/p2(∫ ∣∣∆HϕR

∣∣p′2(ϕR|η|γ2

H

)1−p′2
)1/p′2

.

(3.5)

Let

Ii(R)=
∫
|η|γiH

∣∣ui∣∣piϕR dη, 1≤ i≤ 3,

�i(R)=
∫ ∣∣∆HϕR

∣∣p′i (ϕR|η|γiH

)1−p′i , 1≤ i≤ 3,
(3.6)

then there is a positive constant C such that

I1 ≤ CI
1/p3

3 �
1/p′3
3 , I2 ≤ CI

1/p1

1 �
1/p′1
1 , I3 ≤ CI

1/p2

2 �
1/p′2
2 . (3.7)
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Hence, the estimates

I
1−1/p1 p2 p3

1 ≤ C�
1/p′1 p2 p3

1 �
1/p′2 p3

2 �
1/p′3
3 ,

I
1−1/p1 p2 p3

2 ≤ C�
1/p′1
1 �

1/p1 p
′
2 p3

2 �
1/p1 p

′
3

3 ,

I
1−1/p1 p2 p3

3 ≤ C�
1/p′1 p2

1 �
1/p′2
2 �

1/p1 p2 p
′
3

3

(3.8)

hold true.
In order to estimate the expressions Ii, 1≤ i≤ 3, we use the scaled variables (2.18) and

obtain

I
1−1/p1 p2 p3

i ≤ CRσi , 1≤ i≤ 3, (3.9)

where

σ1 =
(

1− 1
p1p2p3

)(
Q− 2−

(
γ1 + 2

)
+ p1

(
γ2 + 2

)
+ p1p2

(
γ3 + 2

)
p1p2p3− 1

)
,

σ2 =
(

1− 1
p1p2p3

)(
Q− 2− p2p3

(
γ1 + 2

)
+
(
γ2 + 2

)
+ p2

(
γ3 + 2

)
p1p2p3− 1

)
,

σ3 =
(

1− 1
p1p2p3

)(
Q− 2− p3

(
γ1 + 2

)
+ p1p3

(
γ2 + 2

)
+
(
γ3 + 2

)
p1p2p3− 1

)
.

(3.10)

Now, we require that, at least, one of σi, 1≤ i≤ 3, is less than zero, which is equivalent to
Q ≤ 2 + max{X1,X2,X3}, where the vector (X1,X2,X3)T is the solution of




1 −p1 0
0 1 −p2

−p3 0 1





X1

X2

X3


=



−γ1− 2
−γ2− 2
−γ3− 2


 . (3.11)

Following the arguments used in the proof of Theorem 2.2, we conclude that (u1,u2,u3)≡
(0,0,0). This ends the proof by contradiction. �
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