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Solodkii (1998) applied the modified projection scheme of Pereverzev (1995)
for obtaining error estimates for a class of regularization methods for solving
ill-posed operator equations. But, no a posteriori procedure for choosing the
regularization parameter is discussed. In this paper, we consider Arcangeli’s
type discrepancy principles for such a general class of regularization methods
with modified projection scheme.

1. Introduction

Regularization methods are often employed for obtaining stable approximate
solutions for ill-posed operator equations of the form

Tx =y, (1.1)

where T : X — X is a compact linear operator on a Hilbert space X. It is well
known that if R(T) is infinite dimensional, then the problem of solving the
above equation is ill-posed, in the sense that the generalized solution % := Ty
does not depend continuously on the data y. Here, T is the generalized Moore-
Penrose inverse of 7" defined on the dense subspace D(T) := R(T)+ R(T)*
of X, and R(T) denotes the range of the operator 7. A typical example of such
an ill-posed equation is the Fredholm integral equation of the first kind

b
/ k(s,tH)yx(t) =y(s), a<s<b, (1.2)

with X = Lz[a, b], and k(-, -) a nondegenerate kernel belonging to LZ([a, b] x
la,b]).
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340 Arcangeli’s type discrepancy principles

In a regularization method, corresponding to an inexact data y, one looks
for a stable approximation X of x such that | x — X| is “small” whenever the
data error ||y — y| is “small.” A well-studied class of regularization methods for
such a purpose is characterized by a class of Borel functions g, « > 0, defined
on an interval (0, b] where b > || T||2. Corresponding to such functions g, the
regularized solutions are defined by

Xo = &a (T*T)T*y, Xo = &u (T*T)T*y. (1.3)

(Cf. [1].) In order to perform error analysis, we impose certain conditions on
the functions g,, @ > 0. Two primary assumptions are the following.

Assumption I. There exists vy > 0 such that for every v € (0, vo], there exists
¢, > 0 such that

sup AY|1—Aga(W)| < cyar” Vo > 0. (1.4)
0<i<b

Assumption 2. There exists d > 0 such that

sup A1/2|ga()»)| <da”'? Va>0. (1.5)
b

0<i<

These assumptions are general enough to include many regularization meth-
ods such as the ones given below.

For applying our discrepancy principle, we would like to impose two addi-
tional conditions.

Assumption 3. There exist cp > 0 and ¢ > 0 such that

|1—Aga(M)| = ko™ V2 €[0,b], Yo < . (1.6)

Assumption 4. The function f(a) = a?[1 —Agy(A)], ¢ > 0, as a function of «,
is continuous and differentiable and f(«) is an increasing function.

Now we list a few regularization methods which are special cases of the
above procedure.

Tikhonov regularization
(T*T +al)xy = T*y. (1.7
Here

ga(A) =

P (1.8)

Assumptions 1, 2, 3, and 4 hold with vg = 1, and ko in Assumption 3 can be
taken as greater than or equal to 1/(ag+||T?).
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Generalized Tikhonov regularization

(T*T)"™" 40t ) xy = (T*T)!T*y. (1.9)
Here
b
ga(K)=—kq+aq+l- (1.10)
Assumptions 1, 2, 3, and 4 hold with v9g = ¢+ 1, ¢ > —1/2, and «p in

Assumption 3 can be taken greater than or equal to 1/ (Ongrl + || T|24tD)y,

Iterated Tikhonov regularization. In this method, the kth iterated approximation

xék) is calculated from

(T*T +al)x) =ax{™V+T*y, i=1,.. .k, (1.11)

with x = 0. Here, with

=Ll @\ 1.12
o[- ()] o

Assumptions 1, 2, 3, and 4 hold with vy = k and the constant x( in Assumption 3
can be taken as any number greater than or equal to 1/(cg+ || T ||%).

In order to obtain numerical approximations of X, = g, (T*T)T*y, one may
have to replace T by an approximation of it, say by 7;,, where (7},) is a sequence
of finite rank bounded operators which converges to 7 in some sense, and
consider

Xan = 8a(T, Ty)T;¥y (1.13)

in place of Xy. One of the well-considered finite rank approximations in the
literature for the case of Tikhonov regularization is the projection method in
which 7, is taken as either T P, or P;T P,,, where foreachn e N, P,: X — X
is an orthogonal projection onto a finite-dimensional subspace X, of X.

In [4], Periverzev considered Tikhonov regularization, with

n
Ty = P\T Ppu+ Y (P — Poiet) T Pys (1.14)
k=1

with R(Pok+1) € R(Py+1) and showed that the computational complexity for
obtaining the solution

S = (T Ty +al) ' T)5 (1.15)

is far less than that for ordinary projection method when T and T* are having
certain smoothness properties and (P,) is having certain approximation prop-
erties.
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Recently, Solodkii [6] applied the above modified projection approxima-
tion to the general regularization method, and obtained error estimate for the
approximation

Xa,n :ga(Tn*Tn)Tn*)? (1.16)

under an a priori choice of the regularization parameter «.

In this paper we not only consider the above class of regularization meth-
ods defined by Xy, = 8o (T, T,)T,"y with T, as in (1.14), but also consider a
modified form of the generalized Arcangeli’s discrepancy principle

p
||Tn;za,n—f||=%, p>0,q>0, (1.17)

for choosing the regularization parameter . Here (a,) is a sequence of positive
real numbers such that ¢, — 0 as n — oo. It is to be mentioned that, in [3], the
authors considered the above discrepancy principle for Tikhonov regularization
with 7}, as in (1.14). The advantage of having a general sequence (a,) instead of
the traditional (e,), where ||T — T, || = O(e,), is that the order of convergence
of the approximation is in terms of powers of 6 +a,, in place of powers of § +¢€,
with a, smaller than €,. By properly choosing (a,), it can happen that, for a
small §, the values of n for which @, = O(8), can be much smaller than that
required for €, = O (§). In this paper we are going to use the estimate |7 — T || =
O(ey), €, =27, proved in [3], where r > 0 is a quantity depending on the
smoothness property of T, and take (a,) such that 27" = O(a}l) for some
A > 0. For instance one may take a, = 2~""/* for any A € (0, 1].

In order to specify the smoothness properties of the operator T and approx-
imation property of (P,), we adopt the following setting as in [3, 4].

Forr > 0, let X, be a dense subspace of the Hilbert space X and L, : X, — X
a closed linear operator. On X, consider the inner product

(f.8)r = (f’g>+<er’Lrg)a f.8€Xr, (1.18)

and the corresponding norm

1A = NAN+|Lr f, f € X0 (1.19)

It can be seen that, with respect to the above inner product (-, -),, X, is a Hilbert
space.

fA:X— X,B:X,— X, C:X — X, are bounded operators, then we
will denote their norms by

1Al B0 ICllo.r» (1.20)

respectively.
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We assume that 7 : X — X is a compact operator having the smoothness
properties

R(TYSX,, R(T)<X,,  R((LT))CX, (1.21)
with
T:X — X,, T : X — X,, (L,T)": X — X, (1.22)

being bounded operators, so that there exist positive real numbers y1, y2, y3 such
that

ITlos <71 [T*o, <720 [(LT) [y, < (1.23)

Further, we assume that (P,) is a sequence of orthogonal projections having
the approximation property

|1=Pu|, ,<cn™, (1.24)

||r,0

where ¢, > 0 is independent of #.

2. Error estimate and discrepancy principle

2.1. Errorestimate. Let 7 : X — X be a compact operator having the smooth-
ness properties specified by (1.21) and (1.23) and (P,) a sequence of orthogonal
projections having the approximation property (1.24). For each n € N, let T;, be
defined by (1.14).

Let y € R(T) and y € X be such that

ly—3| <. 2.1)
Let {gy : @ > 0} be a set of Borel measurable functions defined on (0, b], where

b=max{|T|% | T’} VeeN, (2.2)

and satisfying Assumptions 1, 2, 3, and 4. Let

£:=TTy, Xo = go(T*T)T*y,

_ . 2.3)

Xoon i= ga(Tn*T,,)Tn*y, Xon = ga(Tn*T”)Tn*y.

Further we assume that x € R((T*T)") for some v € (0, vg], and
2=(T*T)"a, deX. (2.4)

In order to find an estimate for the error ||X — Xy , ||, first we observe that

X _ia,n “ < Hx —Xa,n ” + ”x(x,n _ia,n ” . (2.5)
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By the definition of X, ,, ¥4 ., and using spectral results, we have
Xan —Fan = ga(TyTn) T, (y=3) = T, 8 (T T) (v =3).  (2:6)
Therefore, using Assumption 2 on g, we get
| ¥ain = Fan | = [ T ga (Ta ) (v = 5)|
=| (TnTn*)]/zga (LT (v =) 2.7

_ )
< sup A2y -3 =d—=.
0<i<b *

Ja
Thus, we have
A~ N 5
[ £ =Zan| < |2 —xan|+d—. (2.8)

Ja
The following theorem supplies an estimate for || X — x4, |. For its proof we
will make use of the result

min{1,¢}

|AS— AL < ac]|A— A4 ¢>0, 2.9)

proved in [7] for positive, selfadjoint, bounded operators A and A, on X, with
(A,,) uniformly bounded, where a, > 0 is independent of n.

PROPOSITION 2.1. Let X and x4, be as in (2.3). Then

[# ]l < el 4 | 7T =TT a2 (5, P (1T)' ).
(2.10)
Proof. We observe that
2 —Xqn=%—go(TT,) T, T%
=[I = ga (T} T) T} T |3 + 8o (T T) T} (T — T) £, @1

so that
|% %o | < [[1 = 8 (T3 T) Ty T ]2 | + [ 80 (T3 Tn) T (T = T) 2| (2.12)
Since x = (T*T)"u,

” [1 — 8 (Tn* T”)Tn* T’l])2

= |[1 = T; Tuga (1, T) |(T*T) "2
< |1 =T Tuga (T T)JU(TT)" = (T, T) i

VA

+ ” [I - ZangOl(Tn*Tn)](Tn*Tn) i

(2.13)
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Now, using Assumption 1 on gg,

I[1—-T; Thga (T T) (T, T0)

oV,

i

i

< sup A[l—dgaW)|[i] < ey
0<<A<b

(2.14)
and by Assumption 1 on g, and the result (2.9) with A =T*T, A, =T,/T, and
L=v,

Iro (T T) = (170 Yl = (T[T~ (17,) ]
= ol |[(77)" - (7;7:)"]]
< coau | |77 17, 00,

(2.15)

A

Since T, P»» =T, X = (T*T)"ii and using Assumption 2 on g,, we have
lga(TFT) T (T — T)2| = || 8o (T 1) T, (T — P T) 3|
= |(m1)""

= ” (T”Tn*)

8 (T T) (T — P T)R |

()| (T = PeT)(177) 0

<dlile”"?|(Ty = PrT)(T*T)"].
(2.16)

Using the above estimates for ||[I — go (T, T,) T, T, 1% and ||go (T, T) T, (T —
T,)x|| in relation (2.12) we get the required result. O

In view of relation (2.8) and Proposition 2.1, we have to find estimates for
the quantities

|T*T —T;T,|, (T —PrT)(T*T)"|. (2.17)
It is proved in [4] (also see [6]) that
|T*T - 1T, | = 0(27™) (2.18)
so that
|7*7 =TT, " = 0(272), vy = min{v, 1). (2.19)

Also, the estimate for ||(T,, — P»»T)(T*T)"|| given in the following lemma can
be deduced from a result of Solodkii [6]. Here we will give an independent and
detailed proof for the same. We will use the estimates

[T =R =0m™).  [T(-R)],, =0m~)  @20)

||0,r
obtained by Pereverzev [4] (cf. also [3]) and the estimate
[(z= )T [ =0 ([T (1= P) ™M), €50, @21)

given in [5].
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LEmMMA 2.2. Forv >0,

(T — P»T)(T*T)" | = 027G+, vy = min{2v, 1}. (2.22)
Proof. It can be seen that

n

PuT =T, = PiT(I = Pyu)+ Y (Py— Pyt)T(I = Pyut).  (223)
k=1
Therefore,

| (P2 T =T,)(T*T)"|

< |T(1=Pa)(T*T)"| +Xn: [ (1= Py) T (1 = Pyai) (T°T)" |

k=1
<|T(1—Py»)

[ (7= Py)(TT)"

#3010 P71 =) 1= ) (7Y

< |71 = P)

[ (7= Py)(T°T)"

+ Z |7 =Py} I 7 (7 = Prni) o, [ (1 = Poai) (T7T)

(2.24)
Now using (1.24), (2.20), and (2.21), it follows that

| (P T =T)(T7T)’|

n
<K 2—2nr (2—2nr)min{21)a 1} iy Z 2—(k—l)r2—(2n—k)r [2—(2n_k)r]min{2v, 1}

k=1
n
< k272N ok ) = min{2, 1),
k=0
— 0(27nr(2+v2))'
(2.25)
Thus the lemma is proved.

O

Now, the estimates in (2.19) and (2.22) together with Proposition 2.1 and
relation (2.8) gives the following result.

THEOREM 2.3. Suppose that x € R((T*T)") and y € R(T). Then

—nr(24vy)
”)2_);‘”1” §c(a”+2_2"r”' +2 2 8 )’

T + ﬁ (2.26)
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where
v1 = min{v, 1}, vy = min{2v, 1}. 2.27)
2.2. Discrepancy principle. We consider the discrepancy principle

( +an)p
ad ’

|TnZan =3 = p>0,4>0, (2.28)

where (a,) is a sequence of positive reals such that @, — 0 as n — 0.
Let

Jn (Ol, &) =af H Ty Xon —ﬂ} (2.29)
‘We observe that

Tnian—3 = [T T, 8u(TuT,) —I]5. (2.30)

Hence, by Assumptions 1 and 3 on g,, o > 0, and using spectral theory, we have
|TnFen =5 = [T T e (T T7) = 115 = sup [1=2ga[[F] = <o,
0<A<b
b
|72 =51 = 1772 ) = 1151 = [ (1=t 5
b
- [ oo a5 = (e 51
(2.31)
Therefore, it follows that
ilino fa(e, ) =0, Jimf, (2, 5) = 0. (2.32)

Hence by the intermediate value theorem and Assumption 4 on {g,}, there exists
a unique « satisfying the discrepancy principle (2.28). It also follows that

(8+an)p

ai = |Tnen =53] = w0 |3 2.33)

so that
a=0(8+a,)" . (2.34)
For the next result we make use of the estimate

|IT-T.|=0(2"") (2.35)

proved in [3].
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PROPOSITION 2.4. Suppose that x € R(T*T)" for some v with 0 < v < vy, (a)
is such that 27" = O(aﬁ) for some A > 0 and « is chosen according to the
discrepancy principle (2.28). Then

S+a,)’
(a—j) = 0((5+a)"). (2.36)
where
_pw 14

s=min{1 A, _
q+vo 2(q+wo)

+2Avp } ,
(2.37)

1
vy = min{v, 1}, a):min{v—i—z,vo}.

Proof. From the discrepancy principle (2.28) we have

(8+an)p

ol = ||T"i0‘~" —ﬁ” = ” [I_g“(T"Tn*)T"Tn*]y”

= |[1 =g (TT) LT Iy | + [ = 8o (T T) T T ] (5~ ) |-
(2.38)

We observe that
I[7 =8 (LTN LTIy = |17 = 80 (L) T |(T = To) 2|
+ ([ = e (TT) LT Tt
= 7 =TT gu (T T)(T — To) 2]
[ =TT 8o (T )] T2

(2.39)

Now, using the fact that x = (T*T)" i, Assumption 1 on gy, o > 0, and spectral
results, we have

|7 =TTy 8o (TaT) | Tu

VA

(771 1~ T T (1T (1)

VA

= (1 7) P [1 = T T (T T) (T TH)

(T ) 1 = T T (1T,
< [(T°T)" = (T;°T,) " ]a|

<&a®|i|+erpa Pl |(T5T)" — (1,T:)"]),
(2.40)

where ¢, = cyp12 if v+1/2 <vg and ¢, = ¢, if v+1/2 > vp, and w =
min{v+1/2,vp}. Hence

|l = e (BT LT ]y | = cof (T = T) 2] +ever” ]
+erpa Pal | (T77)" = (T7T,)".

(2.41)



M. T. Nair and M. P. Rajan 349

Also, we have

[(I =8 (T T)) T, (5= y) || < cod. (2.42)
Thus

(5+Cl )P R n N
o sl (=Tl ree i vepeaPa]

x |[(T*T)" = (T,/T,)" | +cod.

Now by the results (2.9), (2.34), (2.35), and the assumption that 27" = O(a,)l‘),
we have

(8 —I—an)p

v = c(a)+a®+a'?a;" +5)
<c((d+a) +a+a' (6 +an)" 0 +a) g

< c((8+an)" + (8+ay) "

)(P/Z(q+VO))+2Au2

+ (8 +ay +(8+an)),

where v, = min{v, 1}, ® = min{v+1/2, v,}. Thus

S p
( +Cln) _ 0((8+an)S)’
o
(2.45)
. P pw
= LA, 20y, — 1.
s mln{ 2(q+v0)+ %) q—i—vo} _

THEOREM 2.5. In addition to the assumptions in Proposition 2.4, suppose that

p<s+2qmin{1,k(2+v2)}, (2.46)
where
s:min{l,,\, T’ ’z(i )+2,\v2},
q+vo v
1 v (2.47)
w:min{v—i—i,vo}, v1 = min{v, 1}, vy = min{2v, 1}.
Then
. pv
/L = min ———I——)»Z—l—vz -4+ — } 0,
{q+vo 29 2q ( )2 2q (2.48)

[#=Feon| = O((8+an)")-
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Proof. Clearly, p <s+2gmin{l, A(2+v;)} implies i > 0. Now to obtain the
estimate for || X — Xy ||, first we recall from Theorem 2.3 that

(2.49)

—nr(2+vy)
”)2_);%"” §c<av+22nrv1 +2 2 ) )

N + -

Ja Ja
Now, using the assumption that 27" = O(a,);) for some A > 0, and relation
(2.34), we have

ar)l»(2+v2) N )
Ja | Ja
8+an))~(2+V2) . 5+a,
Ja NCA

X —Xa.n ” < C<(8+an)pV/(q+V0) +a2)ﬂ,1 n

< c((8+an)pv/(q+v0)+(8+an)2}”vl+(

(2.50)
Since
(6+an)" t—p/2q[ (8+an)" 7V
= (84ay) — (2.51)
7 e
for any £ > 0, by Proposition 2.4,
(8+an) 1=(p/24)+(5/29)
= 0((5+a,) )-
7= ol
5 A(Q2+v2) (2.52)
_ v2)—(p/2q)+(s/2q
(8+an) _ 0((8+a,,)“2+ )=(p/2q)+(s/2 ))
e .
Thus
|% = Zan| = O((6+an)"). (2.53D)

The following corollary whose proof is immediate from the above theorem,
specifies a condition required to be satisfied by A, and there by the sequence
(ay,), so as to yield a somewhat realistic error estimate.

COROLLARY 2.6. In addition to the assumption in Theorem 2.5, suppose A, p,q
are such that

1
max{vo,—} <i<l. (2.54)
q+vo 2

Then s and v in Theorem 2.5 are given by

pw i pv p Vo —
s = , /. = min , 1= <1+ >} (2.55)
q+vo {q+vo 2(q+wo) q
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In particular, with A as above, we have the following:

pv p 2
n= whenever < , (2.56)
q+vo g+vo~ 2v+1+(—w)/q
2v P 2 1
w= whenever = » Vo— 5 =V =V, (2.57)
2v+1 qg+vo 2v+1 2
2 2 1
"= Y whenever P _ ,q>=. (2.58)
2vp+1 g+vg 2v9+1 2

‘We may observe that the result in (2.58) of Corollary 2.6 shows that the choice
of p, g in the discrepancy principle (2.28) does not depend on the smoothness
of the unknown solution X. Also, from the above corollary we can infer that for
the Arcangeli’s discrepancy principle

S+a,

TnXan—7Y| = , 2.59
7251 = 22 259
one obtains the error estimate
A ~ n 21)
F=Tan] = 0((+an)"). w=7— (2.60)
provided (a,) satisfies
21)() 1
27" = 0(al), -t <A<l 2.61
(a2) max{2v0+1 2}— = (2.60)

In particular, for Tikhonov regularization, where vg = 1, we have the order
O((8+ay)?"?) whenever 2/3 <1 < 1.

3. Numerical example

In this section, we carry out some numerical experiments using JAVA program-
ming for Tikhonov regularization, and implement our discrepancy principle. We
also implement the a priori parameter choice strategy numerically.

Consider the Hilbert space X =Y = L?[0, 1] with the Haar orthonormal
basis {ef, e2,...,}, of piecewise constant functions, where e(#) = 1 for all
tef0,1],and form =214, k=1,2,...,j=1,2,...,2k1,

[j—1 j—1/2
k=1j2 U J
2 ifr e T okl ),

em@) =4 —2%"D/2 jfie

[j—1/2 ) G.1)

2k=1 "’ k-1

. [j-1
0 1ft¢_F’F:|‘
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Let T : X — X be the integral operator,

1
(Tx)(s) =f k(s,t)x(t)dt, sel0,1], 3.2)
0
with the kernel
_ t(l—s), t<s,
k(s.1) = {s(l —t), t>s. (3-3)

We take X" with r = 1 as the Sobolev space of functions f with derivative
f' e L?[0,1]. In all the following examples, we have £ € R((T*T)") with
2v < 1. In this case the error estimate in Theorem 2.3 takes the form

2—2n(14v) 5
|5 — Fan | §c<a”+2_2m’+7+ﬁ>. (3.4)
Taking the a priori choice of the parameter « as
o~27" o ~ 82D, (3.5)
we get the optimal order
|2 = Fan|| = O(82/@"FD). (3.6)
In a posteriori case, we find o using Newton-Raphson method, namely
Hpr = O — g/(“"), k=0,1,..., (.7)
8 (Olk)

where
g(a) = (T MCx— 25" CB+(5,5)) — (8 +a,)™”,
g (@) =2qa? 7 (3" MCx - 25" CB+(7.7))
—a®[x"MCa+M) i —xT (@+M)"'MCx 25" («+M)"'CB],

3.8)
with
)E:(xl,xz,...,xm),
[B]; Z(ei,)Ni), i=1,2,...,m,
2n—v
(M];; = Z (ei, Aey)(ej, Aey), i,j=1,2,...,2", (3.9)

r=1
[Clij =(#i.0j), &1 =PuuT er, i = Pyu-reTe;,
ie(712, e=1,2,....n.
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Here we used the notation [A];; for the ijth entry of an n x n matrix A and [B];
for the ith entry of an n x 1 (column) matrix B.
In the following examples, we take the perturbed data y as

y()=y@)+8, 0<s<l1. (3.10)

For the a posteriori case, we take p and ¢ such that p/(¢+1) =2/3, and a, =
Q™% with » = 2/3. As per Corollary 2.6, the rate is O((§ +a,)Pv/@thy,
We will use the notation €4, for the computed value of ||X — Xy, |-

Example 3.1. Let y(s) = (1/6)(s —s3). In this case, it can be seen that X (1) =1,
t € [0, 1]. Ttis known (cf. [2]) that X € R(T*T)" forall v < 1/8. In the following
two cases we take v =1/9.

A priori case

) n m ea,n ) % €a,n-0 %
2 4 0.9059731 0.7371346 1.229047
2—1.22n 3 8 0.7722685 0.6328782 1.220248
4 16 0.4068352 0.5433674 0.7487295
A posteriori case
BY —pv
P q ) n m €a,n (6 +ap) 1+ eqn-(8+ap)at!
. 2 4 05102194 0.89450734  0.5703915
g=102 2-122n 3 0.4890685 0.8196771 0.5966605
4 16  0.3504178 0.7517244 0.4661520
2 4 0.4000930 0.89450734  0.4482135
P 2-122n 3 8  0.3664487 0.8196771 0.4470647
4 16  0.3294871 0.7517244 0.43830837
b 2 4 0.5754841 0.8414794 0.6838956
a=102 10-10 3 8  0.5430453 0.7719075 0.7035708
4 16  0.2975858 0.7187710 0.4202669
_, 2 4 0.5395960 0.8414794 0.6412471
_5 10~10 3 8  0.4648603 0.7719075 0.6022228
4 16  0.28503888  0.7187710 0.3965642

Example 3.2. Let y(s) = (1/24)(s —2s3 +s%). In this case, £(r) = (1/2)(t —13), t € [0, 1]
and X € R(T*T)" for all v < 5/8 (cf. [2]).
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A priori case

1) n m ean $ % €a,n-6 Z%Fvl
2 4 0.2362887 0.1767766 1.3366517
2_2”/2 3 8 0.09444126 0.08838834 1.0681567
4 16 0.043338350 0.04419417 0.98063492
A posteriori case
_pv_ —pv
P, q 8 n m ea.n (8 +ap)at! eqn-(8+ap) 1t
2 4 0.08955768 0.54195173 0.16525029
p=1 2= 2#n /2 3 0.08927489 0.37696366 0.23682611
q=1/2 4 16 0.08501988 0.26363660 0.32261129
p=4/3 2 4 0.07940677 0.54195173 0.1465200
_ 2= 2xn /2 3 0.0774004 0.37696366 0.2053259
1= 4 16 0.0683534 0.26363660 0.2593698
b1 2 4 0.09125593 0.50347777 0.18125116
g=1/2 10°10 3 0.09081976  0.35724853  0.25422012
4 16 0.0865327 0.2534898 0.34136562
p=4/3 2 4 0.09045663 0.50347777 0.17966361
g=1 1010 3 8 0.0857890 0.35724853 0.24013831
4 16 0.073404813 0.2534898 0.2895769
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