Hindawi

Abstract and Applied Analysis

Volume 2017, Article ID 9405298, 32 pages
http://dx.doi.org/10.1155/2017/9405298

Research Article

On Singular Solutions to PDEs with Turning Point Involving

a Quadratic Nonlinearity

Stéphane Malek

Laboratoire Paul Painlevé, University of Lille 1, 59655 Villeneuve d’Ascq Cedex, France

Correspondence should be addressed to Stéphane Malek; stephane.malek@math.univ-lillel.fr

Received 5 May 2017; Accepted 1 August 2017; Published 13 September 2017

Academic Editor: Sining Zheng

Copyright © 2017 Stéphane Malek. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We study a singularly perturbed PDE with quadratic nonlinearity depending on a complex perturbation parameter €. The problem
involves an irregular singularity in time, as in a recent work of the author and A. Lastra, but possesses also, as a new feature, a
turning point at the origin in C. We construct a family of sectorial meromorphic solutions obtained as a small perturbation in €
of a slow curve of the equation in some time scale. We show that the nonsingular parts of these solutions share common formal
power series (that generally diverge) in € as Gevrey asymptotic expansion of some order depending on data arising both from the
turning point and from the irregular singular point of the main problem.

1. Introduction

In this work, we consider a family of nonlinear singularly
perturbed equations of the form

Q(o,) (P1 (t,e)u(t,z,€) + P, (t,€) u* (t, z, e))

= f(t.z,e) + P;(t,€,0,,0,) u(t, z,€),

)

where Q, P,, P,, and P; are polynomials with complex
coefficients and f is an analytic function in the vicinity of
the origin with respect to t and € in C and holomorphic with
respect to z on a horizontal strip in C of the form Hy = {z €
C | Im(z)| < B} for some 8 > 0.

Here we consider the case when P, (0, €) vanishes iden-
tically near 0. The point ¢ = 0 is known to be called a
turning point in that situation; see [1, 2] for a more detailed
description of this terminology in the linear and nonlinear
settings. Let us recall the definition of the valuation val,( f)
of an analytic function near t = 0 as the smallest integer
k > 0 with the factorization f(t) = t*f(¢) for an analytic
function f near t = 0 with f(0) # 0. The most interesting
case examined in this work is when the valuation val,(P,) of
P, (t, €) with respect to t is larger than the valuation val,(P,)
or val,(f(t, z, €)) since the problem cannot be reduced to the

case P,(0,0) # 0 by dividing (1) by a suitable power of t and
€; see Remark 13.

In our previous study [3], we already have considered
a similar problem which corresponds to the situation when
P,(0,0) # 0 for our equation (1). Namely, we focused on the
following problem:

Q (az) aty (t’ z, 6)
=(Q @) y(t20)(Q0,)ytze) (2
+H (t,€0,0,) y(t,z,€) + f (t,z,€)

for given vanishing initial data y(0,z,e) = 0, where Q,
Q,, Q,, and H are polynomials with complex coefficients
and f(t,z,€) is a forcing term constructed as above. Under
appropriate assumptions on the shape of (2), we established
the existence of a family of actual bounded holomorphic
solutions yp(t, z,€), 0 < p < ¢ — 1, for some integer ¢ > 2,
defined on domains 7 x Hg x &, for some fixed bounded
sector 7 with vertex at 0 and & = {&,}ocpcc1> @ set of
bounded sectors whose union covers a fuli7 neighborhood of
0 in C*. These solutions are obtained by means of Laplace
and inverse Fourier transforms. On each sector &, they
share with respect to € a common asymptotic expansion
Y(t,2,€) = 3,50 Valt, 2)€" which defines a formal series with
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bounded holomorphic coefficients on  x Hj. Moreover,
this asymptotic expansion is shown to be of Gevrey order
(at most) 1/k that appears in the highest order term of
the operator H which is of irregular type in the sense of
(4] outlined as e(‘sﬂ’_l)kt(‘sf’_1)(]‘“)6;S PRp(0,), for some integer
0p > 2 and a polynomial Ry, with complex coefficients.
Conjointly, since the aperture of the sectors & , can be chosen
slightly larger than 7/k, the functions € — y,(t,z,€) can be
viewed as k-sums of the formal series ¥ as defined in [5].

In this work, our goal is to achieve a similar statement,
namely, the existence of sectorial holomorphic solutions and
asymptotic expansions as € tends to 0. However, the main
contrast with problem (2) is that, due to the presence of
the turning point, our solutions are no longer bounded in
the vicinity of the origin, being meromorphic in both time
variable t and parameter €. Namely, we build a set of actual

meromorphic solutions 4 (t, z, €) to problem (1) of the form
u® (t,z,¢) = €° (U0 (%1) + (€)' V" (1, 2, 6)) , ()

where « > 1, 8 are some rational numbers, y is an integer,
and Uy(T) is a nonidentically vanishing root of a second-
order algebraic equation with polynomial coefficients related
to the polynomials P}, P,, see (70), and where v"#(t, z, €) is a
bounded holomorphic function on products 7 x Hg x &,
similar to the ones mentioned above, which can be expressed
as a Laplace transform of some order x > 1 and Fourier
inverse transform

+00

D
V¢ (8, z,€) = J w," (1, m, )
L

N (4)
u * izm du
e (- (g ) )¢

along some half line Ly, =R L€', for some positive rational

b . .
number y > 0, where w,” (1, m, €) represents a function with
at most exponential growth of order « on a sector containing
Ly, with respect to u, with exponential decay with respect

to m on R and with analytic dependence on € near 0 (see
Theorem 19). Furthermore, we show that these functions
Vo (t,z,€) own with respect to € a common asymptotic
expansion ¥(t,z,€) = Y50 Vu(t,2)e" which represents a
formal series with bounded holomorphic coefficients on 7 x
Hp. We specify also the nature of this asymptotic expansion
which turns out to be of Gevrey order (at most) 1/(y + &)x.
Besides, since the aperture of the sectors &, may be selected

slightly larger than 7/(y + «)x, the functions v* can be
identified as (y+a)x-sums of the formal series ¥ (Theorem 21).
By construction, the integer x shows up in the highest order
term of the operator P; which is of irregular type of the
form err®Dhig®o R (5 ) with k, = val,(P,), for some
integers A, > 0, §;, > 2 and a polynomial R, with complex
coeflicients. The rational number y is built with the help of
the integers A 5, 8y, ky, and x and the rational numbers «, f3;
see (86). According to the fact that «, 3 are mainly related
to constraints assumed on the polynomials P, and P, (see
(66), (67)), we observe that the Gevrey order 1/(x + &)« of
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the asymptotic expansion involves information coming both
from the highest irregular term and from the two polynomials
P,and P, that shape the turning point at t = 0, whereas, in our
previous contribution [3], the Gevrey order was exclusively
stemming from the irregular singularity at t = 0.

The kind of equations with quadratic nonlinearity we
investigate in this work is strongly related to singularly per-
turbed ODEs which are nonsingular at the origin of the form
€’dy/dt = F(t, y,a,e) for some analytic functions F, small
complex parameter €, and a complex additional parameter
a, described in the seminal joint paper by Canalis-Durand
et al, see [6], where they study asymptotic properties of
actual overstable solutions near a slow curve ¢, () (meaning
that F(t,¢,(t),a,0) = 0) in the case when the Jacobian
ayF (t,¢y(t), a,0) is not invertible at ¢ = 0. The main notable
difference is that we assume the origin to be at the same time
a turning point and an irregular singularity. More precisely,
with the rescaling map (¢,€) — (T = et, €) the transformed
equation (64) possesses a rational slow curve Uy(T) and T = 0
remains a turning point and an irregular singularity for this
new equation.

The construction of the distinguished solution performed
in Section 4 and the parametric Borel/Laplace summable
character of these solutions shown in Section 7 are also
intimately linked to recent developments of exact WKB
analysis of formal and analytic solutions to second-order
linear ODEs of Schrodinger type. Namely, let

ey (te) = Q1) v (t,e) (5)

be a singularly perturbed ODE where € is a small com-
plex parameter and Q(t) is some polynomial with complex
coefficients. WKB solutions of (5) are known as special
solutions that are described as an exponential y(t,e) =
exp(Jj S(s, €)ds) where the expression S(t, €) satisfies a so-
called Riccati equation

€S (t,e) + €28 (t,€) = Q(¢t). (6)

This last equation possesses formal power series solutions
S(t,e) = S_((t))e + ¥ ,50 Su(t)e”, where S_,(t) satisfies the
quadratic equation Sil(t) = Q(t). Once S_,(t) = +/Q(1) is
fixed, we get two formal solutions §i(t, €) =S, (t)/e+Ti(t, €),
where T, (t,¢€) € C[[¢e]] foranyt € U = {t € C | Q(t) # 0}.
Notice that T, (t, €) solves the first-order Riccati equation

€T, (te) +2S; ()T, (te) +eT- (te)+S, (1) =0 (7)

with turning points at the roots of Q(t). Our main PDE (1)
resembles this last one provided that S_;(f) is a polynomial
and with the significant distinction that our equation only
involves differential operators with irregular singularity at
t = 0. An essential feature of the theory is that the formal
series Ti (t,€) are 1-summable in suitable directions d € R
with respect to € (that are related to the function J:) S_1(s)ds)

for any fixed t € U. Different proofs of this fact can be found
in [7-10]. Our second main statement, Theorem 21, can be
considered as a similar contribution for some higher order
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PDE:s of this latter result. Furthermore, in our study we are
also able to describe the behaviour of our specific solutions
near (t,e) = (0,0).

For more recent and advanced works related to WKB
analysis and local/global studies of solutions to linear ODEs
near turning points, we refer to contributions related to
the 1D Schrodinger equation with simple poles [11], with
merging pairs of simple poles and turning points [12],
and with merging triplet of poles and turning points [13,
14] and for analytic continuation properties of the Borel
transform (resurgence) of WKB expansions in the problem
of confluence of two simple turning points we quote [15].
Concerning the structure of singular formal solutions to
singularly perturbed linear systems of ODEs with turning
points we point out [16] solving an old question of Wasow.
We mention also preeminent studies on WKB analysis for
higher order differential equations which reveal new Stokes
phenomena giving rise to so-called virtual turning points
17, 18].

In the framework of linear PDEs, normal forms for
completely integrable systems near a degenerate point where
two turning points coalesce have been obtained in [19], which
is a first step toward the so-called Dubrovin conjecture which
concerns the question of universal behaviour of generic
solutions near gradient catastrophe of singularly Hamiltonian
perturbations of first-order hyperbolic equations; see [20].
We mention also that sectorial analytic transformations to
normal forms have been obtained for systems of singularly
perturbed ODEs near a turning point with multiplicity using
the recent approach of composite asymptotic expansions
developed in [2]; see [21].

The paper is organized as follows. In Section 2, we recall
the definition introduced in the work [3] of some weighted
Banach spaces of continuous functions with exponential
growth on unbounded sectors in C and with exponential
decay on R. We analyze the continuity of specific multipli-
cation and linear/nonlinear convolution operators acting on
these spaces.

In Section 3, we remind the reader of basic statements
concerning my-Borel-Laplace transforms, a version of the
classical Borel-Laplace maps already used in previous works
[3, 22, 23] and Fourier transforms acting on exponentially flat
functions.

In Section 4, we display our main problems and explain
the leading strategy in order to solve them. It consists in four
operations. In a first step, we restrict our inquiry for the sets
of solutions to time rescaled function spaces; see (63). Then,
we consider candidates for solutions to the resulting auxiliary
problem (64) that are small perturbations of a so-called slow
curve which solves a second-order algebraic equation and
which may be singular at the origin in C. In a third step,
we search again for time rescaled functions solutions for the
associated problem (84) solved by the small perturbation
of the slow curve; see (85). In the last step, we write down
the convolution problem (95) solved by a suitable 1, -Borel
transform of a formal solution to the attached problem (87).

In Section 5, we solve the main convolution problem (95)
within the Banach spaces described in Section 2 using some
fixed point theorem argument.

In Section 6, we provide a set of actual meromorphic solu-
tions to our initial equation (61) by executing backwards the
operations described in Section 4. In particular, we show that
our singular functions actually solve problem (164) which
is a factorized part of (61) with a more restrictive forcing
term. Furthermore, the difference of any two neighboring
solutions tends to 0 as € tends to 0 faster than a function with
exponential decay of order (y + ®)x.

In Section 7, we show the existence of a common
asymptotic expansion of Gevrey order 1/(y + a)x for the
nonsingular parts of these solutions of (61) and (164) based on
the flatness estimates obtained in Section 6 using a theorem
by Ramis and Sibuya.

2. Banach Spaces with Exponential Growth
and Exponential Decay

We denote by D(0, p) the open disc centered at 0 with radius
p > 0in C and by D(0, p) its closure. Let S; be an open
unbounded sector in direction d € R and & be an open sector
with finite radius 7y, both centered at 0 in C. By convention,
these sectors do not contain the origin in C. We first give

definitions of Banach spaces which already appear in our
previous work [3].

Definition 1. Let f > 0and y > 1 be real numbers. We denote
by Eg,, the vector space of functions h : R — C such that

I ()l s = sup (1+ b exp (Blml) I (m)]— (g

is finite. The space Eg endowed with the norm || - g
becomes a Banach space.

As a direct consequence of Proposition 5 from [3], we
notice the following.

Proposition 2. The Banach space (Eg,, Il ls,,)) is a Banach
algebra for the convolution product

+

(Frg)on =] fon-m)gn)dm.  ©

—00

Namely, there exists a constant C, > 0 (depending on y) such
that

"(f * g) (m)"(ﬁ,m <G "f (m)”(ﬁ,l,l) “9 (m)“(ﬁ,m (10)

Jorall f,g € Eg .

Definition 3. Let v,p > 0O and f > 0, u > 1 be real
numbers. Let « > 1 and y,« > 0 be integers. Lete € &.

d .
We denote by F(, 5, .. the vector space of continuous



functions (r,m) — h(r,m) on (D(0, p)US,) x R, which are
holomorphic with respect to T on D(0, p) U S; and such that

”h (T’ m)”(v,ﬁ,y,)(,tx,x,e)

= sup (1 + |m|)* exp (B |m])
7€D(0,p)US,,meR (11)

exp <—v

is finite. One can check that the normed space (Fg,

1+ |T/e)‘+“|2K

|T/ext|

)iz

€X+(X

3 Boths o 0K€)

I+ s, ., e 18 @ Banach space.

Throughout the whole section, we keep the notations of
Definitions 1 and 3.

In the next lemma, we check that some parameter
depending functions with polynomial growth with respect
to the variable 7 and exponential decay with respect to the
variable m, which will appear later on in our study (Section 5),
belong to the Banach spaces described above.

Lemma 4. Let y, > 0, y, > 1 be integers. Let R(X) be a
polynomial that belongs to C[X] such that R(im) # 0 for all
m € R. We take a function B(m) located in Eg,y and we
consider a continuous function a,, «(T.m)on (D(0, PIUS)XR,
holomorphic with respect to T on D(0, p) U S, such that

1
|a}’1”‘ (T’ m)l < (1 + |T|K)V1 |1‘é (zm)|

(12)

forall T € D(0,p) US,, allm € R.
Then, the function e_XVZTVZE(m)a%,K(T, m) belongs to

Fg/,ﬁ,y,x,a,x,s)' Moreover, there exists a constant C; > 0
(depending on x and y,) such that
X2 1 f
“6 ‘T°B (m) a)’l K (T’ m)||(v,ﬁ,;4,x,oc,;c,e)
B 13
|B (m)“w,m )

— |€ Y2&
inf,,cp |R (im)'

foralle € &.

Proof. By definition of the norm and bearing in mind the

constraint on the polynomial R(X), we can write

XV V23
"6 7B (m) Ay, (. m)“(v,ﬁ,p.,x,a,tc,e)

< sup
‘rEB(O,p)USd,meR

(1 +|m|)* exp (Bml) |B (m)|

2
L+ [ofede™ T o | T
+a P\ | e lel +
|T/eXte| €X exte
|V2(X+“) 1

.|€

(1 + |T/exte* |e|"("+"‘))y1 |1~% (im)|
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2K —vx*
Y2 €

(1 + X" |€|K(X+m))yl

1+x
- sup X
x>0 X

"E (m)“(ﬁ,ﬂ) e[ Sup1 + x%¢

Yy —vx*
e Tea— x'-e
inf,, p |R (zm)| x20

<

(14)

which yields the lemma since an exponential grows faster
than any polynomial. O

The next proposition provides norm estimates for some
linear convolution operators acting on the Banach spaces
introduced above. These bounds are more accurate than the
one supplied in Proposition 2 from [3]. These new estimates
will be essential in Section 5 in order to solve problem (95).
The improvements are due to the use of thorough upper
bounds estimates of a generalized Mittag-Leffler function
described in the proofs of Propositions 1 and 5 from [23].

Proposition 5. Let y;, 0 < j < 3, be real numbers withy, > 0.
Let R(X) and Rp(X) be polynomials with complex coefficients
such that deg(f{) < deg(fiD) and with Rp(im) # 0 forallm e
R. We consider a continuous function ayl),c(‘r, m) on (D(0, p)U

S4) x R, holomorphic with respect to T on D(0, p) U S, such
that

1
(1+ [7[)" |Rp (im)|

|y, (7.m)| < (15)

for all T € D(0,p) US,, all m € R. We make the following
assumptions:

1
—+9Y,+1>0,
» Y3

Y, +y3+220, (16)

Y, > -1

(D If1+y; <0, then there exists a constant C, > 0
(depending on v,x, y,,y; and 1~2(X),1~2D(X)) such that

e "a, . (1,m) R (im)

7" JT (t° =) s" f (SI/K, m) ds (17)

0

(9, B s X00,55€)

< G el I £ (@m)| e
fOT all f(Ts m) € F(Cf;,ﬁ,y,)(,(x,x,E)'

(2)If1+y; > 0andy, = 1+7;, then there exists a constant
Cl > 0 (depending on v, k, yy, y,, y; and R(X), Rp(X)) such
that

€ "a,  (t,m) R (im)
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" JT (T =) st f (SI/K,m) ds
0

(9,5 X 505K,€)

< C; le| (x+a)k(y, +y;+2)—yo—(x+a)xy,

' "f (T’ m)”(v,ﬁ,y,x,a,x,e)
(18)

d
fOr all f(T, m) € F(‘y,ﬁ,[,t,x,a,lcﬁ)'

Proof. By definition of the norm, we can write

TK
A=lea,  (r,m) R (im) T* L (7 - s)"
st f (sl/K,m) ds
(9, B s Y 506 K5€)
< sup (1 + |m|)* exp (B|m])
TGB(O,p)USd,mER
+a|2K
1+ |r/eX*e| ( ">| o 1 .
————exp|v|—| )] ———
|T/EX+“| p 6)(+zx (1 + |T|K)Y1 ( )
|R (im))| o
x4 bl exp (B i)
|RD (im)' 0
L+ [sf* / fe] 0 sl
’ |S|1/K / |€|X+(X exp -V |€|(X+IX)K
'f(sl/'c,m)} d (t,s,m,€)ds|,
where

1
(1 + |m|)* exp (B|ml|)

A (1,8, m,€) =

Cexp (v (Isl/1e**%))
(1 + 15l / fex70%)

(20)

|S|1/K
’ |€|X+(x

(7 = s)" 5P,

Again by the definition of the norm of f and by the
constraints on the polynomials R, Rp,, we deduce that

R (im)
RD (lm) ‘ "f (T’ m)||(v,ﬁ,[4,x,¢x,1c,e) > (21)

A < Cy (e) sup
meR

5
where
Lefrfer et
Cu@= sp DI (L)1)
2.1 DB, |T/ex+e| exta

S S 22
| | (1+|T|K)V1 | | ( )

7 exp (v (h/ |€|(X+“)K)) we WY W dh

. T — ’ :

Jo 1+ 2] e X e (It" =)

We perform the change of variable h = le| %R inside the
integral which is a part of C, , (¢) that yields

C, (€)= sup

1+ |T/ex+“|2K
7€D(0,p)US,

|T/ex+e|

€X+OC

. |€|—Vo

— X ‘l”C
(1+ )" i

J’lTlx/Iel(X-Hx)K evh, (h[)l/x ( |T|K ~ hl)}’z
0 1+ (W) Je| o+

. (h/)}’a dh’ |€|(X+a)1c(yz+y3+1) )

(23)

As a result, we obtain the bounds

1+ x° o
1/x e

Cyi(e) < |€|(X+“)K(V2+V3+1)—Vo+(x+oc)x sup

x=0 X
(24)
G,

(1 + |e|rrex x)yl

where

G(x) = Jx Lz (h')l/"”3 (x - h')y2 dn'. (25)
0o 1+ (H)

We now proceed as in Proposition 1 of [23]. We split the

function G(x) into two pieces and study them separately.

Namely, we decompose G(x) = G,(x) + G,(x), where

x/2 vh'

_ € NVEYs ¢\
G- | N (W) (= )" an,
(26)
G, (x) = Jx e (W)™ (x—1')" an’
’ x2 1+ (0 '

We first provide estimates for G, (x).

(a) Assume that -1 < p, < 0. We see that (x — W <
(x/2)" for all0 < K’ < x/2, for x > 0. Hence, from the first
constraint of (16), we get

Y2 x/2 K+
G, (x) < (g) evx/zj (W)™ an
0

_ (2] etz
2 l/k+y,+1

(27)



for all x > 0. Subsequently, we obtain

1+ x? o X
sup

e G, (x)
20 X (1 el )t
(28)
1+x°
< sup— e ""xG, (x)
x=0 X

which is finite due to the second assumption of (16).

(b) Assume that , > 0. We notice that (x — k') < x»
forall 0 < W' < x/2, for x > 0. Therefore, again from the first
constraint of (16) we get

x/2
G, (x) < x"2e"™? j (h’)” P an
0

_ xyzevx/Z (X/Z)I/K+y3+1

l/k+y;+1
for all x > 0. Consequently, we obtain

2
1+x° )% X

sup

e G, (x)
>0 xl/x (1+|€|(x+oc)zcx)yl 1

(30)
2

1+x° _
< sup—r—e " xG, (x)

x=0 X fe

which is finite due to the second assumption of (16).

In a second step, we study G, (x).

We see that 1 + (')* > 1+ (x/2)* forall x/2 < K < x.
Hence,

1 X ety "2 '
G < — J. h -h' )" dh
2 (x) 1+(x/2)2 x/Ze ( ) (x )
(31)
1
S —G bl
1+ (x/2)? ()
where

G,y (x) = J-Ox evh’ (h/)l/Kﬂ’s (x _ h/)Vz dn’ (32)

for all x > 0. Taking account of the estimates (18) in
[23] which are deduced from the asymptotic behaviour for
large x of the generalized Mittag-Leffler function E, g(x) =
Ym0 X /T(B + na), for a, B > 0, we get a constant K, ; > 0
(that depends on v, k, y,, ;) such that

G, (x) < Kz'lxl/w%eyx (33)

for all x > 1, provided the first and last constraints of (16)
hold.
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(1) We consider the first case when 1 + 5 < 0. Bearing in
mind (31) and (33), we deduce that

1+ x? o X
sup e G, (x)
w1 XK (1+ e x)y1 ?
(34)
1+x%
ssu ax

=t (/2
which is finite. On the other hand, when 0 < x < 1, we make
the change of variable h' = xu' inside G, (x) and, taking (31)
into account, we get

1+ x* ox X
sup e G, (x)
osx<t XM/ (1 + Je]xrex x)yl
2
1+x -y X xl/;c+y3+y2+1 (35)

< sup ———e
o<x<1 1 + (x/2)* xl/e

! yxu' [ 1\ 1/K+ys nY: '
xJ-Oe (u) (l—u) du
which is finite provided that the constraints (16) are fulfilled.
(2) We examine the second case when 1 + y; > 0 and
Y2yt 1
We use this time the fact that 1 + |e]¥**x > |¢|X+¥*x
for all x > 1 and the bounds (33) in order to get

2
1+x° _x X

sup

e G, (x
xs1 XK (1 + |g| X x)yl 2()
(36)

2 3+1
< |€|—(X+‘X)KY1 szlsup1+—xz i
xx1 1+ (x/2)° xh
On the other hand, the bounds on the domain 0 < x < 1 have
already been treated above owing to (35).
Finally, gathering (21), (24), (28), (30), (34), (35), and (36)
yields the statement of Proposition 5. O

The forthcoming proposition presents norm estimates for
some bilinear convolution operators acting on the aforemen-
tioned Banach spaces.

Proposition 6. There exists a constant C5 > 0 (depending on
y and «) such that

K

L (= e m)a () m)

—00

C
< |€|Xi0< ||f (T’ (37)

1 '
. mds dml

(9, B s X055,

m)"(v,ﬁ,y,x,a,x,e) ||g (T’ m)||(v,ﬁ,[4,)(>06,1<>€)
for all f(1), g(t) € F&[;,M)M)e).

Proof. We follow the same guidelines as in the proof of
Proposition 3 from [3]. By definition of the norm, we can
write



Abstract and Applied Analysis

™ 400
B=|r*" j I f((‘r” - s')l/K ,m— ml) g ((s')l/K »7”‘1) %ds’dm1 = sup (1 + |m|)* exp (B |m])
0 —00 (T -S ) s (9, Bt X %K5€) TEB(O,p)USd,melR
L+ efexe ™ (~|5=])
|7/ex+e| Xp exta
x K 2 (x+a)2x K ! (38)
o ™ ~+o00 ~ u B 1+|T —S’|/|€| B T =S ( K_,I/K B )
x |7 L J_m {(1+|m my|) exp (B|m — my]) x |TK—S’|1/K/|6|X+“ exp v|€|(X+a)K f (T s) ,m—m,
1+ ISI|2 / |6|(X+oc)2x |S,| ”
12 R A B PSS A ! !
X {(1 +|my|)" exp (B |m,]) |S’|1/K e ex| W g <(s ) ,m1> x B (1,s,m,m;)ds dm,|,
where By definition of the norms of f and g and according to the
Y g g
triangular inequality |m| < |[m —m,| + |m,| for all m,m, € R,
_exp(-P |m —m, ) exp (=B [m,) we deduce that
B(r,s,mm;) = i y
(1+ |m—my|)" (1 + |m])
'Srll/x |TK _ S’ 1/x / |€|2(X+oc) (39) B
1+ l¢e—s 2 € (x+o)2x 1+l 2 € (x+a)2 (40)
( | | / | I ) ( | | / | | ) = C3 (6) ||f (T’ m)"(v,ﬁ,y,)(,oc,;c,e) ”g (T’ m)"(v,ﬁ,y,x,oc,;c,e) >
K ! !
X ex vT_S| exp| v 'S' !
p |€|(x+a)1< p |€|(x+o¢);c (Tx _ S') § where
1+ |T/eX+"‘|2K K .
Ci@=  sup  (L+m)t 1 e (—v ) e[
TEB(O,p)USd,mER |T/€X+[x| exte
« 1/ 1/
AU 1 (1) " (i =1) ™ 1 ()
0 Jeoo (1 fm = my ) (1 + |my )" >0+ (1 (1 = 1) /190 2) (1 + (') / [l 72 )
lz|* - h' H 1 ,
X exp <v|€|(X—M)K exp vlel(’”“)" T dh dm,.
We provide upper bounds that can be split in two parts, ) JH’O 1 dm
oo (T |m—my ) (14 m )
C;(e) £ C5,C5,(e), (42) (43)

where

Csp =sup (1 + m])¥

meR

()™ (e = 1) e 1

is finite under the condition that 4 > 1 according to Lemma 4
of [24] and

dn'.  (44)

2, K

Cs,(e) = sup |7/ex*e|

7€D(0,p)US,

0 (1 + (|T|K _ h’)z / |€|()(+oc)21<) (1 ¥ (h’)z / |€|(X+oc)21<) (|T|K _ hl) [



We carry out the change of variable i’ = |e| ****} inside the
integral piece of C; ,(€) which yields the bounds
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1+ |r/exte™
C3~2 (6) = 7sup |/ X+a | |T|K !
«Dopus, |T/EX
(45)
N Yl T A R 1 1 1
X _[ K (x+a)x 2 5 K (x+a)x Ay Crrox dh < |€|X+0‘ SupB(x) ,
° (1 (1P 716l = m)") (1 12) (I Il Vi el Sup

where
B(x)

1+x2
xZ/K

J~x K/ (x - h)l/K 1 - (46)
o (1+@x-h?)(1+m)x-mh

A change of variable & = xu in this last expression followed
by a partial fraction decomposition allow us to write

B(x) = (1 +x2)

! 1 1
J 2 =y du
0 (1+x2(1—u) )(1+x2u2) (1-u) yl-1/x

1+ Jl 3-2u 1 (47)
= u

K2+4Jo 1+ x2(1—u)? (1—w)l Veyl-ux

1+ x? Jl 2u+1 1

xr+4 Jo 1+ xPu? (1 — )l ey 11/

which acquaints us with the fact that B(x) is finite provided
that ¥ > 1 and bounded on R, with respect to x.

Atlast, collecting (38), (40), (42), (43), (45), and (47) leads
to the statement of Proposition 6. O

3. Borel-Laplace and Fourier Transforms

In this section, we review some basic statements concerning
a k-Borel summability method of formal power series which
is a slightly modified version of the more classical procedure
(see [5], Section 3.2). This novel version has already been
used in works such as [3, 22] when studying Cauchy problems
under the presence of a small perturbation parameter. We
remind also the reader of the definition of Fourier inverse
transform acting on functions with exponential decay.

Definition 7. Let k > 1 be an integer. Let (m,(n)),, be the
sequence

my (n) = F(g) = J e dr,

0

n>1. (48)

Let (E, || - llz) be a complex Banach space. We say a formal
power series

X(T) =) a,T" € TE[[T]] (49)

n=1

is my-summable with respect to T' in the direction d € [0, 27r)
if the following assertions hold:

(1) There exists p > 0 such that the m,-Borel transform
of X, ngk()?), is absolutely convergent for |7| < p,

where
v O a, n
B (X)) = X i €M) (60

(2) The series %, (X) can be analytically continued in a
sector S = {r € C” : |[d — arg(7)| < &} for some § >
0. In addition to this, the extension is of exponential
growth at most k in S, meaning that there exist C, K >
0 such that

B,, (X)) <ceT, res. (51)
[, (%) @)

Under these assumptions, the vector valued Laplace trans-
form of %, (X) along direction d is defined by

3’de (‘%mk (5(\)) (T)
du (52)

- kL B, (X) () e =

Y

where L, is the path parametrized by u € [0,00) — ue”,
for some appropriate direction y depending on T, such that
L,cS and cos(k(y —arg(T))) = A > 0 for some A > 0.

The function gfnk (%mk (X)) is well defined and turns out
to be a holomorphic and bounded function in any sector of
the form S g g = {T € C* : |T| < RV¥, |d —arg(T)| < 0/2},
forsomew/k < 0 < t/k+20 and 0 < R < A/K. This function
is known as the m,-sum of the formal power series X(T) in
the direction d.

The following are some elementary properties concerning
the m-sums of formal power series which will be crucial in
our procedure.

(1) The function Zik(%mk (X))(T) admits X(T) as its
Gevrey asymptotic expansion of order 1/k with respect to T
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in S g k. More precisely, for every /k < 6, < 0, there exist
C, M > 0 such that

E (53)

< CM”r<1 + £> Iy,

for every n > 2 and T € §;4 pn. Watson’s lemma
(see Proposition 11 p. 75 in [25]) allows us to affirm that
gfnk(%’mk (X))(T) is unique provided that the opening 0, is
larger than 7/k.

(2) Whenever E is a Banach algebra, the set of holomor-
phic functions having Gevrey asymptotic expansion of order
1/k on a sector with values in [E turns out to be a differential
algebra (see Theorems 18, 19, and 20 in [25]). This and the
uniqueness provided by Watson’s lemma allow us to obtain
some properties on m,-summable formal power series in
direction d.

By * we denote the product in the Banach algebra and also
the Cauchy product of formal power series with coefficients
in E. Let X,, X, € TE[[T]] be m;-summable formal power
series in directiond. Letq, > g, > 1beintegers. Then X, +X,,
)ACI * )ACZ, and TQIE)%Z)A(I, which are elements of TE[[T]], are
my.-summable in direction d. Moreover, one has

(54)

qua?}g(’ik (%mk (Xl)) (1)

- ) (B, (T a?)‘(l)) (T),

for every T' € S; g k.
The next proposition is written without proof for it can be
found in [3], Proposition 6.

Proposition 8. Let f(t) = ¥,., fut" and §(t) = ¥,., g.t"
which belong to E[[t]], where (E, | - lg) is a Banach algebra.
Let k,m > 1 be integers. The following formal identities hold.

B, (F119F (0) (1) = kB, (F(©) (@),

Tk

I'(m/k)

By, (F"F (1)) (1) =

[ @ @ (FO) (%,

9
B (F&) x5 1) (1)
ok * = ko \Uk
-7 j B, (F0)((#-9)")
~ 1
* {%mk (g (t)) (Sl/k) mds
(55)

In the last part of the section, we recall without proofs
some properties of the inverse Fourier transform acting on
continuous functions with exponential decay on R; see [3],
Proposition 7 for more details.

Proposition 9. (1) Let f : R — R be a continuous function
with a constant C > 0 such that | f (im)| < C exp(-f|ml) for all
m € R, for some 3 > 0. The inverse Fourier transform of f is
defined by the integral representation

1

:WJ— £ (m)exp (ixm)dm  (56)

F(f) )

for all x € R. It turns out that the function &' (f) extends to
an analytic function on the horizontal strip

Hg={z € C|Im(z)| < B}. (57)
Let ¢(m) = imf (m). Then, we have the commuting relation

.7 ()@ =F"($)(2) (58)
forall z € Hp.

(2) Let f,g € Egu and let y(m) = (1/(271)1/2)f * g(m),
the convolution product of f and g, for all m € R. From
Proposition 2, we know that y € Eg ). Moreover, the following
formula

FN@F (9@=F"Wk (9
holds for all z € Hp.

4. Layout of the Main Nonlinear PDE and
Related Auxiliary Problems

Letg, M, p > 0, D > 2 be integers. For all 0 < I < g, let k;, m;
be nonnegative integers and g, be complex numbers with a, #
Osuchthatk, < k;,, forl € {0,...,q—1}.Forall0 << M, we
consider nonnegative integers hj, i; and complex numbers ¢
with ¢, # 0 such that i; < hy,, forl € {0,..., M — 1}. For all
0 < I < p, we denote by n; and b, nonnegative integers such
that b < b, forl € {0,...,p—1}. For 1 <[ < D, we set
nonnegative integers A, d;, and §; such that 1 < §; < §,, for
lefl,...,D-1}.

Let Q(X),R)(X) € C[X],1 < I < D, be polynomials
which can be factorized as Q(X) = X'Q(X), R(X) =
XVRZ(X), for some common integer v > 1, where Q(X) and
Ry(X) are polynomials that satisfy

deg (a) = deg (ﬁD) > deg (ﬁl) >
Q(im) # 0, Rp (im) # 0
forallme Randalll1 <I<D-1.

(60)
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We consider the following nonlinear singularly perturbed

PDE:
( <Zalem’tk’ ) (t,z,€)

M
+ <che”lthl ) u* (t, z, e)) Zb (z) €tV (61)
1=0

D
+ ZeA’tdlaf’Rl (0,)u(t, z€).

=1
The coefhicients bj(z) are constructed as follows. For all 0 <

j < p, we consider functions m — B j(m) that belong to the
Banach space E g, for some ¢ > 1 and 8 > 0. We define

B j(m) = (im)'B 4 (m) where v is the integer introduced above,
for 0 < j < p. We set

bj(z)=F ' (mr— B;(m)(z), 0<j<p,  (62)
where ! denotes the Fourier inverse transform defined in

Proposition 9. From (58), it turns out by construction that one
can write b;(z) = aij(z), where bj(z) is the inverse Fourier
transform of B j(m).

Remark 10. The reason why we make these factorizations
hypotheses on the polynomials Q(X), R;/(X), and the func-
tions B j(m) will be explained later on in Remark 14 of next
section and is related to the construction of the Banach spaces
in Section 2 and their Fourier inverse transforms.

Within this work, we will search for time rescaled solu-
tions of (61) of the form

u(t,z,€) = U (e*t, z,€), (63)

where a, § € Q are two rational numbers and « > 0. Then,
the expression U(T, z, €) needs to formally solve the following
nonlinear PDE:

q
Q(2,) < <Zal€ml+ﬁ“k' T ) U (T, z,¢€)

1=0

M
+ (che”’“ﬁ_“h’ Th ) U (T, z, e))

1=0
(64)

Z M@ (3 )30U (T, z,€).

4.1. Construction of a Distinguished Solution. We make the
additional assumption that «, 3 set above can be chosen in
such a way that the following inequalities
Al+0€(8l—dl)+‘3> 0,
(65)

nj—ocbj>0

Abstract and Applied Analysis

forall1<I<D,0<j< pand

ml + [; — (Xkl = 0,
(66)
m; +f—ak; >0
forall0 </ < sandalls+1 < j < g, for some integer
0 <'s < g -1, together with
W+ 2‘8 - ahl =
(67)
pj+t2B—ah; >0

forall0 < <s'andalls’' +1 < j <
0<s <M-1,hold.

M, for some integer

Remark 11. In the case g = 1, kyp,k; > 1, the roots of
the polynomial (in t) P(t,€) = aoe'"otk" + ae™ #*1 all have
modulus equal to

1/(ko=k:)

o |€|(m1—m0)/(k0—k1) (68)

a

except the trivial root 0. The constraints (66) imply in
particular that m;, — m; > a(k, — ky). As a result, all the
nonvanishing roots of P(t,€) tend to co as € tends to 0 and
0 is therefore the only root (with order k,) of P(t,€) in the
vicinity of 0 as € stays near the origin.

Let us assume that the expression U(T, z, €) is allowed to
be written as a perturbation series with respect to e:

U (T, z, €) = Uo (T) + ZUn (T’ Z) en’ (69)

n>1

where the constant term Uj(T) is taken independently of z
and is not identically equal to 0. The coeflicient U, (T) is called
the slow curve of (64) in the terminology of [6].

In the following, we make the assumption that Uy(T)
solves the following second-order algebraic equation:

<ialTk’>Uo (T) + <iClThl> Uy (T)* =0.  (70)

1=0 1=0

As Uy(T) is not identically vanishing, it must be equal to

- alTk’)/(ZliO ¢T™). Bearing in mind that ay, ¢, # 0, we
get its asymptotic behaviour

a _
Uy (T) ~ —Z?T"“ "o (71)

as T tends to 0.

Remark 12. Under the hypotheses (60) and (62), we observe,
by factoring out the operator 0, from (64), that U(T, z, €)
must solve the related PDE

9
Q(a,) < <Zalem’+ﬁ_“k’ T ) U(T,z¢)

=0

M
+ <che“’+2ﬁ“h’Th’ > U* (T, z, e))

1=0
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P —_~
= Y'b; (2) €T + F (T, z,¢)
=0

D
+ Y b CrdBTAR (3,) 90U (T, z.€)
I=1
(72)

where the forcing term F(T, z, €) is a polynomial in z of degree
less than v — 1. According to the assumptions (65), (66), and
(67) and using the fact that Q(0) # 0, by taking € = 0 into
(72), we see that the constraint (70) is equivalent to the fact
that F(T,z,0) = 0. The precise shape of the term F(T, z, €)
will be given later in Section 6; see (183).

In a first step, we express U(T, z, €) as a small perturbation
of Uy(T') that can be expressed in the form

Uy (T) = -2kt _ Bophotoy gy (73)
&) 0
where J(T) = i1 ] ]-Tj is a convergent series near T' = 0;
namely,
U (T,z,¢) = =275 - 0oy (1)
&) &) (74)
+TYV (T, z,¢€)

for some integer y € Z and some expression V (T, x, €). By
plugging this last expansion inside (64) and using the Leibniz
rule, we get

Q(o,) ((Zs:alTkl + i alem’+'8_“k’Tk’>

1=0 I=s+1

, <_@Tko—ho ~ Skt g () 4 TV (T, 2, e)>
% G

s M "
+ chTh’ + Z c,e"’*zﬁ*“h’T’

=0 I=s"+1

2
_ <_@Tko—ho ~ Skt g (7Y 4 TV (T, 2, 6)>
(o G

. - (75)
_ Zb] (Z) 6nj—ocbijj + ZeA,+o¢(8l—dl)+ﬁTd,Rl (az)
j=0 I=1

81
: (—@ (ko — o —d) Th o8 - 0
G

d=0
. 81' a% (Tkofho) a%] (T)
Q1+112=51q1!q2! ! !
& 1

+

-1
[T&-d) 1708V (T2, e)) ,

14,1
gig=8, 1192 a0

where we put H;io(y —d) = 1 by convention. At this
level, we observe the important fact that the coefhicient

1

in front of Q(0,)V(T,z,€) contains the term aOTk"W -
2(ay/cy)TFo oV, T = —a T**7 that we want to set apart. As
a result, we get the following equation satisfied by V (T, z, €):

Q(0,) V (T, z,¢) <—a0T’<°+V

s 9
+ (Za,Tk’ + Y aemtFehrh ) TV -2 <@>

I=1 I=s+1 =)

!

s M
. Tko~hoty <ZClThl + Z CI€I41+2/3*0‘h1 Thz>

=1 I=s'+1

—2 (“—°> Thhy ) (1)
%

s M
x <ZClTh1 + Z Cle.ul"'z,g_athhl >> + Q (az) (76)

1=0 I=s'+1

s M
VAT, z,e) TY <chThl + Z cle”’+2ﬁ_“h’Th’>

1=0 I=s"+1

P D
= Zb (Z) €nf_o‘bfTbj + ZGAI"'“((SI_dI)"'ﬁ
J
j=0

=1
41+9,=0, e !q2!

a1 -1
: H (y —d) TR, (3,) 02V (T, 2, e)) .
d=0

We now introduce some additional constraints on the inte-
gers Y, k;, h, b, for0 <1<q0<j<M0<h< pand
d;, §;, for 1 < I < D. Namely, we impose that the following
inequalities hold:

ky—h, <y (77)
for 0 < p < M, together with
forall 0 < j < p and finally
ky <dp—08p»
(79)

foralll1 <l<D-1.

Remark 13. (1) For the case k, > hy, from (77), we need y >
ko —hy > 0. As a consequence of (78), we get that b; > k, for
0 < j < p. Let, for instance,q = 1,M = 1, p=0,and D = 2.
Weseta =2, =1,y =6,k = 1 and we choose the powers
of t and € in the coefficients of (61) as follows:

my =3,

ko = 2,
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my = 6,
ky =3,
to =0,
hy =1,
=3
h, =2,
ny, = 19,
b =9
Ay =12,
d, =5,
6, =1,
A, =20,
d, =6,
8, =2.

2 =
(80)

For these data, we can check that the constraints (65), (66),
(67), (77), (78), and (79) above are fulfilled. Moreover, all the
forthcoming requirements (88), (105), (106), (107), and (184)
stated in Theorem 19 are also verified. In this special case, the
main equation (61) writes

Q (az) ((0063t2 + a1€6t3) u(t, z,€)
+ (cot + cle3t2) W’ (t,z, e)) by (2) €t (81)

+€PO,R, (0,) u(t,z,€) + € t°R, (3,) u(t, z,€).

We can divide this last equation by t, but not by €, and
the resulting equation still possesses a turning point and an
irregular singularity at ¢ = 0.

(2) For the case hy > k,, we may take y < 0 and hence
one can choose some b; < k; for some 0 < j < p. Let, for
instance,q =1, M =1, p = 0, and D = 2. We choose « = 2,
B =-1,y =-2,and « = 1 and we select the powers of t and
€ in the coefhicients of (61) as follows:

my =5,
ky =2,
my = 10,
k, =4,
Ho = 14,
hy =6,
t =19,
h, =8,

ny =3,

Abstract and Applied Analysis

by = 1,
A, = 10,
d, =5,
8 =1,
A, =12,
d, =6,
8, =2.

(82)

For these data, we can figure out that the constraints (65),
(66), (67), (77), (78), and (79) above are satisfied. Moreover,
all the forthcoming requirements (88), (105), (106), (107), and
(184) stated in Theorem 19 are also verified. In this particular
case, the main equation (61) writes

Q(o,) ((aoe t+ alelot4) u(t,z,€)
(coe £+ clewts) u* (t,z, e)) =b (2) et (83)
+€%P0,R, (0,) u(t,z,€) + €t°}R, (3,) u (t, z,€).

We can divide this latter equation by €’ and by t. The
corresponding equation still suffers the presence of a turning
point and an irregular singularity at t = 0.

In a second step, we divide the left- and right-hand sides
of (76) by the monomial T5*Y. We obtain the following
equation:

Q(0,) V (T, z,€) (—ao

s q
+ (Zasz’ + z alem“ﬁ_“k’Tk’ ) ) <%)

I=1 I=s+1

s M
T <ZCITh’ + Z CIGM’+2ﬁ_athh’> -2 <@>
o

=1 I=s'+1

ho](T <ZCT - Z C€Hl+2ﬁ “hzThz>>

=0 I=s'+1

(84)

!
S

Q(0,) V> (T, z,e) T ™" (ZClThl

1=0

I=s'+1

M
+ Z Cl€.“z+2/30ch1Thz> Zb (z) €Y —ab;bi—ko=y

R

|
=1 41+4,=6, D't G

TR (3,) 0%V (T, 2, e)> .
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Notice that the additional constraints (65), (66), (67) and
(77), (78), (79) ensure that the coefficients of the PDE (84)
are analytic with respect to T and € on a neighborhood of the
origin in C2. Moreover, the coefficient of Q(0,)V(T, z,€) is
invertible at T = 0 since a, # 0. We will see later that this
fact is essential in order to solve this equation within some
function space of analytic functions.

We look for solutions which are rescaled in time of the
form

V (T, z,€) = V(e*T, z,€), (85)
where

B Ap+a(dp-dp)+p

86
dp— ko s (80

As a result, provided that T = €XT holds, the expression
V(T, z, €) is supposed to solve the following equation:

S
Q (aZ) \/ (—[l—> z, e) <_a0 + Zale_x(kl_ko)-[l—kl—ko

I=1

q
+ z aleml+ﬁ—o¢k,—x(kl—k0)-ﬂ—k,—k0 _ <@>
(o

I=s+1

!
s
. <ZCI€—X(h1—ho)'ﬂ'hz—ho

I=1

M
+ Z CZ€H1+2ﬁ7ah17X(hl7h0)vhrh° > ) <a_0>

I=s"+1 %

s’
J(e74T) x <che_x(hl_h°)'|]'h’_h"

1=0

M
+ Z Cle‘uleZﬁiahliX(hliho)—[l—hliho > > + Q (az) \/2 (T)

I=s'+1

!
N
z,€) e X Rokoty <che_xh’ ™
1=0

M P
2—ah;— h
+ Z Cl€!41+ Bah—xhph ) _ ij (2)
=41 j=0

D-1
- o x ko) phikomy Z Arta@-d)+p

I=1

& T -k
X Z ' 1_[ (Y _ d) €_X( 1—ko—q1)

|
41+9,=5 q1-9>- d=0

TR, (3,) 0%V (T, z,€)

> 2 g-a

|
41 +9,=6p:91 21 9192+ a=o

+ (_:AIJJr‘7C(51:Fd)_7)+/3

13

. e_X(dD—ku—%)'ﬂ'dD—ko—% % RD (az) quza_‘ui_z\/ (‘ﬂ') z, 6)

+ TR, (3,) 3V (T, z,¢).
(87)

We make further assumptions on the coefficients d; and
0, for 1 < I < D which are stronger than the constraint (79).
Assume the existence of integers x > 1 and d;, > 1 such that

dp— kg = Op (i + 1),
(88)
dl_k():al(x-'—l)-'—dl,o

forall 1 </ < D —1.Then, forall 1 <] < D, and all integers
q; 2 0,9, > 0with q; + g, = &; we deduce the existence
of a nonnegative integer d;; ., which is larger than 1 except
dp,,s, = 0 such that

di—ky—q=K+1)qy+dg 4 (89)

Indeed, if one puts dp, , = 0, from (88), we can write

dl>‘11»qz = dl - kO 4~ (K + l)qZ
=8 (k+1)+dyg—q — (k+ 1),
(90)
=(q+q)(k+ 1) +dyy—q, - (k+1)q,

= q,k +d.

According to (88) and (89), with the help of formula (8.7)
from [26], p. 3630, we can expand the following pieces
appearing in (87) satisfied by V(T, z, €):

S
-ﬂ—dpfkoa_‘ug_n\/ (T,z,€) = ((—ﬂ—xﬂa_[r) D

+ Z A(SD’p-I]—K(aD_P) (—I]—x+1aT>P) V(T,ze€),

1<p<ép-1

TH R DRV (T, 2,€) = TH (T V(T, z,€) :
91
T4 By (T, z,€) = TWET D2y (T, 2,¢)

= 'ﬂ'dvql’% ((TK+1aT)qz

+ Z qu,pﬂ—x(qrp) (THIET)P) V(T,z€)
1<p<g,-1

forall 1 <1 < D and all integers q; > 0 and g, > 2 such that
g, + q, = 0, for some real constants Ay ,, 1 < p <dp-1,
andA, ,,1<p<g,-1

In a third step, let us assume that the expression V(T, z, €)
has a formal power series expansion

V(T,z,€) = Y V,(ze T, (92)

n=1
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where each coefficient V, (z, €) is defined as an inverse Fourier
transform

V, (z,€) = F ' (mr— w,(m,e)) (2) (93)

for some function m +— w,(m,€) belonging to the Banach
space E(g ) and depending holomorphically on € on some
punctured disc D(0, ¢;) \ {0} centered at 0 with radius ¢, > 0.
We consider the formal power series

w, (m,e) ,

w, (t,m,€) = Z T (/%)

n>1

(94)

obtained by formally applying m,-Borel transform with
respect to T and Fourier transform with respect to z to the

N
Ly e (0 (1,m,€)) = Q (im) <—a0wK (t,m, €) + Zale_x(k’_k‘)

I=1

K

I=s+1

K K

M K
T T hy=ho)/x-1 ds —ahy_—x(hy— T
J (TK _ S)( —ho) /K o, (SI/K,m) 6) + 2 Cleﬂfrzﬁ “hle x=he)

T (1= ho) /)

. i Lemakky T J’ " g, (% me) ds
’ I (k= ko) /) Jo R
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power series (92). The constraints (88) are introduced in
such a way that w, (7, m, €) satisfies some integral equation
by making use of the properties of the m,-Borel transform
of formal series and Fourier inverse transforms described in
Propositions 8 and 9 with the help of the prepared expansions
(91). Namely, after division by the power (im)", which is by
construction a common factor of the functions Q(im), R;(im),
and B;(m) for 1 <1< D, 0 < j < p, we get the new problem

L-r,m,e (wx (T’ m, 6)) = Rr,m,e (wx (T’ m, 6)) (95)

with vanishing initial data w, (0, m, €) = 0, where
K T
) T j K ykmko)/k=1 (1 ds
—_— 5 —s w, (s, me)—
M=k by el e

a g
) <_0> Y e
%/ \i=z

K

o h @

I=s"+1

(h—ho) /-1 1k ds <ao > 3 o " I LNy
-s w (s, me)— | -2 — q) Ji€ - T -5
) ( ) § ) % <ZZZJ T((hy=hy+ j) /) Jo ( )

=0 j=1

K K

(96)

M

ds ok —v (ot i

-, (sl/K,m,e) ~+ Z c,Z]J-e”’+2ﬁ ohy =X (=ho+J)
s

I=s'+1 j=1

T (hy—hy+j)/x—1
(TK s) 1 0 ]
) /K) J‘0

T ((h—hy+j

P K

T J ’ (" - S)(—k0+y+hl)/t<—1

. 1k k0+)/+hz)
w, (5%, m,e) = >+Q<zm)<2ce T ((~ko+y+Hh)/x)

s [too 1 ! 1/x ) < N1/« ) 1 ! dS
1/ - b - b bl bl —d d -
X {S JO J_OO (27-[)1/2 W, <(S N ) m—1mp,€ | W, (S ) my, € (5 ~ 5’) 5’ s damy S

P K

M
+ C eﬂl*'zﬁ—“hl—)( (h=ko+y) T
2.6 I (ko +y +Hhy) /)

I=s'+1

N +00 1
X 1S ——w,
{ Jo J_oo m)'?

J ’ (" - S)(—k0+y+hl)/x—1

<(s—s')l/x,m—m1,e>wx ((s')l/K,ml, >( —9)y ~ds dml} is>

P bi—ky—y _
5 —ab;—x(b;—ko— L Ara®-d)+p o

R.,. (w (T,m,e)) = ZB.(m)em abj—x(bj=ko=y) + Ze +o(8—d; Z H (V d)

e j=0 ’ r ((bj —ko - Y) /K) I=1 qlﬂh_(sl%'%

K -r’(
. e_X(dz—ko_%—qz)ﬁl (im) x { - T J (TK _ S)dl,ql,qz/tc—l K‘izs%wx (SI/K,m 6) Z A
T ( L.g1,92 /K) 0 1<P<‘12
T 2 (digy gy (@) /K~1 1/ ds A pra(dp—dp)
J (7% = 5) BT kFsPw, (5 K,m,(—:) 2L Aoraldpdp)tp
I‘((dl»‘h’q: +K(q2 _p)) /K) 0 S
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1 Q-1 _
X Z 8D' (Y _ d) e_X(dD_ko_QI_‘b)RD (lm) % <|

1g.!
‘11+‘7218D»‘7121q1'q2' d=0

TK

ds
D D ( 1/x )
k?sPw, (s, m,e . + E Agp
1<p<g,-1

kPsPw, (SI/K, m,€) é} + Ry, (im) {(KTK)(SD w, (T,m,€) +
s

(Op—p)/x-1 ds
R Kpspwk(sl/x,m,e)?}-

By convention, the two sums ¥, ., ;[ -] appearing in (97)
are vanishing provided that g, € {0, 1}.

Remark 14. The hypotheses (60) and (62) ensure that (87)
does not contain terms that involve isolated polynomials in
T which are not inverse Fourier transformable.

5. Analytic Solutions of a Convolution
Problem with Complex Parameters

Our main goal in this section is the construction of a unique
solution of problem (95) within the Banach spaces introduced
in Section 2.

We make the following further assumptions. The condi-
tions below are very similar to the ones proposed in Section 4
of [3]. Namely, we demand that there exists an unbounded
sector

SaR,

= {z €Cllzl zrgg, 'arg (z) - d@,ﬁp' < ﬂéﬁu}
with direction dgz € R and aperture 7755z > 0 for some
radius r5z > 0 such that

Q (im)

(98)

= S5 % (99)
Ry (im) %
for all m € R. The polynomial Ism(‘r) = —Qa(im)a0 -
ﬁD(im)K‘SDT‘SDK can be factorized in the form
B _ Spk—1
B, (1) = -Rp (im)x™ [ (r-q,(m), (100)
1=0
where
— . 1/6px
'aOQ (1m)'
B g oo
b (101)

exp (VT (ang [ ZHQGm) 1, 2
e (7 (o () 3 )

forall0 <l <dpk—1landallm e R.

r ((dD,qpqz +x(d, - p)) /K)

15
T—K J"l’K (TK _ S)dD,ql,qz/K,l
I (dqup‘h/K) 0
JTK (TK - S)(dD’ql»QZ +x(qy—p))/x—1
0
T ™
A8 _—— X J (TK
ISP;:D* PPT(k(Op - p) /x) ~ Jo
(97)

We select an unbounded sector S; centered at 0 and a
small closed disc D(0, p) and we require the sector SG,RD to
fulfill the next conditions.

(1) There exists a constant M, > 0 such that

|t —q (m)| > M; (1 + 1) (102)

forall0 <1< 8pk— 1, allm € R,and all 7 € S; U D(0, p).
Indeed, from (99) and the explicit expression (101) of g;(m),
we first observe that |g;(m)| > 2p for everym € R, all0 <[ <
dpx — 1 for an appropriate choice of 75z and of p > 0. We
also see that, for all m € Rand all 0 < I < §pk — 1, the roots
q;(m) remain in a union % of unbounded sectors centered
at 0 that do not cover a full neighborhood of the origin in
C* provided that N6k, is small enough. Therefore, one can
choose an adequate sector S, such that S; N % = 0 with the
property that for all 0 < I < 8,k — 1 the quotients g;(m)/t lay
outside some small disc centered at 1 in C for all T € S, and
all m € R. This yields (102) for some small constant M, > 0.
(2) There exists a constant M, > 0 such that

v —a, (m)| = M, |q,, (m)| (103)
for some [, € {0,...,0pk — 1}, allm € R,and all 7 € S; U
D(0, p). Indeed, for the sector S; and the disc D(0, p) chosen
as above in (1), we notice that for any fixed 0 < [, < 6px — 1,
the quotient 7/g; (m) stays outside a small disc centered at 1
in C forall 7 € S, UD(0, p) and all m € R. Hence (103) must
hold for some small constant M, > 0.

By construction of the roots (101) in the factorization
(100) and using the lower bound estimates (102) and (103),
we get a constant Cp > 0 such that

|B,, (0)] 2 M M, | Ry (i) )|

' < |a0Q (im)| )
'ﬁD (im)' %

1/6px

(1+ 2]y
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> M6DK 1

M, (r@; )I/SDK 'RD (zm)'

Spr—1
1+ b -
X mln—( x)a (1+ |T|K)6D L
x>0 (1 + K) p—1/x

1/ DK 8p-1/x

=Cs(raxr,) |RD (zm)j 1+ 7))

(104)

forall T € S, UD(0, p) and all m € R.

In the next proposition, we provide sufficient condi-
tions under which the main convolution equation (95) pos-
sesses solutions w;, (‘r m, €) in the Banach space F
described in Section 2.

(0, B s X 00K5€)

Proposition 15. Under the additional assumptions
(x+ o) (ko +y+m—xdp+1) = x (ko +y+ M)

>0,

Abstract and Applied Analysis

forallg, >0,q, > 1suchthatq, +q, =6, for1 <l <D -1

and

Ap+a(dp—dp)+p

dD,l,z 1
+(X+a)x<% +q2—5D+;)

-x(dp-ky=6p)=0

(107)

forallq, > 1, q, > 1suchthat q, +q, = 8p, there exist a radius
TR, > 0, €y > 0 and a constant @ > 0 such that (95) has a

unique solution w,‘j(‘r, m, €) in the Banach space F(di
which suffers the bounds

3 Botths X 50616,€)

"wz (1,m,€) “(v (108)

B = ©
for all e € D(0,¢,) \ {0}, where the direction d € R can be
chosen for any sector S; that fulfills the constraints (102) and
(103) above.

105
) (105) Proof. We undertake the proof with alemma that studies some
8p>=, ~kg+y+h >0, bj—k—y=>1, shrinking map on the Banach spaces mentioned above and
K reduces the main convolution problem (95) to the existence
f a unique fixed point for thi )
forall0 <1< M,0<j<p, of a unique fixed point for this map
Lemma 16. Taking for granted the fact that the assumptions
A +a(d,-d)+pB (105), (106), and (107) hold, one can select the constant TR, >
J 0 large enough and a constant @ > 0 small enough such that
Layd> 1 lle € D(0, 0}, th I . defined
+(X+06)K<%+q2—613+;> (106) for all e € D(0, &) \ {0}, the map 7, defined as
. H. =K+ I+, (109)
-x(d—ky—6;)20, op=—-+9§
x(d—ky = 6) D= Y/ where
K (w(t,m)) = Z (m) "X b koY) AR Q (im) i wh) -
w(t,m)) =Y B, (m) " xXb~Rv) _ -Q(im aje KT —
=0 Pm(T)r((bj—ko_Y)/K) I=1 P, ()T ((k; = ko) /1)
T q K T
. J (TK _ S)(kl’ko)/K*I w (SI/K,H’I) é n z aleml+ﬁ—ak,—x(k,—k0) _ T J (TK _ S)(kl—ko)/x—l
0 s 4 P, ()T ((k —ky) /x) o

Ur ds _ < > ~x(hy=hq) T JTK( x )(hrho)/'ffl 1/x ds

w(s Ge 5 —s w(s'™,m)—

( ) <Z B, ()T ((h = hy) /%) Jo ( ) s
(110)

M K
_ _ _ T
+ Cle.“l*'zﬁ “hze X(h—hy) _ j ( K
l:§1 P, ()T ((h — ho) /%)
. Z]'G_X(hl—ho"'f) _ T JT (T;c
=1 ! P, ()T ((h—hy+j)/x) Jo

T
X =
Pm (T)r((hl_

hy + j) /%) JOT <

(ho)/x-1 ¢ 1/x .\ S _2<@) d
s) w(s ,m)s> o <1_ZOCI

M
hy—ho+j) /K- ds o —y(h—h i
_ S)( 1—ho+j)/x 1w(51/1€’m) 24 Z CIZ]]'GMH—ZI; “hle X(h—=ho+j)

I=s'+1 j=1

C \Bhotiie1 (e N\ ds
5) w(s ,m) < >> N



Abstract and Applied Analysis 17
S’ K K
7> (w(t,m)) = —Q (im) cle_X(_k°+y+hl) — ‘ J (" - s)(fklﬁym’)/'{f1
¢ ; B, (0)T (ko +y +H) /x) Jo
s (400 M
X <|5J J S ((s - s')l/ ,m— m1> w ((s')l/ ,m1> —ds dml} ds + ) et 2Petx (ko +)
0 J-oco (271’)1/2 (S =S )S S i
' 7" J 2 (5 — ) Horr it
P, ()T ((~ky +y +Hh) [x) Jo
an)
o | n1/x N ds +a(O—dp)+B
X{SJ’O J_Oo WU)((S—S) ,m—m1>w<(s) ,ml>mdsdml} 5 ) ZZI:G I 1—4a;
I = x(d—k )% T Tk N/l 1k | 9s
X ()/ d) 1Ko~ =92 R (1m) X 4= J (T _ s) Lar-4z k252 (s ,m) —
q1+%=51q1 'qzl ‘li_[=0 Pm (T) T (dl"h:% /K) 0 ( ) $

K T

+ZA)~ T

1<p<g,-1 * ppm (T) r ((dl,ql,q2 tK (qZ -

along with

K2 (w(1,m)) = B0t o o
a+a=0p.q>1 T°92°

q:-1

. H (Y _ d) e—X(dD—ko—ql—Qz)ﬁD (im)
d=0

K
TK

{; [ e
P,(n)T (dD)ql,q2 /;c) 0

-qus‘bw(sl/K, ) Z A,
1<p<q,-1

TK

By @ (Ao, + (@~ p)) ) (12

TK
: J (TK - S)(dD’quZ +x(qy—p))/x—1

ds
L PP 1/x R
sz(s ) S}+ p (im)

TK
. Ay —
{15;:;D—1 o P, ()T (x(8p - p) /x)

J- (T S)K((SD p)/x—1 P sP ( 1/x,m)é} ,

N

satisfies the next properties.
(i) The following inclusion holds:

%.(B(0,@)) c B(0,@), (113)

7~ $)<dz,q1,qz+'€(qz—p))/x—l P sPw (Sl/x’ m) é} ,

p)) /x) L (

N

where B(0, @) is the closed ball of radius @ > 0 centered at 0 in
F&ﬁ)ﬂ)x,w@e),for alle € D(0,¢,) \ {0}
(ii) One has

||%e (wl) - %e (w2)||(v,ﬁ,;4,x,¢x,lc,€)

(114)

1
< E "wl - w2“(v,ﬁ,;¢,x,0¢,1€,e)

for all w, w, € B(0,®), for all e € D(0,¢,) \ {0}.

Proof. We first deal with the property (113). Let € € D(0, ¢,) \
{0} and consider w(r,m) € F, (V’ﬁ’”)x,“’x’s) We take @ > 0 such
that |w(z, m)II(%ﬁ)H,X,a,K,e) <@.

We start providing norm estimates for each piece of the
map # i

From Lemma 4, we deduce the existence of a constant
(}?11 > 0 depending on «, ¥, ky, and b; for 0 < j < p such
that

b,—k,—
B. (m) e Xk LA
/ B, (1)
m (0,8, X 50,55€)
~ (115)
B.(m
- C, " ( )"(M) |€|(bj—ko—y)cx_

Cr(rqa, )™ e o )
According to Proposition 5(1), we obtain a constant C, > 0
depending on »,x, kj, for 0 < I < g, h;, for 0 < I < M,
Q(X), Rp(X), and a constant C,(j) depending on v, x, h; for
0<l<M,QX), I~2D(X) and j such that

Xtk k) Q (im) T° j (" - )<k,—ko)/x—1
B, (1)
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1/ ds
-w(s K,m) ;

(9, B X 50,K5€)

G alk—kg)
< 1/8px lel llw (7, m)"(%ﬁ,ﬂ,x,tx,x,e) >
Cs (raz,)

o
e—x(h,—hO)Q(lm)T J ! (Tx_s)ml—hg)/x—l

Pm () Jo

cw (5%, m) %S
w(s K,m)s

(9, Bt X056
G a(hy—hg)
< 1/8pK |€| 0 "w (T’ m)ll(v’ﬁ’l"))(’“>x»5) >
Cs (rgz,)
et ) QUMY [T e \umhyt -1
€X10J~ TJ(T_S)IO
P, (1)
ds
w (sl/ K,m) =
s
(9, Bt X 00,K,5€)
C, (j) a(hy—hy+j)
< e T I @Ml
Cs (ax,)
(116)

Moreover, it appears from the proof of Proposition 5 that the
next bounds hold for C,(j): there exist a constant C, > 0
depending on v, x, h; for 0 < I < M, Q, R, and a constant
A, > 0 depending on v, k, h; for 0 < I < M such that

o h—hy+
C,(j) < G,ALT <l—°”> (117)
K

for all j > 1. In the following, we will make use of the
notations from the proof of Proposition 5. From the classical
estimates

m; \™
sup x"e "™ = <—1 ) e™ (118)
x20 m,

for any real numbers m; > 0, m, > 0, we deduce that for all
j = 1suchthat (h—hy+j)/k—1>0

1+x%

sup e "xG; (x) < sup (1 + x2)
1/x 1

x20 X x20

h—hytj e (1"
o+ K = (12)x <_> »

2

< hy—hy + j Buhor i hy—hy + j
B xv/2 P\ K (119)

(hy = hy + j) fic + 2\ oD
+
v/2

()0
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Furthermore, according to the Stirling formula I'(x) ~
2nx" %™ as x — +0o and bearing in mind the
functional relation I'(x + 1) = xI'(x) for all x > 0, we get

two constants C, > 0 and A, > 0 independent of j such that

1+x°

sup 1k

x=0 X

+F<—hl_h0+] +2>>
K

SCZAQ<F<hl_h°+]>+<hl_h°+J+1>
K

K

<hl_h0+j>r<hl_ho+j>>
K K '
On the other hand, by direct inspection, we observe that there
exists a constant C, ; > 0 (independent of j and €) such that

. e iy —hy+
e xG, (x) < CyAL <r (l—(’”>

K

(120)

1+ x2 —VX X .
o € G, (x) £C,,.
OSxI<)1 x/x (1 + |€|(X+¢x)1c x)Yl 2 (x) 2.1 (121)

Furthermore, there exists a constant K, ; (j) depending on v,
x, hy for 0 <1 < M and j, such that

1+ x* Zox X
sup

e
xal XMET (1 e U i)

" G2 (X)

(122)
o LFE
B lefl +(x/2)?

Ko (7)-

Now, after a thorough examination of the proof of Proposi-
tion 2 out of [23], one can check that there exists a constant
K, > 0 independent of j such that

hl_ho+j>
K

K,, (j) < I?z.lr( (123)

for all j > 1. Finally, gathering (120), (121), (122), and (123)
yields the estimates (117).

Besides, we choose the radius 75z > 0large enough and
@ in such a manner that

P c,
j:0C13 (T’G’RD)IMDK T ((b] — k() — )/) /K)
"Ei (m)"(ﬁ #) b, +(b;—k S
' ) n=aby+(bko—p)a
inmeR |§D (lm)| |€| J i\ + lzzl |611|
G, alki—ko)

lel @

Cs ("aﬁD)lmDK T ((k; = ko) /%)

q
+ Z ||

I=s+1
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. C2 |€|ml+ﬁ—ak,+a(kl—ko)
1/6pk
Cs(rgr,)  T((k-ko)/x)
S’
a>+2|—’ 3 ol
=1
. 1/8DSZ |€|0<(hl—ho) @
Cs(rgr,)  T((h—ho)/x)
M
+ Z la
I=s'+1
. I/BDKCZ le] pt2p-ahy
Cs(rgm,)  T((h=ho)/x)
. |€|‘X(h1*ho) o |+ 2 Z |Cl
M
Z ']| 1/6 x lel*® ) @ ¢ Z la
j=1 QRD) I=s"+1
. Z ' ]| o le |!4z+2/3*0¢hz |€|°¢(hz*ho+j) @
1 K
izt Cp Q,RD)
)]
< =
3

(124)

o

X(=ko+y+hy) Q (im) ~ J (TK _ s)(—koﬂ’*'hz)/K—l sl/K*lh (SI/K) m) ds
0
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Notice that the infinite sums over the integers j > 0 are
convergent in the left-hand side of inequality (124), provided
that €, > 0 is small enough, according to the fact that there
exist two constants J;,J, > 0 such that |]j| < J1(J,) for all
j = lsinceJ(T) =} ;. ]jTj is a convergent series near T’ = 0.

From the definition of % given by (110), we deduce the
following inequality:

<2 (125)

1
||%6 (w (T, m)) (n Bt xs0050€) — 3

Hereafter, we focus on norm estimates for each part of the
map # 5 We set

K

h(t,m)=7"" JT J+Oo w

0 -0
N1/« 1
w<(s) ’m1> (TK_SI)SI

Regarding Proposition 6, we get a constant C; > 0
(depending on p, k) such that

((TK - s')l/K ,m— m1>

(126)
ds'dm,.

I (r, m)ll, lw (z, m)II, (127)

Cs
< —_—
Boths o0 K,€) = | |X+o¢ Boths X5 0165€)

On the other hand, using Proposition 5(2), we grab a constant
C) > 0 (depending on v, x, y, 8p, ko, hy for 0 < I < M and
Q(X), Rp(X)) such that

(T) (9B, X 50,K5€)
(128)
C, ( . v - -
x+o)k((=ko+y+hy) [k+1/x)—x (ko +y+h)—(x+a)x(Sp—1/x)
< 1/8p% |€| 0 ' 0 ' P "h (T m)"(v,ﬁ,y,x,a,x,e) .
Cs (raz,)
Therefore, gathering (127) and (128) returns
l -Xx(= kg+y+hz)Q(lm) xJ (- S)(’koﬂ/*hl)/"’l
P (1) 0
S +00
N1/« ) ( n1/x ) ds
X 1S w((s—s sm—m,; Jw| (s ,m —dsdm
{ LLX) <( ) ! ( ) Yi(s=s)s L . (129)

CiCs

< |
Cs(rgn,)"™"

6|(X+a)(—k0+y+h,—1<8D+1)—X(—k0+y+h,) ”w (T m)"?v

(9, Bt X00,K,5€)

3 Boths X5 0516,€)
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Bearing in mind Proposition 5(1), we get a constant C, > 0
(depending on v, x, d;, 8, and R;(X), Rp(X) for 1 <1 < D-1),
such that

e_X(dl‘ko_‘sI) lil (im) -~ JT (TK _ s)dml,o/x—l
P, (1) 0

cw (s m) &
w(s K,m)s

(0 Bofhs X506, K,€) (130)
G, (x+@)dy 5,0~ x(dy—ko=6))
< 1/8px Iel AT o0 R0 ”w(T)m)"(v,ﬁ,y,x,oc,x,e)
Cs(ras,)
G aldi—kg—8)
- i 1 o ()l
Cr(rar,)

Likewise, we can apply Proposition 5(2) in order to exhibit a
constant C, > 0 (depending on v, x, d;, &, ko, 8pp and R;(X),
Rp(X) for1 <1< D-1)with

Xdiky=3) R, (im)

P, (1)

K ‘ K _ dlﬂl»’iz/’ﬁl 92 1/x ds
T L (7" -5s) s w(s ,m) S

(9, B s Y505 16,€) (131)

!
CZ (x+ox(dyg, g4, /k+q,=0p+1/1)=x(d—ko—0))
le]
)1/6DK

Cs(rar,
: ||w (T) m) ||(1/)ﬁ,[,¢)x,o¢,1<)e)

forall g, > 0 and g, > 1 with g, + g, = §;. Besides,

_ .
o xdiky-3) R (m) J (° = s)hanalrap1
P, (7)

0

sPw (s”“,m) %

(9, B s Y505 165€) (132)
!
C, lel (K (dy gy g, 16+3,~Op+1/K)—x(d—ko—0})
- 1/8px
Cs(ras,)

: ||w (T) m) ||(1/)ﬁ,[,¢)x,o¢,;<)e)

provided that g, > 2and 1 < p < g, — 1, withgq, + g, = §;.
Now, we choose ok, > 0 and @ in such a way that

: GG

Z o

1/6pk
=0 Cp (rQﬁD) [ ((~ky+y+h)/x) m)'?

M
. |€|(X+a)(—k0+y+hl—xé‘D+1)—X(—k0+y+h,) @2 + Z lcll

I=s'+1
CiCy
' 1/opx
Cs(rar,) T((~ko+y+h)/x)@m)'"
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x |€|(X+o¢)(fk0+y+hl—1<5D+1)—X(—k0+y+hl) |€|,ul+2ﬁ—ochl (Dz

R Aprate-d) B o
+ ) fefprreterdr ly-d|

. C2
Cp (ré,ﬁD)l/aDK T (dyp,0/%)

81! q:-1
+ ) -4

|
41 +4,=019,21 992 g=o

aldi=ko=0))

lel

C;qu
Cp (ré,fep)l/%x I (dl,qlxqz / K)

% |€|(X+"‘)K(dl,q1 @ [k+q,—-0p+1/x)—x(d;—ky—6)) @

+ Z |A‘I2>P|

1<p<qg,-1

! .p
Cyx

Cp (ré,ﬁD)l/aDK I (dl,ql,qz/K +49; - P)

IN
w|®

% |6|(X+a)x(d1341342 [K+q,=8p+1/K)—x(d;—ko—6;) @

(133)

With the help of the definition of %7 given by (111), we deduce
that

(0]
3 (134)

",7/? (w(z, m))||(v,ﬁ,;4,x,oc,x,e) s

Ultimately, we direct our attention to norm estimates for 7.
Taking notice of Proposition 5(1), we get a constant C, > 0
(depending on v, «, ky, 65, dp), such that

H ¢ X@pky=0p) M -~ J’ ' (" - S)dD,éD,,,/Kfl
P, (1) 0

1 ds
w(s K,m) ;

(9, B> Y55 165€)

< G (e[ 0+ 94D.p0-X( Ko ~85) (135)
- 1/6px

Cs (raz,)
: ”w (T’ m)”(v,ﬁ,y,x,oc,x,e)

CZ dp—ky—9,

= i el w (1 m) e

Cs(rar,)
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Moreover, we can apply Proposition 5(2) in order to exhibit a
constant C;, > 0 (depending on v, k, ko, dpp, and 8,) with

o Xdoko-0p) Rp (im)

B, (1)
~
T J (1" = 5)Toanltl gy (s, m ds
o s
(9,5 s X 50555€) (136)
C/
2 (x+e)x(dp,g g, [%+q,=0p+1/x)=x(dp—ky=Op)
= o l€l
5 (raz,)
Jw (7, m) ||(v,ﬁ,l4,x,v¢,1c,e)
forall g, > 1and g, > 1 with q, + g, = 8p. Besides,
- . ~
& X(dp—ko=0p) RP (im) o~ J (" - S)dn,q,,qz/“qff’*l
P, (1) 0
ds
-sPw (sl/K, m) —
S B uypane (137)
C/
< T2 |l gy /4081 k)3 =30)
= 1/8pk
Cs(rar,)

: ”w (T, m) "(v,ﬁ,y,x,tx,k,e)

provided thatq, > 1,g, > 2,and 1 < p < g,—1withg, +q, =
Sp- Finally, we can select a constant C}, > 0 (depending on v,
«, and 8p,) such that

R~D (zm) TK J (TK _ S)Bpfpfl S‘Dw (SI/K,m) é
P, (1) 0 N

(9, B, 1 X 508,15
o 138)
< —2—— el |w(zr,m)],

1/8pk Bt Xo00,15€)
Cs (rqz,)

forall1 < p < 8y — 1. We make the choice for the size of
radius Gk, and @ in such a manner that

8p-1
|6|AD+<x(6D—dD)+ﬁ H h/_dl
d=0

. C2
C(rar,)"" T (dpsyolx)

N =
* > T1lv-4

|
q1+3,=0px9121,G,>1 9192 a=o

e[ <oRo=00) g

!9
CyK

CF (ré,ﬁo)l/aDK I (dD’QD% /K)

|(X+0<)K(dD’ql’q2 [k+q,~0p+1/1)—x(dp—ky—Sp) @

X le

+ Z |A‘12’P

1<p<qg,-1
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!
Cyx

Cs (TQRD)UBDK r (dD,ql,th/K +q,— p)

« |e| gy g, 1640 -8+1K)-x(ep=Fy=0p) g

+ Z |A6D)P|

1<p<dp-1
C! P
K

Cs (ra,ﬁD)UaDK [ (8p-p)

|X+(X

le o<

@
7
(139)

From the construction of the map 7 2, it is now clear that

<2 (140)

3
||%e (w(1,m)) (B xs00€) 3

Eventually, gathering (125), (134), and (140) yields the first
claim (113).

In the last part of the proof, we fix our attention to the
affirmation (114). Let w, (t, m), w,(7,m) € Fg/’ﬁ’ﬂ,x)“,x,e) with
”wl (T’ m)”(v,ﬁ,y,x,a,x,e) <o,

(141)
"LU2 (T’ m)”(v,ﬁ,u,x,a,;c,e) < 0.

We first prove that %! is a shrinking map. According to
estimates (116) we obtain a constant C, > 0 (depending on
v, K, ky, for0 <1 < g, h, for0 <1< M, Q(X), RD(X)) and a
constant C, () satisfying the estimates (117) such that

—~ . PR
e‘)((kz—ko) Q~(zm)'r JT (TK_S)(kao)/K*I

b, (1) Jo

. (“’1 (sl/x,m) - w, (sl/x,m)) %

(9, B s X5005K,€)
G atl—k,)
< 1/3p% |€| e ||w1 (T» m) —w, (T’ m)||(1',l3,[4,)(,06,;<,6) >
Cs(rar,)
— . P
e_X(hz—ho) Qflm) T JT (TK _ S)(hl’ho)/K*I
P, (1)

. (w1 (sl/",m) -w, (sl/K,m)) ds
S (9, B, X 5045K€)

(142)

C ~
< 2 i |€|a(h[ ho) le (t,m) —w, (T’m)”(v,ﬁ,y,x,a,x,e) s
Cr(rax,)

k) QM) J ! (2 — sttt
0

P, (7)

o ($m) = (6m)

P ysie)
< CZ (J) |€|o¢(h,—h0+j) "wl (T m)
= 1/8pK ’
Cp(rar,)
—w, (T’ m)" (0, Bos X 00,K€) *
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Therefore, we choose the radius r5z > 0 large enough in
order that

Slal T
S Cp(rar,) T (k= ko) /)

. C, |€|m,+ﬁ—¢xk,+¢x(k,—k0)
1 K
Cs(rgr,)  T((k—ko)/x)
Sl
e2|2 (3l
=1
C _
o 2 |€|(x(hl hy)
Cs(rar,)  T(( ) /%)
M
+ Y ldf (143)
I=s"+1
CZ w+2p-ah
) opr lel
Cr(rggm,) T ((h—ho)/x)
Jefetrho > 2|2 <Z B
0
éAJ B . M
D el IR W o
j=1 B (FG)RD) I=s"+1
C,Al ) e
D g et e ’W))
= Cp(rgr,)
1
< -,
6
As a result, we can set down
|7 (w, (. m)) - 7. (w, (v, m)) o)
B (144)
g “wl (T Wl) w, (T m)“ (9,85 s Y 00,55€) *

|

P, ()

-x(= ko+}’+h1)Q(lm) KJ - s (=ko+y+hy)/x—1 sl/K—l h SI/K m) - h Sl/x m)) ds
RGED) (y (s m) =y (s, m))
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We turn to % and show that it is a shrinking map as well. As
a preparation, we may first rewrite

(145)
—wy (=) m=m ) () m) )
+w2<(TK—s')1/K,m—m1><w1((s')l/K,ml)
—wy ()" m1 ).
For j = 1,2, we set
x—1 Tt K n1/x
hj(T,m):T Jj wj<(1 —s) ,m—m1>
oo 1 (146)
wj ((S,)I/K ,m1> st'dml.

Regarding both the factorization (145) above and Proposi-
tion 6, we get a constant C; > 0 (depending on y, k) such
that

nhl (T’ m) - hZ (T’ m)"(v,ﬁ,y,x,tx,:c,e)

C
< i (1 @Ml
(147)

+ "wz (T’ m)”(v,ﬁ,y,x,a,;c,e)) X "u)1 (T’ m)

-w, (1, m)“(‘y)l;)‘u,x,(x,K,E) ’

From (128) together with (147) we pick up a constant C; >0
(depending on v, , y, 8p, ko, h; for 0 < I < M and Q(X),
Rp(X)) such that

(9, B, X 50,15
CI -k hy 1/x)—x(—k hy)— Sp—1
< 2 o Iel()(+0¢)1<(( o ty+hy) [kt 1/1) = x (ko +y+hy)—(x+a)x(8p—1/x) ”hl (t,m) — hz (, m)"(%ﬁ)ﬂ,x,“’x’e)
Cs(ras,) (148)
!
C2C3 lel(X+a)(—k0+y+hl—K6D+1)—X(—k0+y+h1)
- 1/8pK
Cs(ras,)

x ("wl (T’ m)“(v,ﬁ,y,x,a,x,e) + "wZ (T’ m)||(1/,[3,[4,x,0¢,1<,e)) "wl (T’ m) ) (T’ m)||(v,ﬁ,y,)(,oc,1c,e) :
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Bearing in mind (130), we get a constant C, > 0 (depending
on v, k, d;, & and R(X), Rp(X) for 1 <1 < D — 1), such that

_ .
o Hdiko-o) Ry (im) J % = syl

B,(®) o

. (wl (SI/K,m) - w, (sl/x,m)) ds

S (1,55 X, 00:1,€) (149)
C, a(d—k,—8))
< o el wy (rm)
Cp (ré,ﬁp)
— W, (7, m)“(v,ﬁ,y,)(,oc,x,E) .

Likewise, we can apply (131) in order to exhibit a constant

C} > 0 (depending on , «, dj, &, k,, 8p and R(X), Rp(X)

for1 <1< D-1)with

IE—X(dz—ko—Sz) fil (im) = JTK (v - s)dz,ql,qz/’“l
B, (1)

- st (w1 (s”“,m) - w, (sl/K,m)) ds

(7, B s Y 0%K5€)

CiC,

P (réﬁp)l/%x T ((=ko +y+ k) [x) 2m)'/?

S,
Z lCl|
=0 C

¢ (x+a) (ko +y+h—k8p+1)—x(~ko+y+h;) < (

C\C,
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!
G, le] (oK (dyg, 4, /K +a,~Op+1/%)=x(di—ko=0))
- 1/8px
Cs (5x,)
’ ”wl (t,m) - W, (r, m)”(v,ﬁ,y,x,a,x,e)
(150)

forallg, > 0and g, > 1 with q; + g, = ;. Furthermore, from
(132) we deduce

|

~ . o~
e—)((dl—ko—él) IEI (im) - J (TK _ S)dl,ql,qz/K+qZ_P_l
P, (1) 0

-sP (w1 (sl/K,m) - w, (sl/K,m)) %

B .55€) (151)

!

< C2 €|(X+"‘)K(dt,q1,q2 [k+q,—0p+1/K)—x(d)~ko—06))

|
Cs (rqm,) ™"

Nwy (1, m) —w, (1, m)"(v

3 Botths X50K,€)

provided thatg, > 2and 1 < p < g, — 1, withgq, + g, = 9.
Now, we sort 757z > 0 and @ in such a way that

s @l

|€ (x+o) (ko +y+h—xdp+1)—x (ko +y+h;)

M
+w, (=, ’”)||<v,ﬁ,u,x,oc,x,e))+ 2. ldl

I=s'+1

1/6px

Cs(rar,)

T ((~ky+y+Hh)/x) (2m)'?

-1
x |€|#z+2ﬁ*ochl ("wl (, m)“(v,ﬁ,y,x,oc,x,e) + "w2 (1, m)“(v,ﬁ,y,x,oc,x,e)) + Z |e|Az+oc(6rdz)+ﬁ H h, _ dl

G, ad—k,—5))
. |e|* 1 Ro=on) Z
Cr (raqm,) ™" T (dyg,0/%)

!
q1+G2=01,>1 9192

% |€|(X+06)K(dlyq1’q2/K+q2—5D+1/K)—X(d]—ko—(sl) i Z |Aq2,P
1<p<qg,-1

X+)k(drg, g, K+, =0p+1/K)=x(d;—kog=6))

1
x ||’ <-.
6

Subsequently, we obtain

'l%i (wl (T, m)) - %g (wz (. m))"(v,ﬂ,y,x,a,x,e)

1 (153)
5 wy (z,m) - w, (=, m)“(v,ﬁ,y,x,oc,x,e) :
The last operation will be devoted to the proof that #° is a
shrinking map.

D-1

1= d=0
(152)

-1 C! k%
2
I H ly-d| dpr
=0 Cﬁ (ré)RD) r (dl,‘hr‘b /K)
Chwf
1/6px
Cr(rar,) T (digqle+a~p)

Taking notice of (135), we get a constant C, > 0

(depending on v, «, ky, 8y, and d), such that

— . -~
e—X(dD—kU_(‘)‘D) RP (lm) TK j TK _ S)dDJSDvU/K_l
P,(x) Jo

. (w1 (sl/K,m) - w, (s”“,m)) é

(9,85 X50K€)
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&

< |€|0¢(dD*ko*5D) "w1 (r,m)

1/6
Cr(rar,)
-w, (7, m)||(v,ﬁ,/4,)(,0¢,7<,€) ’

(154)

Moreover, we may have a look at (136) in order to exhibit a
constant C; > 0 (depending on v, , ky, dp, and &) with

¢ Xp—ky-0p) R~D (im) -~
P, (1)

:
[ gtonett
0

. st (w1 (sl/",m) -w, (sl/",m)) %

(0 Bots X500,16,€) (155)

!
- C, |€|(X+a)x(d,),ql /K +82=8p+1/K)=x(dp—ke=3p)
- 1/8pK
Cs(ras,)

: ”wl (T’ m) W, (T’ m)”(v,ﬁ,y,x,a,x,s)

forall g, > 1and g, > 1 with q; + g, = Op. Besides, from
(137), we see that

~ . -
e’X(dD’ko"SD) Rf) (im) % J (TK _ S)dD,ql,qz/K*"lz‘P‘l
P, (1) 0

5P (w, (s”“,m) - w, (sllk,m)) ?

(0, Botts X500,16,€) (156)

!
< C, le] (x+e)(dpgy g, /K+G2~0p+1/%)=x(dp—ke=0p)

Cﬁ (ra)RD)I/SDK

’ ”wl (T,m) —w, (1, m)”(v,ﬁ,y,x,ot,x,e)

provided that g, > 1,9, = 2,and 1 < p < g, — 1 with

q, + g, = 6. Finally, having a glance at (138), we can select a
constant C;, > 0 (depending on v, k, and 8p,) such that

ﬁD(zm) X ~ Kk Sp—p-1 p 1/x
Rt [ (e

—wy (s m) &

(7B Xo00,55€) (157)

C/
< 2 el wy (1, m) — w, (1,

s (ran)

m) " (9, Botho Y 05€)
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forall 1 < p < 8p — 1. In the meanwhile, we select the size of
radius ok, in such a manner that

Sp-1
|€|AD+0¢(5D*dD)+/3 H |Y _ d|

d=0
. /§C2 |€|oc(dD—k0—6D)
1
Co(rar,) " T(dpayo/x)
op! W
+ ) =T Tly-d

|
‘71*‘12:5D"1121>‘Z221q1.q2' d=0
/.49
Cyk™
1/8pK
CF (rQTZD) r (dD:%’%/K)

% |€ | (x+e)k(dpg, 4, K+, =0p+1/x)=x(dp—ko—0p)

+ Z 'qu’P

1<p<g,-1

(158)

I..p
Cyx

Cp (ra,ﬁD)l/6DK r (dD,ql,qz/K +q - p)

x |€|(X+“)K(dn,ql,q2 [x+q,—0p+1/Kx)—x(dp—ky—5p)

+ Z |A5D»P|

1<p<ép-1

ChxP
)I/SDK

X+OC

<

A=

: lel
Cr(raz, T (6p - p)
The following inequality must then hold:

|72 (w, (r.m) = 7 (w, (z,m))

(9, B X 0,K,5€)
(159)

1
< 5 "wl (r,m) —w, (7, m)"(v,ﬁ,y,x,a,x,e) :

Gathering (144), (153), and (159) legitimates estimates (114).
At the very end of the proof, we now take for granted that
all conditions (124), (133), (139), (143), (152), and (158) hold
for the radii ok, and @. Then both (113) and (114) hold at the
same time and Lemma 16 is shown. O

We consider the closed ball B(0,®) just built above in
Lemma 16 which is actually a complete metric space with
respect to the metric induced by the Banach space norm

I+ N y,g s sau,e)- From the lemma above, we get that 7 is a

contractive map from B(0, @) into itself. Due to the classical
contractive mapping theorem, we deduce that the map 7,
has a unique fixed point denoted by w,‘f(‘r, m,€) in the ball
B(0, @), meaning that

X, (wZ (t,m, e)) = wf (1,m,€) (160)
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d
F(v,ﬂ,y,x,rx,zc,e) such that

Bupare) = @ for all e € D(0,¢,) \ {0}.

Moreover, the function w,‘f(‘r, m, €) depends holomorphically
on € in D(0,¢,) \ {0}.

Now, if one sets apart the terms —a,Q(im)w, (, m, €)
in the left-hand side L, . and Rp(im)(x7°)°Pw, (1, m, €) in
the right-hand side R_,, . of (95), we observe by dividing
with the polynomial P, () given in (100) that (95) can be
exactly rewritten as (160). Therefore, the unique fixed point
w,‘f(‘r, m,e) of . in B(0,@) precisely solves problem (95)
with vanishing initial data w,(0,m,¢) = 0. This yields the
proposition.

for a unique wf(‘r,m,e) €

d
lw§ (T, m, €)l,

6. Singular Analytic Solutions on Sectors to
the Main Problem

We go back to the sequence of formal constructions per-
formed in Section 4 under the new light shed in Section 5
on problem (95).

We first recall the definitions of a good covering and
associated sets of sectors as introduced in [3].

Definition 17. Let ¢ > 2 be an integer. Forall 0 < p < ¢ -1,
we consider open sectors &, centered at 0, with radius €, > 0
and opening 7/(y + )k + Ep with fp > 0 small enough such
that &, N&,,, # 0,forall 0 < p < ¢—1 (with the convention
that & = &). Moreover, we assume that the intersection of
any three different elements in {& }( ,<._; is empty and that

U;;lo %P = % \ {0}, where % is some neighborhood of 0 in C.
Such a set of sectors {& ,}o <.y is called a good covering in

c*.

Definition 18. Let {& ,}y <1 be a good covering in C*. Let
J be an open bounded sector centered at 0 with radius rg
and consider a family of open sectors

SDP,G,eorg
gy (6D
- {T € C" | IT| < &ry, [b, —arg(D)| < 5}

with aperture 6 > m/x and where d, € R, forall0 < p <
¢—1, are directions which satisfy the flz)llowing constraints: let
q;(m) be the roots of the polynomials (100) defined by (101)
and §; and 0 < p < ¢ — 1 be unbounded sectors centered at
0 with directions d,, and with small aperture. We assume the
following.

(1) There exists a constant M, > 0 such that

|t = q (m)] = M, (1+]7]) (162)

forall0 <I<dpk—L;allm e R;all 7 € Ss, U D(0, p), for all
0<p<g¢-1
(2) There exists a constant M, > 0 such that

v - a, (m)| = M, |q; (m)| (163)

for somel;, € {0,...,0pk — 1} allm e R;all 7 € pr u D(0, P
forall0< p<¢-1.
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(3)Forall0 < p<c¢—-1,allt € T;alle € <ifp;wehave
that €™t € S, 0ettr, -

We say that the family {(prﬂ’eo"f? Jo<pee-1> 7 } is associated
with the good covering {& }o< p<c_1-

In the next main first outcome, we construct a family of
actual holomorphic solutions to the principal equation (61)
which may be meromorphic at (¢,¢) = (0,0) and defined
on the sectors &, with respect to the complex parameter e.
Furthermore, we can also control the difference between any
two neighboring solutions on the intersections &,N& ., and
state that it is exponentially flat of order at most (y + «)x with
respect to €.

Theorem19. One considers the nonlinear singularly perturbed
PDE (61) and takes for granted that all the assumptions (60),
(62), (65), (66), (67), (77), (78), (79), (88), (99), (105), (106),
and (107) hold for some rational numbers « > 1, f € Q and
integersy € Z,k > 1. Let {& p}oc pec_1 @ good covering in C* be
given, for which a family of open sectors {(SDP,G,eorg)Osqu—l’ I}
associated with this good covering can be singled out.

Then, there exist a radiusrgz > 0 large enough and ey > 0
small enough, for which a family {u®(t, z, €)}o<pec—1 Of actual
solutions of (61) can be built up. More exactly, the functions
u® (t, z, €) solve the following singularly perturbed PDE:

1
a{ (e s

1=0
M 5 P
+ <Zc,e”lthl> (ub*’) (t, z, €)> = ij (2) €Y (164)
1=0 =0

D
+F (et €) + ZGA’td’aflﬁl (0,)u(t, ze)
=1

with an additional part of forcing term F(e"t, €) where F(T, €)
is given by expression (183) and defines a holomorphic bounded
function provided that the additional constraints (184) are

fulfilled. Each function u®(t, z, €) can be decomposed as

ubp (t,z,€) = (—:ﬁ <_@ (eoct)ko—ho
? (165)
_ % (e“t)ko*ho J ((—Iat) " (eat)}’ pr 2 6)) ’

where J(T) is holomorphic on some disc D(0,d;), d; > 0,
and v"#(t, z,€) defines a bounded holomorphic function on
I x Hpg x &, for any given 0 < B < B, with v*»(0,z,€) = 0
on Hp x &, Furthermore, there exist constants K,, M, > 0
and o > 0 (independent of ) such that

sup 'vhl’” (t,z,€) — n (t, z, e)'

tegﬁD(O,o),zeHﬁ,

(166)
P
< KP exp| — |€|(X+“)K
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Joralle € &,,,N&,, forall0 < p < ¢—1 (where by convention
b

Vs = M),
Proof. We plan to construct actual solutions of the main
equation (61) by performing backwards the sequence of
constructions described in Section 4 starting from problem
(95) solved in Section 5.

Let {&}ocpec1 be a good covering in C* and let
{(pr)e)eorg)(,spg_l, I} be a family of sectors associated with
this good covering. From Proposition 15, we see that, for

b
each direction bp, one can get a solution w,’(r,m,e) of
the convolution equation (95) that belongs to the space

b
F* and thus satisfies the following bounds:
(9, B s Y %K5€)

[7/e™

R

b u
w,” (T,m,e)l <@ (1 + [m]) e Pm

T K
P <v|ex+‘x )

forallt € B(O,p)USbP, allm € R,and alle € D(0, ¢,)\ {0}, for

(167)

. . b
some well chosen @ > 0. Besides, these functions w,” (7, m, €)
are analytic continuations with respect to 7 of a common
convergent series

w, (m,€) ,

w, (1,m,€) = Z T (/)

n>1

(168)

with coefficients in the Banach space Eg solution of (95)
forall T € D(0, p). In particular, we see that the formal power
series

Q. (T,m,e) = an (m,e) T"

n=1

(169)

is m,-summable in direction b, as a series with coefficients
in the Banach space Egu for aHDe € D(0,¢,) \ {0} in the sense
of Definition 7. We denote by

b b “\ d
Q,f (T,m,e) = KJ w,” (u,m, €) exp (— (E) ) = (170)
L, T u
its m,-sum in direction d,,, where L, = R il Sb,» which
definesan E 4 ,-valued analytic function with respect to T on
a sector

pr,e,h/ le|x+e

(171)
= {T e C*:[T| < K |e¥*™, |bp - arg('l]')' < g}

form/k < 0 < m/k + Ap(SbP) (where Ap(pr) denotes the

aperture of the sector S, ) and some 4’ > 0 (independent of
€), for all e € D(0,¢,) \ {0}.

Bearing in mind the identities of Proposition 8 and using
the properties for the m, -sum with respect to derivatives and
products (within the Banach algebra E = E 4 ,) equipped with
the convolution product * as described in Proposition 2), we
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check that the functions QZ" (T, m, ) must solve the following
problem:

L1me (OF (Tm,6)) = Bp e (O Tomee)),  (172)
where
LI me (QEP (T, m, e)) = Q (im) QZ" (T, m,¢€) <—a0
+ Zs:ale_x(kl_k")'ﬂ'k’_k"

=1

q
+ z aleml+ﬁ—akl—X(k,—ko)-l]—k,—kg ) <@>
[

I=s+1

S,
. < che‘X(hl—ho)'ﬂ'hz—ho

=1

M
L Z Cl€#z+2/3“hzx(hzho)*|]'hzho> -2 (@)
%

I=s'+1

J(€¥T) (Szcle—xml—ho)vhz—hn

1=0

M
- clewwahzxwzhvﬂzho)) +Q(im)

I=s'+1
1 T b
»
(g [ o e

> e _
Q" (T, my,€) dml)e Kk hoty

s’ M
x <ZCI€—Xh1'ﬂ'hl + Z Cl€M1+2ﬁ—0‘hl—Xhl'ﬂ'hl ,

1=0 I=s'+1

p
Rt (W (Tom,e)) = Y B; (m)
j=0

D-1
nj—ocbj—)((bj—ko—y)-[[—bj—ko—y + ZeAlﬂx(@l—d,)Jrﬁ

=1

*€

1 q,-1 _
x Y o [T (7 - d) e ¥k R, (im)

14,1
aig=0,91"92" 4=o

1<p<g,-1

(1)’ } O (T, m,€) + e 0*@omdo)
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-1
8!‘11
x oy o

(y-d)
‘11+q2:5D»‘7121q1!q2' d=0

efx(dekO*qlfqz)RD (lm) % -I]—dD,ql,qZ {(TK+18T>QZ

x(qp— K p b
" Y lqu)pT @) (T<3y) }QK" (T,m,e)
<p=q,-

n R’D (zm) (—I]—K+la_|]_)5D + Z ASD,P—I]—K((SD_P)

1<p<dp-1

(T1a;) } QY (T,m,e).
(174)
‘We examine now the function

VP (T, z,€) = F" (m — QY (T, m, e)) (z)  (175)

which defines a bounded holomorphic function with respect
to T on Sy g jecres with respect to z on Hy for any 0 <

B' < B, and for all € on D(0,€;) \ {0}. Using the properties of
the Fourier inverse transform described in Proposition 9 and
watching out the expansions (91), we extract from equality

(172) the next equation satisfied by V*# (T, z, €); namely,

S
Q(9,) V% (T, z, €) <—a0 + Zale_x(k’_k")'[l'kl_k‘)

I=1

q
+ ) gl phch g (ﬂ)
I=s+1 @

!
S
. (che_)((hl_ho)‘ﬂ'hl_ho

=1

M
+ z clem+2/3—och,—)((h1—ho)-|]—hz—ho> ) <@)
%

I=s'+1

-] (G*XT) <iCI€X(htho)-ﬂ-htho

1=0

M
+ z Cleﬂl*'zﬁ—“hz—)((hl—ho)'ﬂ'hz—ho >> + 6 (az)

I=s'+1

!

2 (e _ _
.(\/i’p) (T,z,€) € Xko+)pko+y che Xt
1=0

0,

I=s"+1

M p
+ Z Cleﬂl"’zﬁ_“hl_)(hl'ﬂ'hl) = ij (=)
j=0
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D-1
enj—ocbj—x(bj—kg—y)—l]—bj—ko—y + ZeAl+a(6l—d1)+ﬁ
=1

x Z 1—[ (y-d)e X(di=ko=q0) di—ko=a,

q,+q,=6; ql'qz d=0
- R, (3,) 202V (T, z, €)

-1
Sp)

+ eAD+a(6D_dD)+ﬁ Z

=11 (-4
41+42:5D:Q121q1.q2. d=0

. e_X(dD—ko—‘h)‘u'dD—ko—‘h x ED (az) eX‘?za%z\/bP (T, z,

€) + T R, (3,) PV (T, z,¢).
(176)

We now set T = eXT and we focus on the function

V% (T, z,€) = VP (€*T, z,€) (177)

which defines a bounded holomorphic function with respect
to T such that T € e’Xpr,e’hllelw and with respect to z on
Hp for any 0 < B < B, foralle € D(0,¢,) \ {0}. Having

a quick look at (176), we observe that V2 (T, z,€) solves a
related equation which after multiplication by T**7 yields

Q(3,) V® (T, z,¢) <—a0T’<°*V

s q
+ (Za,Tkl + Z aemrPekirh ) TV -2 <@>
%

I=1 I=s+1

s M
. Tkofhoﬂ’ <ZClThI + Z Cleﬂl“ﬁ*‘xhl Thz>

I=1 I=s'+1

-2 (“—") T Mty (T)
%

s’ M
'(ZCzTh”f > cze*‘l”ﬁ“th’*'>>+6<az) 79

1=0 I=s"+1

. (VDP )2 (T,z,e) TY <iclTh’

1=0

I=s'+1

M p
+ Z Cle‘uﬁzﬁftxh;Thl Z Z) 6”’ sz

Zi

|
41+9,=6, 992

D
+ ZeAl+a(6l—d1)+ﬁ <

I=1

q:-1
. H (y-4d) T R, (9,) a;szP (T, z, e)> .

d=0
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In the next step, we introduce the function

U (T, 2,€) = -2k _ opkaho gy
“ (179)

+ TV (T, z,¢€)

which defines a holomorphic function with respect to T' such
that T € e_Xpr,e,h’|e|x+“ and with respect to z on Hp for any

0 < p' < B, foralle € D(0,¢,) \ {0}. Notice that this function
may be meromorphic at T' = 0, provided that h, > k,. Taking

(178) into consideration, we see that the function U (T, z, €)
solves the next PDE with forcing term

q
Q(a.) < (Zaze"”*ﬁ‘“"l " ) U™ (T, 2,¢)

1=0

M
+ <che“’+25‘“hzThz ) (pr )2 (T, z, e))
1=0

(180)

p —~
= Yb; (2) €T + F (T e)
j=0

D
+ Yt d bR (3) 30U (T, 2,€)

=1

which is exactly (72) announced in Remark 12 of Section 4.1,
where F(T, €) is a contribution to the forcing term equal to

F(T,¢) = -Q(0) <@T"°‘h° + Jopkoho g (T))
% %

s q
<—a T + <Za s Z aleml+ﬁ_“lekl)

I=1 I=s+1

s’ M
-2 <@> Tko=ho (ZClThl + Z Cl€H1+2ﬁ*0¢hzThz >
%

I=1 I=s"+1

-2 <@> T ()
%
(181)

s M
. (ZClThl + Z CI€!41+25*“hzThz >> _ 6 (0) (@
G

1=0 I=s"+1
2 s’
ckoho 4 B0 pkohoy (T)) <ZClTh’
% 1=0

D
+ ZeAer“((Sz*dz)Jrﬁszﬁl (0)

I=s"+1 I=1

M
+ Z cleﬂl”ﬁ*“hz Th

o <@T"°‘h° + Bkt ](T)) .
% %
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Using the fact that Uy(T) solves the second-order algebraic
equation (70) and noticing the following identity:

S S’
- aoTk" + Za,Tkl -2 <@> Tko~ho (Zth’>
I

1=1 I=1

(ZaTk’> - <co )Tk° o <lzocTh’>

we can abridge the latter expression of F(T,€) as

(182)

1
F (T, €) _ 6 (0) U() (T) << Z alemz+/3—(xk1Tkl>

I=s+1

M
-2 ( > Tko=ho < q gHr2p-ah Thz>
. )

I=s'+1

M
-2 <i._?> ko— o] (T) < Z Cleﬂﬁzﬁﬂxthhz >>

I=s'+1

(183)
M
_ (j (0) Ué (T) < Z Clem+2ﬁ—th,Thz>

I=s"+1

D
+ ZeA”“(‘S’_dl”ﬁT‘iZRl (0) a;sj <%Tko—ho
=1

+ rkhoy (T)).
%

Observe that F(T,€) is bounded holomorphic with respect
to € and is analytic in T near 0 provided that the following
additional conditions hold:

kj+ky—hy >0,
hy, +2(ky—hy) 20 (184)
d,+ky—hy—96,>0
foralls+1<l<qs +1<p<M,andl <m<D.
Finally, we put
u® (t,z,€) = U (%1, 2, €)
(185)

=¢f (U0 (%) + (%) VP (eX"°t, 2, e))

which defines a holomorphic function with respect to t on
T, with respect to z € Hp for any 0 < B < B, and
with respect to € € %P, where I and %p are sectors
described in Definition 18. As a result, u°(t, z, ) admits the
decomposition (165) with Ve (t, z,€) = VP (eX*%, z, €) which
determines a bounded holomorphic functionon 7 xHp X &,
for any given 0 < 8/ < f8 with the property v*»(0,z,€) = 0
forall (z,e) € H 5 X %p. Again, the function ud (t, z,€) may
be meromorphic in both ¢ and € in the vicinity of the origin.
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From (180) and (183) we deduce that u® (¢, z, €) solves the next
main problem

1
s (e s

1=0
M ) P
+ <che"’th’> (ubf’) (t, z, e)) = ij (z) €Mt (186)
1=0 j=0

D
+F ("t €) + ZeA‘tdlaf’fll (8,)u (t, z,€)
I=1

with additional forcing term F(e”t, €). As a spin-off, by apply-
ing the operator 0} on the left- and right-hand side of this last
equation, we see that u®(t, z,€) is also an actual solution of
problem (61) disclosed at the beginning of Section 4.

In the last part of the proof, we proceed to justify
estimates (166). The steps of the verification are similar to the
arguments displayed in Theorem 1 of [3], but we choose to
present them for the sake of completeness. Let p € {0,...,¢—
1}. By the sequence of constructions performed above, we see
that the function v* (£, z, €) can be written as a m, -Laplace
and Fourier transform

K
pr (t,Z,E) = W J

-0

+00
J wZ" (u,m, €)
L,
(187)

u \*\ izmdu
- exp <—< ) >e —dm,
extet u

where L, = R L€ c S, . Using the fact that the func-
P P

tion u — w,(u, m, €)exp(—(u/e**t)*)/u is holomorphic on
D(0, p) for all (m,e) € R x (D(0,¢,) \ {0}), its integral
along the union of a segment starting from 0 to (p/2)e’"»,
an arc of circle with radius p/2 which connects (p/ 2)e'Yet
and (p/Z)ein, and a segment starting from (p/2)ein to 0 are
vanishing. Therefore, we can write the difference v°»1 — % as
a sum of three integrals:

K
pru (f, z, 6) _ pr (t) z, 6) = —1/2
(2m)
+00
h . _ A \K . du
. J ,[ Wl (ym,e) e e g
00 Loy, u
K J'+OOJ DP( )
-— w (u,m, e 188
(27_[)1/2 o0 Iy, K (188)
() iz AU K
e (u/eX™™t) st g =
u (2m)
+oo _ +o\K - du
J J w, (u,m,€)e /e izm T2
=00 Gy pi
where LP/Z%H1 = [p/2,+00)e ", Lp/Z,yP = [p/2,+00)e",
and C,p, ., ~is an arc of circle with radius connecting
YpoVp+1

(p/2)e" and (p/2)e’"r with a well chosen orientation.
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We give estimates for the quantity

1:

K +00 "
@m)'? J—oo J.L @ (th1m,€)

PI2¥p+1

(189)

. e—(u/e"“"t)’ceizm @dm’ )
u

By construction, the direction y,,; (which depends on e*"*¢)

is chosen in such a way that cos(;c(yPH — arg(eX™1))) = &y,
foralle € &,n &, forallt € 7, and for some fixed &, > 0.
From the estimates (167), we get that

K +00 +00
L<—5 J I @ (1 + |m|) e Pl
(2m) -0 Jp/2

r/ el rY
1+ (rf ey FEPU e

- exp (-COS (% (vpur —arg (e**1))) K>

r
et

+00 ,
@ dr g, KO I BBl g
r enY

i ) () )
0 e (- () (L) )a
L/z e[ exP( (w ")) )

+00 ’
< O e PP gm
" en)? )

—00

|€|(X+(x)(K—1) (190)

. J-p/Z 8,/ 1t = v) e (p/2)

B tHx - K—1
><(1/|| V) kr

|€|(X+IX)K
o (- (i ) () Jor< ot
p |t|K |€|X+°‘ = (27_[)1/2
|6|(X+¢x)(1c—1)

(B-PB) (8,1t =»)x (p/2)""
) (p/2)* 2K@
exp <_ <W - V) |€|(X+(x)1< ) = (27_[)1/2

|6|(X+0€)(K—1) (P/Z)K
’ o x—1 €xXp (_62 (Xﬂx)x)
(B=B')d:x(p/2) lel

forallt € 7 and |Im(z)| < ' with |t| < (8,/(8, + »)"/*, for
some &, > 0,and foralle € &, N &, ;.
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In the same way, we also give estimates for the integral

K

2 (27_[)1/2

(191)

+00
b (R iz AU
. J- J . (uym,e)e W =ML gy
L u

0 /2y

Namely, the direction y, (which depends on €**“¢) is chosen

in such a way that cos(x(y, — arg(eX™1))) = 8,, forall € €
&,N &, forallt € 7, and for some fixed §; > 0. Again
from the estimates (167) and following the same steps as in
(190), we deduce that

2Kk® |e|Xre)te=D)
I < -
T em (B~ B) 0k (pf2)"

(p/2)"
- exXp (—82 |€|(X+0‘)K

forallt € 7 and |Im(z)| < B with [t| < (8,/(8, + )"/, for
some d, > 0,and foralle € &,N&,.;.
Finally, we give upper bound estimates for the integral

e I

PI2YpYp+1

(192)

3=

(193)
. e—(u/exmt)”eizm @dm
u

By construction, the arc of circle C is chosen in such

PI2YpYpi1
a way that cos(x(6 — arg(eX**t))) > 6,, forall 0 € [Vp> Vpir] (Gf
Vp < Vpr) and 0 € [y,.1,y,] (if y,iy < y,), forallt € 7, for
alle € €,n&,,,,and for some fixed §; > 0. Bearing in mind
(167) and (118), we get that

+0O | Vps1
I < LI/ZJ J R+ m)) e Pl
(27-[) -0 Yp
p/2 \"
P <v< |e|X+“) )

(p/2) [ ler™

1 ((p/2) lele)™

lex+at|* 2
B )
MmO g dm <
@)
+00
~(B-B)Iml p/2
J e AP mdmx|)’p_yp+l' xra
—-00 lel

(6 /181° =) ( p/2 \*
eXP<_ 2 <|6|X+a> )

(6 / 181 =) ( p/2 \*
XeXp(_ : P (lel)(Jroc) )
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2K® -
Q)" (B-B) x=0

(6,71t =) [ p/2 \*
XeXp<_ - 2 <|€|X+(x> )

< 2K@|Yp_)’p+l' <£)1/Kel/x
S em P (B-p)\ S,

(3 () )

forallt € I and |Im(z)| < [3' with [¢] < (8,/(6, + v))l/K, for
somed, > 0,and foralle € &€,N & ;.

Finally, gathering the three above inequalities (190), (192),
and (194), we deduce from decomposition (188) that

Uk =81/l

(194)

4K

2m) 12

|6|(X+0¢)(K—1) (P/Z)K
' o x—1 exp (_62 (Xﬂx)x)
(B=B')6:x(p/2) lel

2K |Vp - Vp+1| < l/K)l/K my»
+——————— =] e
@m)'2(B-p)\ &

& ( P2\
P (7 ( |e|X*“> >
forallt € I and |Im(z)| < ' with [¢| < (8,/(8, + »)"¥, for

some &, > 0,and foralle € &, N &,,.,,. Therefore, inequality
(166) holds. ]

|vbP“ (t,z,€) — ne (t, z, e)| <

(195)

7. Parametric Gevrey Asymptotic
Expansions of the Solutions

71 k-Summable Formal Series and Ramis-Sibuya Theorem.
We recall the definition of k-Borel summability of formal
series with coefficients in a Banach space as introduced in [5].

Definition 20. Let k > 1 be an integer. A formal series

X (e) = iajej € F[[e]]

=0

(196)

with coeflicients in a Banach space (F, | - [Ip) is said to be k-
summable with respect to € in the direction d € R if

(i) the existence of p € R, is ensured such that the
following formal series, called formal Borel transform of X
of order k,

00 a. 1!
B (X)) =Y—2__cF
(X))@ ;F(Hj/k)e (=] (97)

is absolutely convergent for |7] < p;
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(ii) one can select a & > 0 such that the series %’k(j(\)(‘r)
can be analytically continued with respect to 7 in a sector
Sis = {T € C" : |d - arg(r)| < &}. Moreover, there exist
C > 0,and K > 0, such that

| (%) @), < ce* (198)

forall 7 € ;5.

If the definition above is fulﬁllgd, the vector valued
Laplace transform of order k of &, (X)(7) in the direction d
is set as

Z; (% (X)) (@
. 199
=c* J B ()A() (n) e W ke gy, (199
L

Y

along a halfline L, = R,e" ¢ S;5U{0}, where y depends on
€ and is chosen in such a way that cos(k(y —arg(e))) > &; > 0,
for some fixed §,, for all € in a sector

Saorik = {e €C*: el < RV, |d —arg (e)| < g} , (200)

where /k < 0 < mw/k + 26 and 0 < R < §;/K. The function
32(93]((5(\))(6) is called the k-sum of the formal series X (¢) in
the direction d. It is bounded and holomorphic on the sector
S4¢.ri and has the formal series X(e) as Gevrey asymptotic
expansion of order 1/k with respect to € on S, pik. This
means that, for all 7/k < 8, < 6, there exist C, M > 0 such
that

foralln > 1,alle € Sy pux.

Now, we state a cohomological criterion for k-
summability of formal series with coeflicients in Banach
spaces (see [25], p. 121 or [27], Lemma XI-2-6) which is
known as the Ramis-Sibuya theorem in the literature.

n—-1
7 (% (X)) © = Y ape?
p=0 F (201)

< CM”F(I 4 g) le”

Theorem (RS). Let (F, || - ) be a Banach space over C and
{&p}o<pec1 be agood coveringin C*. Forall0 < p < ¢ -1, let
G, be a holomorphic function from & , into the Banach space
(F, Il - i) and let the cocycle @P(e) = Gp+1(€) - Gp(e) be a
holomorphic function from the sector Z, = &,,,, N &, into F
(with the convention that &. = &, and G, = G,). One makes
the following assumptions.

(1) The functions G(e) are bounded as € € &, tends to the
originin C, forall0 < p < ¢ - 1.

(2) The functions © ,(€) are exponentially flat of order k on
Z,, forall 0 < p < ¢ — 1. This means that there exist constants
Cy» A, > 0such that

o, @], < cye e/ (202

foralle € Z,, all0< p<¢-1.
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Then, for all 0 < p < ¢ — 1, the functions G ,(€) are the
k-sums on &, of a common k-summable formal series G(e) €

Fllell.

7.2. Parametric Gevrey Asymptotic Expansions of the Solutions
and Construction of (x + o«)k-Sums. In this subsection,
we state the second main result of our work, namely, the
existence of a formal power series in the parameter € whose
coefficients are bounded holomorphic functions on the prod-
uct of a sector with small radius centered at 0 and a strip
in C* which is the common Gevrey asymptotic expansion
of order 1/(y + a)x of the functions Vo (t, z, €) appearing in
the expansion (165) of the solutions u®(t, z,€) to the main
equations (61) and (164) established in Theorem 19.

Theorem 21. Let one assume that the hypotheses of Theorem 19
hold. Then, there exists a formal power series

V(tz,€) = ) v, (t2)e"

m=0

(203)

whose coefficients v,,(t,z) belong to the Banach space F of
bounded holomorphic functions on (9 N D(0,0)) X Hgy
equipped with supremum norm, where ¢ > 0 is defined in
Theorem 19, and such that the functions v* (t,z,€) from the
decomposition (165) are its (y + «)x-sums on the sectors &p
forall0 < p < ¢ -1, viewed as holomorphic functions from
&, into . In other words, for all 0 < p < ¢ — 1, there exist two
constants Cp, Mp > 0 such that

n-1

sup Vo (t,z,€) - Z v, (t,2)€e"
m=0

tEfTﬂD(O,a),zEH/;/

n
<CMT[(14+ —— n
oMy ( (X+@x>“

foralln>1;alle € &,

(204)

Proof. We consider the family of functions Ve (t,z,€), 0 <
p < ¢ — 1, constructed in Theorem 19. For all 0 < p <
¢ — 1, we define Gyle) = (t,z) — Vo (t, z, €), which is by
construction a holomorphic and bounded function from &,
into the Banach space F of bounded holomorphic functions
on (7 N D(0,0)) x Hp equipped with the supremum norm,
where J is introduced in Definition 18, 0 > 0 is set in
Theorem 19, and B’ > 0 is the width of the strip H, p on which
the coefficients bj(z) are defined with respect to z (see (62)).
Bearing in mind the estimates (166), we see that the cocycle
®p(e) =Gp,i(€)—Gple) is exponentially flat of order (y +a)x
onZ, = &,N &, forany 0 < p < ¢ — 1. Therefore,
according to Theorem (RS) stated above, we obtain a formal
power series

G(e) = ) v, (t,2)€" = (t,z,€) € F[[e]]

m=0

(205)

such that the functions G(e) are the (y + a)x-sums on &, of

G(e) as F-valued functions, for all 0 < p < ¢ — L. The result
follows. O
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