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In this paper, we consider a four-point coupled boundary value problem for system of the nonlinear semipositone fractional
differential equation Dgj,u(t) + Af(t,u(t),v(t)) = 0, 0 < t < 1, DGiw(t) + ug(t,u(t),v(t)) = 0, 0 < t < 1L, u(0) = v(0) =
0, a1D£+u(1) = leﬁw(E), a2D§+ v(1) = szfﬂfi(ﬂ), n,& € (0,1), where the coefficients a;,b,,i = 1,2 are real positive constants,

a € (1,2], B €(0,1], D, D@ are the standard Riemann-Liouville derivatives. Values of the parameters A and y are determined for
which boundary value problem has positive solution by utilizing a fixed point theorem on cone.

1. Introduction

In recent years, fractional-order calculus has been one of the
most rapidly developing areas of mathematical analysis. In
fact, a natural phenomenon may depend not only on the
time instant but also on the previous time history, which can
be successfully modeled by fractional calculus. Fractional-
order differential equations are naturally related to systems
with memory, as fractional derivatives are usually nonlocal
operators. Thus, fractional differential equations (FDEs) play
an important role because of their applications in various
fields of science, such as mathematics, physics, chemistry,
optimal control theory, finance, biology, and engineering
[1-6]. In particular, a great interest has been shown by
many authors in the subject of fractional-order boundary
value problems (BVPs), and a variety of results for BVPs
equipped with different kinds of boundary conditions have
been obtained; for instance, see [7-18] and the references
cited therein.

We consider the four-point coupled system of nonlinear
fractional differential equations:

Dy (t) + Af (F,u(t),v() =0, 0<t<]1,

€))
Dyv(t) + pg (tLu(t),v(#) =0, 0<t<]1,

with the coupled boundary conditions

u(0)=v(0) =0,

a1D§+u(1) = leO'B+V(£)x
, , (2)
a, Dy v (1) = b2D0+u(11),

}7’5 € (0)1))

where « € (1,2, € (0,1], Dj. and D§+ are the
standard Riemann-Liouville derivatives, f,g € C([0,1] x
[0, +00) %[0, +00), [0, +00)) and a;, b, i = 1,2 are real positive
constants.

Here we emphasize that our problem is new in the sense
of nonseparated coupled boundary conditions introduced
here. To the best of our knowledge, fractional-order coupled
system (1) has yet to be studied with the boundary conditions
(2). In consequence, our findings of the present work will be a
useful contribution to the existing literature on the topic. The
existence of positive solution results for the given problem
is new, though they are proved by applying the well-known
fixed point theorem.

We present intervals for parameters A, y, f, and g such
that the above problem (1)-(2) has at least one positive
solution. By a positive solution (1)-(2), we mean a pair of


http://orcid.org/0000-0001-9309-8550
http://orcid.org/0000-0002-9168-5126
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1155/2019/2893857

functions (u, v) € C[0, 1] x C[0, 1] satisfying (1) and (2) with
u(t) = 0,v(t) = 0 forallt € [0,1] and u(t) > 0, v(t) > 0.
We use the following notations for our convenience:

1
K; = J G;(1,s)ds and
0

1
L;= J H;(1,s)ds

0

fori=1,2.
3)

S
Il

; j G; (1,s)ds and
sel

s}
Il

H;(1,s)ds

sel

fori=1,2.

Before stating our results, we make precise assumptions
throughout the paper:

(HI) The functions f,g € C((0,1) x [0,00) x [0, 00),
(—00, 00)) and there exist functions p;, p, € C([0, 1]x
[0,00)) such that f(t,u,v) > —p,(t) and g(t,u,v) >
—p,(t) for any ¢ € [0,1] and (1, v) € [0, 00).

(H2) a;,a,,b,, b, are positive constants such that a,a, >
b] bz/(flfoc+ﬁnlfoc+ﬁ)‘

(H3) f(¢,0,0) >0, g(t,0,0) > 0 forall t € [0, 1].

(H4) The functions f,g € C((0,1) x [0,00) x [0,00),
(-00,00)), f,g may be singular at + = 0 and/or
t = 1, and there exist functions p;, p, € C((0,1),
[0) OO))) “1:“2 € C((O’ 1)) (0> OO))) ﬁp/—gz € C([O) 1] X
[0,00),[0,00)) such that —p,(t) < f(t,u,v) <
0‘1 (t)/-;l (ta u, V): _pz(t) < g(t> u, V) < “Z(t)ﬁz(t> u, V)
forall t € (0,1),1,v € [0,0), with 0 < [ p,(s)ds <

00,0 < fol a;(s)ds < 00, i=1,2.

(H5) There existst € I = [1/4,3/4] c (0, 1) such that
lim minM =00

foo =

u+v—o0 teJ u+v ( )
4
. g (tu,v)
or goo = lim min=——— =
u+v—00 tel u+v

The rest of the paper is organized as follows. In Section 2,
we construct the Green functions for the associated linear
fractional-order boundary value problems and estimate the

aat* ' (1 - )P (-9,
G, (t,s) =

<

> | =

kalazt"‘_1 (1-s)*F1,

’alazt"‘_1 (1= P (t—s) " = byt &P (i - s)a—ﬁ_1 ,

alazt(x—l (1 _ S)zx—ﬁ—l _ blbztzx—lgot—ﬁfl (;1 _ S)"‘_ﬂ_l ,
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bounds for these Green functions. In Section 3, we establish
the existence of at least one positive solution of the boundary
value problem (1)-(2) by applying fixed point theorem.
Finally, as an application, we give an example to illustrate our
result.

2. Green Functions and Bounds

In this section, we construct the Green functions for the
associated linear fractional-order boundary value problems
and estimate the bounds for these Green functions, which are
needed to establish the main results.

Lemmal. Let« > 0. Then, the differential equation Dy, u(t) =
0 has a solution

ut) =t ot g (5)

forsomec € R, i=1,2,...
greater than or equal to c.

,n, where n is the smallest integer

Lemma?2. Leta > 0. Then, I, Dy, u(t) = u(t)+e t* oyt 2+
coo g t"" for some ¢ € R, i = 1,2,...,n, where n is the

smallest integer greater than or equal to a.

Lemma 3. Let A = T(x)AV # 0and ¥/ = aa, -
bb,E PP Let x, y € C[0,1] be given functions. Then,
the boundary value problem,

Dyu(t)+x() =0, 0<t<]1,

Dyv(t)+y(t)=0, 0<t<]1,

u(0) =v(0) =0,

(6)
a,Df.u(1) = b Dy v (),
a,Dl.v(1) = b,Du(n),

&Ene(01),
has an integral representation
1 1
u(t) = J G, (t,s)x(s)ds + J H, (t,s) y(s)ds,
0 0
7)
1 1
v(t) = J G, (t,s) y(s)ds+ J H, (t,s) x (s)ds,
0 0
where
0<s<t<l, s<y,
0<s<t<l, s2y,
(8)
0<t<s<l, s<y,
0<t<s<l1 s2py,
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a,a,t*" (1 - P -5t - blbzt“_lrf‘_ﬂ_l E-5)F1 0<s<t<1, s<§

1
G, (t,s) = — o
ayat® (1 -

ala/zttx—l (1 _ S)“7ﬁ71 ,

Hl (t’ S) - Z a-1ga—f-1 a—B-1
abt* & (1-5) ,

H, (t,s) = —
albzt“_lﬂa_ﬁ_l (1 _ S)(X—ﬁ—l ,

Lemma 4. Assume that condition (H2) is satisfied. Then, the
Green functions G,(t,s) and H,(t,s) defined, respectively, by
(8) and (10) are nonnegative, for allt,s € [0, 1].

Lemma 5. Assume that condition (H?2) is satisfied. Then, the
Green functions G,(t,s) and H,(t,s) defined, respectively, by
(9) and (11) are nonnegative, for all t, s € [0, 1].

Lemma 6. Assume that condition (H?2) is satified. Then, the
Green functions G,(t,s) and H,(t,s) defined, respectively, by
(8) and (10) have the following properties:

(CD) Gy(t,s) < Gy(1,s), Hy(t,s) < H,(1,s) for all (t,s) €
[0,1] x [0, 1],

(C2) Gy(t,9) = (1/9*'G,(L,s), Hy(t,5) = (1/4)* 'H,(1,
s), forall (t,s) € I x (0, 1), where I = [1/4,3/4].

Lemma 7. Assume that condition (H2) is satified. Then, the
Green functions G,(t,s) and H,(t,s) defined, respectively, by
(9) and (11) have the following properties:
(C3) Gy(t,s) < G,(l,s) and H,(t,s) < H,(1,s) for all
(t,s) € [0,1] x [0, 1],
(C4) G,(t,s) = (1/4)*7'G,(1,s) and Hy(t,s) = (1/
4)"‘_1H2(1,s), for all (t,s) € I x (0,1), where I =
[1/4,3/4].

In the proof of our main results, we shall use the
nonlinear alternative of Leray-Schauder type and the Guo-
Krasnosel’skii fixed point theorem presented below [19, 20].

Theorem 8. Let X be a Banach space with Q ¢ X closed and
convex. Assume U is a relatively open subset of Q with 0 € U,

andlet S : U — Q be a completely continuous operator
(continuous and compact). Then, either

(i) S has a fixed point in U, or
(ii) there exist u € oU and v € (0, 1) such that u = vSu.

Theorem 9 (Krasnosel'skii). Let B be a Banach space, and
let P ¢ RB be a cone in B. Assume that Q; and Q, are two
bounded open subsets of B with 0 € Q, ¢ Q, ¢ Q,, and let
T:Pn0(Q,\Q,) — P beacompletely continuous operator
such that either

ayat® (1 - )P -9t
S){X—ﬁ—l _ blbzt(x—lﬂ(x—ﬁ—l (5 _ S)(x—ﬁ—l ,

| {“zblt“s“ﬁl (1= sy P -yt (E- 9P, s<E,

1 {”lbzt“n“’“ (1= —a byt (n-5)* ", s<y,

3
0<s<t<l, s=§

9)
0<t<s<l1, s<¢,
0<t<s<l, s=§

(10)

s>&,

(11)

s>

@) ITull < llull,u € N 0Qy, and |Tull > |lul,u € n
0Q,, or

(i) |Tull = ul,u € P NoQy, and |Tull < ul,u € 2 n
0Q),.

Then, T has a fixed point in P N (Q, \ Q).

3. Main Results

In this section, we investigate the existence of positive
solutions for our problem (1)-(2).

We consider the system of nonlinear fractional differen-
tial equations

Dix@®+A(f(L[x®-aq O [y®O -q®]")

+p1(t))=0, 0<t<l,

Dy y®) +u(g(tx®-a, 0], [y®) -, ®]") "
+p,(H)=0, 0<t<]l,
with the boundary conditions
x(0) = y(0) =0,
a,Df.x (1) = b, Df y §), .

a2D€+y (1) = szO'/ix (n),
7.§€(0,1),
where a modified function [z(¢)]” for any z € CI[0, 1] by
[z =2 (t),
[z()]" =0,

if z(t) =20, and
(14)
if z(t)=0.

Here (g;, q,) with
1
q; () =A Jo G, (t,s) p, (s)ds

+;4Jl H, (t,s) p,(s)ds, te[0,1],

0



1

0.0 =u [ G095, (9)ds

0
1
+AJ H, (t,s)p, (s)ds, te[0,1],
0
(15)
is solution of the system of fractional differential equations

D§g () +Ap () =0, 0<t<]l,

(16)
Dj.q, () +up, (1) =0, 0<t<1,
with the boundary conditions
4, (0) =4, (0) =0,
alDf“h (1) = b1D0ﬁ+‘b I8
17)

a2D€+q2 (1) = szoﬁJh (’7) >
7,&€(0,1).

Under the assumptions (H1) and (H2) or (H2) and (H4), we
have g,(t) > 0,q,(t) > 0 for all t € [0, 1].

We shall prove that there exists a solution (x, y) for the
boundary value problem (12)-(13) with x(t) > ¢g,(¢) and
y(t) = g,(t) on [0,1], x(t) > gq,(t), y(t) > q,(t) on (0,1). In
this case, (u,v) with u(t) = x(t) — gq,(t) and v(t) = y(t) -
q,(t),t € [0,1] represents a positive solution of boundary
value problem (1)-(2).

By using Lemma 3, a solution of the system

1

x (1) :/\J G, (t,s)

0

(s x© -0 6] e - 6]")
1

+ (s)) ds+‘u-[ H, (t,s)

0
(9(s x©-a O[O -0 6]

+p, (s)) ds, tel[0,1],

. (18)
yO=u Gt
(g9(sx©-a @ O -a6]")
1
+py(s))ds+ )\J H, (t5)
0
(fsx©@-a 6] [y -a6)])
+py(s))ds, telo1],
is a solution for problem (12)-(13).
We consider the Banach space X = C[0,1] with
supremum norm || - | and the Banach space Y = X x X with
the norm ||(u, v)|| = |lu|| + [|[v||. We define the cone P C Y
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P= {(x,y)EY:x(t)zo,y(t)EOVt

€[0,1] and 1'1tl€11n x@®+y@)} (19)

> (1) e}

where I = [1/4, 3/4].

For A,u > 0, we define the operators Q;,Q, : ¥ —
Xand Q : Y — Y defined by Q(x,y) = (Q,(x, ),
Q(x, ), (x,y) € Y with

1
Q) =1] G @9
0
(f(sx© -0 O [y©) - g 6)])
1
+p (s))ds +u L H, (t,s)

(9(s[x©) -0 9], [y () - a: 4)]")

+p,(s))ds, tef0,1],
(20)

1
Q, (x. ) =MJ G, (t,9)
0
(9 x&-a ] [y -0, 6)])
1
+p, (s))ds+)tjo H, (&, s)

(fax@-a 6] e -a6])
+py(s))ds, tef0,1].

Itis clear thatif (x, y) is a fixed point of operator Q, then (x, y)
is a solution of problem (12)-(13).

Lemma 10. If (H1) and (H2) or (H2) and (H4) hold, then
operator Q : P — P is a completely continuous operator.

Proof. The operators Q; and Q, are well defined. To prove
this, let (x, y) € P be fixed with [|(x, y)|| = L. Then we have

[x(s) —q (9] < x(s) < lIxll < |(x )] = L,

Vs € [0,1],
(21)

&) =0 ] <y <y < (=) =L
Vs € [0,1].

If (H,) and (H,) hold, then we deduce easily that
Q (x, ¥)(t) < oo and Q,(x, y)(t) < coforallt € [0,1]. If
(H,) and (H,) hold, we deduce, for all ¢ € [0, 1]:

1
Q(x)<1| 609w

B =g () () -4, ()"
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1
o @]ds+u | H (19)]o ©
Bo(s(x(5) =9, ()", (y(9) — g, (9)")

1
+p,(s)]ds, < M < L G, (1,5)

1
(o )+ py (s))ds+u L H, (1,s)
(0 (s) + py (s))ds) < 00,

Q, (x.y) < u j: G, (1,9 [a )
B (5 (x(5) =1 (9)) " (y(5) = 4 ()"
+p,(s)]ds+ A Ll H, (1,5) [, (5)
Bi(s(x() =, ()", (y(9) - g (9))")

1
+p (s)] ds,< M <y L G, (1,5)
1
(o () + py(s))ds+ A L H,(1,s)

(o (s) + py () ds) < 00,
(22)

where M = max{maxte[o)ll,u’ve[o’i] Bt u,v),
MaX;e (o 11,u,vef0,5) B2 (61 V), 11

Thus, Q : P — Y is well defined.

Next, we show that T : P — P. For any fixed (x, y) € P,
by Lemmas 6 and 7, we have

1
minQ; (x, y) (£) = min [)t L G, (t,s)

(f(sx©=a @] [y (©) =g ©]") + py () ds

1
+u L H, (t,s)
(9(s[x©) =a, ] [y(8) = g2 ()]7) + py (5)) ds

> (}1)“_1 [/\ Ll G, (1,s)

(fax©-q, 6] [y )

(23)

~q,()]") + p () ds

1
] H09(0(s 0061 O-06])

0

+p, (s))ds] > (}1)“7 [Q, (. y)]-
Similarly, min,;Q,(x, y)(t) = (1/4)°7HQ,(x, )|l Therefore,
ntleiln {Q (%) () +Q, (x,y) (1)}

5
> () 1l (5) Il
= <;l>a_1 ”(Ql (%,5),Q, (x, )’))"
- (1) et
(24)

Hence, Q(x, y) € P. This implies that Q(P) ¢ P. According to
the Ascoli-Arzela theorem, we can easily get that Q : P — P
is completely continuous. O

Theorem 11. Assume that (H1) — (H3) hold. Then, there exist
constants A, > 0 and y, > 0 such that, for any A € (0, A,] and
p € (0, yyl, the boundary value problem (1)-(2) has at least one
positive solution.

Proof. Let§ € (0,1) be fixed. From (H1) and (H3), there exist
R, € (0, 1] such that

f(t,u,v) > 8f (¢,0,0),
g(t,u,v) > 38g(t,0,0), (25)

vt € [0,1], u,v € [0,R,].

We define
7(R0) " telo, l]mqu [0,R,] [ wuv)+p 0}
2 max {6f (£,0,0) + p, (O} >
g(Ry) = {9t uv)+p, (1)}

telo, 1] qu [0,R,]

z max {89 (,0,0) + p, (1)} > 0, (26)
te|o,

Ay = max { Ry Ry }
o 8K, f (Ro) 8L2f (Ry)

RO RO }
8L,g (R,)" 8K, (R,)

We will show that, forany A € (0, A,] and y € (0, 4], problem
(12)-(13) has at least one positive solution.

So,let A € (0,A,] and y € (0, yy] be arbitrary but fixed
for the moment. We define the set U = {(x, y) € P, [|[(x, y)|| <
R,}. We suppose that there exist (x, y) € oU(||(x, y)| = R, or
llxll + lyll = Ry) and 8 € (0, 1) such that (x, y) = 0Q(x, y) or
X = te(x> y)sy = GQZ(X, }’)

We deduce that

[x()-q, ()] =x(t) -

-

q, (t) < x(t) <R,
if x ()~ q (1) 2 0,
[x()-q, (0] =0,

for x (t) —q, (t) <0, Vt € [0,1],



[y -a,®] =y®)-q,®) < y(®) <R,
it y(t)—q,(t) >0,
[y -q,®)] =0,
for y(t)—q,(t) <0, Vt € [0,1].
@7)
Then by Lemma 3, for all ¢ € [0, 1], we obtain
x(8) = 0Q; (x, ) () < Q (x.») (1)

1 f—
<A L G, (Ls) f (Ry)ds

1
+u L H, (1,5)g(R,)ds

Ry _ Ry

— _ R
< AoKy f (Ro) + L 1g (Ry) < go + 3 1

(28)
y () =0Q, (x,y) (t) < Qy (x, ) (t)

1
<y L G, (1,5)g(R,)ds

1 f—
+A L H, (1,s) f (Ry) ds

= - R R R
< toKyg (Ry) + AL, f (Ry) < ?0 * ?O - ZO-

Hence, ||x]| < Ry/4 and |yl < Ry/4. Then, R, = |(x, y)Il =
llxll + Iyl < Ry/4 + Ry/4 = Ry/2, which is contradiction.

Therefore, by Theorem 8 (with Q) = P), we deduce that Q
has a fixed point (x, ¥,) € UN P. That is, (x,, ¥,) = Q(xo» ¥o)
orxy = Q,(xg, ¥o)» ¥o = Qu(x¢> ¥p)> and llxgl+ 1yl < Ry with
xo = (1/4)  xoll and y,(£) = (1/4)* |y, |l for all ¢ € [0,1].
Moreover, by (25), we conclude

xo (1) =Q (xo> ;Vo) (t)

> 1 Jl G, (t,5) (O (1,0,0) + p, () ds
0
1
v H (09 (89(4.0,0)+ p, (9) ds

1
> A L G, (t,s) p, (s)ds

1

+;4j0 H, (65) py () ds = 4, (1),

vt e [0,1],

1

xo () > A J G, (t,s) p, (s)ds

0
1

+u L H, (t,s) p,(s)ds=q, (1),

Vvt € (0,1),
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Yo (£) = Q, (x40, ) (£)

1
> | Hy09(09(4,0.0)+ p, (9)ds
1
) L G, () (8f (1,0,0) + p, (5)) ds
1
>u J-o H, (t,s) p,(s)ds

1
+A .[o G, (t,s) py(s)ds =g, (1),

vt e [0,1],

1

Yo () > L H, (t,5) py () ds

1
) L G, (t,5) py () ds = g, (£),

Vvt € (0,1).
(29)

Therefore, xy(t) > q,(t), y(t) = q,(t) for all t € [0,1], and
xo(t) > q,(t), yo(t) > g,(t) forallt € (0, 1). Letuy(t) = x,(t)—
q,(t) and vy (t) = y,(t) — q,(t) for all ¢ € [0, 1]. Then, uy(t) >
0,v(t) = 0forallt € [0,1],uy(t) > 0,v,(t) > Oforallt €
(0, 1). Therefore, (1, v,) is a positive solution of (1)-(2). [

Theorem 12. Assume that (H1), (H4), and (H5) hold. Then,
there exist A* > 0 and u* > 0 such that, for any A € (0, A*] and
p € (0, u*], the boundary value problem (1)-(2) has at least one
positive solution.

Proof. We choose a positive number

Ry
1 (30)
> max {1,2 JO (G, (1,5) p; () + G, (1,8) p, (s)) ds}
and we define the set Q; = {(x, y) € P, [|(x, y)Il < Ry}
We introduce
A" = min {1,
R ! !
m (L G, (1,5) (er; () + py (5)) ds) >
R 1 B
4]\/111 (Jo H, (1,5) (a (s) + p; () ds) ]» , N
§* = min {1,
R ! !
m (L H, (1,5) (a, () + p, (5)) ds) >

R 1 !
& (L G, (1L,s) (@ (s) + p, (s))ds> } ,
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M, =max{ max B (t,u,v),l},

t€[0,1],u,v>0,u+v<R;

(32)
M, = max { max

te[0,1],u,v=0,u+v<R,

B, (t,u,v),l}.

LetA € (0, A*] and p € (0, u*]. Then, for any (x, y) € PNoQ,
and s € [0, 1], we have

[x(s)—q; (5)]" < x(s) < Ixll <Ry,
N (33)
[y()—g (9] <y < |y] <R,

Then, for any (x, y) € P N 0Q);, we obtain

2 <2 60,9 [ 9
B (s (x(5)=q1(9))"  (y(5) = g ()
+py ()] ds+ Ll H, (1,5) o, (s)
B (s (x () -a ) (¥ -2, ())

1
+p,(s)]ds, < A" M, JO G, (1,9) (o (s)
1

+p,(9))ds+u"M, J-o H, (1,5) (ay (s)

rppeds < R R RG]
4 4 2 2
(34)

1
lo: ()l <4 ] G219 [ (9

B (5 (x (9 -0 ) (7 (9) =4, 9)”

1

+ D, (s)] ds+ yj H, (1,s) [ocl (s)

0

Bi(s 9 -q ) () - 4,(5)")

1
+ P (s)] ds,< u"M, L G, (L,3) (ay (s)

1
+ D,y (8))ds + A" M, J-o H, (1,5) (et (s)

R R _ G
22

R
+pl(s))dssZI+4 >

Therefore,

[QGe »)I = Qi Ge ) + 1 (= 3 < 1Ge -
V(x,y) € PNoQ,.

(35)

7
On the other hand, we choose a constant L > 0 such that
1 2(a-1)
) (—) AL >4,
4
(36)
1 2(a—1)
u (L_L) AZL >4

From (HS5), we deduce that there exists a constant M, > 0
such that

ftu,v)=2Lu+v)
or g(t,u,v) > L(u+v), (37)
Vtel, u,v=0, u+vz=M,.

Now we define

R, = max {ZRI, 4*M,,
(38)
1
4 L (G, (1,9) p; (s) + Hy (1,5) p, (s)) ds} >0,

and let Q, = {(x, ¥) € P, [(x, )|l < R,}.

We suppose that f,, = oo, thatis, f(t,u,v) > L(u + v)
forallt € I and u,v > 0,u + v > M. Then, for any (x, y) €
PnoQ,, we have ||(x, y)Il = R, or ||x[| + | ¥]l = R,. We deduce
that [|x[| > R,/2 or ||yl = R,/2.

We suppose that ||x|| > R,/2. Then, for any (x,y) € PN
0Q),, we obtain

1
0 -0, 0 =xO-1 | G (6.9 p, ) ds
! a—1
_”JO H, (t,5) p, (s)ds = x (t) - GL)

1 1
. (J G, (L,s) p; (s)ds + J H, (L,5) p, (s) ds)
0 0
x (t)

Zx(t)—w

1
. .[o (G, (1,8) py (s) + Hy (1,5) p, (s)) ds = x (t)
.P

1 (!
T L (G, (1,9) py () + H, (1,5) p, (5)) ds]

Il
> |1

1
- Riz Jo (G, (1,8) p; (s) + Hy (1,8) p, (s)) ds]

(39)

1
> —x(t) > 0.
5 ()



Therefore, we conclude

[F 0 - O] =x©-4,© > 3x0)

1 1 a—1 1 1 a—1
>- (= x| ==~ R 40
2(4) I 4(4) (40
1 o
:<4_1> R, > M,, Vtel.
Hence,

O] 2 [x(t) -q,®)]

Vtel.

[x(®)-q, O] + [y (@) -
q, (t) = M,,

(41)
=x (1) -

Then, for any (x, y) € PN 0Q, and t € I, by (37) and (41), we
deduce

ftlx®-a® [y -9®]")
>L([x®-q O] + [y -a.®]") (4

>L[x®t)-q, )] = Iz“x(t), vt eI

It follows that, for any (x, y) € P N 0Q,,t € I, we obtain

1
Q, (x,y) () > A L G, (t,s)

(fex@-a ] -0 6])

+py(9))ds2 A Ld G, ()
(fEEO-a60 6 -a6]) (43)

+py(9))ds 2 (}L)H A La G, (L,s)
L([x(s) -q (s)]*)ds > A (i)vﬂ

1 OC—IL L/1 2(a—1)
a(y) () Akck

Then, [Q; (x, M)l > lI(x, y)Il and

Il

If [yl = R,/2, then by a similar approach, we obtain again
relation (44).

We suppose that g, = oo, thatis, g(t,u, v) > L(u+v), for
allt e ITand u,v > 0,u + v > M,. Then, for any (x, ) € PN
0Q),, wehave [|(x, ¥)| = R,.Hence, ||lx|| > R,/2or ||yl = R,/2.

If | x|l = R,/2, then for any (x, y) € PN 0Q, we deduce in
a similar manner as above that x(t) — g, (t) > (1/2)x(t) for all
t € [0,1] and

1Q (. y)|| = V(x,y) € PNoQ,. (44)
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1
QENO=u G 69
(g(s[x) -1 D] [y ) - a5 (9)]")
+p, (s)) ds>u JEI G, (t,s)

(g(sx@O-a ) Y -a6)])

o (45)
DRTRCEI

+ D, (s)) ds >

1 OL—IL L/1 2(a—1)
Ax(3) Res=ug(3) ARzR

vVt e I.
Hence, we obtain relation (44). If ||yl > R,/2, then in
a similar way as above, we deduce again relation (44).

Therefore, by Theorem 9, relation (35),_and (44), we conclude
that Q has a fixed point (x, y) € PN (Q, \ Q). O

4. Example

In this section, we give an example to illustrating our result.
Let

3
o==,
2
1
ﬂ_Z’
_2
=3 (46)
1
5_5’
a, =a,=1,
b=b=1

Consider the system of fractional differential equations,

DPu(t) + Af (tu(t),v(t) =0, te(0,1),
DYy (8) + pug (L (8),v () =0, € (0,1),
u(0) = v(0) = 0, )
D (1) = ;{%(%)
opew=fu().
s,

where f(t,u,v) = (u + v)® + cosu, gt,u,v) = (u+v)
cosv. We have p,(t) = p,(t) = 1forallt e [0,1], and
then assumption (H1) is satisfied. Besides, assumption (H3)
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is also satisfied, because f(¢,0,0) = 1 and g(¢,0,0) = 1
forall t € [0,1]. Let § = 1/3 < 1 and R, = 1. Then
ft,u,v) > 6f(t,0,0) = 1/3, glt,u,v) > 8g(t,0,0) =
1/3,Vt € [0,1],u,v € [0, 1]. In addition,

T(Ro) =7(1) = max

te[0,1],u,ve[0,1]

{f t,w,v) + p (1)}
=~ 9.999848,

g(Ry) =g (1) =

(48)

max
te[0,1],u,ve[0,1]

{9t uv) + p, (1)}

= 3.259769.

We also obtain A = (0.8865)(0.3133) = 0.2778 > 0, M, =
992, M, = 1280, K, = 0.1488, K, = 0.01598, L, = 0.0536,
L, = 01268, and then A, = max{R,/8K,f(Ry), R,/
8K, f(R,)} =~ 0.782239674, yy = max{Ry/8L,G(R,), R,/
8L,g(R,)} = 0.7154155. We can apply Theorem 11. So we
conclude that there exist Ay, 4, > 0 such that, for every
A € (0,A,] and p € (0, ], the boundary value problem (47)
has at least one positive solution.

5. Conclusions

This paper studies the existence of positive solution of a
four-point coupled system of nonlinear fractional differential
equations. We give sufficient conditions on A, y, f, and g
such that the system has at least one positive solution. The
existence of positive solution is discussed by using Guo-
Krasnosel’skii fixed point theorem. Also, an example which
illustrates the obtained result is presented.
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