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1. Introduction

Consider the problem

—£2Au+V(y)u=up_l, yeRN,
u>0, yeRN, (1.1)
u—0, as|y|]— +o0,

where V (y) is a smooth bounded function with positive lower bound, & > 0 is
a small number, 2 < p <2N/(N—=2)if N >2and2 < p <+ooif N =2.

Many works have been done on problem (1.1) recently (cf. [6, 7, 8, 16, 21,
22, 23]). One of the results in the papers just mentioned is that if x1, x2, ..., x
are k different strictly local minimum points of V (y), then (1.1) has a k-peak
solution u,, that is, solution with exactly k local maximum points, such that u,
has exactly one local maximum point in a neighborhood of x;, j =1,... k.
The same conclusion is also true if x,x2,...,x; are k different strictly local
maximum points of V (y). Actually, it is proved in [23] that (1.1) has a multipeak
solution with all its peaks near an isolated maximum point of V(y). Thus a
natural question is what will happen if V (y) attains its local minimum or local
maximum on a connected set. Especially, if V (y) attains its local minimum on
a connected set which contains infinitely many points, it is interesting to study
whether (1.1) has multipeak solution concentrating on this set. Generally, this
is not true as shown in Example 1.6.

The main results of this paper consist of three parts. First, we study how the
topological structure of the local minimum set of the potential V (y) affects the
existence of multipeak solutions for (1.1). We show that if the minimum set of
V (y) has nontrivial reduced homology, then for each £ > 1, (1.1) has at least
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72  Existence of multipeak solutions

one k-peak solution such that each local maximum point of this solution tends
to a point in this minimum set as ¢ — 0.

Second, we construct solutions with their peaks near a connected maximum
set of V(y). Unlike the case of minimum sets, we show that for any connected
maximum set of V(y) and for any positive integer k > 2, (1.1) always has at
least N different solutions with all their peaks tending to this maximum set as
e — 0.

Suppose that M| and M, are two disjoint connected sets such that V (y)
attains a local minimum or a local maximum on M; and on M;. The third
problem studied in this paper is to construct a (kj + k»)-peak solution u, such
that u, has exactly k; local maximum points near M;, i =1, 2.

Before we state our results precisely, we give some notations first.

For any constant V > 0, let U v (») be the unique solution of

—Au+Vu=ul"!, yeRV,
u > 0, y ERN, (1_2)

ue H'(RY), u(0) = max u(y).
yeRN

Let w be the unique solution of

—Au+u=uP!, yERN,
u > O, y ERN, (13)

ueH](RN), u(0) = max u(y).
yeRN

Then Uy (y) = VP~ 2w (Vy). Denote U, , (y) = Uy ((y —2)/#).
For any fixed integer k >0 and V; >0, j =1, ..., k, we denote

aUg,xj,Vj ’ ’U> _ 0’
&

Brs= {1 @) (Ve ), = (02
Jji

(1.4)
j=1,...,k,i=1,...,N},

where (1, v)e = [pv e2DuDv+V (y)uv. We also denote [|v|2 = [ &2|Dul*>+
V(y)v2.

Definition 1.1. Let M be a connected compact set in RV . M is said to be a local
minimum (maximum) set of V (y) if there are constants y > 0 and Vj,, such
that V(y) =Vy fory e M, V(y) > Vu(V(y) < Vy) for y € M, \ M, where
M, ={z:zeRN d(z,M) <y}
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Throughout this paper, all the homologies are with Z-coefficients. Now we
are ready to state our main results.

THEOREM 1.2. Suppose that M is a connected compact local minimum set of
V(y) such that M, is a C'-manifold of dimension N — 1 for each y > 0 small.
Moreover, we assume that for any y > 0 small, the following conditions hold:

V() < Vy+ad(y, )", |D"V()|=0(dly,m)"™), (1.5)
form=1,....[h], ye M,,
(DV(y),n) > coy"™', VyeoM,, (1.6)

where a, cy, and h > 2 are some positive constants, n is the outward unit normal
of M, at y. If the reduced homology of M is nontrivial, then for each integer
k > 2, there is an g9 > 0, such that for every ¢ € (0, &9), (1.1) has at least one
k-peak solution of the form

k
uszzas,jUs,xg’j,VM + v, (1.7)
Jj=1

where v, € E¢ x x and as ¢ — 0,
o —> 1, M—M)O Xej —> Xj €M, ||v5|}§=o(8N),

€
(1.8)
fori,j=1,...,kandi # j. Moreover, if k =2, (1.1) has at least cuplength(M)
distinct solutions of the form (1.7) satisfying (1.8).

For any set M, denote

Ak=<Myx-~xMy\UHx,-—xj|<d})/crk, (1.9)
N——

4 i#]
where d > 0 and y > 0 are small constants, oy is the group of permutations of

k letters acting on My x -+ - x My \ ;. j{lxi — x| < d}.
k

THEOREM 1.3. Suppose that M is a connected compact local maximum set of
V(x). Then for each positive integer k > 2, there is an go > 0, such that for
every € € (0, 0], (1.1) has at least Caty, (Ay) solutions of the form

k
m:Zocg,jUg,x&j,vM—i-ve, (1.10)
j=1
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where ve € E¢ x  and as € — 0,

ag j — 1, M—)oo, Xej —> Xj €M, va”i:o(sN),

e
(1.11)
fori,j=1,...;kandi # j.

THEOREM 1.4. Let My, ..., M; be disjoint connected compact sets such that
oM,y is a C'-manifold of dimension N — 1 for each y > 0 small and i =

1,...,1. Suppose that the following conditions hold: there are constants h > 2,
c1 > cg > 0 such that

h
Vi, V() < Vi, +eid(y, Mi)",

- VyeM;,,m=1,...,[h],i=1,....1,
D"V ()| = 0(d(y, )" ™),

(DV(y),n) = coy"™", ¥y €M, i=1,...0,
h h

M;) < .= < M;
cod (v Mi)" = Vi, =V(y) < crd(y. Mi)", VyeM;,, m=1,...,[h],
ID"’V(y)|=0(d(y,M,-)h‘m), i=0+1,...1.
(1.12)

() If each M;, i = 1,...,11, has nontrivial reduced homology, then for any
positive integer ki, i = 1,...,1, there is an g9 > 0 such that for each ¢ € (0, &),
(1.1) has at least one solution of the form

I ki

Ue = ZZ“S,i,jUs,xm’j,VMi +U5, (113)

i=1j=1

where v; € Es,x,21.=, ki and as € — 0,

e ij —> 1, v ||§ =o(e),

(1.14)

{xe,i,j _xe,i,m|

- —> 00, Xgij—> X j €M,

fori=1,...,1, jym=1,..., ki, and j = m.
(ii) If some of the minimum sets M, ..., M;, have trivial reduced homology,
then the conclusion in (i) holds for kij =1j=1,...,¢t

The basic idea to prove Theorem 1.2 can also be used to obtain the following
result.
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THEOREM 1.5. Let M be a connected compact local minimum or maximum
set. Then there is an gy > 0, such that for each ¢ € (0, ¢eq], (1.1) has at least
Catyr (M) single peak positive solutions of the form

ue = Ug x, vy + Ve, (1.15)
where ve € E¢ «, 1, and as € — 0, ag — 1, X, — x9 € M, and ||v€||§ =o(eM).
The assumption that M has nontrivial topology is essential in Theorem 1.2,

as shown by the following example.

Example 1.6. Let V(y) = V(]y|) be a smooth function satisfying V (y) =1 for
|y] <1, and V(]y]) is strictly increasing in |y| > 1. Then we see that the mini-
mum set of V() is the unit ball in R . By the moving plane method of Gidas,
Ni, and Nirenberg [19], we know that every solution of (1.1) is radially sym-
metric and strictly decreasing. Therefore, the solution has a unique maximum
point, and thus is a single peak solution.

Example 1.7. A typical example of V (y) satisfying the conditions in Theorem
1.41isthat V(y) = V(|y]) and V (r) attains its local minimum or maximum at r; >
coo>r1>0with V' (r;) £0,i=1,...,1. In this case, M; ={y : |y|=r;}, h=2.

Remark 1.8. If M is an N-dimensional smooth manifold without boundary,
tubular neighborhoods of M are useful for verifying the conditions in Theorem
1.4.

Remark 1.9. By Proposition C.3, we know that a lower bound for Caty, Ak
is N. So (1.1) has at least N different k-peak solutions concentrating on the
connected compact local maximum set of V (y).

Since the work by Bahri and Coron [2], the effect of the domain topology on
the existence and multiplicity of the solutions is one of the subjects which attract
much attention. See, for example, [2, 3, 4, 10, 11, 12, 14, 15]. In [3], the category
of the domain was used to estimate the number of the single peak solutions, while
in [12, 14, 15], the effect of the domain topology on the existence of multipeak
solutions was studied. The domain in problem (1.1) has trivial topology, so our
results here emphasize the effect of the topology of the level set of the potential
V (y) on the existence and multiplicity of multipeak solutions for (1.1).

Finally, we point out that the idea in this paper works for the singularly
perturbed Neumann problem

2 -1 . . ou .
—&e“Au+t+u=u’ in , u>0 1inQ, 8_:0 in 92, (1.16)
n
where  is a bounded domain in RY. The role of the mean curvature function

of the boundary 92 in (1.16) is similar to that of the potential V (x) in (1.1).
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The estimates in Appendix C can be used to improve the multiplicity results in
[13, 25]. For example, as a direct corollary of Proposition C.3 and the results in
[13, 25], we have the following corollary.

COROLLARY 1.10. For each integer k > 2, there is g9 > 0 such that for each
€ € (0, gol,

(1) equation (1.16) has at least N boundary k-peak solutions with all their
local maximum points near the global minimum set of the mean curva-
ture function of 9€2;

(i) equation (1.16) has at least N interior k-peak solutions.

This paper is arranged as follows. In Section 2, we reduce the problem of find-
ing a multipeak solution for (1.1) to a finite-dimensional problem. Theorem 1.2
is proved in Section 3. Section 4 is devoted to the proof of Theorems 1.3 and 1.5.
In Section 5, we prove Theorem 1.4. Some basic estimates and the topological
results needed in the proof of the main results are presented in the appendices.

2. Reduction to finite-dimensional problem

First, we define

D, = {(a,x,v) aj—1] <8, ve Eexi, vlle <862,
M 2.1)
x=(x1,..,x0), xjeRY, LSRG =1k, i;éj},
e
where § > 0 is a fixed small constant and R > 0 is a fixed large constant.
We also define
k
Je.xv)=1|Y ajUeyv,+v]|. Viwx,v)eD,, (2.2)
j=1
where
1 2 2 N
I(u) = - (e”|Dul”+V(y)u”) — — ul?. (2.3)
2 JrN p Jry

It is well known now (see [1, 24]) that, if § > O is small enough and R > 0
is large enough,

k
u:ZajUg,xj’vj—i-v 2.4)
j=l1
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is a positive critical point of /() if and only if (o, x, v) is a critical point of
J(a,x,v) in Dg. So we need to solve the following system:

0J

— =0, j=1..k (2.5)
oo
N 2
aJ 92Uy, v,
—=ZGh‘i<L’V’,v>, j=l...kil=1,...N.  (2.6)
ale rt axjhaxﬂ e
k k N
a7 Wi v
o= BiUes v+ )Y G @7
dv - 3xji

for some constants B;,Gj; €R, j=1,...,k,I=1,...,N.
In this section, we reduce the problem of solving the system (2.5), (2.6), and
(2.7) to a finite-dimensional problem. We need the following proposition.

PROPOSITION 2.1. There is an gy > 0, such that for each € € (0, &¢), there exists a
unique C'-map (s (x), ve(x)) : RV \U; 2 {|x; — x| < eR} — RE x HIY(RV)
such that vy € E¢ x, (2.5) and (2.7) hold for some constants B; and G j;.
Moreover,

akx = v.(x), akae(akx)zocg(x), (2.8)

(7]
o = 1™ ol = 0 [ N/2|V (xj) = Vj|+ZsN/“'"!D'"V(x,~>|)

m=1

N/2 (141)/2 |x1 xJ|

+0( Putor(BH)).
i#]

2.9)

k [h]
ot 0= 0 |11V - il+ Lol Vs )

m=1

(2.10)

(147)/2 |x,-—xj|>
+0 SZw <—s ,

i#j

where T > 0 is a fixed small constant.

Proof. We can follow the same procedure as in [5] to prove the existence part.
Equation (2.8) is a direct consequence of the fact J(«, x,v) = J (o, o X, V)
and the uniqueness of (o, (x), ve(x)) satisfying (2.5) and (2.7). To get the esti-
mate (2.9), we just need to use Lemma A.3. We can solve a system as in [24,
pages 22-23] and use Lemma A.4 to get the estimate (2.10). Since the procedure
is quite standard, we omit the details. O
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Let (o¢(x), ve(x)) be the map obtained in Proposition 2.2. Define
K (x) = J (e (x), x,v(x)). (2.11)

In order to solve (2.5), (2.6), and (2.7), we only need to find a critical point
for K(x) in a suitable domain. So we need the following propositions.

PROPOSITION 2.2. Suppose that F(x) is a C*-function defined in a bounded

domain Q of RN, If F satisfies either F(x) > ¢ or 3F(x)/dn > 0 at each
X € 02, where n is the outward unit normal of 92 at x, then

#{x:DF(x)=0,x € F°} = Catpc (F°), (2.12)

where F€ = {x : x € Q, F(x) < c}. In particular, F(x) has at least one critical
point in F€.

Proof. Notice that our assumption implies that the flow

dx(t) ¢
— =—DF(x(t)), x(0) =xg € F€, (2.13)

does not leave 2. In fact, suppose that x(¢#) touches the boundary at some
time f9. Since F is decreasing along x(¢), then F(x(#p)) < c. Thus, by assump-
tion, dF(x(#p))/dn > 0, which implies that —DF (x(tp)) points into 2. So
x(#) moves into 2. Then Proposition 2.2 follows directly from the Ljusternik-
Schnirelman theory. O

PROPOSITION 2.3. Suppose that F(x) is a C*-function defined in a bounded
domain Q2 of RAN | Let ¢y > c1 be two constants such that neither ¢y nor cy is
a critical value of F (x). If F satisfies either F(x) < c1 or 0F (x)/on > 0 for
each x € 0S2, then

#{x:DF(x) =0, x € F2\ F'} > Catpe, (F*, F). (2.14)

In particular, if F? cannot be deformed into F€', F has at least one critical
point in F2\ F°1,

Proof. Similar to Proposition 2.2, our assumption implies that the

dx(t)
dt

=—DF(x(1)), x(0)=x¢€ F?, (2.15)

does not leave €2 before it reaches F“!. So Proposition 2.2 follows directly from
the Ljusternik-Schnirelman theory. |
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3. Multipeak solutions concentrating on the minimum set

Suppose that M is a connected compact local minimum set of V (y) and M, =
{y:d(y,M) <y}.Fork >?2,let

Qy—{x—(xl,... ) :x,-eMy,jzl,...,k,h’:—mzR,w ;éj}. G.1)

Define

Co = N (kv,ﬁ/(p_z)_N/zA— Tgah), Con = N (kvnl;/(p_Z)_N/zA-i-n),

3.2)
where T > 0 is a large constant and « € (0, 1) is a fixed constant close to 1. We
also let

K ={x:x€Qu, Kx) <c}. (3.3)
In this section, we apply Proposition 2.3 to prove that for ¢ > 0 small, K (x)
has a critical point in K2\ K1, First, we prove the following lemma.

LemMA 3.1. For each x € 02;e, either K(x) < cg1, or 0K (x)/dn > 0.

Proof. We divide the proof of this lemma into two steps.
Step 1. Suppose that |x; —x|/e = R for some i # j. We claim that x € K¢!.
In fact, by using Proposition 2.1 and Lemma A.2, we obtain

k
2
K()=1 (Z UE,XI,VM> +0 (N fae =1+ 1012

=1

p—1

k k—1 k
—2)—-N/2
—eN S YN, fRN Y Uenyvu|  Usiviovu
j=1 i=1

j=i+1

(Xk:( NV (x) VM|+§J:8N+’"|D'"V()C1)|>>

=1 m=1

oo (20

i#]j

(3.4)

p—1

k k—1 k
—2)—N/2
I R AL L :/RN Y Ues;vu|  Ueiova
j=I i=1

j=i+1

N4ah | N 1+7 |x,~—xj|
+0<8 +e Zw (—8 ))

i#]
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From (3.4), we have
K(x) <&V (kv]{;/(”‘z)‘”/zA — cw(R)) +O(N ) < ). (3.5)

Thus x € K¢ 1,
Step 2. Suppose that x; € dM for some i. Without loss of generality, we
assume that i = 1. We claim that either K (x) < ¢¢ 1, or dK /dn > 0, where n is
the outward unit normal of 0 M.« at x;.

For any x; € Mo« and m > 2, we have

[V (xj) = V| = 0(e*"),

3.6)
|DmV(xj)|8’” _ O<d(xj, M)h—mgm) _ 0(8a(h—m)8n1) _ 0(80”"“2(1—“)),
So, by Proposition 2.1 and Lemma A.4, we have
oK aJ aJ odv OUex;,vy v
_:_+<_’_> ZZ h/< &Xj, VM >
dxy,  0xq] v 0xq; 8x11 P 0xjp BESY .
N
o <32U8,XI,VM v>
Ixu = dxp10x1
— 8_J+0( N— 1Ze—(l+f)(xi—x_l‘|/£)+8N+Oth) (37)
dxyy —
i#]
‘ ) AUe v,
_ N pP— &,X1, VM
=cCie D1V(X1)—(p—1)§/ U; X1, VMUg’xijM ax1

I (5N—1 el +8N—1+ah+2<1—a>).
i#]
Let n =min; |x; —x;|. We distinguish two cases.

(i) Suppose that U(n/e) > Le®", where L > T is a large constant. In this
case, we claim that K (x) < ¢, 1. In fact, it follows from (3.4) that

K(x) < SNkVAIf/(p_Z)_N/ZA —c/sNu)<ﬁ) + 0(8N+°‘h)
&

< SNkVAl;/(p_Z)_N/ZA—C/L€N+ah+C8N+ah

(3.8)

< 08,17

if L > T is large enough.
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(ii) Suppose that U (n/e) < Le®". In this case, we prove that dK (x)/dn > 0,
where n is the outward unit normal of d M« at x;. Since for any j # 1,

P2 0Uex.Vy _ non ([ =\ k=
/RN Ug,xl,VMUg,xJ-,VMT—(C—l—o(l))g w(

0y e Jlxj—xl
3.9)
and for small 8 > 1 —«,
<ﬂ,n>gsﬂ, Vx; € Moo N Beo (x1), (3.10)
) =21

we see that

p—2 OUe v, vy N—1 |x1—xj|
./]RN Ue,n,VMUgvxijM—an fgﬂ(c—{-o(l))e w(—g

<gP (c—i—o(l))sN_lLe“h, Vxj € MeaNBge (xl).

3.11)
On the other hand, if |x; — x| > &%, then
_ U —a
/RN UijVM Ug,x_].,VMi;);nl’VM = 0<8N—1e—1/8' ) (3.12)

Combining (3.7), (3.11), and (3.12), we obtain

0K (x)
on

2C18N<Dv(x])’n>_8ﬂL(C+O(1))8N*1+ah+0(8N71+C{h+2(170())

Z C/8N+(X(]’l—l) _L(C+0(1))8N—I+Olh+,3 > 0
(3.13)

Combining Steps 1 and 2, we complete the proof of this lemma. ]

We are now ready to prove Theorem 1.2.
Proof of Theorem 1.2. In view of Lemma 3.1 and Proposition 2.3, we see that
#{x: DK (x)=0,x € K>\ K%'} > Catg,, (K2, K"). (3.14)

It is easy to check that

K2 = Qua. (3.15)
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On the other hand, we claim that
TC’EIIIS_I \TgR C KCS’I C TCEII]S_I \TgR, (316)

where T; = Ujzjf{lx; —xj| <7, xi,xj € Mg}, C > ¢’ > 0 are some suitable
constants.
In fact, it follows from Lemma A.2 that

Ca,l — SNkVA[/;/(p_Z)_N/zA_TSNJ’_ah > K(x)
~2)—N/2 -1 3.17
=€NkVAZ/(p ) / A_Z\/H‘QN U;fxl.,VMUs,x]-,VM+0(8N+ah)» ( )
i#]

which implies |x; — x| < Celn(1/¢) for some i # j if T > 0 is large enough.
Thus,

K" C Tepine—1 \Ter- (3.18)
On the other hand, it is easy to check

Toemme—1 \Ter C K1, (3.19)

if ¢’ > 0 is small enough. So the claim follows.

Since T¢,qne-1 \ Ter can be deformed into 7,

welne—1 \ Ter, we have

Catg, (K2, K') = Catg,q (e, Tpogpne—1 \ Ter)- (3.20)
As a result, we have
#{x:DK(x) =0, x € K>\ K} > Catqq (e, Tpypne—1 \Ter), (3.21)
On the other hand, it follows from the definition that
Catgo (Qe«. Torgme1 \Ter) = Catyps, (M, Tygine)- (3.22)
So we have

#{x: DK(x) =0, x € K2\ K} = Catypi (Mb Tygppe-1).  (3.23)

C

By Proposition B.4, we know that M é‘a cannot be deformed into 7., .-1. Hence
the right-hand side of (3.23) is greater than or equal to 1, and thus we have proved
the first part of Theorem 1.2.

By Proposition B.5, we know that if k = 2,

#{x:DK(x)=0, x € K2\ K}
= Catyyz (Mo, Tyeine1) (3.24)
> 2 cuplength (M« ) = 2 cuplength(M).



E. N. Dancer et al. 83

Thus, the number of the two-peak solutions for (1.1) is at least

1

5#{x :DK(x) =0, x € K>\ K'} > cuplength(M). (3.25)
So we complete the proof of Theorem 1.2. |

4. Multipeak solutions concentrating on the maximum set

In this section, we assume that M is a local compact maximum set of V (y). Let

. |xi —xj] .
Qs = x:(xl,...,xk):xjeMg,le,...,k,—zR,Vt <,
£
Ap,s = Q5/0%.
4.1
Define
Ki([x]) = J (e (%), x, v (x)),  V[x] € Ags. (42)

By (2.8) of Proposition 2.1, K ([x]) is well defined in A 5. It is not difficult
to prove that Ay s is a covering space of €25. As aresult, [x] € A s is a critical
point of K if and only if x € 25 is a critical point of K.

Proof of Theorem 1.3. First, fix § > 0 small such that
y1 =: Vyy—maxV(x) > 0. “4.3)
IMs
Then take a small positive constant y satisfying y < min(y1, w(R)). Let§; >0
small enough such that
Vix)>Vy—ty, VxeMs, “4.4)

where T > 0 is a small constant.
Define

ce =&V (kV,g/"’*z)*N/2 - y). (4.5)
Then it follows from Lemma A.2 that
J(ozg(x),x, Ug(x)) < Ce.ks (4.6)
if d(x;, M) = § for some i, or |x; — x| = &R for some i # j. That is,
Ki([x]) <cer, VIx]€0d(Axs). 4.7)
Applying Proposition 2.2 to — K, we obtain

#{Ix1: [x] € A5, DK (Ix]) = 0, Ky (Ix]) = ek} = Cata,, ({[Ki(IxD) = o))
(4.8)
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On the other hand, it is easy to check from (3.4) that
/ . 1
ko = M5, x --- x M3, \U {(ixl' —xj'|/8) 2—81/2 } Jok C {Kl([x])zc‘g,k}.
—\/_J . .
Pt i#j

4.9)
Combining (4.8) and (4.9), we obtain

#{[x]: [x] € Ars, DK1([x]) =0, K1 ([x]) = cex} = Cata,, (AL s,). (4.10)
But Ay s and A;C’ 5, are homotopically equivalent, so we see

#{[x]: [x] € Ax5. DK ([x]) =0, K1 ([x]) > e}

4.11)
> CatAk,a (A;w;l) = CatAk.a (Ak,a).

Thus we have completed the proof of Theorem 1.3. ]

Proof of Theorem 1.5. Suppose that M is a connected compact local minimum
set. Let (s (x), ve(x)) be the map obtained in Proposition 2.1 (k = 1). Define

K3(x) = J (e (x), x,0:(x)), VxeM,,

4.12)

C;; =8NV11‘;/(17_2)_N/2A +8N77,

where n > 0 is a small constant satisfying n < miny M, V(x) — Vy. Then it is
easy to check that

K3(x)>c,, VYxedM,, M CKy. (4.13)
As a result, we have
#{x :x € My, DK3(x) =0, x ekg‘f} > Catyr, (M). (4.14)

The case that M is a maximum set can be treated in a similar way. So we
complete the proof of Theorem 1.5. ]

5. Multipeak solution concentrating on different sets

Suppose that M| and M, are two disjoint minimum or maximum sets of V (y).
The aim of this section is to construct a solution u for (1.1) such that u has k;
peaks near M;,i =1,2.

Proof of Theorem 1.4. For the simplicity of the notation, we only prove Theorem
1.4 forl =2.



E. N. Dancer et al. 85

For any y > 0, define
X — s
Q= {(xl,...,xkl) DX EMl,y,|l€—J‘ > R,Vi 7&]}’

|x

i =] zR,w;ﬁj}, e
£

Q= {(xk1+1,...,xk1+k2) (xi €My,
*
Qy =1, X Q2.

For any x € Q’;, let (z(x),ve(x)) be the map obtained in Proposition 2.1.
Define

K(x)= J(ot‘9 (x), x, Vg (x)). (5.2)

Since the interaction between the peaks near M; and the peaks near M, is
exponentially small, we have

2 k
K(x) = N Zki Vip/(P*Z)fN/ZA_i_gNB Z(V(xj)_VMl)VAZ/I/I(pfbe/Z

i=1 j=1
k1+ky
+eVB D" (V(xj) = Var) VPN
Jj=ki+1
ki—1 Ky p-1
_Z/ Z Ue,xj.m) Ue.xi i,
i=1 RN\ =i
ki +ka—1 ki +ks p-l
- Z f Z UE,xJ',Mz US,x,-,Mg (53)
i=ki+1 YR\ j=i
ki+ky [h]
+O [ D0 2DV (x))]
j=1 m=1
N 1+ |xi_xj|
rolen 3wt (RM)
I<i<j<ki+ky
ki 5 k1+ka 5
+0 (VY V() =V [T+e DT [V(x) =Vl |
j=1 j=ki+1

Case 1. Suppose that both M| and M, are maximum sets. In this case, similar
to the proof of Theorem 1.3, using (5.3), we can check that

max K (x) < max K (x). 5.4

X€dQ xeQy
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As aresult, the maximum point x, of K (x) in £ is an interior point of 5, and
thus a critical point of K (x).

Case 2. Suppose that both M| and M> are minimum sets with nontrivial topol-
ogy. Let

2
&=y VA’;{(p‘z)‘N/QkiA _peN+ah

i=1

2 (5.5)
e (B ).

i=1
KC: {x X EQ:O(,K(.X)SC}7

where «a € (0, 1) is a fixed constant close to 1.

Using (5.3), we see that K (x) < C;,l if |[x; —xj| = eR forsome x;, x; € My ¢«
or Xx;j, xj € Mp ca.

Suppose that x; € M c«. Define 51 = minj<; < j <k, 1k, |x; —x|. Then, sim-
ilar to Lemma 3.1, we have K (x) < c;’l if w(ny/e) > Le*" and dK(x)/on >
0if w(ni/e) < Le*". So, in order to prove that K (x) has critical point in
K€2e\ K¢ we just need to prove that K “¢:2 cannot be deformed into K 1.

It is easy to check that K2 = Q7,.

Since

Qe X (TZ,c/elns—l \T2’5R)U (Tl,c’slne—' \TI»SR) X ea C Ko
C Qe X (T come-1 \T2.6r) U (T come-1 \ T1.6R) X 22,60,

where Tj . = Uj£j{lx; —xj| < ¢, xi,xj € Mj e}, | =1,2, C > 01is a large
constant and ¢’ > 0 is a small constant, we see that if K2 could be de-
formed into K, then Mi”sa X Mé‘zga could be deformed into Tj .p1p.-1 X

(5.6)

Mfé’z U Mfé’l X T ve1ne-1- This is a contradiction to Proposition B.2, since
Hy(Mj e, T; pg1ne—1) 7 0,1 = 1,2. So we have completed the proof of Theorem
1.4(i). Using Proposition B.4, we can prove Theorem 1.4(ii) in a similar way.
Case 3. Suppose that M is a minimum set and M» is a maximum set. We only
consider the case that M7 has nontrivial topology. Let

2
¢y = eV SV N Y g Nl

i=1

2
=gV (Z Vi PN P A n) :
i=1

(5.7)

Denote
Lo = Qg0 X Q5, K ={x:xeQ Kx) <c}, (5.8)

where « € (0, 1) is a fixed constant close to 1.
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From (5.3), we have K (x) < ¢, | for x € Qi ¢« X 3Q,5U3T| ¢ X Q2,5.
We claim that if K (x) > ¢| ,, then

d(x;, Mp) < Cs®, (5.9)

|xi —x;] |xi =2/ wh
> w(T>+ > w<T>§C8 . (5.10)

1<i<j<ki ki+1<i<j<ki+k;

In fact, suppose that K (x) > c/l’ .- Then we get from (5.3)

I AP e

I<i<j=<k ki+1<i<j<ki+ky
ky+ky ki+ky  [h] .11
+ Z (VMZ—V(XI'))—FO Z Zsmd(xJ',Mz)h_m SCEah.
j=ki41 j=ki+1m=1

But by assumption, Vi, — V(x;) > Cd(xj, M>)". Thus, (5.11) implies (5.9).
Using (5.11) again, we deduce (5.10).

Assume that x; € 0Mj e and K(x) > c’l’s. Similar to Lemma 3.1, using
(5.9) and (5.10), we can prove d K (x)/dn > 0. So we conclude that if K (x) has
no critical point in K2\ K%/, then K2 can be deformed into K.

It is easy to check

KCE‘Z — Q/

o ‘ (5.12)
Q]ygoz X 892,5U(T1,c’51ns*1 \T]ng) X 92,5 C K1,
On the other hand, if K (x) < ¢} ,, then
Xi—X; Xi—Xj
Z w<|l J|>+ Z w(| ! J|)
i & — &
1<i<j<k ki+1<i<j<ki+kz
(5.13)
k1+ko k1+ko Y
+ Z (VMZ—V(XJ'))—FO Z 8md(Xj,M2) - 268“’1,
j=ki+1 j=ki+1
which implies that
X —x XX
> ou(losl), oy (ks
— € — £
1<i<j<k k1+1<i<j<ki+k;
(5.14)

ky+ko
+C Z d(xj,Mz)hch“h.
J=ki+1
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Thus, we obtain
K1 CA=: (Tl,Cslns—l \Tl,sR) X 25U g« X B, (5.15)

where

B={x"=(Xt;4+1.-.- Xk +k,) € Q2,5 : d(xj, M2) > &%, for some j}

(5.16)
U (TZ,CalnS*l \T2,SR)‘

But A can be deformed into Q1 o x 35U T} g X 2,5, SO wWe see that Q,
can be deformed into Q1 e X 322 sUIT1 cg X Q22,5. But Hy (21 ¢0,0T1 ¢r) #0,
H,.(£2,5,082,s) # 0. Thus we get a contradiction. O

Remark 5.1. If both M| and M, are local maximum sets of V(y), using the
same technique as that in Section 4, we see that the number of the solutions
with k; peaks near M;,k; >2,i =1,2, is at least

CatAl,k] XAZ,kz (Alskl X A2,k2)7 (517)

where

Al’kl:(Ml,yx...le,y\UHxi—xj{<d}>/o*kl, I=1,2. (5.18)
—
k; i#]

We have Catg x p(A x B) > cuplength(A x B)+ 1. On the other hand, it follows
from the Kiinneth’s formula that cuplength(A x B) > cuplength(A) +
cuplength(B). (We stress here that all the homologies in this paper are with
Z»-coefficients.) Moreover, by the estimates in Appendix C, we have
cuplength(A; x;) = N — 1. Thus we see that (1.1) has at least 2N — 1 differ-
ent solutions with k; peaks near M;, i = 1,2. Similarly, if My, ..., M; are dis-
joint connected compact local maximum sets of V (x), then the number of the
solutions with k; peaks near M, k; > 2, is at least [(N — 1)+ 1.

Remark 5.2. Suppose that M is a connected compact local minimum set of
V (x). Using a similar technique as that in Section 4, we can prove that if M has
nontrivial reduced homology, then the number of the k-peak solutions with all
the peaks near M is at least Caty, (Ag, 0Ty /0y), where Ty = U, j{|x; — x| <
d, xi,xj € My} and d > 0 is a small constant.
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Appendices
A. Basic estimates

LEMMA A.1. There is

1(U, , ) =N VPIP=D=N2 Q4 N (y () - V)V (P=2-N12g
- (A1)
+8N0 ZiDmV(Z)|g’"+8th—l i
m=1

where A= (1/2—1/p) [pv w? and B = (1/2) [pv w*.
Proof. First, noting that U, _ ; = V=2 (V1/2((y —z)/e)), we have

Ny —2)—N/2
I(US,Z,V):S yP/(p=2)=N/2 4

| ) | (A.2)
+—/ (V(z)—v)U§Z+—/ (V) -V (@)UZ,.
2 RN ’ 2 RN ’

But
[A]
V) -V@I=0 (Z ly—=zI"|D"V (2)] +s”’1+‘) : (A3)
m=1
and thus
[h]
/ (V) -V@)UZ. =eN0 Z |D™V (z)[e™ +elMHT ) (A.4)
RN m=1
So the result follows from (A.2) and (A.4). O

LEMMA A.2. The following holds

k k
- Ny P/(p=2)=N/2
Y Uesyv, | =4 eV V!
j=1 j=1

k
+BY eN(v(z;)-vy) v/ PN
j=1

p—1

k—1 k

- E / Ue.zi.vi E US,Zj,Vj
i—1 RN
=

j=i+l
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k
+e0 (Z (vier-vi+3- (o7 m)ww)

+8N0(§ (|Z’ ZJ')).
(A.5)

Proof. We have

k k
I (ZUs,z_f,V;) ZZI Use 2.V Z/ V()’) Ua FIR AL .25V,
j=1

Jj=1 i#]
-1
+Z/RNU821 Vv, Yz,
i#]
] k Pk
p
+;/]1‘£N Z;Ue,z/uvj 2} 8,2,V
J= J=

(A.6)

On the other hand, we also have

Z/ V(y)_ Zj )Usz,VUez] Vj

i#]
u my [h]+1 ’Zi—zj|
=0<s ( V]|+Z|D |£ +e >Zw(—8 )),

i#]
k Py
p
A.%N ZUS’Z.f’Vj _ZUS,ZJ',V/'

j=1

(A7)

p—1
—pZ/ az VUez,V+pZ/ Ue,z, ,(Z Usz,VJ)

(z (vz—zﬂ)).

i#]
(A.8)

Combining (A.6), (A.7), (A.8), and Lemma A.1, we get the desired estimate.
O



E. N. Dancer et al. 91

LEMMA A.3. Forany v € E¢ i,

k p—1
;/RN (V(Y)_Vj)Us,Xj,VjU + ./]RN ij VJ ZU€ xj,V v
k (k]
=0 |&eN? Z(\v(xj)—v,-|+z|D’"v(xj)|s’">+s[h]+1 lvlle
j=1 m=1
+0 ( N/22w<1+f>/2(—| x’|))||v||s,
i#]j ¢
k
Z/RN (V(Y)_V(xj))Us,xj,Ver,xi,V,
j=1
k p=1

/ Z oy ZUS GV U,

=1
k
Z( v,|+Z|Dm )+g[h]+1

0 (sN Z w<1+r>/2<fo|))'
oy ¢

Proof. The proof of this lemma is similar to that of Lemmas A.1 and A.2, and
thus we omit the details. O

(A.9)

LEmMMA A4. Let (ae(x), ve(x)) be the map obtained in Proposition 2.1. Then

0J 2
8x[—c18ND1V X1 —(P_])E /ngx wst.l Vi —
l
J#

‘o (SN—I PRI |/a>>

i#j
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k [h]
+0(N IZZ‘DH’[ ’8 +8N+h>

j=1m=2

( i(w Vfizéwmvu,)fem)),

(A.10)
where c¢| > 0 is a constant and
97 NN = (40 (xi—xl/e) | oN+h
= Ue v, )=0( VY emHDimnlfe) 4 g
dv U —
i#]
(A.11)

co( 3 ((vie) V,.Hriwmv(x,.),gm)).

Jj=1

Proof. We have

aUex- Vi

_ V _ U sAi, Vi

_ax,z Z f ) T
p—1

k
1 Uex. v OUe x;,vi
4 [7 FeXL Vi U. . v > Xi, Vi
Z/ £,xj,V; axi; A.%N (]X:; s,x.,,V]) axip
1o <8N—1 (Ze—(1+r)<|x,~—xj/e) +82([h]+1)>>

i#]
k [h]

+0(8N—1Z(|v(xJ ~v;|)? +Z|D’" )|? 2’"))
j=1

3Us,x,~,V[ p—2 aU&bei
=A;N V) Us x Vi o —(P—l)g/QUg,xi,wU&x/ij

dxi1
+0 (8N_1 (Z e~ I+ (xi—x;l/e) +82([hJ+1))>

i#i
k [h]

+0(8N—‘Z(\v(x, —v;? +Z\D’" )[? 2’”)).
j=1

(A.12)
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But
0Ue x;.v; 1/ V() o
VOO)Ug y vy ————t = — U: . v
AN (y) &,xi, Vi 8Xil 2 RN 3}’1 &,xi, Vi
=C18ND1V(XI')
k [h]
0N Y [0 e+ ).
j=1lm=2

(A.13)

So we see that (A.10) follows from (A.12) and (A.13). Equation (A.11) can be
proved similarly. 0

B. Some topological results

In this section, we give some topological results needed in the proof of our main
results. First, we recall the definition for the relative category (see [18]).

Definition B.1. Let Y and A be closed subsets of a topological space X. Then
Caty (A, 7) is the least integer k such that A = Ul;=oAj’ where, for 0 < j <k,
Aj is closed and there exists & € C([0, 1] x A}, X) such that

(@ hj(O,x)=xforxeA;, 0<j <k,

(b) ho(l,x) €Y forx € Ag and ho(t,x) = x forx € AgNY and 7 € [0, 1],

(¢) hj(l,x)=xjforxcAjandsome x; € X,1 < j <k.

From the definition, we see that Catx(A,Y) > 1 if A cannot be deformed
into a subset of Y within X.

From now on, we assume that all the sets appearing in the propositions of
this section are subsets in R” for some positive integer m.

PROPOSITION B.2. Suppose that there are positive integers py and q such that
Hp (A,A") #0, Hy (B, B’) #0. Then

H/(AxB,A"xBUAXB') #0 (B.1)

for some positive integer t. In particular, A x B cannot be deformed into A’ x
BUAXB'.

Proof. Choose the largest positive integers p and ¢ satisfying H,(A, A") # 0
and H, (B, B’) # 0. Then it follows from Kiinneth formula [17] that

Hyiq(AxB,A'x BUAX B')=H,(A,A")®H, (B, B')® other group. (B.2)

So, H.(Ax B, A’ x BUA x B) #0. 0
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PrROPOSITION B.3. Let M be a compact n-dimensional manifold with boundary.
Then H,(M,0M) # 0.

Proof. This result is well known. See, for example, [20]. ]

ProPOSITION B.4. Suppose that M has nontrivial reduced homology. Then
H (M*,T) #0, where T = Uj 2 {(x1,...,xx) € M* 1 x; = x;}.

Proof. For the proof of Proposition B.4, see [14]. O
ProrosiTION B.5. We have
cuplength (M,, x M,,, T>) > 2cuplength (M, ) — 1, (B.3)

where T) = {x = (x1,x2) € M}% tx1 —x2| <d} and d > 0 is a small constant.
As a result,

Catyg, xa, (My x My, T») > 2cuplength (M,). (B.4)
Proof. For the proof of Proposition B.5, see [14]. O

C. Some estimates of the cuplength

Let B(RY, k) be the configuration space of k distinct unordered points of RY
defined as follows:

B(RN k) = F(RY k) /oy, (C.1)
where
FRY k) =RY x- xR\ | J{(x1...om) e RY iy =x;}. (€2
N————
k i#]

It is not difficult to check that both F(RY, k) and B(R", k) are path connected if
N > 2. The geometry of such configuration spaces has been extensively studied
by topologists in recent years. For sophisticated techniques in this respect, the
readers can refer to [9]. In this section, we give a lower bound of the category
of B(RV k), obtained by elementary considerations of the cuplength, relying
on the fact that the symmetric group oy contains the alternating group 6 as a
normal subgroup of index 2. The main result of this section is the following.

PropoSITION C.1. If k = 2 or 3, cuplength(B(RN,k)) > N — 1. If k > 4,
cuplength(B(RY,k)) > 2! — 1, where t is the smallest positive integer satis-
fying 2! > N —1.

The proof of Proposition C.1 for k = 2 is quite easy. In fact, since B(RV,2)
has the same homotopy type as the real projective space RPN !, we see that
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cuplength(B(RY, 2)) = cuplength(RP"~!) = N — 1. To prove Proposition C.1
for k > 3, we need to do more work.

First, we recall a general fact in algebraic topology. A two-to-one covering
map p : B — B between connected spaces B and B gives rise naturally to a
1-dimensional cohomology class 6, € H 1(B). One elegant way to describe 0p
is that for any connected B, H'(B) is identifiable with the group of homomor-
phisms from the fundamental group 7{(B) to Z;. Another way of description
is that 6, is represented by the cocycle whose value on a loop w in B is zero or
one according to whether or not w is the p-image of a loop & in B.

For later purpose, we consider here two examples.

Let p; : SN=1 — RPN~ be the double covering from a sphere to a real
projective space of dimension N — 1. In this case, 0, is the generator of the
group HY@®RPN—1) = 7Z,. We know that the cuplength of 6,,, is N — 1, that is,

Op,U---Ub, =0 (C.3)
— e ——
I
if and only if [ > N. See, for example, [17].

For a further example consider B = § N-1 o SN —1 obtained from S¥—1 x
SN=1 by identifying each pair (x1,x2) with its opposite (—x;, —x2). There is
then a double covering map ¢ : B — B, where B = RPN -1 x RPN~ 4 is
defined via g(x1,x2) = (p1(x1), p2(x2)) and p;, p2 are the double coverings
for the two individual factors, respectively. Now

H'(B)=H'(RPY Yo H' (RPN ) =Z,0Z,, (C.4)

with generators denoted by 6, ® 1 and 1®86,,, respectively. Because of sym-
metry, one clearly has

0, =6, @1+116,, (C.5)

in this circumstance.
Consider the iterated cup product

l
6y =0qU---Ub,. (C.6)
———
!
We have the following lemma.

LeEmMA C.2. The iterated cup product G(ZI is zero if and only if | > 2!, where 2!
is the smallest power of 2 strictly exceeding N — 1.

Proof. Remember that we are working mod 2 since Z, is used as coefficient
group for cohomology.
If | =27, then

! 2 _ 2!
0,=(0p,®1+1®6,,)" =6, @1+1®6,, =0, (C.7)

since 2! > N.
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If [ < 2!, write
1=2P1 40P .. 4 0bs (C.8)

witht > 81 > o > --- > B, > 0. Let [; =2h andlp =/—1. Thenl =1+,
with /y < N, I, < N, and (lll) is odd. Note that (6,, ® 1 +1®86,,)! contains,
upon binomial expansion, the nonzero term

! l ! I\ i L
<11>(9,,1 ®1)'U(1®6,,)" = <11>9”11 ®6,2, (C.9)
which lies in H' (RPN~ @ H2(RPN 1), a direct summand of H (RPN 1 x
RPN=1). Thus 6] # 0. O

We are now ready to prove Proposition C.1.

Proof of Proposition C.1. Define B(RVN, k) = F(RN,k)/6y, where &y is the
alternating group.

Suppose that k > 4. First, we consider the case k = 2h, where & is even.
Construct a continuous map

sVl sN=l 5 B(RN, k), (C.10)
by sending (a, b) in S¥ ! x S¥~1 to the orbit of
(a,—a,2a,-2a,...,(h—1)a,—(h—1)a, hb, —hb) (C.11)

under the &;-action on F(RY, k). It can be easily checked that because & is
even, f sends (—a, —b) to the same Gy-orbit. Therefore, it induces a map
£ SN=1 5 SN 5 B(RM k). Bringing in the double coverings p and ¢,
we form the following commutative diagram:

SN=1 5, §N-1 A B(RN’k)
. l ) (C.12)

RPV-1 xRPN-1 — = B(RV k),
where F is a uniquely induced map. Note once more that for any point u# in
RPN xRPN-1 and its image point v = F'(u) in B(RN, k), the restriction of
f maps ¢~ !(u) to p~!(v) bijectively. By the natural way 6, and 6, arise from

their respective double coverings, we see that for the induced homomorphism

F*:H'(B(R,k)) — H'(RPY'x RPN, (C.13)

F*(6)) naturally equals 6,.



E. N. Dancer et al. 97

By Lemma C.2, 0611 # 0if [ is less than 2!, the smallest power of 2 exceeding
N — 1. Since F* is a homomorphism of cohomology rings, the same must be
true for 011,. Thus we have exhibited in B(R", k) a nonzero cupproduct of length
2! —1, and our claim follows.

If k =2h+ j, where h is even and 1 < j < 3, we can use the same proof
by modifying the map f into the one which sends (a, b) and (—a, —b) to the
O-orbit of

(a,—a,2a,-2a,...,(h—1)a,—(h—1a, hb,—hb,ci,...,cj) (C.14)

instead, where cy, ..., c; are j distinct points fixed in RV, each having distance
greater than /241 from the origin.

Suppose that k£ = 3. Define a map f :SN-1 5 B(RN,3) by sending a €
SN=1to the orbit of (a, —a,0) in F(RY,3) under the 3-action. We have the
following commutative diagram:

GN-1 —f>I§(RN,k)
ipl \Lp (C.15)
RPN_I $B(RN’]€)’

where F is a uniquely induced map. Since the nonzero element 6, € H LRPN
has cuplength N —1 (see the first example above), we can prove in a similar way
as above that 6 117V ~1£0. So we have proved Proposition C.1 for the case k=3. As
we mentioned before, the Proposition C.1 is quite easy to prove if k =2. O

As a direct consequence of Proposition C.1, we have the following proposi-
tion.

PrROPOSITION C.3. Ifk > 4, then Cata, (Ax) > 2', where t is the smallest positive
integer satisfying 2' > N — 1. If k = 2,3, then Cata, (Ax) > N. Here

Ak=<Myx---xMy\U{yx,~—xj\<d}>/ok. (C.16)
T A

Proof. Let xo € M, and let § > 0 be so small that Bs(xo) C M,,. We also let

Vi = (Bg(xo) x -+ x By (x0) \ | {]xi — x| 5d}>/ak, (C.17)

A i#]j

then B(RY, k) and V} are homotopically equivalent. So
CatAk Ak > CatB(RN’k) (Vk) = CatB(RN,k) (B (]RN, k))

(C.18)
> cuplength (B(]RN, k))+1.
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So Proposition C.3 follows from Proposition C.1. ]
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