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2CEF.UP, University of Porto, Porto, Portugal

Correspondence should be addressed to José M. Gaspar; jgaspar@porto.ucp.pt
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This paper aims to connect the bridge between analytical results and the use of the computer for numerical simulations in
economics. We address the analytical properties of a simple dynamic aggregate demand and aggregate supply (AD-AS) model
and solve it numerically. The model undergoes a bifurcation as its steady state smoothly interchanges stability depending on the
relationship between the impact of real interest rate on demand for liquidity and how fast agents revise their expectations on
inflation. Using code embedded into a unique function in Matlab, we plot the numerical solutions of the model and simulate
different dynamic adjustments using different parameter values. The same function also accommodates the analysis of the impacts
of fiscal and monetary policy and supply side shocks on the steady state and the transition dynamics of the model.

1. Introduction

This study seeks to provide a contribution of potential interest
to researchers both within the economics profession and
from different fields by highlighting the connection between
analytical results and computer simulation. Our purposes are
twofold: (i) we seek to show, starting from a simple dynamic
inflation model used in Economics, how we can use the
computer to provide “end user” programs that are potentially
useful and also easy to use by analysts and (ii) sensitize
researchers in economics and other mathematically intensive
sciences to the fact that numerical simulations should not
be shun away based on the ground that they are only useful
when explicit or closed form analytical solutions cannot be
obtained [1, 2] (however, we do not claim that there are no
economists who made extensive use of computational capa-
bilities, specially in the fields of agent-based modelling and
simulation. See, e.g., Macal and North [3, 4] and Macal [5]
for an overview on the state of the art). With this in mind,
our paper analyses a simple dynamic inflation model, the
aggregate demand-aggregate supply (AD-AS)model.We first

derive analytical results and study the qualitative properties of
its equilibria through local stability analysis.We then proceed
to show numerical results to illustrate global dynamics and
phase plots that depict transition dynamics that occur when
we introduce changes in exogenous economic variables.

The AD-AS model is one of the bulwarks used in eco-
nomic theory to explain economic fluctuations and business
cycles. Its dynamic version presented here can be used to
assess the dynamic adjustments of output and inflation after
different macroeconomic shocks. Due to the specification
of the model, it is possible to verify that the equilibria of
the model interchange stability depending on the relation
between the sensitivity of the demand for liquidity to vari-
ations in the interest rate and how fast agents revise their
expectations on inflation. In fact, we can characterize the
model’s fixed points as stable or unstable spirals, or as stable
or unstable nodes (we shall see in Section 4 that unstable
nodes turn out to be numerically ruled out). This qualitative
change in the local flow near the equilibrium is explained by
the existence of a (degenerate) Hopf bifurcation as the pair
of eigenvalues yielded by the corresponding two-dimensional
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dynamic system crosses the imaginary axis along a smooth
parameter path where the impact of the real interest rate on
the agents’ demand for real money steadily increases.

Contrary to many business cycle studies (e.g., [6–12]),
the absence of nonlinearity in our simpler setup rules out
the possibility of limit cycles and other more complex eco-
nomic behaviours (typically, a Hopf bifurcation requires the
branching from an equilibrium into a periodic orbit. Here,
we use the term “Hopf” just to highlight the fact that a fixed
point looses stability as the eigenvalues of the Jacobian at the
fixed point cross the imaginary axis of the complex plain).
De Cesare and Sportelli [13], Neamtu et al. [14], Zhou and Li
[15], and Sportelli et al. [16] provide an interesting study on
how limit cycles generated by Hopf bifurcations may arise
in inflation models when there exists a finite lag between
the accrual and payment of taxes, which implies a qualitative
study of delay differential equations.

Using code embedded in a single function developed in
Matlab, we portray the global dynamics of the model using
different parameter values by means of an illustration that
includes, not only the evolution of real output and inflation
throughout time but also a phase diagram that fully describes
the qualitative properties of its equilibria and the transition
dynamics.This code also allows us to simulate different types
of exogenous shocks, both individually and simultaneously,
to the economy, and their impact on the economy’s main
aggregate variables, that is, real output and inflation. The
simulations numerically depict the transition dynamics and
adjustment processes of the state variables after the shocks
occur. We consider three types of shocks: monetary supply
shocks, fiscal policy shocks, and supply side shocks. The first
shocks operate through changes in the growth rate of money
supply. Fiscal policy shocks are consequences of changes in
either the level of public spending or the exogenous tax rate.
The latter shocks are technological shocks that exogenously
affect the level of natural output. The Matlab function also
allows for the combination between the different shocks.

As noted by Wilson [17], the purpose of illustrating
mathematical results derived from models in a clear and
appealing way is often defeated by the inherent intractability
of more cumbersome frameworks. Thus, it is our contention
that there is a need for amore openmindedness of economists
(and also researchers in other fields). Therefore, we hope to
motivate to the fact that analytical analysis and numerical
assessment should be complementary, not substitutes (how-
ever, certifying this complementarity implies that previous
model verification and validation are essential [18]). Bymeans
of a simple yet insightful macroeconomicmodel, our compu-
tational approach provides illustrations that are both intelli-
gible and visually attractive. Therefore, it allows us to clearly
convey the messages behind the analytical analysis of the
model by means of a compact and complete illustration, thus
contributing to further connect the bridge between mod-
elling and computer simulation (our effort thus goes along the
lines of the technical appendix developed by King et al. [19],
who describe the methods and software used to analyse in
detail the neoclassical economy in the seminal works in King
et al. [20, 21]). From a prospective view, the choice of a simple
dynamic inflation model is thus intentional. It also seeks to

appeal to readers who are not acquainted with economic
theory and its models but are still able to understand the
economic intuition behind the results of the simple model
presented here.

The organization of the rest of this paper is as follows.
Section 2 derives the model and studies its analytical prop-
erties. Section 3 contains simulations for different parameter
values, each specification pertaining to a different phase por-
trait. Section 4 addresses the simulation of different shock
types. The last section is left for concluding remarks.

2. Model and Analysis

The model presented here loosely follows the one proposed
by Shone [22, chap. 9] We begin by deriving the aggre-
gate demand side, the “investment-saving” and “liquidity
preference-money supply” (IS-LM) model. Starting with the
goods market (IS curve), consumption is given by

𝑐 = 𝑐0 + 𝑏 (1 − 𝜏) 𝑦, 0 < 𝑏, 𝜏 < 1, (1)

where 𝑦 is both real aggregate output and aggregate income,𝑐0 corresponds to autonomous consumption, 𝜏 is the exoge-
nous tax rate, and 𝑏 is the fraction of disposable income,(1 − 𝜏)𝑦, that agents wish to consume. Investment 𝑖 is equal
to

𝑖 = 𝑖0 − ℎ (𝑟 − 𝜋𝑒) , ℎ > 0, (2)

where 𝑖0 corresponds to autonomous investment, 𝑟 stands for
the nominal interest rate, 𝜋𝑒 is the expected inflation rate,
and ℎ is a parameter that captures how agents are sensitive
to variations in the real interest rate, 𝑟 − 𝜋𝑒. The higher the
real interest rate, the lower the investment level.

Real output is given by

𝑦 = 𝑐 + 𝑖 + 𝑔, (3)

where 𝑔 corresponds to the exogenous level of government
spending. Plugging (1) and (2) into (3) we are able to derive
the IS curve.

Themoneymarket (LM curve) is described by the follow-
ing equations:

𝑚𝑑 = 𝑘𝑦 − 𝑑𝑟 (4)

𝑚𝑠 = 𝑚 − 𝑝, (5)

where 𝑚𝑑 represents real money demand in logs, 𝑚𝑠 is the
real money supply in logs, 𝑝 is the logarithm of the price
level,𝑚 is the logarithm of nominal money supply, and 𝑑 and𝑘 are the values of the money balances demand’s sensitivity
to variations in the nominal interest rate and in real output,
respectively. Equilibrium in the money market requires that𝑚𝑑 = 𝑚𝑠. Using (1), (2), (3), and (5), we can solve for the
equilibrium’s level of real output,𝑦 ≡ 𝑦∗ and the equilibrium’s
real interest rate 𝑟 ≡ 𝑟∗, which yields

𝑦∗ ≡ 𝑦 = (𝑐0 + 𝑖0 + 𝑔) + (ℎ/𝑑) (𝑚 − 𝑝) + ℎ𝜋𝑒
1 − 𝑏 (1 − 𝜏) + ℎ𝑘/𝑑 (6)

𝑟∗ ≡ 𝑟 = 𝑘𝑦∗ − (𝑚 − 𝑝)
𝑑 . (7)
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Hereinafter, we shall focus solely on 𝑦∗. Notice that (6) is
linear in real money supply𝑚 − 𝑝 and expected inflation 𝜋𝑒.
Therefore, we can rewrite (6) as

𝑦 = 𝑎0 + 𝑎1 (𝑚 − 𝑝) + 𝑎2𝜋𝑒, (8)

where

𝑎0 = 𝑐0 + 𝑖0 + 𝑔1 − 𝑏 (1 − 𝜏) + ℎ𝑘/𝑑 ,

𝑎1 = ℎ/𝑑
1 − 𝑏 (1 − 𝜏) + ℎ𝑘/𝑑 ,

𝑎2 = ℎ
1 − 𝑏 (1 − 𝜏) + ℎ𝑘/𝑑 .

(9)

Equation (8) represents our aggregate demand (AD) curve,
since it denotes equilibrium in both the goods and money
market.

Turning to the aggregate supply side, we assume that the
rate of inflation is proportional to the output gap and adjusted
for expected inflation as follows:

𝜋 = 𝛼 (𝑦 − 𝑦𝑛) + 𝜋𝑒, 𝛼 > 0, (10)

where 𝑦𝑛 is the natural level of output, 𝛼 is a constant, and the
output gap equals 𝑦 − 𝑦𝑛. This is our aggregate supply (AS)
curve. It stems from the combination between an augmented
Phillips curve 𝜋 = 𝜋𝑒 − 𝑎(𝑈 − 𝑈𝑛), which states that actual
inflation 𝜋 is decreasing in the deviation of unemployment
rate 𝑈 relative to its natural level 𝑈𝑛 (i.e., actual inflation
equals expected inflation minus the variability in unemploy-
ment times the constant 𝑎) and Okun’s law, whereby 𝑈 −𝑈𝑛 = −𝑏(𝑦 − 𝑦𝑛), with 𝑎, 𝑏 > 0 (Okun’s law states that
higher output gap leads to lower unemployment rates. I refer
the reader to Lee [23] for a detailed explanation and also
its robustness based on empirical evidence). The AS curve
represents a situation where prices are completely flexible.
Thus, in equilibrium, actual inflation 𝜋 equals expected
inflation 𝜋𝑒 and output 𝑦 equals its natural level, 𝑦𝑛, whatever
the price level 𝑝.

Introducing a dynamic adjustment for inflationary expec-
tation and taking the derivative of (8) with respect to time, we
get the full model:

̇𝑦 = 𝑎1 (𝑚̇ − 𝜋) + 𝑎2 ̇𝜋𝑒, 𝑎1, 𝑎2 > 0 (11)

𝜋 = 𝛼 (𝑦 − 𝑦𝑛) + 𝜋𝑒, (12)

̇𝜋𝑒 = 𝛽 (𝜋 − 𝜋𝑒) , 𝛽 > 0, (13)

where dotted variables denote their derivatives with respect
to time (we omit the explicit dependence of state variables on
time to simplify notation, whenever reasonable). The param-
eters 𝑎1, 𝑎2 capture how the rate of change of output ̇𝑦 reacts to
real money supply growth rate (𝑚̇ − 𝜋) (recall that𝑚 denotes
nominal supply in logs. Hence, its derivate is approximate to
its growth rate), on the rate of change of expected inflatioṅ𝜋𝑒, respectively. The parameter 𝛽 measures how expected
inflation changes according to the difference between actual

inflation and expected inflation. The adaptive expectations
scheme for expected inflation in the last equation shows that
agents revise their expectations upwards whenever inflation
at any given time is higher than the expected inflation at that
same time. Equation (11) is the demand pressure curve. To
consider the dynamics of the model, we shall reduce it to 2
differential equations. Using (12) and (13) together, we obtain

̇𝜋𝑒 = 𝛼𝛽 (𝑦 − 𝑦𝑛) . (14)

Next, we take (12) and (14) and plug them into (11) to get

̇𝑦 = 𝑎1 [𝑚̇ − 𝛼 (𝑦 − 𝑦𝑛) + 𝜋𝑒] + 𝑎2𝛼𝛽 (𝑦 − 𝑦𝑛) ⇐⇒
̇𝑦 = 𝑎1𝑚̇ − 𝛼 (𝑎1 − 𝑎2𝛽) (𝑦 − 𝑦𝑛) − 𝑎1𝜋𝑒. (15)

Thus, the dynamics of the model are fully described by the
following two differential equations:

̇𝑦 = 𝑎1𝑚̇ − 𝛼 (𝑎1 − 𝑎2𝛽) (𝑦 − 𝑦𝑛) − 𝑎1𝜋𝑒 (16)

̇𝜋𝑒 = 𝛼𝛽 (𝑦 − 𝑦𝑛) . (17)

Notice that the two state variables are real output 𝑦(𝑡) and
expected inflation 𝜋𝑒(𝑡). However, actual inflation 𝜋(𝑡) can be
readily obtained from the AS curve in (12). Hence

𝜋 (𝑡) = 𝛼 [𝑦 (𝑡) − 𝑦𝑛] + 𝜋𝑒 (𝑡) . (18)

A steady state implies that ̇𝜋𝑒 = 0 and ̇𝑦 = 0. From the first
condition andusing (17), we get𝑦 = 𝑦𝑛. Combining this result
with the second condition we end up with 𝜋𝑒 = 𝑚̇. From
the AS curve it immediately follows that 𝜋 = 𝜋𝑒 = 𝑚̇ at
steady state. That is, in equilibrium, real output is given by
the natural level of output and actual inflation is equal to the
growth rate of the money supply. Given the system in (17),
from the ̇𝜋𝑒 = 0 locus we can see that if 𝑦 > 𝑦𝑛, expected
inflation 𝜋𝑒 is rising. Conversely, if 𝑦 < 𝑦𝑛, 𝜋𝑒 is declining.
Considering the ̇𝑦 = 0 locus we have

𝜋𝑒 = 𝑚̇ − (1 − 𝑎2𝛽𝑎1 ) (𝑦 − 𝑦𝑛) . (19)

Thus, what happens to 𝑦 above or below the ̇𝑦 = 0 locus
depends on the slope of the previous equation. If 1−𝑎2𝛽/𝑎1 >0, the previous equation is negatively sloped. Hence, to the
left or below the ̇𝑦 = 0 locus, 𝑦 is increasing (this condition
is assumed in Shone [22]. As we shall see further ahead,
this condition is sufficient for stability of the equilibrium of
the model. For the sake of numerical presentation, I do not
assume this holds a priori). To the right, there are forces
decreasing the level of output 𝑦.

Now, consider again the dynamical system in (17). The
Jacobian matrix of the system at equilibrium is given by

𝐽 = [−𝛼 (𝑎1 − 𝑎2𝛽) −𝑎1
𝛼𝛽 0 ] . (20)

It is straightforward to check that the determinant of the
matrix in (20) is equal to det(𝐽) = 𝑎1𝛼𝛽 > 0. Since it is
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positive, there are no eigenvalues with real parts of opposite
sign. Hence there are no saddle points.

The trace of the matrix is given by

tr (𝐽) = −𝛼 (𝑎1 − 𝑎2𝛽) ⇐⇒
tr (𝐽) = −𝛼[ ℎ (1/𝑑 − 𝛽)

1 − 𝑏 (1 − 𝜏) + 𝑏𝑘/𝑑] .
(21)

Since 𝑏(1 − 𝜏) < 1, the denominator of tr(𝐽) is positive.
Moreover, since 𝛼 > 0, the trace is negative if and only if1/𝑑 > 𝛽. Hence, we can say that the equilibrium is stable if1/𝑑 > 𝛽 and unstable if 1/𝑑 < 𝛽. The condition that 1/𝑑 > 𝛽
is exactly the same as requiring 1 − 𝑎2𝛽/𝑎1 > 0. This means
that if the ̇𝑦 = 0 locus is negatively sloped, the equilibrium(𝑦∗, 𝜋𝑒∗) = (𝑦𝑛, 𝑚̇) is stable.This is assumed ex-ante in Shone
[22], but not here.

A necessary and sufficient condition for the existence of
complex eigenvalues requires 4 det (𝐽) − tr(𝐽)2 < 0; that is,

4𝑎1𝛼𝛽 > 𝛼2 [ ℎ (1/𝑑 − 𝛽)
1 − 𝑏 (1 − 𝜏) + 𝑏𝑘/𝑑]

2

⇐⇒

4𝛽𝑑 > 𝛼 ℎ (1/𝑑 − 𝛽)2
1 − 𝑏 (1 − 𝜏) + 𝑏𝑘/𝑑 .

(22)

A low enough 𝛼 favours oscillatory solutions. Finally, if 𝑑 =1/𝛽 we get a null trace and complex eigenvalues because4𝛽/𝑑 > 0. Moreover, the equilibrium is a stable (in the
Lyapunov sense) centre, because the eigenvalues are purely
imaginary.Thus, the equilibrium is stable if and only if 1/𝑑 ≥𝛽. From the preceding analysis, we can sum up the different
qualitative properties of a steady state in the AD-ASmodel in
the following proposition.

Proposition 1. Depending on the parameters chosen, a steady
state in the dynamic AD-AS model can be characterized as a
stable or unstable node, a stable or unstable focus (spirals), or
a centre.

The possibility of an interchange between diverging and
converging oscillating trajectories suggests that the AD-AS
model undergoes a bifurcation. Suppose that the agents’ pref-
erence for liquidity (i.e., money demand) becomes increas-
ingly sensitive to changes in the real interest rate. Formally,
we have the following assumption.

Assumption 2. Let us consider a smooth parameter path
where 𝑑 steadily increases; that is, 𝑑 is a bifurcation parame-
ter.

Analysing the relationship between the sensitivity of
money demand with respect to the real interest rate 𝑑 and
the way agents revise their expectations on inflation based on
the prediction error 𝜋 − 𝜋𝑒, which is captured by 𝛽, allows us
to provide the following result.

Proposition 3. The system described by (17) undergoes a de-
generate Hopf bifurcation at 𝑑 = 𝑑0 = 1/𝛽.
Proof. See Appendix A.

The existence of a (degenerate) Hopf bifurcation explains
the transition from a stable focus to an unstable focus, as the
eigenvalues cross the imaginary axis at nonzero speed. On the
other hand, the linearity of system (17) in its state variables
forcibly precludes the existence of limit cycles branching from
the steady state; that is, the only periodic orbits occur when𝑑 = 𝑑0 and the equilibrium is a Lyapunov stable centre. As
the model undergoes the bifurcation, the value of the money
balances demand’s sensitivity to variations in the nominal
interest rate 𝑑 is inversely proportional to how fast agents
adjust their expectations on inflation.

3. Numerical Evaluation

In this section we present some numerical simulations with
different parameter values, illustrating the four different types
of equilibria and dynamic adjustments that may arise in the
AS-ADmodel. All presented output is generated froma single
function embedded in a Matlab script file (the codes in both
html and pdf formats can be found through the link: https://
sites.google.com/site/josemlopesgaspar/downloads. The de-
scription of the Matlab script file is added as a supple-
mantary material in both pdf and m-file formats (available
here). ASADdynamic.m file is additionally available through
Github: https://github.com/josemgaspar/Matlab-codes/blob/
master/ADASdynamic.m).

For the moment, we shall refrain from the introduction
of shocks to the model, which is left for the next section.
The function’s output is twofold. First, it presents the values
of the parameters used, as well as the steady state values for
real output and expected and actual inflation. For the sake of
presentation, an illustration of the output shown in Matlab’s
command window is presented in Appendix B. Second, it
provides illustrations for the evolution of the solutions, along
with an intuitive phase portrait.

The first simulation, which uses the default parameter
values in the program, depicts the transition dynamics for the
solution when the equilibrium is a stable focus. The param-
eters used are 𝑐0 = 10; 𝑖0 = 5; 𝐺 = 5; 𝑏 = 0.8; 𝑘 = 0.05;𝑑 = 0.05; ℎ = 0.1; 𝜏 = 0.3; 𝛼 = 0.1; 𝛽 = 1; 𝑚̇ = 0.01; 𝑦𝑛 =1. The initial conditions are 𝑦(𝑡0) = 0.05 and 𝜋𝑒(𝑡0) = 0.15,
where 𝑡0 = 0 is the initial time.

We have 1/𝑑 > 𝛽; hence the steady state (𝑦∗, 𝜋𝑒∗) =(𝑦𝑛, 𝑚̇) is stable, as we can see from Figure 1. Also, the
solutions are clearly oscillating. One can check that actual
inflation oscillates more than the expected inflation and,
naturally, the latter follows the first in its adjustment. Figure 2
illustrates the phase diagram which depicts the stable spiral.

The second simulation presents a different dynamic
adjustment. We set 𝑑 = 0.5 and 𝛽 = 2, all other parameter
values remaining equal. Since 1/𝑑 = 𝛽 the equilibrium is
now a stable centre.The evolution of output and expected and
actual inflation and the phase diagram are depicted in Figures
3 and 4, respectively.

Both figures show that there is no convergence or diver-
gence towards the steady state, as the latter is only stable in the
Lyapunov sense. All solutions are periodic orbits with period𝑇 = 2𝜋/𝜔, where𝜔 is the imaginary part of the corresponding
complex eigenvalues.

https://sites.google.com/site/josemlopesgaspar/downloads
https://sites.google.com/site/josemlopesgaspar/downloads
https://github.com/josemgaspar/Matlab-codes/blob/master/ADASdynamic.m
https://github.com/josemgaspar/Matlab-codes/blob/master/ADASdynamic.m
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Figure 1: Simulation (1). (a) Solution for 𝑦(𝑡). (b) 𝜋(𝑡) and 𝜋𝑒(𝑡).
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Figure 2: Simulation (1). Phase diagram depicts a stable focus.

Figure 4 presents no ̇𝑦 = 0 locus, since its slope is equal to
zero, as we can infer from the analysis in the previous section.

For the third simulation, we now set 𝑑 = 1 and 𝛽 = 1.2,
with all other parameter values equal to the default setup.
Inasmuch as 𝛽 > 1/𝑑 we know that the equilibrium will
be unstable. Moreover, because of this, ̇𝑦 = 0 is negatively
sloped. Furthermore, with this set of parameters, the equilib-
rium can be shown to be an unstable focus (recall also that 𝛼
is very low), so the solution oscillates away from the steady
state. This is confirmed by Figures 5 and 6.

Once again, we can see that expected inflation follows
up closely after actual inflation, reflecting the way by which
expectations are formed.

In the fourth simulation we set 𝑑 = 0.025 and dramati-
cally decrease𝛽 to 0.1. Now the eigenvalues are real and, since1/𝑑 > 𝛽, the equilibrium is a stable node.

By inspection of Figure 7 one can observe that, contrary
to the previous cases, expectations are now formed correctly,

as expected inflation now decreases steadily towards the
steady state level, whereas actual inflation overshoots its
equilibrium level, following the evolution of real output.

Figure 8 shows the phase diagram where we can observe
that the steady state is a stable node in the fourth simulation.

Remark 4. The parametrization required for the equilibrium
to become an unstable node seems implausible as it imposes
either exceedingly high values for 𝛼 or implies trajectories
assuming negative values for output. Therefore, we rule out
this possibility.

4. Modeling Shocks

In this section we introduce three different types of shocks
to the dynamic AS-AD model. A combination between any
of the shocks is possible, but for the sake of presentation we
simulate each separately and report the results. The baseline
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Figure 3: Simulation (2). (a) Solution for 𝑦(𝑡). (b) Solutions for 𝜋(𝑡) and 𝜋𝑒(𝑡).
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Figure 4: Simulation (2). Phase diagram shows that the equilibrium is a stable centre.

set for parameter values presented here is the same across all
simulations and is equal to the default (first) setup presented
in Section 3.

First, we run an expansionary fiscal policy shock, setting
new values for public spending and the tax rate at 𝐺 = 5.5
and 𝜏 = 0.25, respectively, after the program asks for the
implementation of policy shocks. Previous to the shock, the
economy is at equilibrium with 𝜋 = 𝜋𝑒 = 0.01 and 𝑦 = 1.
After a permanent increase in the government spending and
permanent decrease in the tax rate at the initial time 𝑡0, the
economymust jump up to a higher level output.This is given
by the AD curve in (8). At 𝑡0, real output 𝑦 jumps to a new
level 𝑦0 = 2.0799 (this result is given by the new initial
condition 𝑦0 from the output in the command window
from Matlab. See Appendix B.2 for more details). The eco-
nomy is now further away from its equilibrium level. Since
the level of natural output is unchanged, the economy will

converge to its initial equilibrium level and will do so in an
oscillatory fashion, after a very sharp decrease in output in the
first periods. Conversely, inflation increases sharply after 𝑡0
(however, it does not change at 𝑡0) but then starts to converge
to its initial value, also oscillating. This situation is described
in Figure 9.

The ̇𝜋𝑒 = 0 and ̇𝑦 = 0 loci are unaffected after the shock
and the steady state lie at their intersection. Figure 10 shows
the phase diagram, with the economy slowly returning to the
steady state after its deviation at 𝑡0 due to the fiscal policy
shock.

The second shock is an expansionary monetary policy
shock. We set the money supply growth rate 𝑚̇ = 0.04 once
the function asks to set new parameter values. Once again,
previous to the shock, the economy is at equilibrium with𝑦 = 𝑦𝑛 = 1 and 𝜋𝑒 = 𝜋 = 𝑚̇ = 0.01.After the shock occurring
at 𝑡0, the ̇𝑦 = 0 locus (11) shifts upwards. Hence, the economy
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Figure 5: Simulation (3). (a) Solution for 𝑦(𝑡). (b) Solutions for 𝜋(𝑡) and 𝜋𝑒(𝑡).
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Figure 6: Simulation (3). Phase diagram illustrates an unstable focus.

is out of equilibrium andwill oscillate towards the new steady
state, where 𝑦 = 1 and 𝜋𝑒 = 0.04.This situation is reported in
Figure 11.

Initially, output will rise as will inflation. After 𝑦 crosses
the ̇𝑦 = 0 locus, it will start to decrease while inflation
continues to rise. Only when the solution crosses the ̇𝜋𝑒 =0 locus will inflation start to fall. At this point, expected
inflation will lie above its steady state value and output will
be lower than 𝑦𝑛. The oscillating process continues as output
converges to its natural level 𝑦𝑛 = 1 and expected and actual
inflation converge to their new equilibrium value 𝑚̇ = 0.04.
This process is illustrated in Figure 12.

The third and final shock we consider is a supply side
shock. It is given by a positive technological shock which, for
exogenous reasons, affects the natural level of output, such
that 𝑦𝑛 = 2. At the time of the shock, both ̇𝜋𝑒 = 0 anḋ𝑦 = 0 loci shift rightwards, which is straightforward from
(12) and (11). Hence, the economywill adjust towards the new

steady state given by the intersection between the two new
curves. Since the growth rate of money supply is unchanged,
we can anticipate that the steady state levels of actual and
expected inflation are the same and given by 𝜋 = 𝜋𝑒 = 0.01.
However, real output at the new steady state is now given by𝑦 = 𝑦𝑛 = 2. Again, convergence towards the new equilibrium
is oscillatory, with a decrease in both actual and expected
inflation and an increase in real output in the first periods.
This case is depicted in Figures 13 and 14.

5. Concluding Remarks

We studied the dynamic properties of a simple dynamic
version of the well known AD-AS model and used code,
embedded in a single Matlab function, to simulate the model
in order to numerically analyse the dynamic adjustments in
the economy under a wide array of different applications
concerning policy shocks.
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Figure 7: Simulation (4). (a) Solution for 𝑦(𝑡). (b) Solutions for 𝜋(𝑡) and 𝜋𝑒(𝑡).
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Figure 8: Simulation (4). Phase diagram illustrates a stable node.

By standard analytical inspection of the linearised system
of the resulting two differential equations, we find that the
inflation model may have either stable or unstable spirals
(focuses), or nodes, but no saddle point equilibria. Unstable
nodes are ruled out numerically. A degenerate Hopf bifur-
cation occurs when the value of the demand for money
balance’s sensitivity to variations in the nominal interest rate
is inversely proportional to the way expectations on inflation
are formed, which explains the smooth transition between
unstable and stable focuses. However, the model’s linearity
naturally rules out any possibility for occurrence of limit
cycles.

Numerical simulations of the model with recurrence to
the function developed in Matlab allow for the illustration
of different cases of dynamic adjustments, with a complete
description of the results. Furthermore, the function conve-
niently accounts for the possibility of implementing different
shocks after the initial simulation. These shocks pertain to

monetary and fiscal policy shocks and supply side shocks.The
function also shows how the transition to new steady state
levels may occur, with appropriate illustrations and output.

One of our goals is to motivate researchers both within
and outside the economics profession for the prospec-
tive complementarity in both analytical and numerical
approaches. Shunning away computer simulations for the
sake of closed form solution and elegant mathematics
may preclude tackling more realistic settings, or otherwise
intractable.This could thwart possible theoretical and empir-
ical contributions that are potentially relevant for policy
makers.

Admittedly, the AD-AS model is oversimplifying in its
assumptions and limited in accounting for complex business
cycles and other economic phenomena. We do not see this as
a contradiction in our goals, nor does it defeat our purposes.
For instance, further extensions of this simple setup could
build theoretical improvements based on microfoundations
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Figure 9: Fiscal policy shock. (a) Solution for 𝑦(𝑡). (b) Solutions for 𝜋(𝑡) and 𝜋𝑒(𝑡).
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Figure 10: Phase diagram portraying the dynamic adjustment after a fiscal policy shock.

forKeynesian aggregate demand and aggregate supply such as
in Farmer [24]. Other possible developments would include
incorporating technological changes and determine their
impact on economic growth rates, following works such as
Dutt [25].

It is in our view, however, that the simplicity and percep-
tiveness of the AS-AD model studied here allows us to better
convey our message and thus contributes to further connect
the bridge between economic models’ analytical results and
computer based numerical simulations.

Appendix

A. Proof of Proposition 3

Here we provide the full analytical proof that the AD-AS
model undergoes a Hopf bifurcation at 𝑑 = 𝑑0.

Proof of Proposition 3. Let 𝜆𝑗 = V(𝑑)±𝑖𝜔(𝑑) ∈ C2, 𝑗 = {1, 2},
denote the pair of eigenvalues obtained from the Jacobian
matrix in (20), where 𝑑 is the bifurcation parameter. The
conditions for existence of a Hopf bifurcation [26], [27, Th.
3.4.2 in p. 151] are given by

(i) 𝜔(𝑑0) ̸= 0;
(ii) V(𝑑0) = 0;
(iii) V󸀠(𝑑0) ̸= 0.

When 𝑑 = 𝑑0 = 1/𝛽, the condition for existence of complex
eigenvalues in (22) is satisfied, since 4𝛽2 > 0. Therefore, we
have 𝜔(𝑑0) ̸= 0, which satisfies condition (i). Next, V(𝑑0)
gives us the trace of the Jacobian matrix, tr(𝐽), evaluated at
the bifurcation point 𝑑0 = 1/𝛽. This yields

V (𝑑0) = −𝛼[ ℎ (𝛽 − 𝛽)
1 − 𝑏 (1 − 𝜏) + 𝑏𝑘/𝑑] = 0, (A.1)

which satisfies condition (ii).
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Figure 11: Monetary policy shock. (a) Solution for 𝑦(𝑡). (b) Solutions for 𝜋(𝑡) and 𝜋𝑒(𝑡).

0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.60.7
y

0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08


e

Solution
Vector field

̇y = 0 (2)

̇y = 0 (1)
̇e = 0 (LR PC) (1)
̇e = 0 (LR PC) (2)

Figure 12: Phase diagram portraying the dynamic adjustment after a monetary policy shock.

Finally, taking the first-order derivative of V(𝑑), we get

V󸀠 (𝑑) = 𝛼ℎ [𝑏 (𝛽𝑘 + 𝜏 − 1) + 1]
{𝑑 [𝑏 (𝜏 − 1) + 1] + 𝑏𝑘}2 . (A.2)

Evaluating at 𝑑0 = 1/𝛽 yields

V󸀠 (𝑑0) = 𝛼𝛽2ℎ
𝑏 (𝛽𝑘 + 𝜏 − 1) + 1 ̸= 0. (A.3)

Hence, condition (iii) holds and the model undergoes a Hopf
bifurcation at 𝑑 = 𝑑0. The additional genericity condition

that the first Lyapunov exponent is nonzero, [28] [27,Th. 3.4.2
(H2) p. 151] is as follows:

𝑎 = 1
16 (𝑓𝑥𝑥𝑥 + 𝑓𝑥𝑦𝑦 + 𝑔𝑥𝑥𝑦 + 𝑔𝑦𝑦𝑦)
+ 1
16𝜔 [𝑓𝑥𝑦 (𝑓𝑥𝑥 + 𝑓𝑦𝑦) − 𝑔𝑥𝑦 (𝑔𝑥𝑥 + 𝑔𝑦𝑦)

− 𝑓𝑥𝑥𝑔𝑥𝑥 + 𝑓𝑦𝑦𝑔𝑦𝑦] ,
(A.4)

where 𝑎 is the first Lyapunov exponent, 𝑓 = ̇𝑦, and 𝑔 = ̇𝜋𝑒 in
(13) and subscripts denoting different order derivatives eval-
uated at equilibrium and at 𝑑 = 𝑑0. Since all the derivatives
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Figure 13: Supply side shock. (a) Solution for 𝑦(𝑡). (b) Solutions for 𝜋(𝑡) and 𝜋𝑒(𝑡).
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Figure 14: Phase diagram portraying the dynamic adjustment after a supply side shock.

of order higher or equal to 2 are zero, we have 𝑎 = 0. There-
fore, no periodic solutions exist for 𝑑 ̸= 𝑑0, and the bifurca-
tion is degenerate, which concludes the proof.

B. Matlab’s Output in Command Window

In this Appendix we provide the Matlab function’s reports
on some of the simulations and shocks exemplified in the
previous sections.

B.1. Output for First Simulation. The first example is given
after the first simulation, using the default parameter values
set by the program (see Section 3) (See Box 1).

B.2. Output for First Shock. After the expansionary fiscal
shock (recall Section 4), the function’s reported output in
Matlab’s command window was as in Box 2.
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AS-AD dynamic model: dy/dt=a1*dm/dt-alpha(a1-a2*beta)*(y-yn)-a1*pie

dpie/dt=beta*alpha(y-yn)

AS and AD curves: (AD) y=dm/dt-alpha(a1-a2*beta*pie (Long run AS) y=yn

y: Real output

pie: Expected inflation

a0=(c0+i0+G)/(1-b*(1-tau)+((h*k)/d) = 37.037

a1:(h/d)/(1-b*(1-tau)+((h*k)/d)) = 3.7037

a2: h/(1-b*(1-tau)+((h*k)/d)) = 0.185185

Parameter values: c0 = 10; i0 = 5; G = 5; b = 0.8; k = 0.05; d = 0.05; h = 0.1;

tau = 0.3; alpha = 0.1; beta = 1; mdot = 0.01; yn = 1;

Initial conditions: y0 = 0.05; pie0 = 0.15

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Steady-State:

Steady-state real ouput Steady state expected inflation

1.000000 0.010000

Steady state actual inflation

0.0100

Eigenvalues−0.1759 + 0.5826i −0.1759 - 0.5826i

Stable spiral.

Box 1: Dynamic AS-AD model.

a0 = 41

a1 = 4

a2 = 0.2

New parameter values: c0 = 10; i 0 = 5; G = 5.5; b = 0.8; k = 0.05; d = 0.05;

h = 0.1; tau = 0.25; alpha = 0.1; beta = 1; mdot = 0.01; yn = 1;

New initial conditions: y0 = 2.07998; pie0 = 0.0100036

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

New Steady-State:

Steady-state real ouput Steady state expectedinflation

1.000000 0.010000

Steady state actual inflation

0.0100

Box 2: Policy and technology shocks.
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Supplementary Materials

The Matlab code is embedded in a single function (ADAS-
dynamic.m). Add the “.m” file to the working Matlab
path/directory. Open Matlab and run the name of the file
in the command window (ADASdynamic). The programme
asks the user to introduce values for the parameters described

throughout the paper, including the initial time and final
time. It then produces three figures and one for the solution𝑦(𝑡), another for both 𝜋𝑒(𝑡) and 𝜋(𝑡), and the last one
shows the phase diagram portraying the transition dynam-
ics. The programme will then ask the user to implement
either monetary, fiscal, supply side shocks, or any possible
combination of shocks, by introducing new values for the
money growth rate, public spending, tax rate, and level of
natural output. This will produce three new graphs, with the
same information as described previously, but compared to
the initial situation.Therefore, the figures shown after imple-
menting shocks will portray the global transition dynamics
towards the new equilibrium. Along these processes, the
output for the relevant steady state levels and their qualitative
properties are shown in Matlab’s command window, along
with the parameter values. See Appendix B for an example
of how the output is displayed in Matlab’s command window.
(Supplementary Materials)

http://downloads.hindawi.com/journals/jam/2018/3193068.f1.zip
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