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Via the concentration compactness principle, delicate energy estimates, the strong maximum principle, and the Mountain Pass
lemma, the existence of positive solutions for a nonlinear PDE with multi-singular inverse square potentials and critical Sobolev-
Hardy exponent is proved. This result extends several recent results on the topic.

1. Introduction and Main Result

Let Ω ⊂ R𝑁 be smooth open bounded with 𝑁 > 2. In this
paper, we study the existence of solutions to the following
nonlocal problem:

−Δ𝑢 − 𝑘∑
1
𝜇𝑖 𝑢󵄨󵄨󵄨󵄨𝑥 − 𝑎𝑖󵄨󵄨󵄨󵄨2 =

𝑘∑
1
𝐾𝑖 (𝑥) |𝑢|2∗(𝑠𝑖)−2 𝑢󵄨󵄨󵄨󵄨𝑥 − 𝑎𝑖󵄨󵄨󵄨󵄨𝑠𝑖 in Ω,

𝑢 = 0 on 𝜕Ω,
(1)

for arbitrary 𝑘 such that 1 ≤ 𝑘 < ∞, 0 < 𝑠𝑖 < 2, 𝜇𝑖 > 0, 𝑎𝑖 ∈ Ω,𝑎𝑖 ̸= 𝑎𝑗 if 𝑖 ̸= 𝑗 and 2∗𝑠𝑖 = (2(𝑁 − 𝑠𝑖))/(𝑁 − 2), is the critical
Sobolev-Hardy exponent (𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑘).

We suppose the following:(H1) 0 < 𝜇𝑖 < 𝜇, for every 𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑘 and∑𝑘𝑖=1 𝜇𝑖 < 𝜇 = ((𝑁 − 2)/2)2.(H2)There is an 𝑖0, 1 ≤ 𝑖0 ≤ 𝑘, such that

min
1≤𝑖≤𝑘

{ 2 − 𝑠𝑖2 (𝑁 − 𝑠𝑖) (𝑆𝑎𝑖𝜇𝑖 ,𝑠𝑖)(𝑁−𝑠𝑖)/(2−𝑠𝑖)𝜇𝑖 ,𝑠𝑖

⋅ (𝐾𝑖 (𝑎𝑖))−(𝑁−2)/(2−𝑠𝑖)}

= 2 − 𝑠𝑖02 (𝑁 − 𝑠𝑖0) (𝑆
𝑎𝑖0𝜇𝑖0 ,𝑠𝑖0 )(𝑁−𝑠𝑖0 )/(2−𝑠𝑖0 )

⋅ (𝐾𝑖0 (𝑎𝑖0))−(𝑁−2)/(2−𝑠𝑖0 ) ,
(2)

and

𝐾𝑖0 (𝑥) = 𝐾𝑖0 (𝑎𝑖0) + 𝑜 (󵄨󵄨󵄨󵄨󵄨𝑥 − 𝑎𝑖0 󵄨󵄨󵄨󵄨󵄨3) as 𝑥 󳨀→ 𝑎𝑖0 . (3)

(H3) 0 < 𝜇𝑖0 ≤ 𝜇 − 1 where 𝑖0 is given in (H2). The
function 𝐾𝑖(𝑥) is a positive bounded on Ω, for every(1 ≤ 𝑖 ≤ 𝑘). Furthermore,

0 < 𝑘𝑖 = max
𝑥∈Ω

𝐾 (𝑥) . (4)

The reason why we investigate (1) is the presence of the
Hardy-Sobolev exponent and the so-called inverse square
potential in the linear part, which cause the loss of compact-
ness of embedding𝐻10 (Ω) 󳨅→ 𝐿2∗(Ω),𝐻10 (Ω) 󳨅→ 𝐿2(|𝑥|−2, Ω)
and𝐻10 (Ω) 󳨅→ 𝐿2∗(𝑠)(|𝑥|−𝑠, Ω)).

Hence, we face a type of triple loss of compactness
whose interacting with each other will result in some new
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difficulties. In last two decades, loss of compactness leads
to many interesting existence and nonexistence phenomena
for elliptic equations. Many important results on the singular
problems with Hardy-Sobolev critical exponents (the case
that 𝑠 ̸= 0 and 𝜇𝑖 = 𝜇 were obtained such as the existence
and multiplicity of solutions in these works and these results
give us very good insight into the problem; see, for example,
[1–7] and references therein. In the present paper, we use
a variational method to deal with problem (1) with general
form and generalize the results in [8]. As 𝑘 ≥ 2 to our
knowledge, there are no results on the existence of non-
trivial solutions for (1). It is therefore significant for us
to study the problem (1) deeply. However, because of the
singularities caused by the terms |𝑥 − 𝑎𝑖|−𝑠𝑝 (𝑖 = 1, 2, . . . , 𝑘),
our problem becomes more complicated to deal with than
[8] and therefore we have to face more difficulties. Despite
the multiple terms of hardy and the coefficients of the critical
nonlinearity, but we will see how, they will play an important
role in the search for the bubble whose energy is below
the level of local compactness (PS). The existence result is
obtained via constructing a minimax level within this range
and theMountain Pass Lemma due to A. Ambrosetti and P.H.
Rabinowitz (see also[9]).

Our main result is the following.

Theorem 1. Assume that conditions (H1), (H2), (H3) hold.
Then problem (1) has at least one positive solution.

The paper is organized as follows: in Section 2, prelimi-
nary results about Palais-Smale condition for 𝑐 in a suitable
interval and construct some auxiliary functions and estimate
their norms. In Section 3, fill the conditions ofMountain Pass
Theorem and we establish our result.

2. Preliminary Results

Throughout this paper, 𝐶, 𝐶𝑖(𝑖 = 1, 2, 3, ⋅ ⋅ ⋅ ) represent all
kinds of positive constants. We denote the standard norm of
the Sobolev space𝐻10 (Ω) by

‖𝑢‖ = (∫
Ω
|∇𝑢|2 𝑑𝑥)1/2 . (5)

𝐵𝑟(𝑎) is a ball centered at 𝑎 with radius 𝑟. 𝑂(𝜀𝑡) denotes|𝑂(𝜀𝑡)| < 𝐶𝜀𝑡 and 𝑜(𝜀𝑡) denotes |𝑜(𝜀𝑡)/𝜀𝑡| 󳨀→ 0 as 𝜀 󳨀→ 0.
We will look for solutions of (1) by finding critical points of
the 𝐶1−functional 𝐼:𝐻10 (Ω) 󳨀→ R𝑁 given by

𝐼 (𝑢) = 12 (∫
Ω
|∇𝑢|2 𝑑𝑥 − 𝑘∑

𝑖=1
𝜇𝑖 ∫Ω |𝑢|2󵄨󵄨󵄨󵄨𝑥 − 𝑎𝑖󵄨󵄨󵄨󵄨2 𝑑𝑥)

− 𝑘∑
𝑖=1

12∗ (𝑠𝑖) ∫Ω𝐾𝑖 (𝑥) |𝑢|2∗(𝑠𝑖)󵄨󵄨󵄨󵄨𝑥 − 𝑎𝑖󵄨󵄨󵄨󵄨𝑠𝑖 𝑑𝑥
(6)

for all𝐻10 (Ω).The function 𝑢 ∈ 𝐻10 (Ω) is said to be a solution
of problem (1) if 𝑢 satisfies

⟨𝐼󸀠 (𝑢) , 𝑢⟩ = ∫
Ω
∇𝑢∇𝜑𝑑𝑥 − 𝑘∑

𝑖=1
𝜇𝑖 ∫Ω 𝑢𝜑󵄨󵄨󵄨󵄨𝑥 − 𝑎𝑖󵄨󵄨󵄨󵄨2 𝑑𝑥

− 𝑘∑
𝑖=1

∫
Ω
𝐾𝑖 (𝑥) |𝑢|2∗(𝑠𝑖)󵄨󵄨󵄨󵄨𝑥 − 𝑎𝑖󵄨󵄨󵄨󵄨𝑠𝑖 𝑑𝑥

(7)

for all 𝜑 ∈ 𝐻10 (Ω).
Problem (1) is well defined by the both inequalities,

Sobolev-Hardy inequalities which is essentially due to Caf-
farelli, Kohn, and Nirenberg (see [10]):

(∫
Ω

|𝑢|𝑞|𝑥 − 𝑎|𝑠 𝑑𝑥)
2/𝑞 ≤ 𝐶𝑠,𝑞 ∫Ω |∇𝑢|2 𝑑𝑥,

∀𝑢 ∈ 𝐻10 (Ω) , ∀𝑎 ∈ Ω,
(8)

where 2 < 𝑞 < 2∗, and the Hardy inequality (see [11, 12]),
that is a special case (𝑞 = 𝑠 = 2) of the above Sobolev-Hardy
inequality.

∫
Ω

|𝑢|2|𝑥 − 𝑎|2 𝑑𝑥 ≤ 1𝜇 ∫
Ω
|∇𝑢|2 𝑑𝑥,

∀𝑢 ∈ 𝐻10 (Ω) , ∀𝑎 ∈ Ω.
(9)

By (8) and (9), for 0 ≤ 𝜇 < 𝜇, 0 ≤ 𝑠 < 2, 𝑞 = 2∗(𝑠) and 𝑎 ∈ Ω
we can define the best Sobolev-Hardy constant:

𝑆𝑎𝜇,𝑠
= inf
𝑢∈𝐻10 (Ω)\{0}

∫Ω |∇𝑢|2 𝑑𝑥 − 𝜇∫Ω (|𝑢|2 / |𝑥 − 𝑎|2) 𝑑𝑥
(∫Ω (|𝑢|2∗(𝑠) / |𝑥|𝑠) 𝑑𝑥)2/2∗(𝑠) , (10)

In the case where 𝑠 = 0, then (2∗(0) = 2∗); note 𝑆𝑎𝜇,0 is the
best constant in the Sobolev inequality, i.e.,

𝑆𝑎𝜇,0
= inf
𝑢∈𝐻10 (Ω)\{0}

∫Ω |∇𝑢|2 𝑑𝑥 − 𝜇∫Ω (|𝑢|2 / |𝑥 − 𝑎|2) 𝑑𝑥
(∫Ω |𝑢|2∗ 𝑑𝑥)2/2∗ . (11)

The best Sobolev-Hardy constant S𝑎𝜇,𝑠 is achieved only whenΩ = R𝑁 by a family of functions:

𝑌𝑎𝜇,𝜀 (𝑥)
= (2𝜀 (𝑁 − 𝑠) (𝜇 − 𝜇) /√𝜇)√𝜇/(2−𝑠)
(|𝑥 − 𝑎|𝑎(𝜇) (𝜀 + |𝑥 − 𝑎|(2(2−𝑠)/(𝑁−2))√𝜇−𝜇)(𝑁−2)/(2−𝑠))

for R𝑁 \ {0} .
(12)

Let

𝐶𝜀 = (2𝜀 (𝑁 − 𝑠) (𝜇 − 𝜇)√𝜇 )√𝜇/(2−𝑠) ,
𝑈𝑎𝜇,𝜀 (𝑥) = 𝑌𝑎𝜇,𝜀 (𝑥)𝐶𝜀 ,

(13)
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where 𝑏(𝜇) = √𝜇+√𝜇 − 𝜇 and 𝑎(𝜇) = √𝜇−√𝜇 − 𝜇, (see [13]
for details). Moreover,

0 ≤ 𝑎 (𝜇) < 𝑁 − 22 < 𝑏 (𝜇) ≤ 𝑁 − 2. (14)

We consider 𝜌 > 0 such that 𝐵(𝑎, 2𝜌) ⊂ Ω and define a cut
function 𝜑 ∈ 𝐶∞0 (Ω) such that 0 ≤ 𝜑 ≤ 1, |∇𝜑| ≤ 𝐶, 𝜑 = 1 for|𝑥 − 𝑎| ≤ 𝜌 and 𝜑 = 0 for |𝑥 − 𝑎| > 2𝜌. Set

𝑢𝑎𝜇,𝜀 (𝑥) = 𝜑 (𝑥)𝑈𝑎𝜇,𝜀 (𝑥) ,
V𝑎𝜇,𝜀 (𝑥) = 𝑢𝑎𝜇,𝜀 (𝑥)

(∫Ω (󵄨󵄨󵄨󵄨󵄨𝑢𝑎𝜇,𝜀 (𝑥)󵄨󵄨󵄨󵄨󵄨2∗(𝑠) / |𝑥 − 𝑎|𝑠)𝑑𝑥)1/2∗(𝑠) ,
(15)

so that

∫
Ω

󵄨󵄨󵄨󵄨󵄨V𝑎𝜇,𝜀 (𝑥)󵄨󵄨󵄨󵄨󵄨2∗(𝑠)|𝑥 − 𝑎|𝑠 𝑑𝑥 = 1. (16)

Then we have the following estimates.

Lemma 2. For any 0 < 𝜇 < 𝜇 and 𝑎 ∈ Ω,

∫
Ω

󵄨󵄨󵄨󵄨󵄨∇V𝑎𝜇,𝜀󵄨󵄨󵄨󵄨󵄨2 𝑑𝑥 − 𝜇∫
Ω

󵄨󵄨󵄨󵄨󵄨V𝑎𝜇,𝜀 (𝑥)󵄨󵄨󵄨󵄨󵄨2|𝑥 − 𝑎|2 𝑑𝑥
= 𝑆𝑎𝜇,𝑠 + 𝑂 (𝜀(𝑁−2)/(2−𝑠)) ,

(17)

∫
Ω
|𝑥 − 𝑎|𝑘 󵄨󵄨󵄨󵄨󵄨V𝑎𝜇,𝜀 (𝑥)󵄨󵄨󵄨󵄨󵄨2

∗(𝑠)

|𝑥 − 𝑎|𝑠 𝑑𝑥 = 𝑂(𝜀𝑘(𝑁−𝑠)/2(2−𝑠)√𝜇−𝜇) , (18)

∫
Ω
𝐾𝑖 (𝑥)

󵄨󵄨󵄨󵄨󵄨V𝑎𝜇,𝜀 (𝑥)󵄨󵄨󵄨󵄨󵄨2∗(𝑠)|𝑥 − 𝑎|𝑠 𝑑𝑥
= 𝐾𝑖 (𝑎) + 𝑂(𝜀3(𝑁−𝑠)/2(2−𝑠)√𝜇−𝜇) .

(19)

For 𝑎 ̸= 𝑏, we have
∫
Ω

󵄨󵄨󵄨󵄨󵄨V𝑎𝜇,𝜀 (𝑥)󵄨󵄨󵄨󵄨󵄨2|𝑥 − 𝑏|2 𝑑𝑥
= {{{

𝑂(𝜀(𝑁−2)/(2−𝑠)√𝜇−𝜇) if 𝜇 < 𝜇 − 1,
𝑂 (𝜀(𝑁−2)/(2−𝑠) |ln 𝜀|) if 𝜇 = 𝜇 − 1,

(20)

Proof. It is easy to get the following results (17),(18) (see [14].)
We show (19) and (20) and for the proof (19). By using (18)
and assumption (H3) we have

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫Ω𝐾𝑖 (𝑥)
󵄨󵄨󵄨󵄨󵄨V𝑎𝜇,𝜀 (𝑥)󵄨󵄨󵄨󵄨󵄨2∗(𝑠)|𝑥 − 𝑎|𝑠 𝑑𝑥

− ∫
Ω
𝐾𝑖 (𝑎)

󵄨󵄨󵄨󵄨󵄨V𝑎𝜇,𝜀 (𝑥)󵄨󵄨󵄨󵄨󵄨2∗(𝑠)|𝑥 − 𝑎|𝑠 𝑑𝑥
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ ∫
Ω
󵄨󵄨󵄨󵄨𝐾𝑖 (𝑥) − 𝐾𝑖 (𝑎)󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨V𝑎𝜇,𝜀 (𝑥)󵄨󵄨󵄨󵄨󵄨2∗(𝑠)|𝑥 − 𝑎|𝑠 𝑑𝑥
≤ 𝐶1 ∫Ω |𝑥 − 𝑎|3 󵄨󵄨󵄨󵄨󵄨V𝑎𝜇,𝜀 (𝑥)󵄨󵄨󵄨󵄨󵄨2

∗(𝑠)

|𝑥 − 𝑎|𝑠 𝑑𝑥
= 𝐶2𝜀3(𝑁−𝑠)/2(2−𝑠)√𝜇−𝜇.

(21)

Now we show (20). Let 𝑎 ̸= 𝑏 and 𝜀0 = 𝜀(𝑁−2)/2(2−𝑠)√𝜇−𝜇. We
have

∫
Ω

󵄨󵄨󵄨󵄨󵄨V𝑎𝜇,𝑠,𝜀 (𝑥)󵄨󵄨󵄨󵄨󵄨2|𝑥 − 𝑏|2 𝑑𝑥 = ∫
𝐵𝜌(𝑎)

󵄨󵄨󵄨󵄨󵄨𝑊𝑎𝜇,𝑠,𝜀 (𝑥)󵄨󵄨󵄨󵄨󵄨2|𝑥 − 𝑏|2 𝑑𝑥
+ ∫
𝐵𝜌(𝑎)

(𝜑2 (𝑥) − 1) 󵄨󵄨󵄨󵄨󵄨𝑊𝑎𝜇,𝑠,𝜀 (𝑥)󵄨󵄨󵄨󵄨󵄨2|𝑥 − 𝑏|2 𝑑𝑥 = 1|𝑎 − 𝑏|2
⋅ ∫
𝐵𝜌(𝑎)

󵄨󵄨󵄨󵄨󵄨𝑊𝑎𝜇,𝑠,𝜀 (𝑥)󵄨󵄨󵄨󵄨󵄨2 𝑑𝑥
+ ∫
𝐵𝜌(𝑎)

(𝜑2 (𝑥) − 1) 󵄨󵄨󵄨󵄨󵄨𝑊𝑎𝜇,𝑠,𝜀 (𝑥)󵄨󵄨󵄨󵄨󵄨2|𝑥 − 𝑏|2 𝑑𝑥
⋅ ∫
𝐵𝜌(𝑎)

( 1|𝑥 − 𝑏|2 − 1|𝑎 − 𝑏|2) 󵄨󵄨󵄨󵄨󵄨𝑊𝑎𝜇,𝑠,𝜀 (𝑥)󵄨󵄨󵄨󵄨󵄨2 𝑑𝑥
= 𝐼1 (𝜀) + 𝐼2 (𝜀) + 𝐼3 (𝜀) .

(22)

For

𝐼1 (𝜀) = 1|𝑎 − 𝑏|2 ∫𝐵𝜌(𝑎) 󵄨󵄨󵄨󵄨󵄨𝑊𝑎𝜇,𝑠,𝜀 (𝑥)󵄨󵄨󵄨󵄨󵄨2 𝑑𝑥 = 𝐶1𝜀(𝑁−2)/(2−𝑠) ∫|𝑥|≤𝜌 1
𝜀2(𝑁−2)/(2−𝑠) |𝑥|2𝑎(𝜇) (1 + |𝑥|(2(2−𝑠)/(𝑁−2))√𝜇−𝜇)2(𝑁−2)/(2−𝑠) 𝑑𝑥

= 𝐶1𝜀−(𝑁−2)/(2−𝑠)+𝑁(𝑁−2)/2(2−𝑠)√𝜇−𝜇−(𝑁−2)𝑎(𝜇)/(2−𝑠)√𝜇−𝜇 ∫𝜌/𝜀00

𝑟𝑁−1
𝑟2𝑎(𝜇) (1 + 𝑟(2(2−𝑠)/(𝑁−2))√𝜇−𝜇)2(𝑁−2)/(2−𝑠) 𝑑𝑟,

(23)
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we know that

𝑟𝑁−1
𝑟2𝑎(𝜇) (1 + 𝑟(2(2−𝑠)/(𝑁−2))√𝜇−𝜇)2(𝑁−2)/(2−𝑠)

∼ 1𝑟1−𝑁+2𝑎(𝜇) , in the neighbourhood of 0
𝑟𝑁−1

𝑟2𝑎(𝜇) (1 + 𝑟((2−𝑠)/2(𝑁−2))√𝜇−𝜇)2(𝑁−2)/(2−𝑠)

∼ 1𝑟1−𝑁+2𝑏(𝜇) , in the neighbourhood of +∞,

(24)

and since 𝑎(𝜇) ≤ (𝑁 − 2)/2 < 𝑁/2 we deduct that
∫1
0

1𝑟1−𝑁+2𝑎(𝜇) 𝑑𝑟 < ∞, for every 0 < 𝜇 < 𝜇 (25)

∫𝜌/𝜀0
1

1𝑟1−𝑁+2𝑏(𝜇) 𝑑𝑟 ≤ {{{
𝐶1, if 0 < 𝜇 < 𝜇 − 1,
𝐶2 󵄨󵄨󵄨󵄨ln 𝜀0󵄨󵄨󵄨󵄨 , if 𝜇 = 𝜇 − 1. (26)

By using (23) and (26), we obtain

󵄨󵄨󵄨󵄨𝐼1 (𝜀)󵄨󵄨󵄨󵄨 ≤ {{{
𝐶1 (𝜀(𝑁−2)/(2−𝑠)√𝜇−𝜇) , if 0 < 𝜇 < 𝜇 − 1,
𝐶2 (𝜀(𝑁−2)/(2−𝑠) |ln 𝜀|) , if 𝜇 = 𝜇 − 1, (27)

where 𝐶1, 𝐶2 > 0 are constant.
For the second integral,

𝐼2 (𝜀) = ∫
𝐵𝜌(𝑎)

( 1|𝑥 − 𝑏|2 − 1|𝑎 − 𝑏|2)
󵄨󵄨󵄨󵄨󵄨𝑊𝑎𝜇,𝑠,𝜀 (𝑥)󵄨󵄨󵄨󵄨󵄨2|𝑥 − 𝑏|2 𝑑𝑥 = 𝐶1𝜀−(𝑁−2)/(2−𝑠) ∫|𝑥−𝑎|≤𝜌((|𝑏 − 𝑎|2 − |𝑥 − 𝑏|2)

|𝑥 − 𝑏|2 |𝑎 − 𝑏|2 )
⋅ 1
𝜀2𝑎(𝜇)0

󵄨󵄨󵄨󵄨(𝑥 − 𝑎) /𝜀0󵄨󵄨󵄨󵄨2𝑎(𝜇) (1 + 󵄨󵄨󵄨󵄨(𝑥 − 𝑎) /𝜀0󵄨󵄨󵄨󵄨(2(2−𝑠)/(𝑁−2))√𝜇−𝜇)2(𝑁−2)/(2−𝑠)
𝑑𝑥

= 𝐶1𝜀−(𝑁−2)/(2−𝑠)𝜀𝑁−2𝑎(𝜇)0 ∫
|𝑦|≤𝜌/𝜀0

(−𝜀20 󵄨󵄨󵄨󵄨𝑦󵄨󵄨󵄨󵄨2 − 2𝜀0 ⟨𝑦, 𝑎 − 𝑏⟩)
󵄨󵄨󵄨󵄨𝑦󵄨󵄨󵄨󵄨2𝑎(𝜇) (󵄨󵄨󵄨󵄨𝜀0𝑦 + 𝑎 − 𝑏󵄨󵄨󵄨󵄨2 |𝑎 − 𝑏|2) (1 + 󵄨󵄨󵄨󵄨𝑦󵄨󵄨󵄨󵄨(2(2−𝑠)/(𝑁−2))√𝜇−𝜇)2(𝑁−2)/(2−𝑠)

𝑑𝑦.
(28)

For |𝑦| ≤ 𝜌/𝜀0, we have |(–𝜀0|𝑦|2 − 2⟨𝑦, (𝑎 − 𝑏)⟩)/|𝜀0𝑦 + (𝑎 −𝑏)|2|𝑎 − 𝑏|2| ≤ (𝜌 + 2|𝑎 − 𝑏|/(|𝑎 − 𝑏| − 𝜌)2|𝑎 − 𝑏|2).
󵄨󵄨󵄨󵄨𝐼2 (𝜀)󵄨󵄨󵄨󵄨 ≤ 𝐶2𝜀−(𝑁−2)/(2−𝑠)−(𝑁−2)𝑎(𝜇)/(2−𝑠)√𝜇−𝜇+(𝑁−2)(𝑁+1)/2(2−𝑠)√𝜇−𝜇 ∫|𝑦|≤𝜌/𝜀0

󵄨󵄨󵄨󵄨𝑦󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑦󵄨󵄨󵄨󵄨2𝑎(𝜇) (1 + 󵄨󵄨󵄨󵄨𝑦󵄨󵄨󵄨󵄨(2(2−𝑠)/(𝑁−2))√𝜇−𝜇)2(𝑁−2)/(2−𝑠)
𝑑𝑦

= 𝐶2𝜀3(𝑁−2)/2(2−𝑠)√𝜇−𝜇 ∫𝜌/𝜀00

𝑟𝑁
𝑟2𝑎(𝜇) (1 + 𝑟(2(2−𝑠)/(𝑁−2))√𝜇−𝜇)2(𝑁−2)/(2−𝑠) 𝑑𝑟.

(29)

Since 2𝑎(𝜇) − 𝑁 < 1, this implies that

∫1
0

𝑟𝑁
𝑟2𝑎(𝜇) (1 + 𝑟(2(2−𝑠)/(𝑁−2))√𝜇−𝜇)2(𝑁−2)/(2−𝑠) 𝑑𝑟 < ∞. (30)

Also,

𝑟𝑁
𝑟2𝑎(𝜇) (1 + 𝑟((2−𝑠)/2(𝑁−2))√𝜇−𝜇)2(𝑁−2)/(2−𝑠) ≤

1𝑟2𝑏(𝜇)−𝑁 , (31)

and

2𝑏 (𝜇) − 𝑁 > 1 ⇐⇒ 0 ≤ 𝜇 < 𝜇 − 94 . (32)

Then, if 0 ≤ 𝜇 < 𝜇 − 9/4, we have󵄨󵄨󵄨󵄨𝐼2 (𝜀)󵄨󵄨󵄨󵄨
= 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫𝐵𝜌(𝑎) (

1|𝑥 − 𝑏|2 − 1|𝑎 − 𝑏|2)
󵄨󵄨󵄨󵄨󵄨𝑊𝑎𝜇,𝑠,𝜀 (𝑥)󵄨󵄨󵄨󵄨󵄨2|𝑥 − 𝑏|2 𝑑𝑥󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= 𝑂(𝜀3(𝑁−2)/2(2−𝑠)√𝜇−𝜇) .
(33)
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And, if 𝜇 = 𝜇 − 9/4, we have󵄨󵄨󵄨󵄨𝐼2 (𝜀)󵄨󵄨󵄨󵄨
= 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫𝐵𝜌(𝑎) (

1|𝑥 − 𝑏|2 − 1|𝑎 − 𝑏|2)
󵄨󵄨󵄨󵄨󵄨𝑊𝑎𝜇,𝑠,𝜀 (𝑥)󵄨󵄨󵄨󵄨󵄨2|𝑥 − 𝑏|2 𝑑𝑥󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝐶1𝜀3(𝑁−2)/2(2−𝑠)√𝜇−𝜇 {∫10 1𝑟2𝑎(𝜇)−𝑁𝑑𝑟 + ∫𝜌/𝜀0
1

1𝑟𝑑𝑟}
= 𝐶2𝜀3(𝑁−2)/2(2−𝑠)√𝜇−𝜇 + 𝐶3𝜀2(𝑁−2)/2(2−𝑠)√𝜇−𝜇 |ln 𝜀|
= 𝑂(𝜀3(𝑁−2)/2(2−𝑠)√𝜇−𝜇 |ln 𝜀|) .

(34)

If 𝜇 − 9/4 < 𝜇 < 𝜇, this implies that

2𝑏 (𝜇) − 𝑁 < 1, (35)

since 2𝑎(𝜇) − 𝑁 < 1, we deduct that
∫1
0

1𝑟2𝑎(𝜇)−𝑁𝑑𝑟 < ∞ (36)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫𝐵𝜌(𝑎) (
1|𝑥 − 𝑏|2 − 1|𝑎 − 𝑏|2)

󵄨󵄨󵄨󵄨󵄨𝑊𝑎𝜇,𝑠,𝜀 (𝑥)󵄨󵄨󵄨󵄨󵄨2|𝑥 − 𝑏|2 𝑑𝑥󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ 𝐶2𝜀3(𝑁−2)/2(2−𝑠)√𝜇−𝜇 {∫10 1𝑟−𝑁+2𝑎(𝜇) 𝑑𝑟
+ ∫𝜌/𝜀0
1

1𝑟−𝑁+2𝑏(𝜇) 𝑑𝑟} = 𝐶3𝜀3(𝑁−2)/2(2−𝑠)√𝜇−𝜇
+ 𝐶4𝜀(𝑁−2)/2(2−𝑠)√𝜇−𝜇+(𝑁−2)/(2−𝑠).

(37)

We deduct that

󵄨󵄨󵄨󵄨𝐼2 (𝜀)󵄨󵄨󵄨󵄨 ≤
{{{{{{{{{{{{{

𝐶𝜀3(𝑁−2)/2(2−𝑠)√𝜇−𝜇 if 0 < 𝜇 < 𝜇 − 94 ,𝐶𝜀3(𝑁−2)/2(2−𝑠)√𝜇−𝜇 |ln 𝜀| if 𝜇 = 𝜇 − 94 ,𝐶𝜀3(𝑁−2)/2(2−𝑠)√𝜇−𝜇 + 𝐶𝜀(𝑁−2)/2(2−𝑠)√𝜇−𝜇+(𝑁−2)/(2−𝑠) if 𝜇 − 94 < 𝜇 < 𝜇.
(38)

So, if 0 < 𝜇 < 𝜇 − 1, we have
󵄨󵄨󵄨󵄨𝐼2 (𝜀)󵄨󵄨󵄨󵄨

= 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫𝐵𝜌(𝑎) (
1|𝑥 − 𝑏|2 − 1|𝑎 − 𝑏|2)

󵄨󵄨󵄨󵄨󵄨𝑊𝑎𝜇,𝑠,𝜀 (𝑥)󵄨󵄨󵄨󵄨󵄨2|𝑥 − 𝑏|2 𝑑𝑥󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
= 𝑜 (𝜀(𝑁−2)/(2−𝑠)√𝜇−𝜇) .

(39)

Let 𝜌 < |𝑎 − 𝑏|, and 𝜌/2 < |𝑥 − 𝑎| < 𝜌; we have (|𝑎 − 𝑏| − 𝜌) <|𝑥 − 𝑏|.
󵄨󵄨󵄨󵄨𝐼3 (𝜀)󵄨󵄨󵄨󵄨 =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫Ω\𝐵𝜌(𝑎) (𝜑
2 (𝑥) − 1) 󵄨󵄨󵄨󵄨󵄨𝑊𝑎𝜇,𝑠,𝜀 (𝑥)󵄨󵄨󵄨󵄨󵄨2|𝑥 − 𝑏|2 𝑑𝑥󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝐶1𝜀(𝑁−2)/(2−𝑠)√𝜇−𝜇(|𝑎 − 𝑏| − 𝜌)2
⋅ ∫𝜌/𝜀0
𝜌/2𝜀0

𝑟𝑁−1
𝑟2𝑎(𝜇) (1 + 𝑟(2(2−𝑠)/(𝑁−2))√𝜇−𝜇)2(𝑁−2)/(2−𝑠) 𝑑𝑟

≤ 𝐶2𝜀(𝑁−2)/(2−𝑠)√𝜇−𝜇 ∫𝜌/𝜀0𝜌/2𝜀0
𝑟𝑁−1−2𝑎(𝜇)−4√𝜇−𝜇 𝑑𝑟

≤ 𝐶2𝜀(𝑁−2)/(2−𝑠)√𝜇−𝜇 ∫𝜌/𝜀0𝜌/2𝜀0
𝜀−1+2√𝜇−𝜇0 𝑑𝑟

≤ 𝐶3𝜀(𝑁−2)/(2−𝑠).
(40)

Then

󵄨󵄨󵄨󵄨𝐼3 (𝜀)󵄨󵄨󵄨󵄨 = 𝑂 (𝜀(𝑁−2)/(2−𝑠)) . (41)

So, for 0 < 𝜇 < 𝜇−1 and taking (27),(39), and (41) in (22), we
get

∫
Ω

󵄨󵄨󵄨󵄨󵄨V𝑎𝜇,𝑠,𝜀 (𝑥)󵄨󵄨󵄨󵄨󵄨2|𝑥 − 𝑏|2 𝑑𝑥 = 𝑂(𝜀(𝑁−2)/(2−𝑠)√𝜇−𝜇)
+ 𝑜 ( (𝜀(𝑁−2)/(2−𝑠)√𝜇−𝜇)
+ 𝑂 (𝜀(𝑁−2)/(2−𝑠))

= 𝑂(𝜀(𝑁−2)/(2−𝑠)√𝜇−𝜇) .

(42)
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For the case 𝜇 = 𝜇 − 1. Using (29) we have
󵄨󵄨󵄨󵄨𝐼2 (𝜀)󵄨󵄨󵄨󵄨 ≤ 𝐶2𝜀(𝑁−2)/(2−𝑠) ∫|𝑦|≤𝜌/𝜀0

󵄨󵄨󵄨󵄨󵄨−𝜀20 󵄨󵄨󵄨󵄨𝑦󵄨󵄨󵄨󵄨2 − 2𝜀0 ⟨𝑦, 𝑎 − 𝑏⟩󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑦󵄨󵄨󵄨󵄨2𝑎(𝜇) (󵄨󵄨󵄨󵄨𝜀0𝑦 + 𝑎 − 𝑏󵄨󵄨󵄨󵄨2 |𝑎 − 𝑏|2) (1 + 󵄨󵄨󵄨󵄨𝑦󵄨󵄨󵄨󵄨(2(2−𝑠)/(𝑁−2))√𝜇−𝜇)2(𝑁−2)/(2−𝑠)
𝑑𝑦

≤ 𝐶3𝜀(𝑁−2)/(2−𝑠) ∫|𝑦|≤𝜌/𝜀0
𝜀20 󵄨󵄨󵄨󵄨𝑦󵄨󵄨󵄨󵄨2 + 2𝜀0 󵄨󵄨󵄨󵄨𝑦󵄨󵄨󵄨󵄨 |𝑎 − 𝑏|

󵄨󵄨󵄨󵄨𝑦󵄨󵄨󵄨󵄨2𝑎(𝜇) (1 + 󵄨󵄨󵄨󵄨𝑦󵄨󵄨󵄨󵄨(2(2−𝑠)/(𝑁−2))√𝜇−𝜇)2(𝑁−2)/(2−𝑠)

≤ 𝐶4𝜀(𝑁−2)/(2−𝑠) ∫𝜌/𝜀00

(𝜀20𝑟2 + 2𝜀0𝑟 |𝑎 − 𝑏|) 𝑟𝑁−1
𝑟𝑁−4 (1 + 𝑟2(2−𝑠)/(𝑁−2))2(𝑁−2)/(2−𝑠) 𝑑𝑟 ≤ 𝐶5𝜀(𝑁−2)/(2−𝑠) ∫𝜌/𝜀00

𝜀20𝑟 + 2𝜀0 |𝑎 − 𝑏| 𝑑𝑟
≤ 𝐶6𝜀(𝑁−2)/(2−𝑠).

(43)

Then if 𝜇 = 𝜇 − 1 we get
󵄨󵄨󵄨󵄨𝐼2 (𝜀)󵄨󵄨󵄨󵄨 = 𝑂 (𝜀(𝑁−2)/(2−𝑠)) . (44)

󵄨󵄨󵄨󵄨𝐼1 (𝜀)󵄨󵄨󵄨󵄨 = 𝐶2 (𝜀(𝑁−2)/(2−𝑠) |ln 𝜀|) , if 𝜇 = 𝜇 − 1, (45)

󵄨󵄨󵄨󵄨𝐼3 (𝜀)󵄨󵄨󵄨󵄨 = 𝑂 (𝜀(𝑁−2)/(2−𝑠)) . (46)

By (44), (45), and (46), we derive (20) for 𝜇 = 𝜇 − 1.
Let 𝑋 be a Banach space and 𝑋−1 be the dual space of 𝑋.

The functional 𝐼 ∈ 𝐶1(𝑋,R) is said to satisfy the Palais–Smale
condition at level 𝑐 ((𝑃𝑆)𝑐 in short), if any sequence {𝑢𝑛} ⊂ 𝑋
satisfying 𝐼(𝑢𝑛) 󳨀→ 𝑐, 𝐼󸀠(𝑢𝑛) 󳨀→ 0 strongly in 𝑋−1 as𝑛 󳨀→ +∞ contains a subsequence converging in 𝑋 to a
critical point of the functional 𝐼.

In our case,𝑋 = 𝐻10 (Ω) and𝑋−1 = 𝐻−1(Ω).
Lemma 3. The functional 𝐼 satisfies (𝑃𝑆)𝑐 condition for any

𝑐 < min
1≤𝑖≤𝑘

{{{
2 − 𝑠𝑖2 (𝑁 − 𝑠𝑖)

(𝑆𝑎𝑖𝜇𝑖 ,𝑠𝑖)(𝑁−𝑠𝑖)/(2−𝑠𝑖)(𝐾𝑖 (𝑎𝑖))(𝑁−2)/(2−𝑠𝑖)
}}} = 𝑐∗. (47)

Proof. Suppose {𝑢𝑛} is a (𝑃𝑆)𝑐 sequence for 𝐼 with 𝑐 < 𝑐∗.
Then,

𝐼 (𝑢𝑛) 󳨀→ 𝑐,
𝐼󸀠 (𝑢𝑛) 󳨀→ 0

as 𝑛 󳨀→ +∞.
(48)

First, we show that {𝑢𝑛} is bounded in 𝐻10 (Ω). Let 2 < 𝜃 <2∗(𝑠𝑖) for all 1 ≤ 𝑖 ≤ 𝑘. So, 1/2−1/𝜃 > 0 and 1/𝜃−1/2∗(𝑠𝑖) > 0.
By Hardy and Sobolev-Hardy inequality we have

(𝑐 + 󵄩󵄩󵄩󵄩𝑢𝑛󵄩󵄩󵄩󵄩) ≥ 𝐼 (𝑢𝑛) − 1𝜃𝐼󸀠 (𝑢𝑛) 𝑢𝑛
≥ (12 − 1𝜃)(󵄩󵄩󵄩󵄩𝑢𝑛󵄩󵄩󵄩󵄩2 −

𝑘∑
𝑖=1
𝜇𝑖 ∫Ω

󵄨󵄨󵄨󵄨𝑢𝑛󵄨󵄨󵄨󵄨2󵄨󵄨󵄨󵄨𝑥 − 𝑎𝑖󵄨󵄨󵄨󵄨2 𝑑𝑥)
+ 𝑘∑
𝑖=1

(1𝜃 − 12∗ (𝑠𝑖))∫
Ω
𝐾𝑖 (𝑥) 󵄨󵄨󵄨󵄨𝑢𝑛󵄨󵄨󵄨󵄨2

∗(𝑠𝑖)󵄨󵄨󵄨󵄨𝑥 − 𝑎𝑖󵄨󵄨󵄨󵄨𝑠𝑖 𝑑𝑥
≥ (12 − 1𝜃)(1 −

𝑘∑
𝑖=1

𝜇𝑖𝜇 ) 󵄩󵄩󵄩󵄩𝑢𝑛󵄩󵄩󵄩󵄩2

+ 𝑘∑
𝑖=1

(1𝜃 − 12∗ (𝑠𝑖))∫
Ω
𝐾𝑖 (𝑥) 󵄨󵄨󵄨󵄨𝑢𝑛󵄨󵄨󵄨󵄨2

∗(𝑠𝑖)󵄨󵄨󵄨󵄨𝑥 − 𝑎𝑖󵄨󵄨󵄨󵄨𝑠𝑖 𝑑𝑥
≥ (12 − 1𝜃)(1 −

𝑘∑
𝑖=1

𝜇𝑖𝜇 ) 󵄩󵄩󵄩󵄩𝑢𝑛󵄩󵄩󵄩󵄩2 .

(49)

Therefore, up to a subsequence, we may assume that

𝑢𝑛 ⇀ 𝑢 weakly in 𝐻10 (Ω) ,
𝑢𝑛 ⇀ 𝑢

weakly in 𝐿2 (Ω, 󵄨󵄨󵄨󵄨𝑥 − 𝑎𝑖󵄨󵄨󵄨󵄨−2 𝑑𝑥) for 1 ≤ 𝑖 ≤ 𝑘,
𝑢𝑛 ⇀ 𝑢

weakly in 𝐿2∗(𝑠𝑖) (Ω, 󵄨󵄨󵄨󵄨𝑥 − 𝑎𝑖󵄨󵄨󵄨󵄨−𝑠𝑖 𝑑𝑥) for 1 ≤ 𝑖 ≤ 𝑘,
𝑢𝑛 󳨀→ 𝑢 a.e. on Ω.

(50)

Then 𝑢 ∈ 𝐻10 (Ω) is a weak solution of problem (1). We may
suppose that 󵄨󵄨󵄨󵄨∇𝑢𝑛󵄨󵄨󵄨󵄨2 ⇀ |∇𝑢|2 + ],

(weak∗ − sense of measures) . (51)

Using the concentration-compactness principle due to Lions
(cf. [[15], Lemma 1.2]), we obtain an atmost countable set Λ,
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a set of different points {𝑥𝑗}𝑗∈Λ ⊂ Ω \ {𝑎1, 𝑎1, ⋅ ⋅ ⋅ , 𝑎𝑘}, real
numbers ]𝑥𝑗 , ]𝑎𝑗 , 𝜏𝑎𝑗 and 𝜎𝑎𝑖 for 1 ≤ 𝑗 ≤ 𝑘 such that

] ≥ ∑
𝑗∈Λ

]𝑥𝑗𝛿𝑥𝑗 + 𝑘∑
𝑗=1

]𝑎𝑗𝛿𝑎𝑗 , (52)

and since 2 < 2∗(𝑠𝑖) < 2∗(1 ≤ 𝑖 ≤ 𝑘) we have
󵄨󵄨󵄨󵄨𝑢𝑛󵄨󵄨󵄨󵄨2∗(𝑠𝑖)󵄨󵄨󵄨󵄨𝑥 − 𝑎𝑖󵄨󵄨󵄨󵄨𝑠𝑖 ⇀

|𝑢|2∗(𝑠𝑖)󵄨󵄨󵄨󵄨𝑥 − 𝑎𝑖󵄨󵄨󵄨󵄨𝑠𝑖 + 𝜏𝑎𝑖𝛿𝑎𝑖 ,
󵄨󵄨󵄨󵄨𝑢𝑛󵄨󵄨󵄨󵄨2󵄨󵄨󵄨󵄨𝑥 − 𝑎𝑖󵄨󵄨󵄨󵄨2 ⇀

|𝑢|2󵄨󵄨󵄨󵄨𝑥 − 𝑎𝑖󵄨󵄨󵄨󵄨2 + 𝜎𝑎𝑖𝛿𝑎𝑖 ,
(53)

where 𝛿𝑎𝑗 is the Dirac mass at 𝑎𝑗 ∈ R𝑁.
Let 𝜀 > 0 such that for any 𝑗 ∈ Λ, 𝑥𝑗 ∉ 𝐵𝜀(𝑎𝑖) (1 ≤ 𝑖 ≤ 𝑘).

Choose a smooth cut-off function 𝜑𝑖,𝜀 centered at the point 𝑎𝑖
satisfying 0 ≤ 𝜑𝑖,𝜀 ≤ 1, 𝜑𝑖,𝜀 = 1 for |𝑥 − 𝑎𝑖| ≤ 𝜀/2, 𝜑𝑖,𝜀 = 0
for |𝑥 − 𝑎𝑖| ≥ 𝜀 and |∇𝜑𝑖,𝜀| ≤ 4/𝜀. Since {𝑢𝑛𝜑𝑖,𝜀} is bounded,𝐼󸀠(𝑢𝑛)𝑢𝑛𝜑𝑖,𝜀 = 𝑜(1), that is,

𝐼󸀠 (𝑢𝑛) 𝑢𝑛𝜑𝑖,𝜀 = ∫
Ω
󵄨󵄨󵄨󵄨∇𝑢𝑛󵄨󵄨󵄨󵄨2 𝜑𝑖,𝜀𝑑𝑥 + ∫

Ω
𝑢𝑛∇𝑢𝑛∇𝜑𝑖,𝜀𝑑𝑥

− 𝑘∑
𝑖=1
𝜇𝑖 ∫Ω

󵄨󵄨󵄨󵄨𝑢𝑛󵄨󵄨󵄨󵄨2󵄨󵄨󵄨󵄨𝑥 − 𝑎𝑖󵄨󵄨󵄨󵄨2𝜑𝑖,𝜀𝑑𝑥
− 𝑘∑
𝑖=1

∫
Ω
𝐾𝑖 (𝑥) 󵄨󵄨󵄨󵄨𝑢𝑛󵄨󵄨󵄨󵄨2

∗(𝑠𝑖)󵄨󵄨󵄨󵄨𝑥 − 𝑎𝑖󵄨󵄨󵄨󵄨𝑠𝑖 𝜑𝑖,𝜀𝑑𝑥.
(54)

Moreover, we have

lim
𝜀󳨀→0

[ lim𝑛󳨀→+∞∫
Ω
󵄨󵄨󵄨󵄨∇𝑢𝑛󵄨󵄨󵄨󵄨2 𝜑𝑖,𝜀𝑑𝑥]

≥ lim
𝜀󳨀→0

[∫
Ω
|∇𝑢|2 𝜑𝑖,𝜀𝑑𝑥 + ]𝑎𝑖] = ]𝑎𝑖

lim
𝜀󳨀→0

[ lim𝑛󳨀→+∞∫
Ω

󵄨󵄨󵄨󵄨𝑢𝑛󵄨󵄨󵄨󵄨2󵄨󵄨󵄨󵄨𝑥 − 𝑎𝑖󵄨󵄨󵄨󵄨2𝜑𝑖,𝜀𝑑𝑥]
= lim
𝜀󳨀→0

[∫
Ω

|𝑢|2󵄨󵄨󵄨󵄨𝑥 − 𝑎𝑖󵄨󵄨󵄨󵄨2𝜑𝑖,𝜀𝑑𝑥 + 𝜎𝑎𝑖] = 𝜎𝑎𝑖
lim
𝜀󳨀→0

[[ lim𝑛󳨀→+∞∫
Ω
𝐾𝑖 (𝑥) 󵄨󵄨󵄨󵄨𝑢𝑛󵄨󵄨󵄨󵄨2

∗(𝑠𝑖)󵄨󵄨󵄨󵄨𝑥 − 𝑎𝑖󵄨󵄨󵄨󵄨𝑠𝑖 𝜑𝑖,𝜀𝑑𝑥]]
= lim
𝜀󳨀→0

[∫
Ω
𝐾𝑖 (𝑥) |𝑢|2∗(𝑠𝑖)󵄨󵄨󵄨󵄨𝑥 − 𝑎𝑖󵄨󵄨󵄨󵄨𝑠𝑖 𝜑𝑖,𝜀𝑑𝑥 + 𝜏𝑎𝑖] = 𝜏𝑎𝑖 .

(55)

Arguing as in [3], we can prove that

lim
𝜀󳨀→0

[ lim𝑛󳨀→+∞∫
Ω
𝑢𝑛∇𝑢𝑛∇𝜑𝑖,𝜀𝑑𝑥] = 0,

lim
𝜀󳨀→0

[[ lim𝑛󳨀→+∞∫
Ω

󵄨󵄨󵄨󵄨𝑢𝑛󵄨󵄨󵄨󵄨2󵄨󵄨󵄨󵄨󵄨𝑥 − 𝑎𝑗󵄨󵄨󵄨󵄨󵄨2𝜑𝑖,𝜀𝑑𝑥
]] = 0,

∀𝑗 ̸= 𝑖,
lim
𝜀󳨀→0

[[ lim𝑛󳨀→+∞∫
Ω
𝐾𝑖 (𝑥) 󵄨󵄨󵄨󵄨𝑢𝑛󵄨󵄨󵄨󵄨2∗(𝑠𝑖)󵄨󵄨󵄨󵄨󵄨𝑥 − 𝑎𝑗󵄨󵄨󵄨󵄨󵄨𝑠𝑖 𝜑𝑖,𝜀𝑑𝑥]] = 0,

∀𝑗 ̸= 𝑖.

(56)

From (55)-(56), let 𝑛 󳨀→ +∞ and 𝜀 󳨀→ 0 in expression (54),
we obtain 0 ≥ ]𝑎𝑖 − 𝜇𝑖𝜎𝑎𝑖 − 𝐾𝑖 (𝑎𝑖) 𝜏𝑎𝑖 . (57)
By the definition of 𝑆𝑎𝑖𝜇𝑖 ,𝑠𝑖 , we deduce that

𝑆𝑎𝑖𝜇𝑖 ,𝑠𝑖 (𝜏𝑎𝑖)2/2∗(𝑠𝑖) ≤ ]𝑎𝑖 − 𝜇𝑖𝜎𝑎𝑖 . (58)

Combining (57) with (58), we get

𝑆𝑎𝑖𝜇𝑖 ,𝑠𝑖 (𝜏𝑎𝑖)2/2∗(𝑠𝑖) ≤ 𝐾𝑖 (𝑎𝑖) 𝜏𝑎𝑖 , (59)

which implies that

𝜏𝑎𝑖 = 0 or 𝜏𝑎𝑖 ≥ (𝑆𝑎𝑖𝜇𝑖 ,𝑠𝑖)(𝑁−𝑠𝑖)/(2−𝑠𝑖) for every 1 ≤ 𝑖
≤ 𝑘. (60)

Arguing by contradiction, let us suppose that there exist 𝑖0
such that

𝜏𝑎𝑖0 ≥ (𝑆𝑎𝑖0𝜇𝑖0 ,𝑠𝑖0 )(𝑁−𝑠𝑖0 )/(2−𝑠𝑖0 ) . (61)

Thus,

𝑐 + 𝑜 (1) = 𝐼 (𝑢𝑛) − 12𝐼󸀠 (𝑢𝑛) 𝑢𝑛 =
𝑘∑
𝑖=1

(12 − 12∗ (𝑠𝑖))
⋅ ∫
Ω
𝐾𝑖 (𝑥) 󵄨󵄨󵄨󵄨𝑢𝑛󵄨󵄨󵄨󵄨2

∗(𝑠𝑖)󵄨󵄨󵄨󵄨𝑥 − 𝑎𝑖󵄨󵄨󵄨󵄨𝑠𝑖 𝑑𝑥 = 𝑘∑
𝑖=1

(12 − 12∗ (𝑠𝑖))
⋅ (∫

Ω
𝐾𝑖 (𝑥) |𝑢|2∗(𝑠𝑖)󵄨󵄨󵄨󵄨𝑥 − 𝑎𝑖󵄨󵄨󵄨󵄨𝑠𝑖 𝑑𝑥 + 𝐾𝑖 (𝑎𝑖) 𝜏𝑖) .

(62)

Letting 𝑛 󳨀→ +∞, we get

𝑐 ≥ 𝑘∑
𝑖=1

(12 − 12∗ (𝑠𝑖))𝐾𝑖 (𝑎𝑖) 𝜏𝑖, (63)

so, by (61), we obtain

𝑐 ≥ 2 − 𝑠𝑖02 (𝑁 − 𝑠𝑖0)
(𝑆𝑎𝑖0𝜇𝑖0 ,𝑠𝑖0 )(𝑁−𝑠𝑖0 )/(2−𝑠𝑖0 )(𝐾𝑖0 (𝑎𝑖0))(𝑁−2)/(2−𝑠𝑖0 ) , (64)

which contradicts the assumption that

𝑐 < min
1≤𝑖≤𝑘

{{{
2 − 𝑠𝑖2 (𝑁 − 𝑠𝑖)

(𝑆𝑎𝑖𝜇𝑖 ,𝑠𝑖)(𝑁−𝑠𝑖)/(2−𝑠𝑖)(𝐾𝑖 (𝑎𝑖))(𝑁−2)/(2−𝑠𝑖)
}}} = 𝑐∗. (65)
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Hence, up to a subsequence, we obtain that 𝑢𝑛 󳨀→ 𝑢 strongly
in𝐻10 (Ω).
Lemma 4. Under the assumptions of (H1), (H2), and (H3),
there is a nonnegative function V0 ∈ 𝐻10 (Ω), such that
sup𝑡≥0𝐼(𝑡V0) < 𝑐∗.
Proof. Let us prove only for the following case 0 < 𝜇𝑖0 < 𝜇, for
the other case the proof is the same.We consider the following
functions on the interval [0, +∞(

𝑔 (𝑡) = 𝑡22 ∫
Ω
(󵄨󵄨󵄨󵄨󵄨∇V𝑎𝑖0𝜇𝑖0 ,𝜀󵄨󵄨󵄨󵄨󵄨2 − 𝜇𝑖0

󵄨󵄨󵄨󵄨󵄨V𝑎𝑖0𝜇𝑖0 ,𝜀󵄨󵄨󵄨󵄨󵄨2󵄨󵄨󵄨󵄨󵄨𝑥 − 𝑎𝑖0 󵄨󵄨󵄨󵄨󵄨2
− ∑
𝑖 ̸=𝑖0

𝜇𝑖 ∫Ω
󵄨󵄨󵄨󵄨󵄨V𝑎𝑖0𝜇𝑖0 ,𝜀󵄨󵄨󵄨󵄨󵄨2󵄨󵄨󵄨󵄨𝑥 − 𝑎𝑖󵄨󵄨󵄨󵄨2)𝑑𝑥 − 𝑡2∗(𝑠𝑖0 )2∗ (𝑠𝑖0)

⋅ ∫
Ω
𝐾𝑖0 (𝑥)

󵄨󵄨󵄨󵄨󵄨V𝑎𝑖0𝜇𝑖0 ,𝜀 (𝑥)󵄨󵄨󵄨󵄨󵄨2∗(𝑠𝑖0 )󵄨󵄨󵄨󵄨󵄨𝑥 − 𝑎𝑖0 󵄨󵄨󵄨󵄨󵄨𝑠𝑖0 𝑑𝑥,

(66)

and

𝐼 (𝑡V𝑎𝑖0𝜇𝑖0 ,𝜀) = 𝑔 (𝑡)
− 𝑘∑
𝑖 ̸=𝑖0

𝑡2∗(𝑠𝑖)2∗ (𝑠𝑖) ∫Ω𝐾𝑖 (𝑥)
󵄨󵄨󵄨󵄨󵄨V𝑎𝑖0𝜇𝑖0 ,𝜀󵄨󵄨󵄨󵄨󵄨2∗(𝑠𝑖)󵄨󵄨󵄨󵄨𝑥 − 𝑎𝑖󵄨󵄨󵄨󵄨𝑠𝑖 𝑑𝑥.

(67)

Using the following formula,

sup
𝑡≥0

(𝑡22 𝐴 − 𝑡2∗(𝑠𝑖0 )2∗ (𝑠𝑖0)𝐵)
= 2 − 𝑠𝑖02 (𝑁 − 𝑠𝑖0)𝐴

(𝑁−𝑠𝑖0 )/(2−𝑠𝑖0 )𝐵(𝑁−2)/(𝑠𝑖0−2),
(68)

and using (17), (19), and (20), we have

sup
𝑡≥0

𝑔 (𝑡) = 2 − 𝑠𝑖02 (𝑁 − 𝑠𝑖0)
(∫Ω (󵄨󵄨󵄨󵄨󵄨∇V𝑎𝑖0𝜇𝑖0 ,𝜀󵄨󵄨󵄨󵄨󵄨2 − 𝜇𝑖0 (󵄨󵄨󵄨󵄨󵄨V𝑎𝑖0𝜇𝑖0 ,𝜀󵄨󵄨󵄨󵄨󵄨2 / 󵄨󵄨󵄨󵄨󵄨𝑥 − 𝑎𝑖0 󵄨󵄨󵄨󵄨󵄨2)) 𝑑𝑥 − ∑𝑖 ̸=𝑖0 𝜇𝑖 ∫Ω (󵄨󵄨󵄨󵄨󵄨V𝑎𝑖0𝜇𝑖0 ,𝜀󵄨󵄨󵄨󵄨󵄨2 / 󵄨󵄨󵄨󵄨𝑥 − 𝑎𝑖󵄨󵄨󵄨󵄨2) 𝑑𝑥)(𝑁−𝑠𝑖0 )/(2−𝑠𝑖0 )

(∫Ω𝐾𝑖0 (𝑥) (󵄨󵄨󵄨󵄨󵄨V𝑎𝑖0𝜇𝑖0 ,𝜀 (𝑥)󵄨󵄨󵄨󵄨󵄨2∗(𝑠𝑖0 ) / 󵄨󵄨󵄨󵄨󵄨𝑥 − 𝑎𝑖0 󵄨󵄨󵄨󵄨󵄨𝑠𝑖0)𝑑𝑥)(𝑁−2)/(𝑠𝑖0−2)

= 2 − 𝑠𝑖02 (𝑁 − 𝑠𝑖0)
(𝑆𝑎𝑖0𝜇𝑖0 ,𝑠𝑖0 − 𝐶1∑𝑖 ̸=𝑖0 (𝜇𝑖/ 󵄨󵄨󵄨󵄨󵄨𝑎𝑖 − 𝑎𝑖0 󵄨󵄨󵄨󵄨󵄨) 𝜀(𝑁−2)/(2−𝑠)√𝜇−𝜇 − 𝑜 (𝜀(𝑁−2)/(2−𝑠)√𝜇−𝜇) + 𝑂 (𝜀(𝑁−2)/(2−𝑠)))(𝑁−𝑠𝑖0 )/(2−𝑠𝑖0 )

(𝐾𝑖0 (𝑎𝑖0) + 𝑂(𝜀3(𝑁−2)/2(2−𝑠)√𝜇−𝜇))(𝑁−2)/(𝑠𝑖0−20)

= 2 − 𝑠𝑖02 (𝑁 − 𝑠𝑖0)
(𝑆𝑎𝑖0𝜇𝑖0 ,𝑠𝑖0 )(𝑁−𝑠𝑖0 )/(2−𝑠𝑖0 )(𝐾𝑖0 (𝑎𝑖0))(𝑁−2)/(2−𝑠𝑖0 )

(1 − 𝑂(𝜀(𝑁−2)/(2−𝑠)√𝜇−𝜇) − 𝑜 (𝜀(𝑁−2)/(2−𝑠)√𝜇−𝜇) + 𝑂 (𝜀(𝑁−2)/(2−𝑠)))(𝑁−𝑠𝑖0 )/(2−𝑠𝑖0 )
(1 + 𝑂(𝜀3(𝑁−2)/2(2−𝑠)√𝜇−𝜇))(𝑁−2)/(𝑠𝑖0−2)

= 2 − 𝑠𝑖02 (𝑁 − 𝑠𝑖0)
(𝑆𝑎𝑖0𝜇𝑖0 ,𝑠𝑖0 )(𝑁−𝑠𝑖0 )/(2−𝑠𝑖0 )(𝐾𝑖0 (𝑎𝑖0))(𝑁−2)/(2−𝑠𝑖0 )

× (1 − 𝑂(𝜀(𝑁−2)/(2−𝑠)√𝜇−𝜇) − 𝑜 (𝜀(𝑁−2)/(2−𝑠)√𝜇−𝜇))(1 − 𝑂(𝜀3(𝑁−2)/2(2−𝑠)√𝜇−𝜇) − 𝑜 (𝜀3(𝑁−2)/2(2−𝑠)√𝜇−𝜇))
< 2 − 𝑠𝑖02 (𝑁 − 𝑠𝑖0)

(𝑆𝑎𝑖0𝜇𝑖0 ,𝑠𝑖0 )(𝑁−𝑠𝑖0 )/(2−𝑠𝑖0 )(𝐾𝑖0 (𝑎𝑖0))(𝑁−2)/(2−𝑠𝑖0 ) − 𝑂(𝜀(𝑁−2)/(2−𝑠)√𝜇−𝜇) = 𝑐∗,

(69)

for 0 < 𝜀 sufficiently small. And since, for all 1 ≤ 𝑖 ≤ 𝑘, the
function𝐾𝑖 is a positive on Ω, we have

sup
𝑡≥0

𝐼 (𝑡V𝑎𝑖0𝜇𝑖0 ,𝜀) ≤ sup
𝑡≥0

𝑔 (𝑡) < 𝑐∗, (70)

for 0 < 𝜀 sufficiently small.

3. Proof of Main Result 1

We verify that the functional 𝐼 satisfies the mountain pass
geometry. To this end, we consider the energy level.

𝑐1 = inf
𝛾∈Γ

sup
𝑡∈[0,1]

𝐼 (𝛾 (𝑡)) , (71)
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whereΓ
= {𝛾 ∈ 𝐶 ([0, 1] ;𝐻10 (Ω)) : 𝛾 (0) = 0, 𝐼 (𝛾 (1)) < 0} . (72)

For any 𝑢 ∈ 𝐻10 (Ω) \ {0}, by Hardy and Sobolev-Hardy
inequality, (8) and (9) (take 𝑞 = 2∗(𝑠𝑖)), we get that𝐼 (𝑢)

= 12 (∫
Ω
(|∇𝑢|2 − 𝑘∑

𝑖=1
𝜇𝑖 ∫Ω |𝑢|2󵄨󵄨󵄨󵄨𝑥 − 𝑎𝑖󵄨󵄨󵄨󵄨2)𝑑𝑥)

− 12∗ (𝑠𝑖) ∫Ω𝐾𝑖 (𝑥) |𝑢|2∗(𝑠𝑖)󵄨󵄨󵄨󵄨𝑥 − 𝑎𝑖󵄨󵄨󵄨󵄨𝑠𝑖 𝑑𝑥
≥ 12 (1 − 1𝜇

𝑘∑
𝑖=1
𝜇𝑖)∫

Ω
|∇𝑢|2 𝑑𝑥

− 𝑘∑
𝑖=1

𝑘𝑖 (𝐶𝑠𝑖 ,2∗(𝑠𝑖))−2∗(𝑠𝑖)/22∗ (𝑠𝑖) (∫
Ω
|∇𝑢|2 𝑑𝑥)2∗(𝑠𝑖)/2

≥ 12 (1 − 1𝜇
𝑘∑
𝑖=1
𝜇𝑖)‖𝑢‖2

− 𝑘∑
𝑖=1

𝑘𝑖 (𝐶𝑠𝑖 ,2∗(𝑠𝑖))−2∗(𝑠𝑖)/22∗ (𝑠𝑖) ‖𝑢‖2∗(𝑠𝑖) .

(73)

Hence, there exists 𝜌0 > 0 small enough such that

𝑟 = inf
‖𝑢‖=𝜌0

𝐼 (𝑢) > 0. (74)

Then

𝐼 (𝑢) ≥ 𝑟, (75)

for all 𝑢 ∈ 𝐻10 (Ω) with ‖𝑢‖ = 𝜌0. Let V ∈ 𝐻10 (Ω) given in
Lemma 4. Since lim𝑡󳨀→+∞𝐼(𝑡V) = −∞, hence there exists 𝑡0 >0 such that ‖𝑡0V‖ ≥ 𝜌0 and 𝐼(𝑡0V) < 0, by Lemma 4, we obtain

𝑐1 ≤ sup
𝑡∈[0,1]

𝐼 (𝑡𝑡0V) ≤ sup
𝑡≥0

𝐼 (𝑡V) < 𝑐∗. (76)

Moreover, by the Mountain Pass Theorem [9] and Lemma 3,
we obtain that 𝑐1 is critical value of 𝐼 at point 𝑢 and thus is
a solution of problem (1). Then the rest of the proof follows
exactly the same lines as that in [3]. In order to find the
positive solution of (1), we replace 𝐼(𝑢) with 𝐼+(𝑢) defined as
follows:

𝐼+ (𝑢) = 12 (∫
Ω
|∇𝑢|2 𝑑𝑥 − 𝑘∑

𝑖=1
𝜇𝑖 ∫Ω 𝑢2󵄨󵄨󵄨󵄨𝑥 − 𝑎𝑖󵄨󵄨󵄨󵄨2 𝑑𝑥)

− 𝑘∑
𝑖=1

12∗ (𝑠𝑖) ∫Ω𝐾𝑖 (𝑥) (𝑢
+)2∗(𝑠𝑖)󵄨󵄨󵄨󵄨𝑥 − 𝑎𝑖󵄨󵄨󵄨󵄨𝑠𝑖 𝑑𝑥

(77)

where 𝑢+ = max {𝑢, 0}. Repeating the above arguments, we
find a critical point of 𝐼+ and by applying the maximum
principle we obtain a positive solution. So, the proof of
Theorem 1 is therefore completed.
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Matemática Iberoamericana, vol. 1, no. 1, pp. 145–201, 1985.


