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A weak formulation for singular symmetric differential expressions is presented in spaces
of functions which possess minimal differentiability requirements. These spaces are used
to characterize the domains of the various operators associated with such expressions. In
particular, domains of self-adjoint differential operators are characterized.

1. Introduction

Application of the general theory of self-adjoint operators to the spectral representation
of operators associated with the formally self-adjoint differential expression

�u= 1
w

n∑
k=0

(−1)k
(
pn−ku(k))(k)

(1.1)

was carried out to a completion by many researchers in this field. A complete account of
this theory can be found in [1, 11]. Account for the parallel theory of partial differen-
tial and difference operators can be found in [2, 5]. On the other hand, the differential
expression (1.1) gives rise to the formal sesquilinear form

a(u,v)=
n∑
k=0

∫
pn−ku(k)v(k) (1.2)

encountered in the course of studying weak formulations of differential equations. Unlike
the differential expressions, the theory behind the sesquilinear forms (1.2) is not yet fully
developed. The most general treatment we have so far is for the case when such forms are
semibounded or sectorial [10]. The classical Lax-Milgram theorem which is widely used
in treatments involving the bilinear forms (1.2) assumes that the underlying form is pos-
itive and continuous. While such assumptions suffice to handle regular and some classes
of singular differential expressions, they are not sufficient to handle the general singular
expressions as they need not be semibounded. The importance of such a theory stems
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692 Weak formulation for singular differential operators

from the many important applications it would have in areas such as the calculus of vari-
ations and numerical solutions of differential equations. For some of these applications
the reader is referred to the papers [3, 4, 7, 9] and the references therein.

In [6] a variational formulation of the second order differential expression

�u= 1
w

{− (pu′)′ + qu
}

(1.3)

was presented in regular as well as singular cases. Although no assumptions of semi-
boundedness were made there, the treatment has two drawbacks. In a general setting, the
presentation depended on the existence of a maximal space of definition inferred from
Zorn’s lemma (see [6, page 43]). The difficulty with this space is the lack of a satisfactory
concrete characterization to render it useful for further development. In a more special
setting, the treatment relied on more concrete spaces but they require full differentiability
assumptions and thus no use is made of the reduced order of differentiation granted by
the variational setting ([6, page 48]). This makes the presentation particularly unattrac-
tive if we want to devise Galerkin-like numerical methods to solve singular differential
equations. These two drawbacks are eliminated in this work. We give here a weak for-
mulation of the more general differential expression (1.1) in spaces which require differ-
entiation properties dictated only by what is necessary for the sesquilinear form (1.2) to
be meaningful. We also give full characterizations of various operators associated with
the formal operator � in terms of these spaces. These characterizations include the most
interesting operators associated with �, namely, self-adjoint operators.

This paper is organized as follows. After this introduction we give a preliminary section
in which the notation and the results frequently used in this work are given. The weak
formulation of the problem is done in Section 3. In this section the working spaces are
defined, the variational form of the problem is set and its equivalence to the original
problem is established. In Section 4 some further properties of the defined spaces are
explored.

2. Preliminaries

The following notation will be used in this paper. D(a,b) denotes the space of test func-
tions on the interval (a,b), −∞≤ a < b ≤∞, and L(a,b) its dual with respect to the fol-
lowing topology. Denoting by 〈·,·〉 the pairing between D(a,b) and L(a,b), a functional
f ∈ L(a,b) if and only if for each compact interval [α,β] there is a constant C and an
integer r ≥ 0 such that ∣∣〈 f ,v〉∣∣≤ C sup

0≤k≤r

∥∥v(k)
∥∥∞ (2.1)

for every function v ∈D(a,b) with support in [α,β] (C and r generally dependent on
[α,β]). L2

w(a,b) denotes the Hilbert space of complex-valued square integrable functions
on the interval (a,b) with respect to the almost everywhere positive weight w. The inner
product and norm in this space are denoted by 〈·,·〉w and ‖ · ‖w, respectively. AC(k)(a,b)
denotes the space of functions that are absolutely continuous on any compact subinterval
of (a,b) together with their derivatives up to order k inclusive. AC(a,b) is used in place of
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AC(0)(a,b). L1
loc(a,b) denotes the space of functions which are integrable on every finite

sub-interval [α,β] of (a,b). The kth classical derivative of a function u will be denoted as
usual by u(k) whereas the notation u[k] will be used to denote the kth pseudo-derivative
of u defined by the formulae

u[k] = u(k) for k = 1,2, . . . , (n− 1); u[n] = p0u
(n);

u[n+k] = pku
(n−k)− (u[n+k−1])′ for k = 1,2, . . . ,n,

(2.2)

(see also [11]).
Consider the formally self-adjoint differential expression

�u= 1
w

n∑
k=0

(−1)k
(
pn−ku(k))(k)

(2.3)

defined on the interval (a,b), where w > 0 almost everywhere on (a,b), the coefficient
functions p0, p1, . . . , pn are real valued and 1/p0, p1, . . . , pn,w ∈ L1

loc(a,b). If a, b are finite
and the functions 1/p0, p1, . . . , pn, w are integrable on (a,b) then this expression is said
to be regular, otherwise it is singular.

The expression � defines the following operators in L2
w(a,b):

(1) The “maximal” operator L whose domain � is given by

�=
{
u∈ L2

w(a,b) : u[k] ∈AC(a,b), k = 1,2, . . . , (2n− 1),
1
w
u[2n] ∈ L2

w(a,b)
}

,

Lu= �u.
(2.4)

Note that �u= (1/w)u[2n].
(2) The operator L′0 whose domain �′

0 is given by

�′
0 =

{
u∈� : u has compact support in (a,b)

}
,

L′0u= �u.
(2.5)

(3) The “minimal” operator L0 whose domain �0 is given by

�0 =
{
u∈� : [u,v]ab = 0∀v ∈�

}
, (2.6)

where [u,v]ab = [u,v](b)− [u,v](a) and [u,v](x) is the Lagrange expression

[u,v](x)=
n∑
k=1

(
u(k−1)(x)v[2n−k](x)−u[2n−k](x)v(k−1)(x)

)
. (2.7)

Note that (see [11]) [u,v](a) and [u,v](b) both exist for all u,v ∈�.
All three operators are densely defined and the following relationships hold among

them

L′0 ⊂ L̃′0 = L0 = L∗ ⊂ L= L∗0 , (2.8)
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where ˜ denotes operator closure. In particular, the operators L′0, L0 are symmetric and
the operators L0, L are closed. For λ ∈ C, Im(λ) �= 0, put �λ = Ker(L− λI). Since the
operator � has real coefficients, u ∈ D if and only if u ∈ D and Lu = λu if and only if
Lu= λu. The common dimension d of the spaces �λ and �λ is called the deficiency index
of the operator L0. In fact, 0≤ d ≤ 2n and is independent of λ as long as Im(λ) �= 0. Now
for a fixed λ∈ C\R, the subspaces �0, �λ and �λ are linearly independent (see [8, 11])
and

�=�0 � �λ � �λ. (2.9)

For any u∈� write

u= u0 +uλ +uλ, (2.10)

where u0 ∈�0, uλ ∈�λ and uλ ∈�λ. Then

Lu= L0u0 + λuλ + λuλ. (2.11)

Formula (2.9) shows that L0 is self-adjoint if and only if d = 0.

Various characterizations of the domains �̂ of self-adjoint extensions L̂ of the operator
L0 are given in [11] and elsewhere. We state here two characterizations which will be used
in this work.

Theorem 2.1. Any self-adjoint extension L̂ of the operator L0 is characterized by a unitary
transformation U : �λ→�λ such that

�̂=�0 � (U + I)�λ,

L̂u= L0u0 + (λU + λI)uλ.
(2.12)

In other words, there is a one to one correspondence between self-adjoint extensions
of L0 and unitary transformations from �λ to �λ.

Theorem 2.2. Suppose �̂ is the domain of definition of a self adjoint extension L̂ of L0. Then
there exist functions w1,w2, . . . ,wd ∈� such that

(1) w1,w2, . . . ,wd are linearly independent modulo �0,
(2) [wi,wj]ba = 0, i, j = 1,2, . . . ,d,

(3) �̂= {u∈� : [u,wj]ba = 0, j = 1,2, . . . ,d}.
Conversely, for a set of functions w1,w2, . . . ,wd satisfying the conditions in Part 1 and 2

above, the set �̂ defined as in Part 3 is the domain of definition of a certain self adjoint
extension L̂ of L0.

In what follows we summarize some results from [6] which will also be needed in
this work. From now on, when we state that a complex number exists or is defined we
also mean that it is finite. For functions u,v ∈ AC(n−1)(a,b), we introduce the formal
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sesquilinear form

a(u,v)=
∫ b
a

n∑
k=0

pn−ku(k)v(k), (2.13)

if the integral exists. Let us also introduce the brackets

{u,v}(x)=−
n∑
k=1

u[2n−k](x)v(k−1)(x) (2.14)

and note that

[u,v](x)= {u,v}(x)−{v,u}(x). (2.15)

In a similar fashion to the Lagrange expressions we put {u,v}ba = {u,v}(b)− {u,v}(a).
Suppose the functions u,v ∈ L2

w(a,b) possess enough pseudo-derivatives to form the ex-
pressions a(u,v), 〈�u,v〉w and {u,v}ba, then

a(u,v)= 〈�u,v〉w −{u,v}ba. (2.16)

Obviously, if all parts of the above equation exist, then

a(u,v)= 〈�u,v〉w (2.17)

if and only if {u,v}ba = 0. For convenience, the following theorem is reproduced from [6].

Theorem 2.3. For every u∈�0 and v ∈�, a(u,v) exists and

〈
L0u,v

〉
w = a(u,v)= 〈u,Lv〉w. (2.18)

Proof. Let V1 =�0 equipped with the graph topology of the operator L0. Then V1 is a
Hilbert space. Let y ∈�′

0. Then

∣∣a(y,v)
∣∣= ∣∣〈L0y,v

〉
w

∣∣≤ ∥∥L0y
∥∥
w‖v‖w

≤ ∥∥L0y
∥∥
V1
‖v‖w.

(2.19)

Hence, a(·,v) is continuous on �′
0 in the topology of V1. Since V1 is the closure of �′

0 in
this topology, then a(·,v) is continuous on V1. On the other hand, since L0 is the closure
of L′0, there exists a sequence {un} in �′

0 such that un → u and L0un → L0u in L2
w(a,b).

Therefore, un→ u in V1. Thus a(un,v)→ a(u,v). That is, a(u,v) exists. Also

a(u,v)= lima
(
un,v

)= lim
〈
L0un,v

〉
w =

〈
L0u,v

〉
w = 〈u,Lv〉w. (2.20)

�
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It immediately follows from (2.18) that

{u,v}ba = {v,u}ba = 0 (2.21)

for all u ∈ �0 and v ∈ �. Hence the description (2.6) of the domain of the minimal
operator �0 may be sharpened to

�0 =
{
u∈� : {u,v}ba = {v,u}ba = 0∀v ∈�

}
. (2.22)

3. Weak formulation

Note that the first and last expressions in (2.18) require 2n pseudo derivatives to be
formed whereas the middle expression requires only n derivatives. We are thus led to con-
sidering the problem of obtaining a weak formulation for the expression � in spaces that
require only n derivatives. In this section we give such a formulation within the frame-
work of the space L2

w(a,b). As stated in the introduction, no assumptions are being made
about the semiboundedness of the operators or the forms involved.

Define the following dense subspaces of L2
w(a,b):

�= {u∈ L2
w(a,b) : supp(u)⊂ (a,b) compact, u∈ AC(n−1)(a,b), u(n) ∈ L1(a,b)

}
,

�= {u∈ L2
w(a,b) : u∈AC(n−1)(a,b), u[n] ∈ L∞loc(a,b)

}
,

�0 =
{
u∈� : {v,u}ba = 0∀v ∈�

}
.

(3.1)

Some comments on the choice of the above spaces are now in order. The choice of the
space � was mainly motivated by the requirement that �′

0 ⊂�. This requirement, to-
gether with the general assumptions we made about the coefficient functions, grant only
the local integrability of the derivatives of the functions in �. The space � is so cho-
sen to include the space � whose functions have 2n− 1 absolutely continuous pseudo-
derivatives on the interval (a,b). Consequently, for a function u ∈ �, u[n] = p0u(n) ∈
AC(a,b). From this one could infer a local Lp property for any p, 1≤ p ≤∞. The choice
of L∞loc(a,b) is forced by the natural duality with the properties of the space � in order to

insure the existence of the integrals
∫ b
a u

[n]v(n). Finally the space �0 is chosen to include
�0 and, at the same time not to exceed the differentiability properties granted by func-
tions in the space �. It will be shown below that these spaces are dense in L2

w(a,b) and
give rise to a satisfactory theory for the weak formulation of the singular differentiable
operators.

One is interested, in general, in solving variational equations of the form

a(u,v)= 〈 f ,v〉w, (3.2)

where f ∈ L2
w(a,b) and v varies in some convenient space �. The equality (3.2) means

that a continuity requirement with respect to the norm ‖ · ‖w has to be imposed on the
form a(u,·) over �. As we will see, this continuity requirement plays a crucial role in
recovering the domains of definition of the operators associated with �. Since this is the
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only continuity property we are going to need, the phrase “with respect to norm ‖ · ‖w”
will be dropped from this point on.

Lemma 3.1. a(·,·) is defined on �×�.

Proof. Let u∈�, v ∈� and suppose that supp(v)= [α,β]⊂ (a,b).

∣∣∣∣∫ b
a
u[n]v(n)

∣∣∣∣= ∣∣∣∣∫ β
α
u[n]v(n)

∣∣∣∣≤ ∥∥u[n]
∥∥
L∞(α,β)

∥∥v(n)
∥∥
L1(a,b) (3.3)

and for k = 0,1, . . . , (n− 1)

∣∣∣∣∫ b
a
pn−ku(k)v(k)

∣∣∣∣= ∣∣∣∣∫ β
α
pn−ku(k)v(k)

∣∣∣∣≤ ∥∥u(k)v(k)
∥∥
L∞(α,β)

∫ β
α

∣∣pn−k∣∣. (3.4)

Hence, a(u,v) exists. �

Lemma 3.2. For u∈�0 and v ∈�

a(u,v)= 〈u,Lv〉w. (3.5)

Proof. For u∈�0 and v ∈�, 〈u,Lv〉w exists and, from the definition of �0, {v,u}ba = 0,
hence (see the Preliminaries) a(u,v) is defined and the result follows from (2.16). �

Theorem 3.3. For f ∈ L2
w(a,b), the following are equivalent:

(I) u∈�, Lu= f ,
(II) u∈�, a(u,v)= 〈 f ,v〉w ∀v ∈�.
In this case we may write

a(u,v)= 〈Lu,v〉w ∀v ∈�. (3.6)

Proof. Suppose (I) holds. By the definition of �, u,u[n] ∈ AC(a,b). Hence, u[n] is
bounded on any compact subinterval of (a,b). Therefore, u[n] ∈ L∞loc(a,b). That is, u∈�.
Next let v ∈� and suppose that supp(v)= [α,β]⊂ (a,b). Then, with the help of the def-
initions (2.2) of pseudoderivatives,

〈 f ,v〉w = 〈Lu,v〉w =
∫ β
α
u[2n]v =

∫ β
α
pnuv−

(
u[2n−1])′v,

=
∫ β
α
pnuv−

∫ β
α

(
u[2n−1])′v (

since
∫ β
α
pnuv exists

)
=
∫ β
α
pnuv+

∫ β
α
u[2n−1]v′

= ···

=
n∑
k=0

∫ β
α
pn−ku(k)v(k) =

∫ β
α

n∑
k=0

pn−ku(k)v(k) = a(u,v).

(3.7)
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On the other hand, suppose (II) holds. Suppose v ∈ D(a,b). Since u ∈ � then
(pn−ku(k))(k) ∈ L(a,b), 0 ≤ k ≤ n (see (2.1)). Hence,

∑n
k=0(−1)k(pn−ku(k))(k) ∈ L(a,b).

On the other hand

〈 f ,v〉w = a(u,v)=
∫ b
a

n∑
k=0

pn−ku(k)v(k)

=
n∑
k=0

∫ β
α
pn−ku(k)v(k)

=
n∑
k=0

(−1)(k)
〈(
pn−ku(k))(k)

,v
〉

=
〈 n∑

k=0

(−1)k
(
pn−ku(k))(k)

,v

〉
.

(3.8)

Since w f ∈ L1
loc(a,b), we get

u[2n] =w f in L1
loc(a,b). (3.9)

We proceed to show that u∈�. u∈ L2
w(a,b) by the definition of �. From (3.9) we get(

u[2n−1])′ = pnu−w f . (3.10)

Since the right-hand side of the above equation is integrable over any compact subinter-
val of (a,b) it follows that u[2n−1] ∈ AC(a,b). In a similar fashion and with the help of
the recursion (u[2n−k−1])′ = pn−ku(k) − u[2n−k], k = 0,2, . . . , (n− 1) we get that u[2n−k] ∈
AC(a,b), k = 1,2, . . . ,n. The definition of � gives u[n−k] ∈ AC(a,b), k = 1,2, . . . ,n. From
this and (3.9) again we get that u∈� and Lu= f . �

Corollary 3.4. For u∈�, the mapping a(u,·) is continuous on �.

Proof. For u∈� we have by Theorem 3.3

a(u,v)= 〈Lu,v〉w ∀v ∈�. (3.11)

Hence, a(u,·) is continuous on �. �

Next we will show that � is precisely the subspace of � for which the continuity prop-
erty of the previous corollary holds. Before establishing this we need the following prop-
erty.

Lemma 3.5. �′
0 ⊂�0∩�.

Proof. Let u∈�′
0. Clearly u satisfies the two properties defining the space �. On the other

hand, let

p0u
(n) = g. (3.12)
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Then g is absolutely continuous on the support of u. Furthermore,

u(n) = g

p0
, (3.13)

therefore the local integrability of 1/p0 implies the integrability of u(n). Thus, u∈�. �

We remark here that the above lemma asserts also that the spaces �, �0, � are dense
in L2

w(a,b).

Theorem 3.6. �= {u∈� : a(u,·) is continuous on �}.
Proof. Denote the right-hand side of the above equation by �1. For u ∈�1 define the
antilinear functional Gu(·) on � by

Gu(v)= a(u,v). (3.14)

Then Gu(·) is continuous on �. Since � is dense in L2
w(a,b) we can extend Gu(·) to

all of L2
w(a,b). Hence, by the Riesz representation theorem, there is a unique element

Tu∈ L2
w(a,b) such that

Gu(v)= 〈Tu,v〉w ∀v ∈�. (3.15)

Now notice that �⊂�1 and for u∈� we have

〈Tu,v〉w = a(u,v)= 〈Lu,v〉w ∀v ∈�. (3.16)

This means that the operator T is densely defined and agrees with L on �. That is, L⊂ T .
It follows that T∗ ⊂ L∗ = L0. Therefore T∗ is a symmetric closed operator. For v ∈�′

0

with supp(v)= [α,β], u∈�1 we have

〈Tu,v〉w = a(u,v)
(
since �′

0 ⊂�
)

=
∫ b
a

n∑
k=0

pn−ku(k)v(k)

=
∫ β
α

n∑
k=0

pn−ku(k)v(k)

=
n∑
k=0

∫ β
α
pn−ku(k)v(k)

=
n∑
k=0

(−1)k
∫ β
α
u
(
pn−kv(k))(k)

= 〈u,L′0v
〉
w.

(3.17)

This means that v ∈�(T∗) and T∗v = L′0v. Thus we have the chain of operators L′0 ⊂
T∗ ⊂ L0. This yields T∗ = L0 and, hence, T ⊂ T∗∗ = L∗0 = L. �
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In analogy with this result, we have the following theorem.

Theorem 3.7. Suppose Im(λ) �= 0, then
(1) �λ = {u∈� : a(u,v)= λ〈u,v〉w ∀v ∈�}
(2) �0 = {u∈�0 : a(u,·) is continuous on �}.

Proof. (1) This part is an immediate consequence of Theorems 3.3 and 3.6, and the den-
sity of � in L2

w(a,b).
(2) Let

�0 =
{
u∈�0 : a(u,·) is continuous on �

}
. (3.18)

If u∈�0 then u∈�0 and

a(u,v)= 〈Lu,v〉w
= 〈L0u,v

〉
w ∀v ∈�,

(3.19)

that is, a(u,·) is continuous on �. Hence, u ∈ �0. On the other hand, if u ∈
�0, then a(u,·) is continuous on � and can be extended by continuity to all of
L2
w(a,b). In particular a(u,·) is continuous on � and, by Lemma 3.2,

a(u,v)= 〈u,Lv〉w ∀v ∈�. (3.20)

Hence, the mapping v �→ 〈u,Lv〉w is continuous on �. Therefore, u ∈ D(L∗) =
D(L0)=�0.

�

As was stated in the preliminaries, the subspaces �0, �λ, �λ are linearly independent.
Since the space �0 is a superspace of �0, the question now arises as to whether the same is
true about the spaces �0, �λ, �λ. The affirmative answer is a special case of the following
lemma.

Lemma 3.8. A set of functionsw1,w2, . . . ,wk ∈� are linearly independent modulo �0 if and
only if they are linearly independent modulo �0.

Proof. The sufficiency part of this lemma is obvious since �0 is a subspace of �0. To
show the necessity part, assume the functions w1,w2, . . . ,wk ∈� are linearly independent
modulo �0 and there exist complex numbers α1, α2, . . . ,αk such that

ϕ�
k∑
i=1

αiwi ∈�0. (3.21)

Since ϕ∈� we can write

ϕ= ϕ0 +ϕ1 (3.22)

with ϕ0 ∈�0 and ϕ1 ∈�λ + �λ. It follows that ϕ1 ∈�0, and, since we also have ϕ1 ∈�,
we have by Theorem 3.3

a
(
ϕ1,v

)= 〈Lϕ1,v
〉
w ∀v ∈�. (3.23)
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Hence, by Part 2 of Theorem 3.7, ϕ1 ∈�0. Thus ϕ1 = 0 and ϕ∈�0. This necessarily gives
α1 = α2 = ··· = αk = 0. �

We next give a characterization of self-adjoint extensions of L0 in terms of unitary
operators between the spaces �λ and �λ and the space �0. The following theorem may
be regarded as a counterpart of Theorem 2.1.

Theorem 3.9. Suppose L̂ is a self-adjoint extension of the operator L0 with domain of defi-

nition �̂ and corresponding unitary operator U . Define the space �̂ by

�̂=�0 � (U + I)�λ. (3.24)

Then

�̂= {u∈ �̂ : a(u,·) is continuous on �
}
. (3.25)

Conversely, if U : �λ →�λ is a unitary operator and �̂ is defined by (3.24), then the set

�̂ defined by (3.25) is the domain of definition of a certain self-adjoint extension L̂ of L0.

Proof. Denote the right-hand side of (3.25) by �̂1. It is straightforward to check that

�̂⊂ �̂1. On the other hand, for u∈ �̂1, write u= u0 + (U + I)uλ. For v ∈� we get

a(u,v)= a(u0,v
)

+
〈(
λU + λI

)
uλ,v

〉
w. (3.26)

The continuity of a(u,·) and 〈(λU + λI)uλ,·〉w on � imply the continuity of a(u0,·) on

�. Since u0 ∈�0, we get, by the second part of Theorem 3.7, that u0 ∈�0. Hence, u∈ �̂.
The converse statement follows from the characterization in Theorem 2.1 and the first
part of this theorem since the definition of �̂ implies that

�̂=�0 � (U + I)�λ. (3.27)

�

4. Further properties and characterizations

In this section, we give further properties and alternative characterizations of the weak
spaces �, �0 and the domains of self-adjoint extensions of L0 in terms of the so called
“boundary condition functions.”

It was shown in the previous section that a(·,·) is defined on �×�. Since �′
0 ⊂�,

then a(·,·) is defined on �×�′
0 and, for a fixed u∈�′

0, the mapping v �→ a(v,u) is con-
tinuous on �. The question is, how far can we push the space �′

0 and retain continuity
on �? The answer is in the corollary to the following lemma.

Lemma 4.1. For every u∈� and v ∈�0, a(u,v) exists,

a(u,v)= 〈u,L0v
〉
w (4.1)

and, consequently, {v,u}ba = 0.
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Proof. The proof is similar to that Theorem 2.3 with � replaced by �. �

Corollary 4.2. For every u∈�0, the mapping v �→ a(u,v) is continuous on �.

We also have the following weakened definition of the space �0.

Lemma 4.3. �0 consists precisely of all functions u∈� which for a fixed non-real λ satisfy

{ϕ,u}ba = 0 (4.2)

for all functions ϕ∈�λ + �λ.

Proof. Equation (4.2) is necessary since �λ + �λ ⊂�. On the other hand, suppose a func-
tion u∈� satisfies (4.2) for all ϕ∈�λ + �λ. Let v ∈� and write v = v0 +ϕ for v0 ∈�0

and ϕ∈�λ + �λ. Then, using Lemma 4.1, we get {v,u}ba = {v0,u}ba + {ϕ,u}ba = 0. Hence,
u∈�0. �

Corollary 4.4. �=�0 � �λ � �λ.

Proof. We remark first that, by Lemma 3.8, �0 � �λ � �λ is a direct sum.
Clearly �0 � �λ � �λ ⊂ �. On the other hand, let u ∈ � and assume ϕ1,ϕ2, . . . ,ϕ2d

form a basis for �λ � �λ. We claim that the matrix ({ϕk,ϕi}ba) has full rank. To see this,
assume the contrary. Then there exist scalars θ1,θ2, . . . ,θ2d, not all zeros, such that

2d∑
i=1

θi
{
ϕk,ϕi

}b
a = 0, k = 1,2, . . . ,2d. (4.3)

Define the function v =∑2d
i=1 θiϕi. It follows from the above equation that {ϕk,v}ba = 0,

k = 1,2, . . . ,2d. Hence, by the Lemma 4.3, v ∈ �0. Since ϕ1,ϕ2, . . . ,ϕ2d are linearly inde-
pendent modulo �0, we must have θ1 = θ2 = ··· = θ2d = 0, which is a contradiction.
Now let α1,α2, . . . ,α2d be the solutions of the linear system

{
ϕk,u

}b
a =

2d∑
i=1

αi
{
ϕk,ϕi

}b
a, k = 1,2, . . . ,2d, (4.4)

and let ϕ =∑2d
i=1αiϕi, u0 = u− ϕ. It is easy to check that {ϕk,u0}ba = 0, k = 1,2, . . . ,2d.

Therefore, u0 ∈�0, from which we get that �0 � �λ � �λ ⊃�. �

Lemma 4.5. Suppose ϕ1,ϕ2, . . . ,ϕ2d are 2d functions in � which are linearly independent
modulo �0. Then

�0 =
{
u∈� :

{
ϕk,u

}b
a = 0, k = 1,2, . . . ,2d,

}
,

�=�0 � span
[
ϕ1,ϕ2, . . . ,ϕ2d

]
.

(4.5)

Proof. Choose a λ∈ C with Im(λ) �= 0 and let ψ1,ψ2, . . . ,ψ2d be a basis for �λ � �λ. Then
we can write

ϕk = θk +
2d∑
i=1

αkiψi, k = 1,2, . . . ,2d, (4.6)
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where θk ∈�0 and αki’s are scalars. We claim that the 2d× 2d matrix [αki] has full rank.
To show this assume that there exist scalars γ1,γ2, . . . ,γ2d such that

∑2d
i=1αikγi = 0, k =

1,2, . . . ,2d. It follows that
∑2d

i=1 γiϕi =
∑2d

i=1 γiθi. That is,
∑2d

i=1 γiϕi ∈ �0. Since
ϕ1,ϕ2, . . . ,ϕ2d are linearly independent modulo �0, then γ1 = γ2 = ··· = γ2d = 0. Hence,
we can write

ψk = θ̃k +
2d∑
i=1

βkiϕi, k = 1,2, . . . ,2d, (4.7)

with θ̃k ∈�0. The results now follow from (4.6), (4.7), Lemma 4.3 and its corollary. �

We turn now to characterizations of domains of self-adjoint extensions of L0 that par-

allel Theorem 2.2. It was shown in [11] that the domain of definition �̂ of self adjoint
extensions L̂ of L0 are characterized by functions w1,w2, . . . ,wd ∈� satisfying conditions
1, 2 of Theorem 2.2 such that

�̂=�0 � span
[
w1,w2, . . . ,wd

]
. (4.8)

Define the space

�̂= {u∈� :
{
wi,u

}b
a = 0, i= 1, . . . ,d

}
. (4.9)

Lemma 4.6. For every u∈ �̂ and v ∈ �̂, a(u,v) exists, {v,u}ba = 0 and

a(u,v)= 〈u, L̂v
〉
w. (4.10)

Proof. Let u∈ �̂ and v ∈ �̂ and write

v = v0 +
d∑
i=1

αiwi (4.11)

with v0 ∈�0. Using Lemma 4.1 we get

{v,u}ba =
{
v0,u

}b
a +

d∑
i=1

αi
{
wi,u

}b
a = 0. (4.12)

Furthermore, since 〈u, L̂v〉w exists, it follows that a(u,v) exists. Equation (4.10) now fol-
lows from (2.16). �

The following two theorems give a characterization of a class of self-adjoint extensions
of L0.

Theorem 4.7. Suppose �̂ is the domain of definition of a self adjoint extension L̂ of L0

corresponding to the functions w1,w2, . . . ,wd. Define space �̂ by (4.9) and the domain

�̂1 =
{
u∈ �̂ : a(u,·) is continuous on �

}
, (4.13)
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then
(1) �̂1 ⊂ �̂,
(2) �̂1 = �̂ if and only if {wi,wj}ba = 0, i, j = 1,2, . . . ,d.

Proof. (1) The proof of this part follows the same lines of that of the second part of
Theorem 3.7.

(2) If �̂1 = �̂ then w1,w2, . . . ,wd ∈ �̂1 ⊂ �̂. Therefore, {wi,wj}ba = 0, i, j = 1,2, . . . ,d.

On the other hand, if {wi,wj}ba = 0, i, j = 1,2, . . . ,d, then, for u∈ �̂⊂� we may
write

u= u0 +
d∑
i=1

αiwi (4.14)

with u0 ∈ �0. It is easy to check that {wi,u}ba = 0, i = 1, . . . ,d implying u ∈ �̂.

Hence, �̂⊂ �̂1. �

The foregoing theorem tells us that domains of the type (4.9) cannot be hoped to char-
acterize all self-adjoint extensions of L0. They rather characterize extensions for which
the boundary condition functions satisfy {wi,wj}ba = 0, i, j = 1,2, . . . ,d. This class of ex-
tensions will be called Class I. The following converse theorem applies to this class.

Theorem 4.8. Suppose there exist functions w1,w2, . . . ,wd ∈� such that
(1) w1,w2, . . . ,wd are linearly independent modulo �0

(2) {wi,wj}ba = 0, i, j = 1,2, . . . ,d.
Then the set

�̂= {u∈� :
{
wj ,u

}b
a = 0, j = 1,2, . . . ,d and a(u,·) is continuous on �

}
(4.15)

is the domain of definition of a certain Class I self-adjoint extension L̂ of L0.

Proof. Conditions 1, 2 above give that w1,w2, . . . ,wd are linearly independent modulo �0

and [wi,wj]ba = 0, i, j = 1,2, . . . ,d. Then, by Theorem 2.2 and (4.8), the set

�̂1 =�0 � span
[
w1,w2, . . . ,wd

]
(4.16)

is the domain of definition of a certain self-adjoint Class I extension L̂ of L0. Hence, by
Theorem 4.7,

�̂1 =
{
u∈� :

{
wj ,u

}b
a = 0, j = 1,2, . . . ,d and a(u,·) is continuous on �

}
. (4.17)

That is, �̂1 = �̂. �

For the more general conditions [wi,wj]ba = 0, i, j = 1,2, . . . ,d we may define �̂ by

�̂=�0 � span
[
w1,w2, . . . ,wd

]
, (4.18)
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in which case a counterpart of Theorem 2.2 may be stated with �̂ defined by

�̂= {u∈ �̂ : a(u,·) is continuous on �
}
. (4.19)

Acknowledgment

This research project has been funded by King Fahd University of Petroleum and Minerals
under Project number MS/Singular ODE/274.

References

[1] N. I. Akhiezer and I. M. Glazman, Theory of Linear Operators in Hilbert Space. Vol. II, Frederick
Ungar, New York, 1963.

[2] Ju. M. Berezans’kiı̆, Expansions in Eigenfunctions of Selfadjoint Operators, Translations of Math-
ematical Monographs, vol. 17, American Mathematical Society, Rhode Island, 1968.

[3] B. M. Brown and W. D. Evans, The computation of the Titchmarsh-Weyl m-function, Spectral
Theory and Computational Methods of Sturm-Liouville Problems (Knoxville, Tenn, 1996)
(D. Hinton and P. Schaefer, eds.), Lecture Notes in Pure and Appl. Math., vol. 191, Marcel
Dekker, New York, 1997, pp. 197–210.

[4] P. G. Ciarlet, F. Natterer, and R. S. Varga, Numerical methods of high-order accuracy for singular
nonlinear boundary value problems, Numer. Math. 15 (1970), 87–99.

[5] N. Dunford and J. Schwartz, Linear Operators: Part II, Pure and Applied Mathematics, vol. 7,
John Wiley & Sons, New York, 1976.

[6] M. A. El-Gebeily, A variational formulation for regular and singular self-adjoint differential op-
erators, Ann. Differential Equations 18 (2002), no. 1, 40–50.

[7] W. N. Everitt and S. D. Wray, On quadratic integral inequalities associated with second-order
symmetric differential expressions, Ordinary Differential Equations and Operators (Dundee,
1982) (R. T. Lewis and W. N. Everitt, eds.), Lecture Notes in Math., vol. 1032, Springer,
Berlin, 1983, pp. 170–223.

[8] M. L. Gorbachuk and V. I. Gorbachuk, M. G. Krein’s Lectures on Entire Operators, Theory:
Advances and Applications, vol. 97, Birkhäuser, Basel, 1997.
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