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Malaria is one of the three most dangerous infectious diseases worldwide (along with HIV/AIDS and tuberculosis). In this paper
we compare the disease dynamics of the deterministic and stochastic models in order to determine the effect of randomness in
malaria transmission dynamics. Relationships between the basic reproduction number formalaria transmission dynamics between
humans and mosquitoes and the extinction thresholds of corresponding continuous-time Markov chain models are derived under
certain assumptions.The stochasticmodel is formulated using the continuous-time discrete state Galton-Watson branching process
(CTDSGWbp). The reproduction number of deterministic models is an essential quantity to predict whether an epidemic will
spread or die out. Thresholds for disease extinction from stochastic models contribute crucial knowledge on disease control and
elimination and mitigation of infectious diseases. Analytical and numerical results show some significant differences in model
predictions between the stochastic and deterministic models. In particular, we find that malaria outbreak is more likely if the
disease is introduced by infectedmosquitoes as opposed to infected humans.These insights demonstrate the importance of a policy
or intervention focusing on controlling the infected mosquito population if the control of malaria is to be realized.

1. Introduction

Malaria is an infectious disease caused by the Plasmodium
parasite and transmitted between humans through bites of
female Anopheles mosquitoes. Approximately half of the
world’s population is at risk of malaria. It remains one of the
most prevalent and lethal human infections throughout the
world. An estimated 40% of the world’s population lives in
malaria endemic areas. Most cases and deaths occur in sub-
Saharan Africa. It causes an estimated 300 to 500 million
cases and 1.5 to 2.7million deaths each yearworldwide. Africa
shares 80% of the cases and 90% of deaths [1]. According to
the website of the World Health Organization [2] there were
approximately 214 million new cases of malaria and 438,000
deaths worldwide in 2015. Most cases were reported in the
African region.

Recently, the incidence of malaria has been rising due to
drug resistance. Various control strategies have been taken
to reduce malaria transmissions. Since the first mathematical
model of malaria transmission was introduced by Ross [3],
quite a number of mathematical models have been formu-
lated to investigate the transmission dynamics of malaria.

Xiao and Zou [4] usedmathematical models to explore a nat-
ural concern of possible epidemics caused bymultiple species
of malaria parasites in one region.They found that epidemics
involving both species in a single region are possible.

Li and others [5] considered fast and slow dynamics of
malariamodel with relapse and analyzed the global dynamics
by using the geometric singular perturbation theory. They
suggested that a treatment should be given to symptomatic
patients completely and adequately rather than to asymp-
tomatic patients. On the other hand, for the asymptomatic
patients, their results strongly suggested that, to control and
eradicate the malaria, it is very necessary for governments to
control the relapse rate strictly. Relapse is when symptoms
reappear after the parasites had been eliminated from blood
but persist as dormant hypnozoites in liver cells [6]. This
commonly occurs between 8 and 24 weeks and is commonly
seen with P. vivax and P. ovale infections. Other papers also
consider the influence of relapse in giving up smoking or
quitting drinking; please see [7].

Chitnis et al. [8] and Li et al. [5] assumed that the recov-
ered humans have some immunity to the disease and do not
get clinically ill but they still harbour low levels of parasite in
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their blood streams and can pass the infection to mosquitoes.
After some period of time, they lose their immunity and
return to the susceptible class. Unfortunately, Li and others
did not consider that the recovered humans will return to
their infectious state because of incomplete treatment.

Stochasticity is fundamental to biological systems. In
some situations the system can be treated as a large number
of similar agents interacting in a homogeneously mixing
environment, and so the dynamics arewell-captured by deter-
ministic ordinary differential equations. However, in many
situations, the system can be driven by a small number of
agents or strongly influenced by an environment fluctuating
in space and time [9–12].

Stochastic models incorporate discrete movements of
individuals between epidemiological classes and not average
rates at which individuals move between classes [13–15].
In stochastic epidemic models, numbers in each class are
integers and not continuously varying quantities [13]. A
significant possibility is that the last infected individual can
recover before the disease is transmitted and the infection can
only reoccur if it is reintroduced from outside the population
[16]. In contrast, most deterministic models have the flaw
that infections can fall to very low levels—well below the
point at which there is only one infected individual only to
rise up later [17]. In addition, the variability introduced in
stochastic models may result in dynamics that differ from the
predictions made by deterministic models [16].

For a large population size and a large number of infec-
tious individuals, the deterministic threshold𝑅0 > 1 provides
a good prediction of a disease outbreak. However, this predic-
tion breaks down when the outbreak is initiated by a small
number of infectious individuals. In this setting, Markov
chain (MC) models with a discrete number of individuals are
more realistic than deterministic models where the number
of individuals is assumed to be continuous-valued [18].

Motivated by these works, in this paper, we propose a
model which is an extension of the model formulated by
Huo and Qui (2014), who assumed that the pseudorecovered
humans can recover and return to the susceptible class or
relapse and become infectious again. Using the extended
model, we will formulate the basic reproductive number 𝑅0
and use it to compare the disease dynamics of the determin-
istic and stochastic models in order to determine the effect of
randomness in malaria transmission dynamics.

This paper is organized as follows; in Section 2, we present
a malaria transmission deterministic model with relapse,
which is an extension of the model in [6]. We compute
the basic reproduction number, 𝑅0, of the malaria transmis-
sion deterministic model using the next-generation matrix
approach. The stochastic version of the deterministic model
and its underlying assumptions necessary formodel formula-
tion are presented and discussed in Section 3. In this section,
we also compute the stochastic threshold for disease extinc-
tion or invasion by applying the multitype Galton-Watson
branching process. In Section 4, we show the relationship
between reproductive number of the deterministicmodel and
the thresholds for disease extinction of the stochastic version;
we also illustrate our results using numerical simulations.We
conclude with a discussion of the results in Section 5.

Uninfected host Infected host

Uninfected mosquitoInfected mosquito

Bite

Bite

Figure 1: The mosquito-human transmission cycle. An infectious
mosquito bites a susceptible, uninfected human and transmits
the virus via saliva. Once the human becomes infectious (usually
accompanied by symptoms), the human can transmit the pathogen
to an uninfected mosquito via the blood the mosquito ingests.
Source. Figure 1 is reproduced fromManore and Hyman (2016) [20]
[under the Creative Commons Attribution License/public domain].

2. The Malaria Deterministic Model

The interaction of the Mosquito-host is shown in Figure 1.

2.1. Model Formulation. In this section, we introduce a deter-
ministic model of malaria with relapse, an extended form of
the model in [6]. The model proposes a more realistic math-
ematical model of malaria, in which it is assumed that the
pseudorecovered humans interact with infected mosquitoes
and may acquire more parasites causing reinfection or, due
to incomplete treatment, the infection my reoccur (relapse)
and return to infectious class. Also the pseudorecovered
humanmay lose their immunity and return to the susceptible
class. Given that humans might get repeatedly infected due
to not acquiring complete immunity, then the population
dynamics are assumed to be described by the SIRS model;
hence we consider a deterministic compartmental model
which divides the total human population size at time 𝑡,
denoted by 𝑁(𝑡), into susceptible individuals 𝑆ℎ(𝑡) (those
who are not currently harbouring the parasite but are liable
to be infected), infectious individuals 𝐼ℎ(𝑡) (those already
infected and are able to transmit the disease to mosquitoes),
and pseudorecovered individuals𝑅ℎ(𝑡) (thosewho are treated
from the disease but with partial recovery and hence can
transmit the disease tomosquitoes). Mosquitoes are assumed
not to recover from the parasites so the mosquito population
can be described by the SI model.

The structure of model is shown in Figure 2.

2.2. Variable and Parameter Description for the Model. The
variables for themodel are summarized in description of vari-
ables for the malaria transmission model in the Notations.

The parameters for the model are described as in descrip-
tion of parameters for the malaria transmission model in the
Notations.
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Figure 2: Schematic representation of the mosquito-human malaria transmission dynamics.

2.3. Equations of the Model. Assuming that the disease trans-
mits in a closed system which translates into the simplifying
assumption of a constant population size with the birth rate
equal to death rate, that is, 𝜆 = 𝜇 (see [21]) so that𝑁(𝑡) = 𝑁,
hence, the above assumptions lead to the following system of
differential equations which describe the interaction between
mosquitoes and humans:𝑑𝑆ℎ (𝑡)𝑑𝑡 = 𝜆𝑁 − 𝛽𝑆ℎ𝐼𝑚𝑁 + 𝜌1𝑅ℎ − 𝜇𝑆ℎ,𝑑𝐼ℎ (𝑡)𝑑𝑡 = 𝛽𝑆ℎ𝐼𝑚𝑁 + 𝜌2𝑅ℎ𝐼𝑚𝑁 − (𝛾 + 𝜇1) 𝐼ℎ,𝑑𝑅ℎ (𝑡)𝑑𝑡 = 𝛾𝐼ℎ − (𝜌1 + 𝜌2𝐼𝑚𝑁 + 𝜇1)𝑅ℎ,𝑑𝑆𝑚 (𝑡)𝑑𝑡 = 𝛿𝑀 − 𝛼1𝑆𝑚𝐼ℎ𝑁 − 𝛼2𝑆𝑚𝑅ℎ𝑁 − 𝜂𝑆𝑚,𝑑𝐼𝑚 (𝑡)𝑑𝑡 = 𝛼1𝑆𝑚𝐼ℎ𝑁 + 𝛼2𝑆𝑚𝑅ℎ𝑁 − 𝜂1𝐼𝑚,

(1)

where 𝑆ℎ, 𝐼ℎ, 𝑅ℎ, 𝑆𝑚, and 𝐼𝑚 represent the number of suscep-
tible humans, infectious humans, recovered humans, suscep-
tible mosquitoes, and infectious mosquitoes, respectively.

2.4. Computation of 𝑅0 Using the Next-Generation Matrix
Approach. The basic reproduction number, 𝑅0, is defined as
the secondary infections produced by one infective agent

that is introduced into an entirely susceptible population
at the disease-free equilibrium. The next-generation matrix
approach is frequently used to compute 𝑅0. The original
nonlinear system ofODEs including these compartments can
be written as 𝜕𝑋𝑖/𝜕𝑡 = F − V, where F = (F𝑖) and
V = (V𝑖) represent new infections and transfer between
compartments, respectively [22–24].

The Jacobian matrices ofF(𝑋) andV(𝑋) at the disease-
free equilibrium 𝐸0 are, respectively,

𝐹 = F (𝐸0) = ( 0 0 𝛽0 0 0𝛼1 𝛼2 0)
𝑉 =V (𝐸0) = (𝛾 + 𝜇1 −𝜌2 0−𝛾 𝜇1 + 𝜌1 + 𝜌2 00 0 𝜂1).

(2)

The matrixJ = 𝐹 −𝑉 is the Jacobian matrix evaluated at the
DFE.

J = 𝐹 − 𝑉 = (−𝛾 − 𝜇1 𝜌2 𝛽𝛾 −𝜇1 − 𝜌1 − 𝜌2 0𝛼1 𝛼2 −𝜂1). (3)

The inverse matrix of 𝑉 is
𝑉−1 =(
(

𝜇1 + 𝜌1 + 𝜌2(𝛾 + 𝜇1) (𝜇1 + 𝜌1) + 𝜇1𝜌2 𝜌2(𝛾 + 𝜇1) (𝜇1 + 𝜌1) + 𝜇1𝜌2 0𝛾(𝛾 + 𝜇1) (𝜇1 + 𝜌1) + 𝜇1𝜌2 𝛾 + 𝜇1(𝛾 + 𝜇1) (𝜇1 + 𝜌1) + 𝜇1𝜌2 00 0 1𝜂1
)
)
.
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𝐹𝑉−1 =( 0 0 𝛽𝜂0 0 0𝛾𝛼2 + 𝛼1 (𝜇 + 𝜌1 + 𝜌2)(𝛾 + 𝜇) (𝜇 + 𝜌1) + 𝜇𝜌2 (𝛾 + 𝜇) 𝛼2 + 𝛼1𝜌2(𝛾 + 𝜇) (𝜇 + 𝜌1) + 𝜇𝜌2 0).
(4)

The matrix FV−1 is called the next-generation matrix.
The (𝑖, 𝑘) entry of 𝐹𝑉−1 indicates the expected number of
new infections in compartment 𝑖 produced by the infected
individual originally introduced into compartment 𝑘. The
model reproduction number, 𝑅0, which is defined as the
spectral radius of FV−1 and denoted by 𝜌(FV−1), is given
by 𝑅0 = 𝜌 (FV

−1) = √ 𝛽 [𝛾𝛼2 + 𝛼1 (𝜌1 + 𝜌2 + 𝜇1)]𝜂1 [(𝛾 + 𝜇1) (𝜌1 + 𝜇1) + 𝜇1𝜌2] . (5)

Here 𝑅0 is associated with disease transmission by infected
humans as well as the infection of susceptible humans by
infected mosquitoes.

Simplifying (5) we find an equivalent form, which is
defined as the product of the transmission from mosquito to
human and from human to mosquito as follows:𝑅0 = √( 𝛽𝜂1)( 𝛼1(𝛾 + 𝜇1) + 𝛼2(𝜌1 + 𝜌2 + 𝜇1)). (6)

In (6), 𝑅0 is associated with disease transmission by infected
mosquitoes as well as infection of susceptible mosquitoes by
infected humans. The term 𝛽/𝜂1 represents the number of
infected humans generated by infectious mosquito in its life
span.The term 𝛼1/(𝛾 + 𝜇1) represents the number of infected
mosquitoes generated by infectious human during the infec-
tious period of the individual while the term 𝛼2/(𝜌1 +𝜌2 +𝜇1)
represents the number of infected mosquitoes generated by
pseudorecovered human during his/her infectious period.
Susceptible humans acquire infection following effective
contacts with infected mosquitoes. Susceptible mosquitoes
acquire malaria infection from infected humans in two ways,
namely, by infectious human or pseudorecovered humans.

Also, from (6), we can rewrite 𝑅0 as infection between
mosquitoes and infectious humans or infection between
mosquitoes and pseudorecovered humans.𝑅0 = √𝑅01 + 𝑅02, (7)

where 𝑅01 = ( 𝛽𝜂1)( 𝛼1(𝛾 + 𝜇1)) , (8)

𝑅02 = ( 𝛽𝜂1)( 𝛼2(𝜌1 + 𝜌2 + 𝜇1)) . (9)𝑅01 in (8) represents the product of individuals generated by
infectious human and infectedmosquito, respectively, during
their infectious time.

𝑅02 in (9) represents the product of individuals generated
by pseudorecovered human and infected mosquito, respec-
tively, during their infectious time.

For model (1), the disease dies out if 𝑅0 < 1 and the dis-
ease persists if 𝑅0 > 1. Hence 𝑅0 < 1, iff 𝑅01 < 1 and 𝑅02 < 1.
3. Malaria Stochastic Epidemic Model

For the mosquito-human malaria dynamics, since time is
continuous and the disease states are discrete, we derive
the stochastic version of the deterministic model (1) using
a continuous-time discrete state Galton-Watson branching
process (CTDSGWbp), which is a type of stochastic process.
Themalaria CTDSGWbpmodel is a time-homogeneous pro-
cess with the Markov property. The model takes into account
random effects of individual birth and death processes, that
is, demographic variability. A stochastic process is defined by
the probabilitieswithwhich different events happen in a small
time interval Δ𝑡. In our model there are two possible events
(production and death/removal) for each population. The
corresponding rates in the deterministic model are replaced
in the stochastic version by the probabilities that any of these
events occur in a small time interval of length Δ𝑡 [25, 26].
3.1. Model Formulation. Let time be continuous, 𝑡 ∈ [0;∞),
and let 𝑆ℎ(𝑡), 𝐼ℎ(𝑡), 𝑅ℎ(𝑡), 𝑆𝑚(𝑡), and 𝐼𝑚(𝑡) represent discrete
random variables for the number of susceptible humans,
infectious humans, recovered humans, susceptible mosqui-
toes and infectiousmosquitoes, respectively, with finite space.𝑆ℎ (𝑡) , 𝐼ℎ (𝑡) , 𝑅ℎ (𝑡) , 𝑆𝑚 (𝑡) , 𝐼𝑚 (𝑡)∈ {0, 1, 2, 3, . . . , 𝐻} , (10)

where 𝐻 is positive and represents the maximum size of the
populations.

If a disease emerges from one infectious group with𝑅0 > 1 and if 𝑖 infective agents are introduced into a whol-
ly susceptible population, then the probability of a major
disease outbreak is approximated by 1 − (1/𝑅0)𝑖 while the
probability of disease extinction is approximately (1/𝑅0)𝑖 [13].
However, this result does not hold if the infection emanates
from multiple infectious groups [27]. For multiple infectious
groups, the stochastic thresholds depend on two factors,
namely, the number of individuals in each group and the
probability of disease extinction for each group. Further,
the persistence of an infection into a wholly susceptible
population is not guaranteed by having 𝑅0 greater than one.

For CTDSGWbpmodels, the transition from one state to
a new state may occur at any time 𝑡. If the process begins in
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Table 1: State transitions and rates for the CTDSGWbp malaria model.

Event Population
components at 𝑡 Population components at𝑡 + Δ𝑡 Transition probabilities

Birth of humans (𝑆ℎ, 𝐼ℎ, 𝑅ℎ, 𝑆𝑚, 𝐼𝑚) (𝑆ℎ + 1, 𝐼ℎ, 𝑅ℎ, 𝑆𝑚, 𝐼𝑚) 𝜆Δ𝑡
Death of susceptible
humans (𝑆ℎ, 𝐼ℎ, 𝑅ℎ, 𝑆𝑚, 𝐼𝑚) (𝑆ℎ − 1, 𝐼ℎ, 𝑅ℎ, 𝑆𝑚, 𝐼𝑚) 𝜇𝑆ℎΔ𝑡
Infection of humans (𝑆ℎ, 𝐼ℎ, 𝑅ℎ, 𝑆𝑚, 𝐼𝑚) (𝑆ℎ − 1, 𝐼ℎ + 1, 𝑅ℎ, 𝑆𝑚, 𝐼𝑚) 𝛽(𝑆ℎ/𝑁)𝐼𝑚Δ𝑡
Recovery rate of humans (𝑆ℎ, 𝐼ℎ, 𝑅ℎ, 𝑆𝑚, 𝐼𝑚) (𝑆ℎ + 1, 𝐼ℎ, 𝑅ℎ − 1, 𝑆𝑚, 𝐼𝑚) 𝜌1𝑅ℎΔ𝑡
Relapse rate of humans (𝑆ℎ, 𝐼ℎ, 𝑅ℎ, 𝑆𝑚, 𝐼𝑚) (𝑆ℎ, 𝐼ℎ + 1, 𝑅ℎ − 1, 𝑆𝑚, 𝐼𝑚) 𝜌2𝑅ℎΔ𝑡
Treatment rate (𝑆ℎ, 𝐼ℎ, 𝑅ℎ, 𝑆𝑚, 𝐼𝑚) (𝑆ℎ, 𝐼ℎ − 1, 𝑅ℎ + 1, 𝑆𝑚, 𝐼𝑚) 𝛾𝐼ℎΔ𝑡
Death of infected humans (𝑆ℎ, 𝐼ℎ, 𝑅ℎ, 𝑆𝑚, 𝐼𝑚) (𝑆ℎ, 𝐼ℎ − 1, 𝑅ℎ, 𝑆𝑚, 𝐼𝑚) 𝜇1𝐼ℎΔ𝑡
Death of recovered humans (𝑆ℎ, 𝐼ℎ, 𝑅ℎ, 𝑆𝑚, 𝐼𝑚) (𝑆ℎ, 𝐼ℎ, 𝑅ℎ − 1, 𝑆𝑚, 𝐼𝑚) 𝜇1𝑅ℎΔ𝑡
Birth of mosquitoes (𝑆ℎ, 𝐼ℎ, 𝑅ℎ, 𝑆𝑚, 𝐼𝑚) (𝑆ℎ, 𝐼ℎ, 𝑅ℎ, 𝑆𝑚 + 1, 𝐼𝑚) 𝛿Δ𝑡
Death of susceptible
mosquitoes (𝑆ℎ, 𝐼ℎ, 𝑅ℎ, 𝑆𝑚, 𝐼𝑚) (𝑆ℎ, 𝐼ℎ, 𝑅ℎ, 𝑆𝑚 − 1, 𝐼𝑚) 𝜂𝑆𝑚Δ𝑡
Infection of mosquitoes
from humans (𝑆ℎ, 𝐼ℎ, 𝑅ℎ, 𝑆𝑚, 𝐼𝑚) (𝑆ℎ, 𝐼ℎ, 𝑅ℎ, 𝑆𝑚 − 1, 𝐼𝑚 + 1) (𝛼1𝐼ℎ + 𝛼2𝑅ℎ) (𝑆𝑚/𝑁)Δ𝑡
Death of infected
mosquitoes (𝑆ℎ, 𝐼ℎ, 𝑅ℎ, 𝑆𝑚, 𝐼𝑚) (𝑆ℎ, 𝐼ℎ, 𝑅ℎ, 𝑆𝑚, 𝐼𝑚 − 1) 𝜂1𝐼𝑚Δ𝑡
a state 𝐺(0), after a random time period 𝜏, it transits to a new
state 𝐺(𝜏). The process remains in state 𝐺(𝜏) for a random
time 𝑡 after which it moves through to the new state 𝐺(𝑝),
with 𝑝 = 𝜏 + 𝑡 [27]. This process continues throughout the
model.The state transitions and rates for the stochasticmodel
are presented in Table 1.

3.2.The Branching Process Approximation. We use branching
process to analyze the malaria dynamics near the disease-
free equilibrium. Since infectious human, pseudorecovered
humans, and infectious mosquitoes are the only sources of
infection, we apply the multitype branching process in the
three variables 𝐼ℎ(𝑡),𝑅ℎ(𝑡), and 𝐼𝑀(𝑡).The susceptible humans
and mosquitoes are assumed to be at the disease-free state
[28]. We use the multitype Galton-Watson branching pro-
cess (GWbp) to determine disease invasion and extinction
probabilities. More review on the GWbp branching theory
process can be accessed through [18, 27, 28]. We now define
the offspring pgfs for the three variables, where each offspring
pgf has a general form𝐺𝑖 (𝑠1, 𝑠2, . . . , 𝑠𝑛)= ∞∑

𝑘𝑛=0

∞∑
𝑘𝑛−1=0

⋅ ⋅ ⋅ ∞∑
𝑘1=0

𝑃𝑖 (𝑘1, 𝑘2, . . . , 𝑘𝑛) 𝑠𝑘11 𝑠𝑘22 ⋅ ⋅ ⋅ 𝑠𝑘𝑛𝑛 , (11)

where 𝑃𝑖(𝑘1, 𝑘2, . . . , 𝑘𝑛) = prob(𝑋𝑖1 = 𝑘1, 𝑋𝑖2 = 𝑘2, . . . , 𝑋𝑖𝑛 =𝑘𝑛) is the probability that one infected individual of type 𝑖
gives birth to 𝑘𝑗 individuals of type 𝑗; see [29].

For one malaria infectious human, there are three possi-
ble events: infection of a mosquito, recovery of the infectious
human, or death of the infectious human. The offspring pgf
for infectious humans define the probabilities associated with
the “birth” of secondary infectious mosquito or the “death”
of the initial infectious human, given that the process started

with only one infectious human; that is 𝐼ℎ(0) = 1, 𝑅ℎ(0) = 0,
and 𝐼𝑀(0) = 0.

The offspring pgf for 𝐼ℎ is given by𝐺1 (𝑠1, 𝑠2, 𝑠3) = ∞∑
𝑘1=0

∞∑
𝑘2=0

∞∑
𝑘3=0

𝑃1 (𝑘1, 𝑘2, 𝑘3) 𝑠𝑘11 𝑠𝑘22 𝑠𝑘33 , (12)

where 𝑃1(𝑘1, 𝑘2, 𝑘3) = prob(𝑋11 = 𝑘1, 𝑋12 = 𝑘2, 𝑋13 = 𝑘3) is
the probability that one infectious human through infection
produces another infectious human 𝑘1 or a pseudorecovered
human 𝑘2 or an infectious mosquito 𝑘3.

Similarly, the offspring pgf for 𝑅ℎ is given by𝐺2 (𝑠1, 𝑠2, 𝑠3) = ∞∑
𝑘1=0

∞∑
𝑘2=0

∞∑
𝑘3=0

𝑃2 (𝑘1, 𝑘2, 𝑘3) 𝑠𝑘11 𝑠𝑘22 𝑠𝑘33 , (13)

where 𝑃2(𝑘1, 𝑘2, 𝑘3) = prob(𝑋21 = 𝑘1, 𝑋22 = 𝑘2, 𝑋23 = 𝑘3)
is the probability that one pseudorecovered human through
infection produces an infectious human 𝑘1 or another pseu-
dorecovered human 𝑘2 or an infectious mosquito 𝑘3.

Lastly, the offspring pgf for 𝐼𝑚 is given by𝐺3 (𝑠1, 𝑠2, 𝑠3) = ∞∑
𝑘1=0

∞∑
𝑘2=0

∞∑
𝑘3=0

𝑃3 (𝑘1, 𝑘2, 𝑘3) 𝑠𝑘11 𝑠𝑘22 𝑠𝑘33 , (14)

where 𝑃3(𝑘1, 𝑘2, 𝑘3) = prob(𝑋31 = 𝑘1, 𝑋32 = 𝑘2, 𝑋33 = 𝑘3)
is the probability that one infectious mosquito through infec-
tion produces an infections human 𝑘1 or a pseudorecovered
human 𝑘2 or another infectious mosquito 𝑘3.

The power towhich 𝑠𝑗 is raised is the number of infectious
individuals generated from one infectious individual. If an
individual recovers or dies, then no new infections are
generated, hence (𝑠0𝑗).

The offspring pgfs for 𝐼ℎ, 𝑅ℎ, and 𝐼𝑚 are used to calculate
the expected number of offsprings produced by a single
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infectious humanor by pseudorecovered humanor infectious
mosquito. They are also used to calculate the probability of
disease extinction.

The specific offspring pgfs for 𝐼ℎ, 𝑅ℎ, and 𝐼𝑚 are defined
using the rates in description of parameters for the malaria
transmissionmodel in theNotations, when the initial suscep-
tible populations are near disease-free equilibrium, 𝑆ℎ(0) ≈ 𝑁
and 𝑆𝑚(0) ≈ 𝑀.

From (12), the offspring pgf for infectious human, given𝐼ℎ(0) = 1, 𝑅ℎ(0) = 0, and 𝐼𝑀(0) = 0, is given by𝐺1 (𝑠1, 𝑠2, 𝑠3) = 𝛼1𝑠1𝑠3 + 𝛾 + 𝜇1𝛼1 + 𝛾 + 𝜇1 . (15)

For 𝐺1, one infectious human dies or is treated with proba-
bility (𝜇1 + 𝛾)/(𝛼1 + 𝛾 + 𝜇1); this means an infectious human
dies before infecting a susceptiblemosquito.The term 𝛾/(𝛼1+𝛾+𝜇1) represents the probability that the infectious human is
treated and moves to the pseudorecovered class, this results
in “𝑋11 = 0, 𝑋12 = 01, and 𝑋13 = 0, though there is
movement of an infectious human to pseudorecovered state
due to partial treatment (this is not new offspring).” The
infectious human infects amosquitowith probability𝛼1/(𝛼1+𝛾 + 𝜇1). This means an infectious human infects a susceptible
mosquito and remains infectious, which results in “𝑋11 = 1,𝑋12 = 0, and 𝑋13 = 1.” Note the term 𝑠1𝑠3 in (15) means
one infectious human generates one infectious mosquito (𝑠3
raised to power one) and remains infectious (𝑠1 raised to
power one).

For one pseudorecovered human, there are four events:
infection of a mosquito, relapse to infected class, successful
treatment of the pseudorecovered human, or death of the
recovered host. Similarly, from (13), the offspring pgf for
recovered humans given 𝐼ℎ(0) = 0, 𝑅ℎ(0) = 1, and 𝐼𝑀(0) = 0
is given by 𝐺2 (𝑠1, 𝑠2, 𝑠3) = 𝛼2𝑠2𝑠3 + 𝜌1 + 𝜌2 + 𝜇1𝛼2 + 𝜌1 + 𝜌2 + 𝜇1 . (16)

For 𝐺2, one pseudorecovered host dies or relapses or is fully
treated with probability (𝜌1 + 𝜌2 + 𝜇1)/(𝛼2 + 𝜌1 + 𝜌2 + 𝜇1) or
infects a mosquito with probability 𝛼2/(𝛼2 + 𝜌1 + 𝜌2 + 𝜇1).
This means a pseudorecovered human infects a susceptible
mosquito and remains infectious, which results in “𝑋21 = 0,𝑋22 = 1, and 𝑋23 = 1.” Note the term 𝑠2𝑠3 in (16) means
one recovered human generates one infectious mosquito (𝑠3
raised to power one) and remains infectious (𝑠2 raised to
power one).

For one infectious mosquito, there are only two events:
infection of a susceptible human or death of the mosquito.

From (14), the offspring pgf for infected mosquito given𝐼ℎ(0) = 0, 𝑅ℎ(0) = 0, and 𝐼𝑀(0) = 1 is given by

𝐺3 (𝑠1, 𝑠2, 𝑠3) = 𝛽𝑠1𝑠3 + 𝜂1𝛽 + 𝜂1 . (17)

For𝐺3, one infectious mosquito dies with probability 𝜂1/(𝛽+𝜂1) or infects a human with probability 𝛽/(𝛽 + 𝜂1). This
means an infectious mosquito infects a susceptible human
and remains infectious, which results in “𝑋31 = 1, 𝑋32 = 0,
and𝑋33 = 1.” Note the term 𝑠1𝑠3 in (17) means one infectious
mosquito generates one infectious human (𝑠1 raised to power
one) and remains infectious (𝑠3 raised to power one).

3.3. The Relationship between 𝑅0 and the Stochastic Threshold𝑆0. The offspring pgfs, evaluated at (1, 1, 1), gives the expec-
tation matrix with elements𝑚𝑗𝑖. Below are the offspring pgfs
evaluated at (1, 1, 1).𝜕𝐺1𝜕𝑠1 = 𝛼1𝛼 + 𝛾 + 𝜇1 ,𝜕𝐺1𝜕𝑠2 = 𝛾,𝜕𝐺1𝜕𝑠3 = 𝛼1𝛼 + 𝛾 + 𝜇1 ,𝜕𝐺2𝜕𝑠1 = 𝜌2,𝜕𝐺2𝜕𝑠2 = 𝛼2𝛼2 + 𝜌1 + 𝜌2 + 𝜇1 ,𝜕𝐺2𝜕𝑠3 = 𝛼2𝛼2 + 𝜌1 + 𝜌2 + +𝜇1 ,𝜕𝐺3𝜕𝑠1 = 𝛽𝛽 + 𝜂1 ,𝜕𝐺3𝜕𝑠2 = 0,𝜕𝐺3𝜕𝑠3 = 𝛽𝛽 + 𝜂1 .

(18)

The expectation matrix of the offspring pgfs, evaluated at(1, 1, 1), is given by

M =((((
(

𝜕𝐺1𝜕𝑠1 𝜕𝐺2𝜕𝑠1 𝜕𝐺3𝜕𝑠1𝜕𝐺1𝜕𝑠2 𝜕𝐺2𝜕𝑠2 𝜕𝐺3𝜕𝑠2𝜕𝐺1𝜕𝑠3 𝜕𝐺2𝜕𝑠3 𝜕𝐺3𝜕𝑠3
))))
)
=(((
(

𝛼1𝛾 + 𝜇1 + 𝛼1 𝜌2𝛾 + 𝜇1 + 𝛼1 𝛼1𝛼 + 𝛾 + 𝜇1𝛾𝜇1 + 𝛼2 + 𝜌1 + 𝜌2 𝛼2𝜇1 + 𝛼2 + 𝜌1 + 𝜌2 𝛼2𝜇1 + 𝛼2 + 𝜌1 + 𝜌2𝛽𝛽 + 𝜂1 0 𝛽𝛽 + 𝜂1
)))
)
. (19)
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The entries 𝑚11, 𝑚21, and 𝑚31 represent the expected num-
ber of infectious humans, pseudorecovered humans, and
infectious mosquitoes, respectively, produced by one infec-
tious human. Similarly, the entries 𝑚12, 𝑚22, and 𝑚32 rep-
resent the expected number of infectious humans, pseu-
dorecovered humans, and infectious mosquitoes, respec-
tively, produced by one pseudorecovered human. Lastly, the
entries 𝑚13, 𝑚23, and 𝑚33 represent the expected number
of infectious humans, pseudorecovered humans, and infec-
tious mosquitoes, respectively, produced by one infectious
mosquito.

The matrix C = W(M − 𝐼) is the Jacobian matrix
evaluated for the stochastic version.

C =W (M −I)
= (−𝛾 − 𝜇1 𝛾 𝛼1𝜌2 −𝜇1 − 𝜌1 − 𝜌2 𝛼2𝛽 0 −𝜂1), (20)

where W = diag(𝛾 + 𝜇1 + 𝛼1, 𝜇1 + 𝛼2 + 𝜌1 + 𝜌2, 𝛽 + 𝜂1) is a
diagonal matrix andI is the identity matrix.

From (3) and (20), we show that

F −V =W (M −I)𝑇
= (−𝛾 − 𝜇1 𝜌2 𝛽𝛾 −𝜇1 − 𝜌1 − 𝜌2 0𝛼1 𝛼2 −𝜂1). (21)

The spectral radius of matrix M obtained by finding the
eigenvalues of matrixM is given by𝑆0 = 𝜌 (M) = max{𝛽 (𝛾 + 𝜇1) + (2𝛽 + 𝜂1) 𝛼1(𝛽 + 𝜂1) (𝛾 + 𝜇1 + 𝛼1) ,𝛼2𝛼2 + 𝜌1 + 𝜌2 + 𝜇1} . (22)

Taking the first expression of 𝑆0 = 𝜌(M) in (24), we have𝑆0 = 𝜌 (M) = 𝛽 (𝛾 + 𝜇1 + 𝛼1) + 𝛼1 (𝛽 + 𝜂1)(𝛽 + 𝜂1) (𝛾 + 𝜇1 + 𝛼1)= ( 𝛽𝛽 + 𝜂1) + ( 𝛼1𝛾 + 𝜇1 + 𝛼1) . (23)

This gives the probability of malaria transmission by either
infectious human or by infectious mosquito. From (23),𝑆0 = 𝜌 (M) = 𝛽 (𝛾 + 𝜇1 + 𝛼1) + 𝛼1 (𝛽 + 𝜂1)(𝛽 + 𝜂1) (𝛾 + 𝜇1 + 𝛼1) . (24)

The probability of disease extinction is one if 𝜌(M) < 1.
Hence from (24) we have𝛽 (𝛾 + 𝜇1 + 𝛼1) + 𝛼1 (𝛽 + 𝜂1)< (𝛽 + 𝜂1) (𝛾 + 𝜇1 + 𝛼1) . (25)

Expanding and simplifying the inequality, we have𝛽𝛼1 < 𝜂1 (𝛾 + 𝜇1) (26)

which reduces to( 𝛽𝜂1)( 𝛼1(𝛾 + 𝜇1)) < 1 󳨐⇒𝑅01 < 1. (27)

When the infection is between infectious humans and infec-
tious mosquitoes, (27) is true. The result in (27) agrees with
the deterministic reproduction number for disease elimi-
nation. Hence we conclude that the probability of disease
elimination in the CTDSGWbp model is one iff𝜌 (M) < 1 󳨐⇒𝑅0 < 1. (28)

3.4. Deriving Probability of Disease Extinction 𝑃0 Using
Branching Process Approximation. To find the probability of
extinction (no outbreak), we compute the fixed points of the
system (𝑞1, 𝑞2, 𝑞3) ∈ (0, 1) of the offspring pgfs for the three
infectious stages; that is, we solve 𝐺𝐼ℎ = 𝑞1, 𝐺𝑅ℎ = 𝑞2, and𝐺𝐼𝑚 = 𝑞3. The solutions of these systems are (1, 1, 1) and(𝑞1, 𝑞2, 𝑞3); see [19]. Equating 𝐺1(𝑠1, 𝑠2, 𝑠3) in (15) to 𝑞1, then
letting 𝑠1 = 𝑞1 and 𝑠3 = 𝑞3, and solving for 𝑞1, we have𝑞1 = (𝛽 + 𝜂1) (𝛾 + 𝜇1)𝛽 (𝛾 + 𝜇1 + 𝛼1)= 𝛾 + 𝜇1𝛼1 + 𝛾 + 𝜇1 + 𝛼1𝛼1 + 𝛾 + 𝜇1 ( 1𝑅01) . (29)

Equating𝐺2(𝑠1, 𝑠2, 𝑠3) in (16) to 𝑞2, letting 𝑠2 = 𝑞2 and 𝑠3 = 𝑞3,
and solving for 𝑞2, we have𝑞2= (𝛽 + 𝜂1) 𝛼1 (𝜇1 + 𝜌1 + 𝜌2)−𝜂1 (𝛾 + 𝜇1) 𝛼2 + 𝛼1 (𝛽𝛼2 + (𝛽 + 𝜂1) (𝜇1 + 𝜌1 + 𝜌2)) . (30)
Equating 𝐺3(𝑠1, 𝑠2, 𝑠3) in (17) to 𝑞3, then letting 𝑠1 = 𝑞1 and𝑠3 = 𝑞3, and solving for 𝑞3, we have𝑞3 = 𝜂1 (𝛾 + 𝜇1 + 𝛼1)(𝛽 + 𝜂1) 𝛼1 = 𝜂1𝛽 + 𝜂1 + 𝛽𝛽 + 𝜂1 ( 1𝑅01) . (31)

The expression for 𝑞1 in (29) has a biological interpretation.
Beginning from one infectious human, there is no outbreak
if the infectious human recovers or dies with probability (𝛾 +𝜇1)/(𝛼1 + 𝛾 + 𝜇1) or if there is no successful transmission
to a susceptible mosquito with probability (𝛼1/(𝛼1 + 𝛾 +𝜇1))(1/𝑅01). This implies that if there is successful contact,
then the probability of successful transmission from infec-
tious human to susceptible mosquito is 1 − 1/𝑅01.

The expression for 𝑞3 in (31) has a biological interpreta-
tion. Beginning from one infectious mosquito, there is no
outbreak if the infectious mosquito dies with probability
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Table 2: Model parameter values.

Parameter Description Units Parameter values Source𝜆 Birth rate of humans Per day 0.000039 [5]𝜇 Death rate of susceptible humans Per day 0.000039 [5]𝛽 Infection rate of humans Per day 0.02 [19]𝜇1 Death rate of infected humans Per day 0.00039 [5]𝜌1 Recovery rate of humans Per day 0.01 [19]𝜌2 Relapse rate of humans Per day 0.002 [5]𝛾 Treatment rate Per day 0.037 [5]𝜇1 Death rate of recovered humans Per day 0.00034 [5]𝛿 Birth rate of mosquitoes Per day 0.143 [5]𝜂 Death rate of susceptible mosquitoes Per day 0.143 [5]𝛼1 Infection rate from infectious human Per day 0.072 [5]𝛼2 Infection rate from recovered human Per day 0.0072 [5]𝜂1 Death rate of infected mosquitoes Per day 0.143 [19]

𝜂1/(𝛽 + 𝜂1) or if there is no successful transmission to a
susceptible human with probability (𝛽/(𝛽 + 𝜂1))(1/𝑅01).

There are some other important relationships; if disease
transmission is by infectious mosquitoes as well as infection
of susceptible mosquitoes by infectious humans, then𝑞1 ∗ 𝑞3 = 1𝑅01 . (32)

From (32), we see that, in both mosquito and human pop-
ulations, the probability of no successful transmission from
infectious human to susceptible mosquito and from infected
mosquito to susceptible human is 1/𝑅01.

If disease transmission is by infectiousmosquitoes as well
as infection of susceptible mosquitoes by pseudorecovered
humans, then 𝑞2 ∗ 𝑞3 = 1𝑅02 . (33)

From (33), we see that, in both mosquito and human pop-
ulations, the probability of no successful transmission from
pseudorecovered humans to susceptible mosquito and from
infected mosquito to pseudorecovered humans is 1/𝑅02.

To compute the probability of disease extinction and of an
outbreak for our malaria model, we recall that, for multiple
infectious groups, the stochastic thresholds depend on two
factors, namely, the number of initial individuals in each
group and the probability of disease extinction for each
group. Using 𝑞1, 𝑞2, and 𝑞3 in (29)–(31) and assuming initial
individuals for infectious humans, pseudorecovered humans
and infected mosquitoes are 𝐼ℎ(0) = ℎ0, 𝑅ℎ(0) = 𝑟0, and𝐼𝑚(0) = 𝑚0, respectively. Then the probability of malaria
clearance is given by𝑃0 = 𝑞ℎ01 ∗ 𝑞𝑟02 ∗ 𝑞𝑚03 = ((𝛽 + 𝜂1) (𝛾 + 𝜇1)𝛽 (𝛾 + 𝜇1 + 𝛼1) )ℎ0∗ ( 𝛼1 (𝛽 + 𝜂1) (𝜇1 + 𝜌1 + 𝜌2)−𝜂1𝛼2 (𝛾 + 𝜇1 + 𝛼1) + 𝛼1 (𝛽 + 𝜂1) (𝛼2 + 𝜇1 + 𝜌1 + 𝜌2))𝑟0∗ (𝜂1 (𝛾 + 𝜇1 + 𝛼1)(𝛽 + 𝜂1) 𝛼1 )𝑚0 .

(34)
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Figure 3: Tornado plot for parameters that influence 𝑅0.
4. Numerical Simulations

In this section, we illustrate numerically the disease dynamics
ofmodel (1) using parameter values in Table 2.The numerical
simulations are done using Maple codes.

4.1. Effects of Model Parameters on 𝑅0. Using parameter val-
ues in Table 2, we identified how different input parameters
affect the reproduction number 𝑅0 of our model as shown in
Figure 3.

From Figure 3, we see that increase in 𝛾, 𝜌1, 𝜇1, and 𝜂1 will
decrease 𝑅0. Also decrease in 𝛽, 𝛼1, 𝛼2, and 𝜌2 will decrease𝑅0.

From the Tornado plot, the infection of susceptible hu-
mans by infected mosquitoes (denoted by 𝛽) is a major factor
in the malaria transmission dynamics. Reducing 𝛽 would
reduce 𝑅0 significantly hence reducing the possibility of
disease outbreak. Vector control is the main way to prevent
and reducemalaria transmission. If coverage of vector control
interventions within a specific area is high enough, then a
measure of protection will be conferred across the commu-
nity. WHO recommends protection for all people at risk of
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Figure 4: Effects of relapse and recovery rate on 𝑅0.
malaria with effective malaria vector control which agrees
with the information from Figure 3. Two forms of vector
control insecticide-treatedmosquito nets and indoor residual
spraying are effective in a wide range of circumstances.
Another factor which affects the malaria transmission sig-
nificantly is the death rate of infected mosquitoes (denoted
by 𝜂1). Increasing 𝜂1 would decrease 𝑅0 hence reducing the
chances of disease outbreak.

4.1.1. Graphical Representation of Parameters Effects on 𝑅0.
Figure 4 shows the effects of relapse and recover rates on the
basic reproduction number. From the simulations, we find
that 𝑅0 is increasing with increase in relapse rate, while it
is decreasing with increase in recovery rate. To control and

eradicate the malaria epidemic, it is important and necessary
for governments of endemic countries to decrease the relapse
rate and increase the treatment and recovery rate.

4.2. Probability of Disease Extinction. Using parameter values
in Table 2, we compute numerically the probability of disease
extinction 𝑃0 and of an outbreak 1−𝑃0 for our malaria model
using different initial values for the infectious classes.

The probability of disease extinction is high if the disease
emerges from infected humans. It is very low if the infection
emerges from infected mosquitoes. However, as the initial
number of infected humans grows largely, there is a high
probability of disease outbreak as illustrated in Table 3. The
probability of disease extinction is significantly low if the
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Table 3: Probability of disease extinction 𝑃0 and of an outbreak 1 − 𝑃0 for the malaria model.ℎ0 𝑟0 𝑚0 𝑃0 1 − 𝑃0 𝑅01 𝑅02 𝑅0
1 0 0 0.6838 0.3162 𝑅01 > 1 𝑅02 < 1 𝑅0 > 1
0 1 0 0.9834 0.0166 𝑅01 > 1 𝑅02 < 1 𝑅0 > 1
0 0 1 0.1365 0.8635 𝑅01 > 1 𝑅02 < 1 𝑅0 > 1
1 1 0 0.6724 0.3276 𝑅01 > 1 𝑅02 < 1 𝑅0 > 1
1 1 1 0.0918 0.9082 𝑅01 > 1 𝑅02 < 1 𝑅0 > 1
10 0 0 0.0223 0.9777 𝑅01 > 1 𝑅02 < 1 𝑅0 > 1
0 10 0 0.8459 0.1541 𝑅01 > 1 𝑅02 < 1 𝑅0 > 1
0 0 10 0 1 𝑅01 > 1 𝑅02 < 1 𝑅0 > 1
10 10 0 0.0188 0.9812 𝑅01 > 1 𝑅02 < 1 𝑅0 > 1
10 10 10 0 1 𝑅01 > 1 𝑅02 < 1 𝑅0 > 1
disease emerges from infected mosquitoes. Therefore, the
disease dynamics for model system (1) at the beginning of
the epidemics are being driven by initial number of infected
mosquitoes.

A female mosquito will continue to bite and draw blood
until her abdomen is full. If she is interrupted before she
is full, she will fly to the next person. After feeding, the
mosquito rests for two or three days before laying her eggs,
and then it is ready to bite again. Since mosquitoes do not
recover from the infection, then a single infected mosquito is
capable of biting and infecting so many susceptible humans
in their lifespan whichmay in turn infect so many uninfected
mosquitoes there by reducing the probability of disease
clearance and increasing the probability of a major disease
outbreak. Moreover, mosquitoes are the reservoir host for
the parasites that cause malaria and it takes a long time for
them to bemalaria-free, hence the high probability ofmalaria
outbreak if the parasite is introduced by infected mosquito.

Table 3 depicts that, at the beginning of malaria outbreak,
any policy or intervention to control the spread of malaria
should focus on controlling the infectedmosquito population
as well as the infected humans. If more effort to control
the disease is only focused on the infected humans, then it
is very unlikely that malaria will be eliminated. This is an
interesting insight from the stochastic threshold that could
not be provided by the deterministic threshold.

4.3. Numerical Simulation of Malaria Model. Using param-
eter values in Table 2, we numerically simulate the behavior
of model (1). Initial conditions are 𝑆ℎ(0) = 99, 𝐼ℎ(0) = 1,𝑅ℎ(0) = 0, 𝑆𝑚(0) = 999, and 𝐼𝑚(0) = 1.
4.3.1. Numerical SimulationWhen𝑅0 < 1. FromFigure 5, the
analysis shows that when 𝑅0 < 1 and 𝑆0 < 1, then the
probability of disease extinction is 𝑃0 = 0.9476 ≃ 1, although
this agrees with (30), which points out that the probability of
disease elimination in the CTDSGWbp model is one iff𝑆0 < 1 󳨐⇒𝑅0 < 1. (35)

There is still a small probability 1 − 𝑃0 = 0.0524 of disease
outbreak. 𝑅0 has been widely used as a measure of disease

dynamics to estimate the effectiveness of control measures
and to inform on disease management policy. However, from
the analysis in Figure 5, it is evident that 𝑅0 can be flawed and
disease can persist with 𝑅0 < 1 depending on the kind of
disease being modeled.

4.3.2. Numerical Simulation When 𝑅0 > 1. Using parameter
values in Table 2, we numerically simulate the behavior of
model (1) when 𝑅0 > 1. Initial conditions are 𝑆ℎ(0) = 99,𝐼ℎ(0) = 1, 𝑅ℎ(0) = 0, 𝑆𝑚(0) = 999, and 𝐼𝑚(0) = 1.

The analysis from Figure 6 suggests that when 𝑅0 > 1,
there is still some probability of disease extinction (𝑃0 =0.3713). Although the probability is low, there is still a chance
to clear the disease. Therefore, from the analysis in Figure 6,
disease can be eliminated with 𝑅0 > 1 and hence the 𝑅0
threshold should not be the only parameter to consider in
quantifying the spread of a disease.

4.3.3. Effects of Relapse onHumanPopulation. Figure 7 shows
changing effects of relapse on the human populations.

To control and eradicate themalaria epidemic, it is impor-
tant and necessary for governments of endemic countries to
decrease the relapse rate as can be seen in Figure 7.

5. Discussions and Recommendations

In this study, we investigated the transmission dynamics
of malaria using CTDSGWbp model. The disease dynamic
extinction thresholds from the stochastic model were com-
pared with the corresponding deterministic threshold. We
derived the stochastic threshold for disease extinction 𝑆0 and
showed the relationship that exists between 𝑅0 and 𝑆0 in
terms of disease extinction and outbreak in both determin-
istic and stochastic models.

Our analytical and numerical results showed that both
deterministic and stochastic models predict disease extinc-
tion when 𝑅0 < 1 and 𝑆0 < 1. However, the predictions by
these models are different when 𝑅0 > 1. In this case, deter-
ministicmodel predicts with certainty disease outbreak while
the stochastic model has a probability of disease extinction at
the beginning of an infection. Hence, with stochastic models,
it is possible to attain a disease-free equilibrium even when𝑅0 > 1. Also we noticed that initial conditions do not affect
the deterministic threshold while the stochastic thresholds
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(a) Human population dynamics when 𝑅0 < 1 and 𝑆0 < 1
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(b) Mosquito population dynamics when 𝑅0 < 1 and 𝑆0 < 1

Figure 5: Malaria dynamics when 𝑅0 = 0.4564 and 𝑆0 = 0.5661 and 𝑃0 = 0.9476.
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(a) Human population dynamics when 𝑅0 > 1
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(b) Mosquito population dynamics when 𝑅0 > 1

Figure 6: Malaria dynamics when 𝑅0 = 2.4629 and 𝑃0 = 0.3713.
are affected. Thus, the dynamics of the stochastic model are
highly dependent on the initial conditions and should not be
ignored.

The probabilities of disease extinction for different initial
sizes of infected humans and infected mosquitoes were

approximated numerically. The results indicate that the
probability of eliminating malaria is high if the disease
emerges from infected human as opposed to when it emerges
from infected mosquito at the beginning of the disease.
The analysis has shown that any policy or intervention to
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(a) Human population dynamics when relapse rate is increased; 𝜌2 = 0.4
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(b) Human population dynamics when relapse rate is reduced; 𝜌2 =
0.001

Figure 7: Changing effects of relapse on the human populations.

control the spread of malaria at the beginning of an outbreak
must focus not only on infected humans but also on con-
trolling the infected mosquito population. Also our results
strongly suggest that, to eradicate malaria, governments of
endemic countries should increase the recovery rate and
reduce the relapse rate.

In conclusion, to achieve the WHO vision 2030 strate-
gic global targets, which include (i) reducing malaria case
incidence by at least 90% by 2030 and (ii) reducing malaria
mortality rates by at least 90% by 2030, the governments of
endemic countries should embark on increasing the coverage
of vector control interventions and reduce themalaria relapse
rate as well as controlling the infected mosquito population.

For futurework, the study can be extended by considering
vertical transmission of themosquitoes. Another extension of
the study can be the inclusion of immigration and emigration
of individuals in both populations in order to investigate the
effect of movement on the disease transmission dynamics
on the two thresholds. Also the study can be extended by
considering the effect of climatic conditions, such as rainfall
patterns, temperature, and humidity on the disease transmis-
sion dynamics.

Notations

Description of Variables for the Malaria Transmission Model𝑆ℎ: Susceptible humans𝐼ℎ: Infectious humans

𝑅ℎ: Pseudorecovered humans𝑆𝑚: Susceptible mosquito𝐼𝑚: Infectious mosquito.

Description of Parameters for the Malaria TransmissionModel𝜆: Natural birth rate of humans𝜇: Natural death rate of humans𝜇1: Disease induced death rate of humans𝛽: Transmission rate from an infectious
mosquito to a susceptible human𝜌1: Recovery rate𝜌2: Relapse rate𝛾: Treatment rate𝛿: Natural birth rate of mosquitoes𝜂: Natural death rate of mosquitoes𝜂1: Parasite induced death rate of mosquitoes𝛼1: Transmission rate from an infectious
human to a susceptible mosquito𝛼2: Transmission rate from a pseudorecovered
human to a susceptible mosquito𝑁: The total size of human population𝑀: The total size of mosquito population.
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