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Let X be a real locally uniformly convex reflexive Banach space with locally uniformly convex dual space X*. Let T : X 2 D(T) —
2X" be a maximal monotone operator and C : X 2 D(C) — X" be bounded and continuous with D(T) € D(C). The paper
provides new existence theorems concerning solvability of inclusion problems involving operators of the type T + C provided that
Ciscompactor T is of compact resolvents under weak boundary condition. The Nagumo degree mapping and homotopy invariance
results are employed. The paper presents existence results under the weakest coercivity condition on T'+C. The operator C is neither
required to be defined everywhere nor required to be pseudomonotone type. The results are applied to prove existence of solution

for nonlinear variational inequality problems.

1. Introduction: Preliminaries

In what follows, the norm of the spaces X and X" will be
denoted by || - ||. For x € X and x* € X", the pairing (x", x)
denotes the value x* (x). Let X and Y be real Banach spaces.
For an operator T' : X — 2Y, we define the domain D(T)
of Tby D(T) = {x € X : Tx # 0}, and the range R(T)
of T by R(T) = Uyeper) Tx. The symbol G(T) denotes the
graph of T given by {(x,x") : x € D(T),x" € Tx}. An
operator T : X > D(T) — Y is “demicontinuous” if it
is continuous from the strong topology of D(T') to the weak
topology of Y. It is “compact” if it is strongly continuous and
maps bounded subsets of D(T) to relatively compact subsets
of Y. An operator T : X > D(T) — 2¥ is “bounded” if it
maps each bounded subset of D(T) into a bounded subset of

Y. The mapping ] : X — 2X" defined by
Jx) = {x" e X" (xbx) = o, <7 ==} @

is called the “normalized duality mapping”. It is known due
to Hahn-Banach theorem that J(x) # 0. In addition, the local
uniform convexity of X and X* implies that J is single valued,
bounded, monotone, bicontinuous, and of type (S,).

Definition 1. An operator T : X > D(T) — 2% is said to be

(i) “monotone” if (u* —v*,x — y) > 0 for all (x,u") and
(3, v") in G(T);

(ii) “maximal monotone” if T is monotone and (u* —
Uy, x — xo) > 0 for every (x,u”) € G(T) implies
Xy € D(T) and u; € Tx;

(iii) “coercive” if either D(T) is bounded or there exists a
function y : [0,00) — (—00, 00) such that y(t) —
coast — oo and (y*,x) > y(|x[)|x| for all x €
D(T) and y* € Tx;

(iv) “expansive” if there exists o > 0 such that [[u* —v*| >
allx = yll for all x € D(T), y € D(T), u* € Tx, and
v' e Ty.

It is well-known that a monotone operator T' is maximal
monotone if and only if R(T + AJ) = X" for every A > 0
(cf. Theorem 2.2 [1]) and (T + AJ) ™' : X* — D(T) is single
valued, monotone, and demicontinuous. For each A > 0, the
operator Ty : X — X*, defined by Tyx = (T + AJ ") 'x,
is the “Yosida approximant” of T. It is bounded, continuous,
and maximal monotone such that Tyx — TOx as A — o,
for every x € D(T), where IT%x| = inf{[ly*| : y* € Tx}. The
operator J, : X — D(T) defined by J,x = x — \J }(Tx),
is called the “Yosida resolvent” of T'. It is continuous, T)x €
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T(J,x) for every x € X and lim, ,,J;x = x for all x €
coD(T), where coD(T) is the convex hull of D(T'). For each
x € D(T), IT)xll < |Tx| for all A > 0, where |Tx| denotes
IT%x]|. A maximal monotone operator T is called of compact
resolvents if ], is compact for all A > 0. For further references
on monotonicity theory, the reader is referred to Pascali and
Sburlan [2], Barbu [1], Zeidler [3], Kenmochi [4], and the
references therein. The following Lemma is due to Brezis,
Crandal, and Pazy [5].

Lemma 2. Let B be a maximal monotone set in X x X*. If
(u,,u,) € Bsuch that u, — uin X, u, — u* in X*, and

limsup (u, —u",u, —u) <0, )

n—aoo

then (u,u”) € Band (u,,u,) — (u*,u) asn — oo.

The main objective of this paper is to establish sufficient
conditions which guarantee existence of solution for inclu-
sions of the type (T + C)(D(T) N Bg(0)) > f* (where
T: X 2DT — 2% is maximal monotone of compact
resolvents and C : X D(C) — X" is bounded and
continuous with D(T) D(C)) provided that there exists
R > 0 such that (T + C + ¢J)(D(T) N 0Bg(0)) # f~ for all
€ > 0. Under this boundary condition, inclusion result of the
type f* € (T + C)(D(T) N Bg(0)) is included if C is compact
with D(T) ¢ D(C) and T is arbitrary maximal monotone.
The case where T is expansive maximal monotone and C is
compact is also included. The operators of type C are available
in the form of lower order term in many nonlinear differential
equations in appropriate function spaces.

The paper is organized as follows. In Section 2, the
main existence results (Theorems 3 and 6) are proved. The
arguments of the proofs of Theorem 3 are based on Nagumo
homotopy invariance result. Theorem 6 follows as a result
of Theorem 3. Nagumo [6] developed a degree theory in a
setting of linear convex topological space Y for operators of
the type I — B, where B : G — Y is a compact operator,
I is the identity mapping on Y, and G is a nonempty and
open subset of X. The important contributions of Nagumo
are (i) G is a nonempty and open subset of X (not necessarily
bounded) and (ii) the degree is invariant under the homotopy
H(x,t) = x — W(t,x), (t,x) € [0,1] x G provided that
W : [0,1] x G — X is compact and 0 ¢ H(t,0G) for
all t e [0,1]. For further references on Nagumo degree
and related results, the reader is referred to the paper due
to Nagumo [6, Theorem 5, 6, 7]. Throughout the paper d,
stands for Nagumo degree. In Section 3, we demonstrated
the applicability of the abstract results to prove existence of
solution(s) for variational inequality problems.

Existence results concerning pseudomonotone pertur-
bations of maximal monotone operators under coercivity
condition can be found in the papers due to Kenmochi
[4, 7, 8], Asfaw and Kartsatos [9], Le [10], Asfaw [I1],
and the references therein. For related results concerning
existence of solution for inclusion problems of the type
Tu + Su > f* in D(T), where S is an everywhere
defined bounded pseudomonotone operator under Leray-
Schauder type boundary condition on T' + S, we cite the
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results due to Asfaw and Kartsatos [9, Theorem 11, Theorem
13, pp. 127-133]. Analogous result for possibly unbounded
single multivalued pseudomonotone operator S is due to
Figueiredo [12]. However, the cases where S is not necessarily
pseudomonotone type is not studied earlier. It is the purpose
of the present paper to address analogous result for T' + C,
where C is possibly not everywhere defined compact or C is
bounded and continuous, and T is of compact resolvents.

2. Main Results

In this section, we prove the main existence theorem.
Theorem 3. LetT : X 2 D(T) — 2% be maximal monotone
and C : X 2 D(C) — X* with D(T) € D(C). Let f* € X*.
Suppose there exists R > 0 such that D(T) N Bg(0) # 0 and
(T+C+¢])(D(T)NOBR(0)) 3 f~ (3)

forall e > 0. Then

(i) f* € (T + C)(D(T) N B(0)) if C is compact;

(ii) f* € (T +C)(D(T) N Bx(0)) if T is expansive and C is
compact;

(i) f* € (T + C)(D(T) N Bg(0)) if D(T) < D(C) and
C: D(C) — X" is completely continuous;

(iv) f* € (T+C)(D(T) HER(O)) if T is of compact resolvent
and, C is bounded and continuous.

Proof. Suppose the hypotheses hold. We divide the proofinto
two steps.

Step 1. Let oIy BR(0) — 2% be the subdifferential
of the indicator function Iy on Bg(0) and A = T + Ol.
The operator A is maximal monotone with bounded domain
D(A) = D(T) n Bg(0) because D(T) N D(AIz) = D(T) N
Br(0) # 0. Foreach A > 0,let Ay : X — X" and J, :
X — D(A) be the Yosida approximant and resolvent of A,
respectively. It is well-known that A  is bounded, continuous,
and maximal monotone, and J, is bounded and continuous
such that A x = (1/A)J(x — J3x), J,x € D(A), and A x €
A(J,x) forall x € X. Let

H)(t,x) =x-W (t,x), (t,x)€[0,1]xBg(0), (4)
where W: [0,1] x ER(O) — X is given by

W (tx) = (] +tA,) " (=t (Clyx— f)). (5)

For each € > 0 and A > 0, we shall show that W is a compact
operator. Let (t,,, x,) — (t, %), i.e,t, — tyand x,, — x,
as n — 00. The continuity of C and J, implies —t,(CJ; x,, —
) — —t,(Clyxy — f*) asn — 0. Let

z, =W (tn’ xn) = (8] + tnA)t)_l (_tn (C])an - f*)) (6)
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for all n, ie., eJz, + t,Ayz, + t,(Chx, — f*) = 0 for all
n. Fix a, € D(A). By applying the monotonicity of A, and
boundedness of J, and C, we obtain that

ellal’ = €z 2, — a0) + e (2 0)
=& (Jz,,a9) ~ t, (Ar2, 2, — )
~t, (Chx, = [z, — )
= e(Jz,na) —t, (Arz, — Arap, 2, — )
+t,(A a9, 2, — ag)
~t, (Chxy = 72, — )
<t, (Aag, 2, = )
~t, (Chx, = [, 2, = ay) + € (Jz, a)
< ([Axao| + K) |z = aol| + & ]|zl ol

(|Aao| + K) |z, = ao|| + & ||z o]

7)

IN

forall m; i.e., (s||zn||2 < (|Agy| + K)llz,, — a0l + €llz,,lla, | for all
n, where K is an upper bound for {t,Cx,, — f*} and |Aq,| =
inf{||lx*|| : x* € Aay}. Thus, we get the boundedness of {z,,}.
Assume without loss of generality that z, — z, asn — 0.
By the monotonicity of A, we arrive at

lim sup (Jz,,, 2, — zo)
n—aoo

< lim sup (_tn <A/\Zn’ 2y = ZO))

n—:oo

fhzn-20))

+lim sup (-t, (CJ)x,, —

n—:oo
< -lim inft, (A)z,. 2, - 2)
—lim inft, (Cl,x, — .2, — z)
n—aoo
(8)
= -lim inft, (A)z, - A)20,2, — 29)
—lim inft, (Cyx, - f7.2, - 2)
+ nli_{noo tn <A/\z0’ Zy = Z0>
< _nlgnootn <C]/\xn - f*’zn - ZO>
+ lim ¢, (A,zg,2, — 2y) = 0.
Thus we conclude that z, — 2z, as n — 00 because J is
of type (S,). Since J and A are continuous, it follows that

eJzy +ty(Ayzy + (Clyxy — f7)) = 0; i.e., we have

zy = (eJ + toA/\y1 (~to (Chixg = f7)) = W (tp %) . (9)

We notice here that the above argument holds for any
subsequence of {z,} (i.e., every subsequence of {z,} admits
a convergent subsequence). Consequently, we conclude that
{z,} converges z; i.e., the continuity of W is proved. Next we

assume {(s,, y,)} isbounded in [0, 1] xG. The sequence {], y,,}
is bounded because the sequences {s,} and {y,} are bounded.
Since J, y,, € D(A) € D(C) for all n and C is compact, we can
extract a subsequence, denoted again by {-s,(CJ,y, — f*)}
such that —s,(CJ, y,,— f*) — a, asn — oco. We notice here
that

w, =W (Sn’ yn) = (‘("] + SnA/\)_l (_Sn (C])Lyn - f*)) (10)

for all n implies eJw,, +s,(A w, + (CJ, ,— 7)) = 0 for all n.
By applying the argument used in the proof of continuity of
W, it follows that {w,,} is bounded and admits a convergence
subsequence. Thus the compactness of W is proved. The
same argument shows that W is compact if C is completely
continuous with D(T) € D(C).

Next we fix ¢ > 0 temporarily and show that 0 ¢
Hf(t, 0BR(0)) for all t € [0,1] and sufficiently small A > 0.
Suppose not, i.e., there exists A,, | 07, 7, € [0, 1] and u,, € 0G
such that

eJu, + 1, (A,xn”n‘F(C]/\n”n_f*)) =0 (11)

forall n. If 7, = 0 for some n, then it follows that e]Ju,, = 0; i.e.,
u, = 0. But this is impossible because u,, € 0Bg(0). Assume
1, € (0,1] forallmand 7, — 1, € [0,1] asn — 0. The
boundedness of {C]) u,} follows because of the boundedness
of C and D(A) is bounded and Ty un € D(A) for all n; i.e.,
{A,,u,} is bounded. Assume without loss of generality that
u, — ty, Ay u, — ug, and CJ, u, — by asn — oo. By
the monotonicity of J and (11), we claim that

a = lim inf <AA,,”n’”n - u0> > 0. (12)

Suppose not, i.e., « < 0. Then there exists a subsequence
{{Ag, u,u, — ug)} that converges to « as n — 0o. The
fact that J) u, € D(A), Ay u, € A(J, u,), and ], u, =

u, — /\n]fl(A)tnun) for all n implies

lim sup <AA Uy, Jy U, — u0>
oo " .

< lim sup <AAnuw Ty, tn = ”n>
n—oo (13)
+lim sup <AAnun’ Uy~ “0>

n—:oo

< —lim inf (A,

2
AAun|' )+0¢S(x<0.
n—=oo n

The maximality of A along with Lemma 2 implies 1, € D(A),
U, € Aug, and (A u,, ], u, —uy) — 0asn — o0
ie, we get (A, u,u, —uy) — 0 = a. However, this is
impossible; i.e., the claim holds. The case 7, = 0 implies



u, — 0 € 0By(0) as n — o0. However this is impossible.
Assume that 7, € (0, 1]. By using & > 0 in (11), we obtain that

lim sup (Ju,, u, — uy)

= lim sup (—Tn <A,\nu,, +CJy, Uy — o,

n—=oo

)

= -1, linm_>i£f(<AAnun +CIy u, — [ u, — u0>) (14)

”n‘”0>)
u, — u0>) <0

The (S,) condition on ] implies u,, — u, € D(T) N 0Bg(0)
and J, u, — u, asn — ©0. The maximal monotonicity of
A together with Lemma 2 implies that u, € D(A) and u, €
Auy. The continuity of C and ] implies

< —7olim inf ((A,, s

+lim i()lgf((C]Anun ~f

eJu, + T, (AAnun +CJ U, = f*) —
(15)
eJug + 7o (g + Cug — f7)

as n — 0. Consequently, letting n — o0 in (11) gives
srgl]uo +uy +Cuy = f*; i.e.,, we obtain that

ug + Cuy + ety Juy € Tug + Cug + 0l (up) . (16)

This implies u; = a; + b, for some a; € Tu, and by €
0l (u,). However, it is well-known that

{0} if x € By (0),
Ol (x) = y{MJx: A1 >0} if x € 0B (0), 17)
0 if x € X\ By (0).

As aresult, by = uJu, for some y > 0; i.e., we get (T + C +
(1 1e+y) (D(T)NOBk(0)) > f*. However, this is impossible
because of the hypothesis of the theorem. Therefore, for fixed
€ > 0, there exists A, > 0 such that 0 ¢ H?(t, 0Bx(0)) for all
t € [0,1]and A € (0,A,); i.e.,, {H;(t, }teqo,17 is an acceptable
Nagumo homotopy.

Step 2. Fix € > 0. By using the admissible Nagumo homotopy
{H ? (t, .)}tejo,1) Obtained in Step 1 and applying the homotopy
invariance properties of d,, we see that dy, (H; (¢,.), G, 0) is
independent of t € [0, 1]; i.e.,

dga (2 (1B (0).0) = dygy (H? (0, (0).0)

(18)
=dna (I, BR(0),0) =1
for all sufficiently small A > 0. Thus for each A,, | 07, there
exists v,, € Bx(0) such that
s]vn+A)ann+C],\nvn=f* 19)

for all n. The boundedness of {CJ A,V Ly and {A LY ..} follows
because of the boundedness of {v, }, D(A) and C. As a result
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we can easily follow the arguments used in the last part of Step
1to conclude the existence of z, € D(T)NBg(0) and z} € Az,

such that ¢Jz, + z] + Cz, = f";ie, foreach¢, | 07, there
exist z, € D(T) N Bg(0) and z,, € Az, such that
eJz,+z, +Cz,= " (20)
for all »; i.e., we get
ez, +a, +b +Cz, = f" (21)

for all n and for some a, € 0Iy(z,) and b, € Tz,. However,
applying the boundary hypothesis on T'+ C, we conclude that
z, € Bg(0) for all nand a,; = 0 for all n. Consequently, we
arrive at

eJz, +b, +Cz, = f" (22)

for all n. The boundedness of {Jz,} implies that b, + Cz,, —
[ e, f* e (T+C)D(T) N Bg(0)). This completes the
proof of (i). Next we prove (ii). Suppose T is expansive and
C is compact. By the compactness of C we assume without
loss of generality that Cz, — g;;ie, b, — f* —g,. The
expansiveness of T implies z, — z, € Bg(0) as n — oo.
The maximality of T along with Lemma 2 yields z, € D(T') <
D(C) and f* — g; € Tz, As a result we conclude that
f*—Czy €Tz, (ie., f* € (T +C)(D(T) N Bg(0)) ) because
of the continuity of C; i.e., (ii) holds.

(iii) Suppose C is completely continuous and D(T) ¢
D(C). Assume by passing into a subsequence that z, — d,,
as n — 00. The maximality of T implies that D(T)n B(0)
is closed and convex; i.e., it is weakly closed and d, € D(T) N
B(0). The complete continuity of C implies Cz, — Cd,
and b — f* - Cdy; ie, d, € D(T) N Bx(0) and f* €
(T + C)(D(T) N Bx(0)); i.e., (iii) is proved.

(iv) Suppose T is of resolvent compact and C is bounded
and continuous such that the boundary condition on T + C
holds. It is known due to Kartsatos [13, Lemma 3, pp. 1684]
that J, is compact if and only if (AT + J) ™" is compact, and J
is compact for all A > 0 if ], is compact for some yt > 0. As a

result, the compactness of (T+]) " and J, is used equivalently.
Since C is bounded and ], is compact, it follows that CJ, is
a compact operator; i.e., we can follow the arguments used
in the proof of the first part of Theorem 3 to conclude that
W: [0, 1] x Bg(0) — X given by

TtCha- ) @)

is a compact operator. By following exactly analogous argu-
ments used in the proof of (i) through (iii) of this theorem,
for each ¢, | 0" there exist 7, € D(T) N Bx(0) and v, € T,
such that

W (t,x) = (¢e] +tT))

vy +Cr,+¢,JT,= f (24)
for all m;i.e., we get v, +Jt, = -C1, —¢,J7,+ J7, forall m; i.e,,

=(T+]) () (25)
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for all n, where b, = -Ct, — ¢,J1, + J1, for all n. By the
compactness of (J + T)™', there exists a subsequence of {b,},
denoted again by {b,}, such that 7, = (T + J)™'(b,) — 1,
as n — 00. Assume without loss of generality (by passing
into a subsequence) that Cz, — g* andv, — f* - g°
as n —> 00. The maximal monotonicity of T along with
Lemma 2 implies that 7, € D(T) and f* — g* € Tt,. On the
other hand, the continuity of C implies Cz, — Cz, = g7;
ie,v: — f*=Cryie., f* € (T +C)(D(T) N Bg(0)). The
proof is complete. O

The following corollary holds.

Corollary 4. Let T and C be as given in Theorem 3. The
conclusions in Theorem 3 hold if

(a) the boundary condition

(T+C+¢])(D(T)N0Bg(0)) 3 f~ (26)

for all € > 0 is replaced by

(T+C+e])(D(T)N0B(0) 3 f (27)

foralle > 0 and some u, € D(T)NBg(0), where J(x) =
J(x —uy) for x € X;

(b) there exist R > 0 and v, € ER(O) such that

(U +Cx—f",x—vy) >0 (28)

forall x € D(T) N 0Bg(0) and u* € Tx;

(c) 0 € T(0) and Bx(0) is replaced by a nonempty, closed,

bounded, and convex subset K of X such that 0 € K
and €] is replaced by €0y, and

(T +C+edl) (D(T)NOK) 3 [~ (29)

for all ¢ > 0, where 0l is the subdifferential of the
indicator function on K.

Proof. (a) The proof for the analogous result under the
boundary condition involving J follows because the operator
7 : X — X* inherits all the properties of J; i.e., ] is bounded,
continuous, monotone, and of type (S, ).

(b) The side condition in (b) is equivalent to (T' + C +
e0IR)(D(T) N 0Bg(0)) 3 f™ for all ¢ > 0 because of the
definition of /™ —u" —Cx ¢ dIx(x) for all x € D(T) N 0Bx(0),
u* € Tx, and the fact that dIx(x) = {eJx : ¢ > 0} for all
x € 0Bg(0). This implies that the condition in (b) is equivalent
to the boundary condition in Theorem 3.

(c) Suppose (T +C +edl )(D(T)NOK) 3 [~ foralle > 0.
The maximal monotonicity of A = T + 0l follows because

D(T) NK # 0. It is not difficult to see that boundary condition
onT + C + e0dK implies that there exists y, € K such that

U +Cx—f",x—y,)>0 (30)

forall x € D(T) N 0K and u* € Tx. The proof of (c) follows
based on the arguments of the proofs of (i) through (iii) of
Theorem 3 by using G = K instead of B(0). The details are
omitted here. To prove (iv) of Theorem 3 under (c), we shall
show that A is resolvent compact. Let {f,'} be a sequence in
X" such that f; — f; asn — ocoand x,, = (J +A)_1(f;)
for all n; ie, x, € D(A) N K for all n. Let u,, € Tx, and
v, € 0Ix(x,) such that

u, +v, +Jx, = fo (31)
for all n. The boundedness of {x,} follows because K is
bounded. Assume without loss of generality that x, — x,.

Since K is closed and convex (i.e., it is weakly closed), we have
x, € K. In addition, the condition 0 € T(0) yields

[l

I

(o) = = (uty x,) = [+ |

<[5 =l < M

(32)

for all n, where M is an upper bound for {| f,"[ll|x,[l}. Since

D(oIg) = K # 0, it follows that o1 x 1s strongly quasibounded,
which yields the boundedness of {v;}, i.e., {u,} is bounded.
Assume without loss of generality that v, — v, and u;, — u;
as n — 00. By following the arguments used in the proof of
Theorem 3 and using the fact that ] is bounded of type (S,),
we get x, — xyasn — ocoand uy + vy + Jx, = fyie,
xo = (J+ AN fo ). Since this convergence holds for each

subsequence of {x, }, we conclude that (J +A) " is continuous.
Next we assume {f,'} is bounded. Then the compactness of

(J + T)™" implies the existence of a subsequence, denoted by
{f,, — v}, such that

% =U+D) 7 (£ -v)=0+A7 (f) —xn 63

as n — 00. Thus the compactness of (J + A)7! follows; i.e.,
J, is compact for all A > 0. The remaining proof follows as in
the arguments of the proof of Theorem 3. The detail is omitted
here. O

Next we give the following surjectivity result.

Corollary 5. Let T and C be as given in Theorem 3. Assume
that T + C is coercive; i.e., there exists v, € X such that

in —_—
xeD(T),u*€Tx ||x|| (34)

as |x|| — oo.
Then the following conclusions hold.

(i) R(T + C) = X™ if C is compact.
(i) R(T + C) = X™ if T is expansive and C is compact.
(iii) R(T + C) = X if C is completely continuous.

(iv) R(T + C) = X" if T is of resolvent compact and C is
bounded and continuous.



Proof. Let Tx = J(x - v,) for x € X and some 1, € D(T). It is
known that J is bounded, monotone, continuous, and of type
(S,). Fix f* € X". It is enough to show that the boundary
condition in Theorem 3 holds. The coercivity of T+ C implies

(U +Cx— f*,x—v,)

[l
waCnxow) Il-wl
lll [l
v Cxx-w) o 1wl
lll 7l llxl

for all x € D(T) \ {0} and u™ € Tx. The coercivity of T + C
implies that the right side in (35) approaches to co as ||x|| —
00; i.e., there exists R = R(f™) > 0 such that

(U +Cx—f",x—vy) >0 (36)
for all x € D(T) N 0Bx(0) and u™ € Tx. Thus we have
<u* +Cx+£7x—f*,x—v0>
=(u" +Cx— fx-vyy+e(J(x—vy),x—vy)y (37)
s ellx -l
for all x € D(T) N 0Bx(0) and u™ € Tx; i.e., we get
(T+C+e])(D(T)N0BR(0) 3 f* (38)

for all ¢ > 0. Consequently, the conclusions (i) through (iv)
follows based on the conclusion of Theorem 3. O

It is worth noticing that Theorem 3 is new in the sense
that the conclusion required only the boundary condition
(T+C+¢])(D(T)NOBg(0)) # f* forall e > 0. For analogous
results under such boundary condition, the reader is referred
to Figueiredo [12] (for single multivalued pseudomonotone
operator S) and Asfaw and Kartsatos [9, Theorem 11 and
Theorem 13] (for pseudomonotone perturbations of maximal
monotone operator).

Next we prove the following result.

Theorem 6. LetT : X 2 D(T) — 2X" be maximal monotone
and C : D(C) — X" be such that D(T) € D(C). Assume that
d>0,u>0,andQ > 0 such that

(u" +Cx,x) > ~d |x|I” - (39)
forall x € D(T) with |x|| > Q, and

|Tx + Cx|

mxr X 40
xeD(T), |xl—o0 [ x|? o

Then the following hold.

(i) R(T + C) = X™ if C is compact.
(ii) T + C is surjective if C is completely continuous and
D(T) ¢ D(C)
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(iii) T + C is surjective if T is expansive and C is compact;

(iv) T + C is surjective if T is of compact resolvent and C is
bounded and continuous.

Proof. Fixe > Oand f* € X*. Let] : X — X" be
defined by Jx = |x|Jx, x € X. It is well-known that T is
bounded, continuous, maximal monotone, and of type (S, ).
Then applying (39) gives

(u” + Cx +ex,x) = IxI w (] (41)
for all x € D(T) \ {0} and u™ € Tx, where
vty =e—dt " —put” —|f 7 t>0.  (42)
As a result, we get

<u* +Cx + sfx,x>

- (43)
I ©

as ||x| — oo. The operator A, = T + eJ is maximal
monotone. By using the operators A, and C in Corollary 5, we

conclude that (T + C + €] )(D(T) N Ere(O)) > f*. Then there
exist x,, € D(T) N E,E(O) and u, € Tx,, such that

u' +Cx, +eJx, — f" (44)

as n — oo. The compactness of C implies that Cx,, — a,
(for some subsequence {x,}). By applying the maximality of T'
together with Lemma 2 and following the arguments used in
the proof of Theorem 3 we arriveat f* € (T+C+ e))(D(T) N
B, (0)). The surjectivity of T'+C +&] follows because f* € X*
is arbitrary. Next we give the proof of (i). Since R(T+C +¢J) =
X" forall e > 0, for each ¢, | 0%, there exist x,, € D(T) and
u;, € Tx,, such that

u, +Cx, +&, |x,| Jx, = f* (45)

for all ; i.e., (39) gives
& l%all” = & (T x,) = = (i, + Cx, = £7,x,)

2
<d|x, "+ u+ 7] =l

for all n. We shall show that {x, } is bounded. Suppose not, i.e.,
there exists a subsequence, denoted again by {x,}, such that
llx, I — o0 as n — oo. Dividing (46) by | x,,|| for all large n
implies

(46)

[ .
e llxll” < d x| + AL (47)

for all large n; i.e., (45) implies

y +Cx, | < & "+ 7

(48)
¢ *
<d|x,| + +2|f
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for all large n; i.e., we get

oz + Cxal
el

However, this is a contradiction to (40). As a result the
sequence {x,} is bounded. Letting n — o0 in (45) gives
f* € R(T + C). The proofs of (ii), (iii), and (iv) follow based
on the arguments used in the proof of (i) and Theorem 3. The
details are omitted here. O

— 0 asn-— oo. (49)

In [13], Kartsatos proved that R(T +C) = X" if C is
compact and T is maximal monotone with D(C) = D(T)
provided that there exists 3 : [0,00) — [0, 00) such that
pB(t) — 0ast — oo and Q > 0 such that

(u* +Cx,x) = =B (Ixl) [ (50)
for all x € D(T), u”* € Tx, and ||x|| > Q and
im in ITx + Cx| > 0. (51)
xeD(T), Ixl—o0 [l x||

It is worth mentioning here that (50) implies that for each
d > 0 there exists Q > 0 such that (||x]|) < d for all |x| > Q;
i.e., (50) implies (39) and (40) implies (51). On the other hand,
Theorem 6 due to Kartsatos [13] holds if D(T) ¢ D(C) is
used instead of D(C) = D(T). The proof follows based on the
proof of (i) of Theorem 6 by using J instead of 7. However, it
is worth noticing that condition (39) is natural in applications
than that of (50).

3. Applications

In this section, we demonstrate the applicability of the
result to prove existence of solution for variational inequality
problems.

Example 7. Let Q) be a nonempty, bounded, and open subset
of R" withn > 1 and I = 0Q is of smooth boundary. Let
X = L*(Q)and K bea nonempty, closed, and convex subset of
X with nonempty interior. Let j : R — (—00, 00] be proper,
convex, and lower semicontinuous function, p € [2,00) and

A > 0. Let CD;‘J : X — (—00, 00] be defined by

n

1
s= 3]

i=1

ou
0x;

p A
dx + — J lul? dx
e (52)
+J j(u)do
r

ifu e W"P(Q) and jlu) € LY(T), and CD;(u) = 00 otherwise.
It is known that acD; : X2 D(ad)z) — 2% is given by

aq>f, () = —A);u (53)

foreachu € D(aq%), where

0
=

n
i=1

P72 By
Ox;

ou
0x;

) —AululP?,  (54)

7
domain of aq>j§ given by
D (307)) = {u eW"(Q): Afuel’ (@), -2 (x)
v,
(55)
€0j(u(x)) ae. x € F}
and
ou < |oul|P? du
E -2 x| ox, cos (n,¢e;), (56)
where # is the outward normal on I and {e;, e,, ..., ¢e,} is the

canonical base in R”. Assume, further, that

(Cy) g: QxR +— Rbe Carathéodory function; i.e., x
g(x,s) is measurable for almost all s € R and s +—
g(x, s) is continuous for almost all x €

(C,) thereexistd >0and h € L*(Q) such that

|9 (x,8)| < h(x)+d]s] (57)

for all (x,s) € QO x R.

Let C: X — X be defined by Cu(.) = f(,u(.)) foru € X.In
the following theorem, we prove the solvability of variational
inequality problem VIP(C, ®*,K, f*); i.e, we find u € K n

D(CDQ) such that
(Cu-f*v—u) = @) (u) - D (v) (58)

forall x € K.

Theorem 8. Let f € X and (I):}7 beasin (52). Suppose (C,) and
(C,) aresatisfied. Ifd < 27 A for p = 2or A > 0 for p € (2, 00),
then the problem VIP(C, ot K, ) is solvable.

Proof. Let A = ad);\, be the subdifferential of d)"}, in the sense
of convex analysis. It is well-known that A is an m-accretive
operator (equivalently, A is maximal monotone) with com-
pact resolvents (cf. Proposition 2.2.2 and Proposition 2.2.3
[14]). By applying conditions (C;) and (C,), it follows that
C is bounded and continuous. Let oI, : K — 2% be
the subdifferential of the indicator function on K. The m-
accretivity (maximal monotonicity) of T = A + 0l follows
because of the condition D(A) N K # 0.In addition, it is
not difficult to see that T is of resolvent compact m-accretive
operator. Next we show that T + C satisfies the boundary
condition in Theorem 3. Let f* € X be the functional



generated by f. Choose y, ¢ D(CD;\,). By applying the
definition of A and conditions (C;) and (C,), we arrive at

(9" +Cu,u - py) > D) (1) — O ()

+ (Cu,u — py)
A » 2
= ; lfaell” — D, (to) = ICu [luall
= ICull [lso | (59)
A A
2 E llull? - (Dp (.”0)

= (IRl + d flzel]) feel
= (1Al + d llul) [l o |

forallu € D(A) and g* € Au. As a result, we obtain the
estimate

+Cu,u A _ -
g o o o A et~ g L) ()
= (Il + d jul) (60)
U+ d ) o
Jul

for u € D(A) \ {0} and g* € Au. Since A < 27'd (if p = 2) or
A > 0 (if p € (2,00)), the right side of (60) approaches to co
as ||lul| — oo and

(9" +Cuu— py)

in — 00 (61)
ueD(A), g* €Au ||u||

as [lul — oo0; ie., the coercivity condition on A + C
is satisfied. Thus for each f* € X we conclude that the
inclusion problem Au+Cu > f* is solvable; i.e., the problem
VIP(C, 9}, K, ) is solvable. This completes the proof. [

Next we present the following example.

Example 9. Let Q be a nonempty, bounded, and open subset
of RY with smooth boundaryand N > 1,7 > 0,Q = (0, T) x
Q, H = L*0,T; Hy(Q)), X = L*(Q), and V = H,(Q). Let
A>0and A: X 2 D(A) — X be defined by

Au = 8_u - AMu (62)
ot
for u € D(A), where
2 2 1 ou
D(A) = {u e L’ (0, T; H? (Q) N Hy () - =

(63)
e L*(Q),u(x,0) = u(x,T)} )

Let (, ) denote the inner product in X;i.e., for g* € Xandu €
H;we have (g*,u) = (g", u)(x x) with X* identified with X.
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The norm of u € H is the normed induced from X. It is well-
known that A is maximal monotone, surjective, N(A) = {0},
and

(Au,u) > ¢ llully, (64)

for all u € D(A). Since Hé(Q) is compactly embedded in
L*(Q), it follows that A™* : H — Hisa compact operator;
ie., for each ¢ > 0 the resolvent (A + eI)™* : H — H is
compact. Assume, further, that

(C5)g : QxR — R is Carathéodory function; i.e.,
(x,t) — g(x,t,s) is measurable for almost all s € R,
and s — g(x,t, s) is continuous for almost all (x, ¢) €
Q

(C, ) there existc > 0and k € L*(Q) such that

lg (x,t,8)| < cls| + k (x,1) (65)

forall (x,t,s) € Q X R;

(Cs) @ : X — (—00,00] is a proper, convex, and lower
semicontinuous function;

(Cg ) there exists a nonnegative constant « such that
D(®) € M, where

M:{uEX:J g(x,t,u)ud//tz—(xllull]». (66)
Q

We notice here that the set M defined in (C,) is nonempty
if s — g(x,t,s) is nondecreasing for almost all (x,t) € Q
such that g(x,t,0) = 0 for all (x,t) € Q. Actually, condition
(C,) implies that the unit ball in X is contained in M with
a = ¢ + |kl >(q)- In Theorem 10 below, we prove existence
of solution(s) for variational inequality problem denoted by
VIP(A+C,,K, f¥), ie, findingu € D(A) N D(¢) N K such
that

(Au— f*,v-u) +J g t,u)(v—u)du
Q (67)

>0 ) - W)

for all v € K, where K is a nonempty, closed, and convex
subset of X with K # 0.

Theorem 10. Let A : X 2 D(A) — X be as given in (62)

and f € L3(Q). Assume, further, that K n D(QGD) + 0 and
conditions (C5) through (Cg) are satisfied. Then the problem
VIP(A + C,®,K, f7) is solvable.

Proof. Let f € L*(Q), Abeas givenin (62),and C: X — X
be defined by

(Cu,v) = j g t,u)udy, uelX. (68)
Q
The operator A is linear maximal monotone, surjective, one

to one, and densely defined. The density of D(A) in X implies
D(A) N D(OIx) N D(®) # 0. As a result, we conclude that
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T = 0Ix + 0¢ + A is maximal monotone (cf. Rockafellar
[15]). The arguments used in the proof of (c) of Corollary 4
imply that T is resolvent compact. In addition, the continuity
of C follows based on the conditions (Cs;) and (C,). The proof
follows if we prove the coercivity of T+ C. Let us denote again
the restriction of C on M by C. The definition on M = D(C)
as given in (Cy) implies that (Cu, u) > —allu| for all u € M.
The conditions on @ imply that there exist h* € X* and
B € R such that ®(u) > (h*,u) — B > —[|h*||ul — B for
allu € X. Choose w, € D(A) N D(®). The monotonicity of A
and definition of 0®(w,) imply

(Tu + Cuyu— wy) = (Au — Awg, u - w,)
+ (Awg, u — wy) + @ (u)
- @ (wy) + (Cu,u —wy)
> G Ju = wy 7, = [ Awo|| o = wo
= A" lreel = B = @ (wp)
+(Cu,u)y — {Cu,w,)
(69)
> G Ju - wy 7, = Awo|| = wo
= A el = B - @ (wy)
= alull = [Cul| [lw|
> G [lu = woll” ~ Awy | Ju - wo|
= [A"[ el = B — @ (wy)
— o lull = (d lull + k) |y |

for all u € D(T) N D(®). We notice that D(T) € M because
D(®) < M. In addition, the right side of the above inequality
approaches oo as [|ul| — oo; i.e., we get

(Tu + Cu,u — wy)
[l

— 00 as |lu| — oo; (70)

that is, T'+C is coercive. Consequently, we conclude that T+C
is surjective. Thus for each f € L*(Q), the problem in (67)
admits at least one weak solution. The proof is completed. [

The reader can find plenty of resolvent compact maximal
monotone operators in the paper due to Brézis and Nirenberg
[16] and in the books due to Vrabie [14], Barbu [1, 17],
Showalter [18], and the references therein.
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