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We study a singularly perturbed PDE with quadratic nonlinearity depending on a complex perturbation parameter 𝜖. The problem
involves an irregular singularity in time, as in a recent work of the author and A. Lastra, but possesses also, as a new feature, a
turning point at the origin in C. We construct a family of sectorial meromorphic solutions obtained as a small perturbation in 𝜖
of a slow curve of the equation in some time scale. We show that the nonsingular parts of these solutions share common formal
power series (that generally diverge) in 𝜖 as Gevrey asymptotic expansion of some order depending on data arising both from the
turning point and from the irregular singular point of the main problem.

1. Introduction

In this work, we consider a family of nonlinear singularly
perturbed equations of the form

𝑄 (𝜕𝑧) (𝑃1 (𝑡, 𝜖) 𝑢 (𝑡, 𝑧, 𝜖) + 𝑃2 (𝑡, 𝜖) 𝑢2 (𝑡, 𝑧, 𝜖))
= 𝑓 (𝑡, 𝑧, 𝜖) + 𝑃3 (𝑡, 𝜖, 𝜕𝑡, 𝜕𝑧) 𝑢 (𝑡, 𝑧, 𝜖) , (1)

where 𝑄, 𝑃1, 𝑃2, and 𝑃3 are polynomials with complex
coefficients and 𝑓 is an analytic function in the vicinity of
the origin with respect to 𝑡 and 𝜖 in C and holomorphic with
respect to 𝑧 on a horizontal strip in C of the form𝐻𝛽 = {𝑧 ∈
C | |Im(𝑧)| < 𝛽} for some 𝛽 > 0.

Here we consider the case when 𝑃1(0, 𝜖) vanishes iden-
tically near 0. The point 𝑡 = 0 is known to be called a
turning point in that situation; see [1, 2] for a more detailed
description of this terminology in the linear and nonlinear
settings. Let us recall the definition of the valuation val𝑡(𝑓)
of an analytic function near 𝑡 = 0 as the smallest integer𝑘 ≥ 0 with the factorization 𝑓(𝑡) = 𝑡𝑘𝑓(𝑡) for an analytic
function 𝑓 near 𝑡 = 0 with 𝑓(0) ̸= 0. The most interesting
case examined in this work is when the valuation val𝑡(𝑃1) of𝑃1(𝑡, 𝜖) with respect to 𝑡 is larger than the valuation val𝑡(𝑃2)
or val𝑡(𝑓(𝑡, 𝑧, 𝜖)) since the problem cannot be reduced to the

case 𝑃1(0, 0) ̸= 0 by dividing (1) by a suitable power of 𝑡 and𝜖; see Remark 13.
In our previous study [3], we already have considered

a similar problem which corresponds to the situation when𝑃1(0, 0) ̸= 0 for our equation (1). Namely, we focused on the
following problem:

𝑄 (𝜕𝑧) 𝜕𝑡𝑦 (𝑡, 𝑧, 𝜖)
= (𝑄1 (𝜕𝑧) 𝑦 (𝑡, 𝑧, 𝜖)) (𝑄2 (𝜕𝑧) 𝑦 (𝑡, 𝑧, 𝜖))
+ 𝐻 (𝑡, 𝜖, 𝜕𝑡, 𝜕𝑧) 𝑦 (𝑡, 𝑧, 𝜖) + 𝑓 (𝑡, 𝑧, 𝜖)

(2)

for given vanishing initial data 𝑦(0, 𝑧, 𝜖) ≡ 0, where 𝑄,𝑄1, 𝑄2, and 𝐻 are polynomials with complex coefficients
and 𝑓(𝑡, 𝑧, 𝜖) is a forcing term constructed as above. Under
appropriate assumptions on the shape of (2), we established
the existence of a family of actual bounded holomorphic
solutions 𝑦𝑝(𝑡, 𝑧, 𝜖), 0 ≤ 𝑝 ≤ 𝜍 − 1, for some integer 𝜍 ≥ 2,
defined on domains T × 𝐻𝛽 × E𝑝, for some fixed bounded
sector T with vertex at 0 and E = {E𝑝}0≤𝑝≤𝜍−1, a set of
bounded sectors whose union covers a full neighborhood of
0 in C∗. These solutions are obtained by means of Laplace
and inverse Fourier transforms. On each sector E𝑝, they
share with respect to 𝜖 a common asymptotic expansion𝑦(𝑡, 𝑧, 𝜖) = ∑𝑛≥0 𝑦𝑛(𝑡, 𝑧)𝜖𝑛 which defines a formal series with
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bounded holomorphic coefficients on T × 𝐻𝛽. Moreover,
this asymptotic expansion is shown to be of Gevrey order
(at most) 1/𝑘 that appears in the highest order term of
the operator 𝐻 which is of irregular type in the sense of
[4] outlined as 𝜖(𝛿𝐷−1)𝑘𝑡(𝛿𝐷−1)(𝑘+1)𝜕𝛿𝐷𝑡 𝑅𝐷(𝜕𝑧), for some integer𝛿𝐷 ≥ 2 and a polynomial 𝑅𝐷 with complex coefficients.
Conjointly, since the aperture of the sectorsE𝑝 can be chosen
slightly larger than 𝜋/𝑘, the functions 𝜖 󳨃→ 𝑦𝑝(𝑡, 𝑧, 𝜖) can be
viewed as 𝑘-sums of the formal series 𝑦 as defined in [5].

In this work, our goal is to achieve a similar statement,
namely, the existence of sectorial holomorphic solutions and
asymptotic expansions as 𝜖 tends to 0. However, the main
contrast with problem (2) is that, due to the presence of
the turning point, our solutions are no longer bounded in
the vicinity of the origin, being meromorphic in both time
variable 𝑡 and parameter 𝜖. Namely, we build a set of actual
meromorphic solutions 𝑢d𝑝(𝑡, 𝑧, 𝜖) to problem (1) of the form

𝑢d𝑝 (𝑡, 𝑧, 𝜖) = 𝜖𝛽 (𝑈0 (𝜖𝛼𝑡) + (𝜖𝛼𝑡)𝛾 Vd𝑝 (𝑡, 𝑧, 𝜖)) , (3)

where 𝛼 > 1, 𝛽 are some rational numbers, 𝛾 is an integer,
and 𝑈0(𝑇) is a nonidentically vanishing root of a second-
order algebraic equation with polynomial coefficients related
to the polynomials 𝑃1, 𝑃2, see (70), and where Vd𝑝(𝑡, 𝑧, 𝜖) is a
bounded holomorphic function on products T × 𝐻𝛽 × E𝑝

similar to the ones mentioned above, which can be expressed
as a Laplace transform of some order 𝜅 ≥ 1 and Fourier
inverse transform

Vd𝑝 (𝑡, 𝑧, 𝜖) = 𝜅(2𝜋)1/2 ∫
+∞

−∞
∫
𝐿d𝑝

𝜔d𝑝𝜅 (𝑢,𝑚, 𝜖)
⋅ exp(−( 𝑢𝜖𝜒+𝛼𝑡)

𝜅) 𝑒𝑖𝑧𝑚 𝑑𝑢𝑢 𝑑𝑚
(4)

along some half line 𝐿d𝑝 = R+𝑒𝑖d𝑝 , for some positive rational

number 𝜒 > 0, where 𝜔d𝑝𝜅 (𝑢,𝑚, 𝜖) represents a function with
at most exponential growth of order 𝜅 on a sector containing𝐿d𝑝 with respect to 𝑢, with exponential decay with respect
to 𝑚 on R and with analytic dependence on 𝜖 near 0 (see
Theorem 19). Furthermore, we show that these functions
Vd𝑝(𝑡, 𝑧, 𝜖) own with respect to 𝜖 a common asymptotic
expansion V̂(𝑡, 𝑧, 𝜖) = ∑𝑛≥0 V𝑛(𝑡, 𝑧)𝜖𝑛 which represents a
formal series with bounded holomorphic coefficients onT×𝐻𝛽. We specify also the nature of this asymptotic expansion
which turns out to be of Gevrey order (at most) 1/(𝜒 + 𝛼)𝜅.
Besides, since the aperture of the sectors E𝑝 may be selected
slightly larger than 𝜋/(𝜒 + 𝛼)𝜅, the functions Vd𝑝 can be
identified as (𝜒+𝛼)𝜅-sums of the formal series V̂ (Theorem21).
By construction, the integer 𝜅 shows up in the highest order
term of the operator 𝑃3 which is of irregular type of the
form 𝜖Δ𝐷𝑡𝛿𝐷(𝜅+1)+𝑘0𝜕𝛿𝐷𝑡 𝑅𝐷(𝜕𝑧), with 𝑘0 = val𝑡(𝑃1), for some
integers Δ𝐷 ≥ 0, 𝛿𝐷 ≥ 2 and a polynomial 𝑅𝐷 with complex
coefficients. The rational number 𝜒 is built with the help of
the integers Δ𝐷, 𝛿𝐷, 𝑘0, and 𝜅 and the rational numbers 𝛼, 𝛽;
see (86). According to the fact that 𝛼, 𝛽 are mainly related
to constraints assumed on the polynomials 𝑃1 and 𝑃2 (see
(66), (67)), we observe that the Gevrey order 1/(𝜒 + 𝛼)𝜅 of

the asymptotic expansion involves information coming both
from the highest irregular termand from the twopolynomials𝑃1and𝑃2 that shape the turning point at 𝑡 = 0, whereas, in our
previous contribution [3], the Gevrey order was exclusively
stemming from the irregular singularity at 𝑡 = 0.

The kind of equations with quadratic nonlinearity we
investigate in this work is strongly related to singularly per-
turbed ODEs which are nonsingular at the origin of the form𝜖𝜎𝑑𝑦/𝑑𝑡 = 𝐹(𝑡, 𝑦, 𝑎, 𝜖) for some analytic functions 𝐹, small
complex parameter 𝜖, and a complex additional parameter𝑎, described in the seminal joint paper by Canalis-Durand
et al., see [6], where they study asymptotic properties of
actual overstable solutions near a slow curve 𝜙0(𝑡) (meaning
that 𝐹(𝑡, 𝜙0(𝑡), 𝑎, 0) ≡ 0) in the case when the Jacobian𝜕𝑦𝐹(𝑡, 𝜙0(𝑡), 𝑎, 0) is not invertible at 𝑡 = 0. The main notable
difference is that we assume the origin to be at the same time
a turning point and an irregular singularity. More precisely,
with the rescaling map (𝑡, 𝜖) 󳨃→ (𝑇 = 𝜖𝑡, 𝜖) the transformed
equation (64) possesses a rational slow curve𝑈0(𝑇) and𝑇 = 0
remains a turning point and an irregular singularity for this
new equation.

The construction of the distinguished solution performed
in Section 4 and the parametric Borel/Laplace summable
character of these solutions shown in Section 7 are also
intimately linked to recent developments of exact WKB
analysis of formal and analytic solutions to second-order
linear ODEs of Schrödinger type. Namely, let

𝜖2𝜓󸀠󸀠 (𝑡, 𝜖) = 𝑄 (𝑡) 𝜓 (𝑡, 𝜖) (5)

be a singularly perturbed ODE where 𝜖 is a small com-
plex parameter and 𝑄(𝑡) is some polynomial with complex
coefficients. WKB solutions of (5) are known as special
solutions that are described as an exponential 𝜓̂(𝑡, 𝜖) =
exp(∫𝑡

𝑡0
𝑆(𝑠, 𝜖)𝑑𝑠) where the expression 𝑆(𝑡, 𝜖) satisfies a so-

called Riccati equation

𝜖2𝑆󸀠 (𝑡, 𝜖) + 𝜖2𝑆2 (𝑡, 𝜖) = 𝑄 (𝑡) . (6)

This last equation possesses formal power series solutions𝑆(𝑡, 𝜖) = 𝑆−1(𝑡)/𝜖 + ∑𝑛≥0 𝑆𝑛(𝑡)𝜖𝑛, where 𝑆−1(𝑡) satisfies the
quadratic equation 𝑆2−1(𝑡) = 𝑄(𝑡). Once 𝑆−1(𝑡) = ±√𝑄(𝑡) is
fixed, we get two formal solutions 𝑆±(𝑡, 𝜖) = 𝑆−1(𝑡)/𝜖+𝑇̂±(𝑡, 𝜖),
where 𝑇̂±(𝑡, 𝜖) ∈ C[[𝜖]] for any 𝑡 ∈ 𝑈 = {𝑡 ∈ C | 𝑄(𝑡) ̸= 0}.
Notice that 𝑇̂±(𝑡, 𝜖) solves the first-order Riccati equation
𝜖𝑇̂󸀠± (𝑡, 𝜖) + 2𝑆−1 (𝑡) 𝑇̂± (𝑡, 𝜖) + 𝜖𝑇̂2± (𝑡, 𝜖) + 𝑆󸀠−1 (𝑡) = 0 (7)

with turning points at the roots of 𝑄(𝑡). Our main PDE (1)
resembles this last one provided that 𝑆−1(𝑡) is a polynomial
and with the significant distinction that our equation only
involves differential operators with irregular singularity at𝑡 = 0. An essential feature of the theory is that the formal
series 𝑇̂±(𝑡, 𝜖) are 1-summable in suitable directions 𝑑 ∈ R

with respect to 𝜖 (that are related to the function ∫𝑡
𝑡0
𝑆−1(𝑠)𝑑𝑠)

for any fixed 𝑡 ∈ 𝑈. Different proofs of this fact can be found
in [7–10]. Our second main statement, Theorem 21, can be
considered as a similar contribution for some higher order
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PDEs of this latter result. Furthermore, in our study we are
also able to describe the behaviour of our specific solutions
near (𝑡, 𝜖) = (0, 0).

For more recent and advanced works related to WKB
analysis and local/global studies of solutions to linear ODEs
near turning points, we refer to contributions related to
the 1D Schrödinger equation with simple poles [11], with
merging pairs of simple poles and turning points [12],
and with merging triplet of poles and turning points [13,
14] and for analytic continuation properties of the Borel
transform (resurgence) of WKB expansions in the problem
of confluence of two simple turning points we quote [15].
Concerning the structure of singular formal solutions to
singularly perturbed linear systems of ODEs with turning
points we point out [16] solving an old question of Wasow.
We mention also preeminent studies on WKB analysis for
higher order differential equations which reveal new Stokes
phenomena giving rise to so-called virtual turning points
[17, 18].

In the framework of linear PDEs, normal forms for
completely integrable systems near a degenerate point where
two turning points coalesce have been obtained in [19], which
is a first step toward the so-called Dubrovin conjecture which
concerns the question of universal behaviour of generic
solutions near gradient catastrophe of singularlyHamiltonian
perturbations of first-order hyperbolic equations; see [20].
We mention also that sectorial analytic transformations to
normal forms have been obtained for systems of singularly
perturbed ODEs near a turning point with multiplicity using
the recent approach of composite asymptotic expansions
developed in [2]; see [21].

The paper is organized as follows. In Section 2, we recall
the definition introduced in the work [3] of some weighted
Banach spaces of continuous functions with exponential
growth on unbounded sectors in C and with exponential
decay on R. We analyze the continuity of specific multipli-
cation and linear/nonlinear convolution operators acting on
these spaces.

In Section 3, we remind the reader of basic statements
concerning 𝑚𝑘-Borel-Laplace transforms, a version of the
classical Borel-Laplace maps already used in previous works
[3, 22, 23] and Fourier transforms acting on exponentially flat
functions.

In Section 4, we display our main problems and explain
the leading strategy in order to solve them. It consists in four
operations. In a first step, we restrict our inquiry for the sets
of solutions to time rescaled function spaces; see (63). Then,
we consider candidates for solutions to the resulting auxiliary
problem (64) that are small perturbations of a so-called slow
curve which solves a second-order algebraic equation and
which may be singular at the origin in C. In a third step,
we search again for time rescaled functions solutions for the
associated problem (84) solved by the small perturbation
of the slow curve; see (85). In the last step, we write down
the convolution problem (95) solved by a suitable 𝑚𝜅-Borel
transform of a formal solution to the attached problem (87).

In Section 5, we solve the main convolution problem (95)
within the Banach spaces described in Section 2 using some
fixed point theorem argument.

In Section 6, we provide a set of actualmeromorphic solu-
tions to our initial equation (61) by executing backwards the
operations described in Section 4. In particular, we show that
our singular functions actually solve problem (164) which
is a factorized part of (61) with a more restrictive forcing
term. Furthermore, the difference of any two neighboring
solutions tends to 0 as 𝜖 tends to 0 faster than a function with
exponential decay of order (𝜒 + 𝛼)𝜅.

In Section 7, we show the existence of a common
asymptotic expansion of Gevrey order 1/(𝜒 + 𝛼)𝜅 for the
nonsingular parts of these solutions of (61) and (164) based on
the flatness estimates obtained in Section 6 using a theorem
by Ramis and Sibuya.

2. Banach Spaces with Exponential Growth
and Exponential Decay

We denote by𝐷(0, 𝜌) the open disc centered at 0 with radius𝜌 > 0 in C and by 𝐷(0, 𝜌) its closure. Let 𝑆𝑑 be an open
unbounded sector in direction𝑑 ∈ R andE be an open sector
with finite radius 𝑟E, both centered at 0 in C. By convention,
these sectors do not contain the origin in C. We first give
definitions of Banach spaces which already appear in our
previous work [3].

Definition 1. Let 𝛽 > 0 and 𝜇 > 1 be real numbers. We denote
by 𝐸(𝛽,𝜇) the vector space of functions ℎ : R→ C such that

‖ℎ (𝑚)‖(𝛽,𝜇) = sup
𝑚∈R
(1 + |𝑚|)𝜇 exp (𝛽 |𝑚|) |ℎ (𝑚)| (8)

is finite. The space 𝐸(𝛽,𝜇) endowed with the norm ‖ ⋅ ‖(𝛽,𝜇)
becomes a Banach space.

As a direct consequence of Proposition 5 from [3], we
notice the following.

Proposition 2. The Banach space (𝐸(𝛽,𝜇), ‖ ⋅ ‖(𝛽,𝜇)) is a Banach
algebra for the convolution product

(𝑓 ⋆ 𝑔) (𝑚) = ∫+∞
−∞
𝑓 (𝑚 − 𝑚1) 𝑔 (𝑚1) 𝑑𝑚1. (9)

Namely, there exists a constant 𝐶0 > 0 (depending on 𝜇) such
that

󵄩󵄩󵄩󵄩(𝑓 ⋆ 𝑔) (𝑚)󵄩󵄩󵄩󵄩(𝛽,𝜇) ≤ 𝐶0 󵄩󵄩󵄩󵄩𝑓 (𝑚)󵄩󵄩󵄩󵄩(𝛽,𝜇) 󵄩󵄩󵄩󵄩𝑔 (𝑚)󵄩󵄩󵄩󵄩(𝛽,𝜇) (10)

for all 𝑓, 𝑔 ∈ 𝐸(𝛽,𝜇).
Definition 3. Let ], 𝜌 > 0 and 𝛽 > 0, 𝜇 > 1 be real
numbers. Let 𝜅 ≥ 1 and 𝜒, 𝛼 ≥ 0 be integers. Let 𝜖 ∈ E.
We denote by 𝐹𝑑(],𝛽,𝜇,𝜒,𝛼,𝜅,𝜖) the vector space of continuous
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functions (𝜏, 𝑚) 󳨃→ ℎ(𝜏,𝑚) on (𝐷(0, 𝜌) ∪ 𝑆𝑑) × R, which are
holomorphic with respect to 𝜏 on𝐷(0, 𝜌) ∪ 𝑆𝑑 and such that‖ℎ (𝜏,𝑚)‖(],𝛽,𝜇,𝜒,𝛼,𝜅,𝜖)

= sup
𝜏∈𝐷(0,𝜌)∪𝑆𝑑 ,𝑚∈R

(1 + |𝑚|)𝜇 exp (𝛽 |𝑚|)
⋅ 1 + 󵄨󵄨󵄨󵄨𝜏/𝜖𝜒+𝛼󵄨󵄨󵄨󵄨2𝜅|𝜏/𝜖𝜒+𝛼| exp(−] 󵄨󵄨󵄨󵄨󵄨󵄨󵄨 𝜏𝜖𝜒+𝛼 󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜅) |ℎ (𝜏,𝑚)|
(11)

is finite. One can check that the normed space (𝐹𝑑(],𝛽,𝜇,𝜒,𝛼,𝜅,𝜖),‖ ⋅ ‖(],𝛽,𝜇,𝜒,𝛼,𝜅,𝜖)) is a Banach space.

Throughout the whole section, we keep the notations of
Definitions 1 and 3.

In the next lemma, we check that some parameter
depending functions with polynomial growth with respect
to the variable 𝜏 and exponential decay with respect to the
variable𝑚, whichwill appear later on in our study (Section 5),
belong to the Banach spaces described above.

Lemma 4. Let 𝛾1 ≥ 0, 𝛾2 ≥ 1 be integers. Let 𝑅̃(𝑋) be a
polynomial that belongs to C[𝑋] such that 𝑅̃(𝑖𝑚) ̸= 0 for all𝑚 ∈ R. We take a function 𝐵(𝑚) located in 𝐸(𝛽,𝜇) and we
consider a continuous function 𝑎𝛾1,𝜅(𝜏, 𝑚) on (𝐷(0, 𝜌)∪𝑆𝑑)×R,
holomorphic with respect to 𝜏 on𝐷(0, 𝜌) ∪ 𝑆𝑑, such that󵄨󵄨󵄨󵄨󵄨𝑎𝛾1,𝜅 (𝜏, 𝑚)󵄨󵄨󵄨󵄨󵄨 ≤ 1(1 + |𝜏|𝜅)𝛾1 󵄨󵄨󵄨󵄨󵄨𝑅̃ (𝑖𝑚)󵄨󵄨󵄨󵄨󵄨 (12)

for all 𝜏 ∈ 𝐷(0, 𝜌) ∪ 𝑆𝑑, all𝑚 ∈ R.
Then, the function 𝜖−𝜒𝛾2𝜏𝛾2𝐵(𝑚)𝑎𝛾1 ,𝜅(𝜏, 𝑚) belongs to𝐹𝑑(],𝛽,𝜇,𝜒,𝛼,𝜅,𝜖). Moreover, there exists a constant 𝐶1 > 0

(depending on 𝜅 and 𝛾2) such that󵄩󵄩󵄩󵄩󵄩𝜖−𝜒𝛾2𝜏𝛾2𝐵 (𝑚) 𝑎𝛾1,𝜅 (𝜏, 𝑚)󵄩󵄩󵄩󵄩󵄩(],𝛽,𝜇,𝜒,𝛼,𝜅,𝜖)
≤ 𝐶1

󵄩󵄩󵄩󵄩󵄩𝐵 (𝑚)󵄩󵄩󵄩󵄩󵄩(𝛽,𝜇)
inf𝑚∈R

󵄨󵄨󵄨󵄨󵄨𝑅̃ (𝑖𝑚)󵄨󵄨󵄨󵄨󵄨 |𝜖|
𝛾2𝛼

(13)

for all 𝜖 ∈ E.
Proof. By definition of the norm and bearing in mind the
constraint on the polynomial 𝑅̃(𝑋), we can write󵄩󵄩󵄩󵄩󵄩𝜖−𝜒𝛾2𝜏𝛾2𝐵 (𝑚) 𝑎𝛾1,𝜅 (𝜏, 𝑚)󵄩󵄩󵄩󵄩󵄩(],𝛽,𝜇,𝜒,𝛼,𝜅,𝜖)

≤ sup
𝜏∈𝐷(0,𝜌)∪𝑆𝑑 ,𝑚∈R

(1 + |𝑚|)𝜇 exp (𝛽 |𝑚|) 󵄨󵄨󵄨󵄨󵄨𝐵 (𝑚)󵄨󵄨󵄨󵄨󵄨
× 1 + 󵄨󵄨󵄨󵄨𝜏/𝜖𝜒+𝛼󵄨󵄨󵄨󵄨2𝜅|𝜏/𝜖𝜒+𝛼| exp(−] 󵄨󵄨󵄨󵄨󵄨󵄨󵄨 𝜏𝜖𝜒+𝛼 󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜅) |𝜖|−𝜒𝛾2 󵄨󵄨󵄨󵄨󵄨󵄨󵄨 𝜏𝜖𝜒+𝛼 󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝛾2

⋅ |𝜖|𝛾2(𝜒+𝛼) 1(1 + |𝜏/𝜖𝜒+𝛼|𝜅 |𝜖|𝜅(𝜒+𝛼))𝛾1 󵄨󵄨󵄨󵄨󵄨𝑅̃ (𝑖𝑚)󵄨󵄨󵄨󵄨󵄨
≤
󵄩󵄩󵄩󵄩󵄩𝐵 (𝑚)󵄩󵄩󵄩󵄩󵄩(𝛽,𝜇)

inf𝑚∈R
󵄨󵄨󵄨󵄨󵄨𝑅̃ (𝑖𝑚)󵄨󵄨󵄨󵄨󵄨 |𝜖|

𝛾2𝛼

⋅ sup
𝑥≥0

1 + 𝑥2𝜅𝑥 𝑥𝛾2 𝑒−]𝑥𝜅(1 + 𝑥𝜅 |𝜖|𝜅(𝜒+𝛼))𝛾1
≤
󵄩󵄩󵄩󵄩󵄩𝐵 (𝑚)󵄩󵄩󵄩󵄩󵄩(𝛽,𝜇)

inf𝑚∈R
󵄨󵄨󵄨󵄨󵄨𝑅̃ (𝑖𝑚)󵄨󵄨󵄨󵄨󵄨 |𝜖|

𝛾2𝛼 sup
𝑥≥0

1 + 𝑥2𝜅𝑥 𝑥𝛾2𝑒−]𝑥𝜅
(14)

which yields the lemma since an exponential grows faster
than any polynomial.

The next proposition provides norm estimates for some
linear convolution operators acting on the Banach spaces
introduced above. These bounds are more accurate than the
one supplied in Proposition 2 from [3]. These new estimates
will be essential in Section 5 in order to solve problem (95).
The improvements are due to the use of thorough upper
bounds estimates of a generalized Mittag-Leffler function
described in the proofs of Propositions 1 and 5 from [23].

Proposition 5. Let 𝛾𝑗, 0 ≤ 𝑗 ≤ 3, be real numbers with 𝛾1 ≥ 0.
Let 𝑅̃(𝑋) and 𝑅̃𝐷(𝑋) be polynomials with complex coefficients
such that deg(𝑅̃) ≤ deg(𝑅̃𝐷) and with 𝑅̃𝐷(𝑖𝑚) ̸= 0 for all 𝑚 ∈
R. We consider a continuous function 𝑎𝛾1,𝜅(𝜏, 𝑚) on (𝐷(0, 𝜌) ∪𝑆𝑑) × R, holomorphic with respect to 𝜏 on 𝐷(0, 𝜌) ∪ 𝑆𝑑, such
that

󵄨󵄨󵄨󵄨󵄨𝑎𝛾1,𝜅 (𝜏, 𝑚)󵄨󵄨󵄨󵄨󵄨 ≤ 1(1 + |𝜏|𝜅)𝛾1 󵄨󵄨󵄨󵄨󵄨𝑅̃𝐷 (𝑖𝑚)󵄨󵄨󵄨󵄨󵄨 (15)

for all 𝜏 ∈ 𝐷(0, 𝜌) ∪ 𝑆𝑑, all 𝑚 ∈ R. We make the following
assumptions:

1𝜅 + 𝛾3 + 1 > 0,𝛾2 + 𝛾3 + 2 ≥ 0,𝛾2 > −1.
(16)

(1) If 1 + 𝛾3 ≤ 0, then there exists a constant 𝐶2 > 0
(depending on ], 𝜅, 𝛾2, 𝛾3 and 𝑅̃(𝑋), 𝑅̃𝐷(𝑋)) such that󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝜖−𝛾0𝑎𝛾1,𝜅 (𝜏, 𝑚) 𝑅̃ (𝑖𝑚)

⋅ 𝜏𝜅 ∫𝜏𝜅
0
(𝜏𝜅 − 𝑠)𝛾2 𝑠𝛾3𝑓 (𝑠1/𝜅, 𝑚) 𝑑𝑠󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩(],𝛽,𝜇,𝜒,𝛼,𝜅,𝜖)

≤ 𝐶2 |𝜖|(𝜒+𝛼)𝜅(𝛾2+𝛾3+2)−𝛾0 󵄩󵄩󵄩󵄩𝑓 (𝜏,𝑚)󵄩󵄩󵄩󵄩(],𝛽,𝜇,𝜒,𝛼,𝜅,𝜖)
(17)

for all 𝑓(𝜏,𝑚) ∈ 𝐹𝑑(],𝛽,𝜇,𝜒,𝛼,𝜅,𝜖).
(2) If 1+𝛾3 > 0 and 𝛾1 ≥ 1+𝛾3, then there exists a constant𝐶󸀠2 > 0 (depending on ], 𝜅, 𝛾1, 𝛾2, 𝛾3 and 𝑅̃(𝑋), 𝑅̃𝐷(𝑋)) such

that 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝜖−𝛾0𝑎𝛾1,𝜅 (𝜏, 𝑚) 𝑅̃ (𝑖𝑚)
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⋅ 𝜏𝜅 ∫𝜏𝜅
0
(𝜏𝜅 − 𝑠)𝛾2 𝑠𝛾3𝑓 (𝑠1/𝜅, 𝑚) 𝑑𝑠󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩(],𝛽,𝜇,𝜒,𝛼,𝜅,𝜖)

≤ 𝐶󸀠2 |𝜖|(𝜒+𝛼)𝜅(𝛾2+𝛾3+2)−𝛾0−(𝜒+𝛼)𝜅𝛾1
⋅ 󵄩󵄩󵄩󵄩𝑓 (𝜏,𝑚)󵄩󵄩󵄩󵄩(],𝛽,𝜇,𝜒,𝛼,𝜅,𝜖)

(18)

for all 𝑓(𝜏,𝑚) ∈ 𝐹𝑑(],𝛽,𝜇,𝜒,𝛼,𝜅,𝜖).
Proof. By definition of the norm, we can write

𝐴 = 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝜖−𝛾0𝑎𝛾1,𝜅 (𝜏, 𝑚) 𝑅̃ (𝑖𝑚) 𝜏𝜅 ∫
𝜏𝜅

0
(𝜏𝜅 − 𝑠)𝛾2

⋅ 𝑠𝛾3𝑓 (𝑠1/𝜅, 𝑚) 𝑑𝑠󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩(],𝛽,𝜇,𝜒,𝛼,𝜅,𝜖)
≤ sup

𝜏∈𝐷(0,𝜌)∪𝑆𝑑 ,𝑚∈R

(1 + |𝑚|)𝜇 exp (𝛽 |𝑚|)

⋅ 1 + 󵄨󵄨󵄨󵄨𝜏/𝜖𝜒+𝛼󵄨󵄨󵄨󵄨2𝜅|𝜏/𝜖𝜒+𝛼| exp (−] 󵄨󵄨󵄨󵄨󵄨󵄨󵄨 𝜏𝜖𝜒+𝛼 󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝜅) |𝜖|−𝛾0 1(1 + |𝜏|𝜅)𝛾1

⋅ 󵄨󵄨󵄨󵄨󵄨𝑅̃ (𝑖𝑚)󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑅̃𝐷 (𝑖𝑚)󵄨󵄨󵄨󵄨󵄨 ×
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜏𝜅 ∫

𝜏𝜅

0
{(1 + |𝑚|)𝜇 exp (𝛽 |𝑚|)

⋅ 1 + |𝑠|2 / |𝜖|(𝜒+𝛼)2𝜅|𝑠|1/𝜅 / |𝜖|𝜒+𝛼 exp(−] |𝑠||𝜖|(𝜒+𝛼)𝜅)
⋅ 𝑓 (𝑠1/𝜅, 𝑚)}A (𝜏, 𝑠, 𝑚, 𝜖) 𝑑𝑠󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ,

(19)

where

A (𝜏, 𝑠, 𝑚, 𝜖) = 1(1 + |𝑚|)𝜇 exp (𝛽 |𝑚|)
⋅ exp (] (|𝑠| / |𝜖|(𝜒+𝛼)𝜅))(1 + |𝑠|2 / |𝜖|(𝜒+𝛼)2𝜅)
⋅ |𝑠|1/𝜅|𝜖|𝜒+𝛼 (𝜏𝜅 − 𝑠)𝛾2 𝑠𝛾3 .

(20)

Again by the definition of the norm of 𝑓 and by the
constraints on the polynomials 𝑅, 𝑅𝐷, we deduce that
𝐴 ≤ 𝐶2.1 (𝜖) sup

𝑚∈R

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 𝑅̃ (𝑖𝑚)𝑅̃𝐷 (𝑖𝑚)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 󵄩󵄩󵄩󵄩𝑓 (𝜏,𝑚)󵄩󵄩󵄩󵄩(],𝛽,𝜇,𝜒,𝛼,𝜅,𝜖) , (21)

where

𝐶2.1 (𝜖) = sup
𝜏∈𝐷(0,𝜌)∪𝑆𝑑

1 + 󵄨󵄨󵄨󵄨𝜏/𝜖𝜒+𝛼󵄨󵄨󵄨󵄨2𝜅|𝜏/𝜖𝜒+𝛼| exp(−] 󵄨󵄨󵄨󵄨󵄨󵄨󵄨 𝜏𝜖𝜒+𝛼 󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝜅)

⋅ |𝜖|−𝛾0 1(1 + |𝜏|𝜅)𝛾1 × |𝜏|𝜅

⋅ ∫|𝜏|𝜅
0

exp (] (ℎ/ |𝜖|(𝜒+𝛼)𝜅))
1 + ℎ2/ |𝜖|(𝜒+𝛼)2𝜅 ℎ1/𝜅|𝜖|𝜒+𝛼 (|𝜏|𝜅 − ℎ)𝛾2 ℎ𝛾3𝑑ℎ.

(22)

We perform the change of variable ℎ = |𝜖|(𝜒+𝛼)𝜅ℎ󸀠 inside the
integral which is a part of 𝐶2.1(𝜖) that yields
𝐶2.1 (𝜖) = sup

𝜏∈𝐷(0,𝜌)∪𝑆𝑑

1 + 󵄨󵄨󵄨󵄨𝜏/𝜖𝜒+𝛼󵄨󵄨󵄨󵄨2𝜅|𝜏/𝜖𝜒+𝛼| exp (−] 󵄨󵄨󵄨󵄨󵄨󵄨󵄨 𝜏𝜖𝜒+𝛼 󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝜅)

⋅ |𝜖|−𝛾0 1(1 + |𝜏|𝜅)𝛾1 × |𝜏|𝜅
⋅ ∫|𝜏|𝜅/|𝜖|(𝜒+𝛼)𝜅

0

𝑒]ℎ󸀠1 + (ℎ󸀠)2 (ℎ󸀠)1/𝜅 ( |𝜏|𝜅|𝜖|(𝜒+𝛼)𝜅 − ℎ󸀠)
𝛾2

⋅ (ℎ󸀠)𝛾3 𝑑ℎ󸀠 |𝜖|(𝜒+𝛼)𝜅(𝛾2+𝛾3+1) .

(23)

As a result, we obtain the bounds

𝐶2.1 (𝜖) ≤ |𝜖|(𝜒+𝛼)𝜅(𝛾2+𝛾3+1)−𝛾0+(𝜒+𝛼)𝜅 sup
𝑥≥0

1 + 𝑥2𝑥1/𝜅 𝑒−]𝑥
⋅ 𝑥(1 + |𝜖|(𝜒+𝛼)𝜅 𝑥)𝛾1 𝐺 (𝑥) ,

(24)

where

𝐺 (𝑥) = ∫𝑥
0

𝑒]ℎ󸀠1 + (ℎ󸀠)2 (ℎ󸀠)1/𝜅+𝛾3 (𝑥 − ℎ󸀠)𝛾2 𝑑ℎ󸀠. (25)

We now proceed as in Proposition 1 of [23]. We split the
function 𝐺(𝑥) into two pieces and study them separately.
Namely, we decompose 𝐺(𝑥) = 𝐺1(𝑥) + 𝐺2(𝑥), where
𝐺1 (𝑥) = ∫𝑥/2

0

𝑒]ℎ󸀠1 + (ℎ󸀠)2 (ℎ󸀠)1/𝜅+𝛾3 (𝑥 − ℎ󸀠)𝛾2 𝑑ℎ󸀠,
𝐺2 (𝑥) = ∫𝑥

𝑥/2

𝑒]ℎ󸀠1 + (ℎ󸀠)2 (ℎ󸀠)1/𝜅+𝛾3 (𝑥 − ℎ󸀠)𝛾2 𝑑ℎ󸀠.
(26)

We first provide estimates for 𝐺1(𝑥).
(a) Assume that −1 < 𝛾2 < 0. We see that (𝑥 − ℎ󸀠)𝛾2 ≤(𝑥/2)𝛾2 for all 0 ≤ ℎ󸀠 ≤ 𝑥/2, for 𝑥 > 0. Hence, from the first

constraint of (16), we get

𝐺1 (𝑥) ≤ (𝑥2)
𝛾2 𝑒]𝑥/2 ∫𝑥/2

0
(ℎ󸀠)1/𝜅+𝛾3 𝑑ℎ󸀠

= (𝑥2)
𝛾2 𝑒]𝑥/2 (𝑥/2)1/𝜅+𝛾3+11/𝜅 + 𝛾3 + 1

(27)
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for all 𝑥 ≥ 0. Subsequently, we obtain
sup
𝑥≥0

1 + 𝑥2𝑥1/𝜅 𝑒−]𝑥 𝑥(1 + |𝜖|(𝜒+𝛼)𝜅 𝑥)𝛾1 𝐺1 (𝑥)
≤ sup

𝑥≥0

1 + 𝑥2𝑥1/𝜅 𝑒−]𝑥𝑥𝐺1 (𝑥)
(28)

which is finite due to the second assumption of (16).
(b) Assume that 𝛾2 > 0. We notice that (𝑥 − ℎ󸀠)𝛾2 ≤ 𝑥𝛾2

for all 0 ≤ ℎ󸀠 ≤ 𝑥/2, for 𝑥 > 0. Therefore, again from the first
constraint of (16) we get

𝐺1 (𝑥) ≤ 𝑥𝛾2𝑒]𝑥/2 ∫𝑥/2
0
(ℎ󸀠)1/𝜅+𝛾3 𝑑ℎ󸀠

= 𝑥𝛾2𝑒]𝑥/2 (𝑥/2)1/𝜅+𝛾3+11/𝜅 + 𝛾3 + 1
(29)

for all 𝑥 ≥ 0. Consequently, we obtain
sup
𝑥≥0

1 + 𝑥2𝑥1/𝜅 𝑒−]𝑥 𝑥(1 + |𝜖|(𝜒+𝛼)𝜅 𝑥)𝛾1 𝐺1 (𝑥)
≤ sup

𝑥≥0

1 + 𝑥2𝑥1/𝜅 𝑒−]𝑥𝑥𝐺1 (𝑥)
(30)

which is finite due to the second assumption of (16).
In a second step, we study 𝐺2(𝑥).
We see that 1 + (ℎ󸀠)2 ≥ 1 + (𝑥/2)2 for all 𝑥/2 ≤ ℎ󸀠 ≤ 𝑥.

Hence,

𝐺2 (𝑥) ≤ 11 + (𝑥/2)2 ∫
𝑥

𝑥/2
𝑒]ℎ󸀠 (ℎ󸀠)1/𝜅+𝛾3 (𝑥 − ℎ󸀠)𝛾2 𝑑ℎ󸀠

≤ 11 + (𝑥/2)2𝐺2.1 (𝑥) ,
(31)

where

𝐺2.1 (𝑥) = ∫𝑥
0
𝑒]ℎ󸀠 (ℎ󸀠)1/𝜅+𝛾3 (𝑥 − ℎ󸀠)𝛾2 𝑑ℎ󸀠 (32)

for all 𝑥 ≥ 0. Taking account of the estimates (18) in
[23] which are deduced from the asymptotic behaviour for
large 𝑥 of the generalized Mittag-Leffler function 𝐸𝛼,𝛽(𝑥) =∑𝑛≥0 𝑥𝑛/Γ(𝛽 + 𝑛𝛼), for 𝛼, 𝛽 > 0, we get a constant 𝐾2.1 > 0
(that depends on ], 𝜅, 𝛾2, 𝛾3) such that

𝐺2.1 (𝑥) ≤ 𝐾2.1𝑥1/𝜅+𝛾3𝑒]𝑥 (33)

for all 𝑥 ≥ 1, provided the first and last constraints of (16)
hold.

(1) We consider the first case when 1 + 𝛾3 ≤ 0. Bearing in
mind (31) and (33), we deduce that

sup
𝑥≥1

1 + 𝑥2𝑥1/𝜅 𝑒−]𝑥 𝑥(1 + |𝜖|(𝜒+𝛼)𝜅 𝑥)𝛾1 𝐺2 (𝑥)

≤ sup
𝑥≥1

1 + 𝑥21 + (𝑥/2)2𝐾2.1𝑥1+𝛾3
(34)

which is finite. On the other hand, when 0 ≤ 𝑥 < 1, we make
the change of variable ℎ󸀠 = 𝑥𝑢󸀠 inside𝐺2.1(𝑥) and, taking (31)
into account, we get

sup
0≤𝑥<1

1 + 𝑥2𝑥1/𝜅 𝑒−]𝑥 𝑥(1 + |𝜖|(𝜒+𝛼)𝜅 𝑥)𝛾1 𝐺2 (𝑥)

≤ sup
0≤𝑥<1

1 + 𝑥21 + (𝑥/2)2 𝑒−]𝑥 𝑥𝑥1/𝜅 𝑥1/𝜅+𝛾3+𝛾2+1

× ∫1
0
𝑒]𝑥𝑢󸀠 (𝑢󸀠)1/𝜅+𝛾3 (1 − 𝑢󸀠)𝛾2 𝑑𝑢󸀠

(35)

which is finite provided that the constraints (16) are fulfilled.
(2) We examine the second case when 1 + 𝛾3 > 0 and𝛾1 ≥ 𝛾3 + 1.
We use this time the fact that 1 + |𝜖|(𝜒+𝛼)𝜅𝑥 ≥ |𝜖|(𝜒+𝛼)𝜅𝑥

for all 𝑥 ≥ 1 and the bounds (33) in order to get

sup
𝑥≥1

1 + 𝑥2𝑥1/𝜅 𝑒−]𝑥 𝑥(1 + |𝜖|(𝜒+𝛼)𝜅 𝑥)𝛾1 𝐺2 (𝑥)

≤ |𝜖|−(𝜒+𝛼)𝜅𝛾1 𝐾2.1sup
𝑥≥1

1 + 𝑥21 + (𝑥/2)2 𝑥
𝛾3+1𝑥𝛾1 .

(36)

On the other hand, the bounds on the domain 0 ≤ 𝑥 < 1 have
already been treated above owing to (35).

Finally, gathering (21), (24), (28), (30), (34), (35), and (36)
yields the statement of Proposition 5.

The forthcoming proposition presents norm estimates for
some bilinear convolution operators acting on the aforemen-
tioned Banach spaces.

Proposition 6. There exists a constant 𝐶3 > 0 (depending on𝜇 and 𝜅) such that󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝜏𝜅−1 ∫
𝜏𝜅

0
∫+∞
−∞
𝑓((𝜏𝜅 − 𝑠󸀠)1/𝜅 , 𝑚 − 𝑚1)𝑔((𝑠󸀠)1/𝜅 , 𝑚1)

⋅ 1(𝜏𝜅 − 𝑠󸀠) 𝑠󸀠 𝑑𝑠󸀠𝑑𝑚1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩(],𝛽,𝜇,𝜒,𝛼,𝜅,𝜖) ≤
𝐶3|𝜖|𝜒+𝛼 󵄩󵄩󵄩󵄩𝑓 (𝜏,

𝑚)󵄩󵄩󵄩󵄩(],𝛽,𝜇,𝜒,𝛼,𝜅,𝜖) 󵄩󵄩󵄩󵄩𝑔 (𝜏,𝑚)󵄩󵄩󵄩󵄩(],𝛽,𝜇,𝜒,𝛼,𝜅,𝜖)

(37)

for all 𝑓(𝜏), 𝑔(𝜏) ∈ 𝐹𝑑(],𝛽,𝜇,𝜒,𝛼,𝜅,𝜖).
Proof. We follow the same guidelines as in the proof of
Proposition 3 from [3]. By definition of the norm, we can
write
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𝐵 = 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝜏𝜅−1 ∫
𝜏𝜅

0
∫+∞
−∞
𝑓((𝜏𝜅 − 𝑠󸀠)1/𝜅 , 𝑚 − 𝑚1)𝑔((𝑠󸀠)1/𝜅 , 𝑚1) 1(𝜏𝜅 − 𝑠󸀠) 𝑠󸀠 𝑑𝑠󸀠𝑑𝑚1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩(],𝛽,𝜇,𝜒,𝛼,𝜅,𝜖) = sup
𝜏∈𝐷(0,𝜌)∪𝑆𝑑 ,𝑚∈R

(1 + |𝑚|)𝜇 exp (𝛽 |𝑚|)
⋅ 1 + 󵄨󵄨󵄨󵄨𝜏/𝜖𝜒+𝛼󵄨󵄨󵄨󵄨2𝜅|𝜏/𝜖𝜒+𝛼| exp(−] 󵄨󵄨󵄨󵄨󵄨󵄨󵄨 𝜏𝜖𝜒+𝛼 󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜅)
× 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜏

𝜅−1 ∫𝜏𝜅
0
∫+∞
−∞

{{{(1 +
󵄨󵄨󵄨󵄨𝑚 − 𝑚1

󵄨󵄨󵄨󵄨)𝜇 exp (𝛽 󵄨󵄨󵄨󵄨𝑚 − 𝑚1
󵄨󵄨󵄨󵄨) × 1 +

󵄨󵄨󵄨󵄨󵄨𝜏𝜅 − 𝑠󸀠󵄨󵄨󵄨󵄨󵄨2 / |𝜖|(𝜒+𝛼)2𝜅󵄨󵄨󵄨󵄨𝜏𝜅 − 𝑠󸀠󵄨󵄨󵄨󵄨1/𝜅 / |𝜖|𝜒+𝛼 exp(−] 󵄨󵄨󵄨󵄨󵄨𝜏𝜅 − 𝑠󸀠󵄨󵄨󵄨󵄨󵄨|𝜖|(𝜒+𝛼)𝜅)𝑓((𝜏𝜅 − 𝑠󸀠)1/𝜅 , 𝑚 − 𝑚1)}}}
×{{{(1 +

󵄨󵄨󵄨󵄨𝑚1
󵄨󵄨󵄨󵄨)𝜇 exp (𝛽 󵄨󵄨󵄨󵄨𝑚1

󵄨󵄨󵄨󵄨) 1 +
󵄨󵄨󵄨󵄨󵄨𝑠󸀠󵄨󵄨󵄨󵄨󵄨2 / |𝜖|(𝜒+𝛼)2𝜅󵄨󵄨󵄨󵄨𝑠󸀠󵄨󵄨󵄨󵄨1/𝜅 / |𝜖|𝜒+𝛼 exp(−] 󵄨󵄨󵄨󵄨󵄨𝑠󸀠󵄨󵄨󵄨󵄨󵄨|𝜖|(𝜒+𝛼)𝜅)𝑔((𝑠󸀠)1/𝜅 , 𝑚1)}}} ×B (𝜏, 𝑠, 𝑚,𝑚1) 𝑑𝑠󸀠𝑑𝑚1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ,

(38)

where

B (𝜏, 𝑠, 𝑚,𝑚1) = exp (−𝛽 󵄨󵄨󵄨󵄨𝑚 − 𝑚1
󵄨󵄨󵄨󵄨) exp (−𝛽 󵄨󵄨󵄨󵄨𝑚1

󵄨󵄨󵄨󵄨)(1 + 󵄨󵄨󵄨󵄨𝑚 − 𝑚1
󵄨󵄨󵄨󵄨)𝜇 (1 + 󵄨󵄨󵄨󵄨𝑚1

󵄨󵄨󵄨󵄨)𝜇
⋅ 󵄨󵄨󵄨󵄨󵄨𝑠󸀠󵄨󵄨󵄨󵄨󵄨1/𝜅 󵄨󵄨󵄨󵄨󵄨𝜏𝜅 − 𝑠󸀠󵄨󵄨󵄨󵄨󵄨1/𝜅 / |𝜖|2(𝜒+𝛼)(1 + 󵄨󵄨󵄨󵄨𝜏𝜅 − 𝑠󸀠󵄨󵄨󵄨󵄨2 / |𝜖|(𝜒+𝛼)2𝜅) (1 + 󵄨󵄨󵄨󵄨𝑠󸀠󵄨󵄨󵄨󵄨2 / |𝜖|(𝜒+𝛼)2𝜅)
× exp(] 󵄨󵄨󵄨󵄨󵄨𝜏𝜅 − 𝑠󸀠󵄨󵄨󵄨󵄨󵄨|𝜖|(𝜒+𝛼)𝜅) exp(] 󵄨󵄨󵄨󵄨󵄨𝑠󸀠󵄨󵄨󵄨󵄨󵄨|𝜖|(𝜒+𝛼)𝜅) 1(𝜏𝜅 − 𝑠󸀠) 𝑠󸀠 .

(39)

By definition of the norms of 𝑓 and 𝑔 and according to the
triangular inequality |𝑚| ≤ |𝑚 −𝑚1| + |𝑚1| for all𝑚,𝑚1 ∈ R,
we deduce that

𝐵
≤ 𝐶3 (𝜖) 󵄩󵄩󵄩󵄩𝑓 (𝜏,𝑚)󵄩󵄩󵄩󵄩(],𝛽,𝜇,𝜒,𝛼,𝜅,𝜖) 󵄩󵄩󵄩󵄩𝑔 (𝜏,𝑚)󵄩󵄩󵄩󵄩(],𝛽,𝜇,𝜒,𝛼,𝜅,𝜖) , (40)

where

𝐶3 (𝜖) = sup
𝜏∈𝐷(0,𝜌)∪𝑆𝑑 ,𝑚∈R

(1 + |𝑚|)𝜇 1 + 󵄨󵄨󵄨󵄨𝜏/𝜖𝜒+𝛼󵄨󵄨󵄨󵄨2𝜅|𝜏/𝜖𝜒+𝛼| exp(−] 󵄨󵄨󵄨󵄨󵄨󵄨󵄨 𝜏𝜖𝜒+𝛼 󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝜅) |𝜏|𝜅−1

× ∫|𝜏|𝜅
0
∫+∞
−∞

1(1 + 󵄨󵄨󵄨󵄨𝑚 − 𝑚1
󵄨󵄨󵄨󵄨)𝜇 (1 + 󵄨󵄨󵄨󵄨𝑚1

󵄨󵄨󵄨󵄨)𝜇
(ℎ󸀠)1/𝜅 (|𝜏|𝜅 − ℎ󸀠)1/𝜅

|𝜖|2(𝜒+𝛼) 1(1 + (|𝜏|𝜅 − ℎ󸀠)2 / |𝜖|(𝜒+𝛼)2𝜅) (1 + (ℎ󸀠)2 / |𝜖|(𝜒+𝛼)2𝜅)
× exp(] |𝜏|𝜅 − ℎ󸀠|𝜖|(𝜒+𝛼)𝜅 ) exp(] ℎ󸀠|𝜖|(𝜒+𝛼)𝜅) 1(|𝜏|𝜅 − ℎ󸀠) ℎ󸀠 𝑑ℎ󸀠𝑑𝑚1.

(41)

We provide upper bounds that can be split in two parts,

𝐶3 (𝜖) ≤ 𝐶3.1𝐶3.2 (𝜖) , (42)

where

𝐶3.1 = sup
𝑚∈R
(1 + |𝑚|)𝜇

⋅ ∫+∞
−∞

1(1 + 󵄨󵄨󵄨󵄨𝑚 − 𝑚1
󵄨󵄨󵄨󵄨)𝜇 (1 + 󵄨󵄨󵄨󵄨𝑚1

󵄨󵄨󵄨󵄨)𝜇 𝑑𝑚1

(43)

is finite under the condition that 𝜇 > 1 according to Lemma 4
of [24] and

𝐶3.2 (𝜖) = sup
𝜏∈𝐷(0,𝜌)∪𝑆𝑑

1 + 󵄨󵄨󵄨󵄨𝜏/𝜖𝜒+𝛼󵄨󵄨󵄨󵄨2𝜅|𝜏/𝜖𝜒+𝛼| |𝜏|𝜅−1 × ∫|𝜏|𝜅
0

(ℎ󸀠)1/𝜅 (|𝜏|𝜅 − ℎ󸀠)1/𝜅 / |𝜖|2(𝜒+𝛼)
(1 + (|𝜏|𝜅 − ℎ󸀠)2 / |𝜖|(𝜒+𝛼)2𝜅) (1 + (ℎ󸀠)2 / |𝜖|(𝜒+𝛼)2𝜅) 1(|𝜏|𝜅 − ℎ󸀠) ℎ󸀠 𝑑ℎ󸀠. (44)



8 Abstract and Applied Analysis

We carry out the change of variable ℎ󸀠 = |𝜖|(𝜒+𝛼)𝜅ℎ inside the
integral piece of 𝐶3.2(𝜖) which yields the bounds

𝐶3.2 (𝜖) = sup
𝜏∈𝐷(0,𝜌)∪𝑆𝑑

1 + 󵄨󵄨󵄨󵄨𝜏/𝜖𝜒+𝛼󵄨󵄨󵄨󵄨2𝜅|𝜏/𝜖𝜒+𝛼| |𝜏|𝜅−1

× ∫|𝜏|𝜅/|𝜖|(𝜒+𝛼)𝜅
0

ℎ1/𝜅 (|𝜏|𝜅 / |𝜖|(𝜒+𝛼)𝜅 − ℎ)1/𝜅
(1 + (|𝜏|𝜅 / |𝜖|(𝜒+𝛼)𝜅 − ℎ)2) (1 + ℎ2)

1(|𝜏|𝜅 / |𝜖|(𝜒+𝛼)𝜅 − ℎ) ℎ 1|𝜖|(𝜒+𝛼)𝜅 𝑑ℎ ≤ 1|𝜖|𝜒+𝛼 sup𝑥≥0
𝐵 (𝑥) ,

(45)

where𝐵 (𝑥)
= 1 + 𝑥2𝑥2/𝜅 𝑥∫

𝑥

0

ℎ1/𝜅 (𝑥 − ℎ)1/𝜅(1 + (𝑥 − ℎ)2) (1 + ℎ2) 1(𝑥 − ℎ) ℎ𝑑ℎ. (46)

A change of variable ℎ = 𝑥𝑢 in this last expression followed
by a partial fraction decomposition allow us to write

𝐵 (𝑥) = (1 + 𝑥2)
⋅ ∫1

0

1(1 + 𝑥2 (1 − 𝑢)2) (1 + 𝑥2𝑢2) 1(1 − 𝑢)1−1/𝜅 𝑢1−1/𝜅 𝑑𝑢
= 1 + 𝑥2𝑥2 + 4 ∫

1

0

3 − 2𝑢1 + 𝑥2 (1 − 𝑢)2 1(1 − 𝑢)1−1/𝜅 𝑢1−1/𝜅 𝑑𝑢
+ 1 + 𝑥2𝑥2 + 4 ∫

1

0

2𝑢 + 11 + 𝑥2𝑢2 1(1 − 𝑢)1−1/𝜅 𝑢1−1/𝜅 𝑑𝑢

(47)

which acquaints us with the fact that 𝐵(𝑥) is finite provided
that 𝜅 ≥ 1 and bounded on R+ with respect to 𝑥.

At last, collecting (38), (40), (42), (43), (45), and (47) leads
to the statement of Proposition 6.

3. Borel-Laplace and Fourier Transforms

In this section, we review some basic statements concerning
a 𝑘-Borel summability method of formal power series which
is a slightly modified version of the more classical procedure
(see [5], Section 3.2). This novel version has already been
used inworks such as [3, 22] when studyingCauchy problems
under the presence of a small perturbation parameter. We
remind also the reader of the definition of Fourier inverse
transform acting on functions with exponential decay.

Definition 7. Let 𝑘 ≥ 1 be an integer. Let (𝑚𝑘(𝑛))𝑛≥1 be the
sequence

𝑚𝑘 (𝑛) = Γ (𝑛𝑘) = ∫
∞

0
𝑡𝑛/𝑘−1𝑒−𝑡𝑑𝑡, 𝑛 ≥ 1. (48)

Let (E, ‖ ⋅ ‖E) be a complex Banach space. We say a formal
power series

𝑋 (𝑇) = ∞∑
𝑛=1

𝑎𝑛𝑇𝑛 ∈ 𝑇E [[𝑇]] (49)

is𝑚𝑘-summable with respect to𝑇 in the direction 𝑑 ∈ [0, 2𝜋)
if the following assertions hold:

(1) There exists 𝜌 > 0 such that the 𝑚𝑘-Borel transform
of 𝑋, B𝑚𝑘

(𝑋), is absolutely convergent for |𝜏| < 𝜌,
where

B𝑚𝑘
(𝑋) (𝜏) = ∞∑

𝑛=1

𝑎𝑛Γ (𝑛/𝑘)𝜏𝑛 ∈ 𝜏E [[𝜏]] . (50)

(2) The seriesB𝑚𝑘
(𝑋) can be analytically continued in a

sector 𝑆 = {𝜏 ∈ C⋆ : |𝑑 − arg(𝜏)| < 𝛿} for some 𝛿 >0. In addition to this, the extension is of exponential
growth at most 𝑘 in 𝑆, meaning that there exist𝐶,𝐾 >0 such that

󵄩󵄩󵄩󵄩󵄩B𝑚𝑘
(𝑋) (𝜏)󵄩󵄩󵄩󵄩󵄩E ≤ 𝐶𝑒𝐾|𝜏|𝑘 , 𝜏 ∈ 𝑆. (51)

Under these assumptions, the vector valued Laplace trans-
form ofB𝑚𝑘

(𝑋) along direction 𝑑 is defined by

L
𝑑
𝑚𝑘
(B𝑚𝑘

(𝑋)) (𝑇)
= 𝑘∫

𝐿𝛾

B𝑚𝑘
(𝑋) (𝑢) 𝑒−(𝑢/𝑇)𝑘 𝑑𝑢𝑢 ,

(52)

where 𝐿𝛾 is the path parametrized by 𝑢 ∈ [0,∞) 󳨃→ 𝑢𝑒𝑖𝛾,
for some appropriate direction 𝛾 depending on 𝑇, such that𝐿𝛾 ⊆ 𝑆 and cos(𝑘(𝛾 − arg(𝑇))) ≥ Δ > 0 for some Δ > 0.

The functionL𝑑
𝑚𝑘
(B𝑚𝑘

(𝑋)) is well defined and turns out
to be a holomorphic and bounded function in any sector of
the form 𝑆𝑑,𝜃,𝑅1/𝑘 = {𝑇 ∈ C⋆ : |𝑇| < 𝑅1/𝑘, |𝑑 − arg(𝑇)| < 𝜃/2},
for some 𝜋/𝑘 < 𝜃 < 𝜋/𝑘+2𝛿 and 0 < 𝑅 < Δ/𝐾.This function
is known as the 𝑚𝑘-sum of the formal power series 𝑋(𝑇) in
the direction 𝑑.

The following are some elementary properties concerning
the 𝑚𝑘-sums of formal power series which will be crucial in
our procedure.

(1) The function L𝑑
𝑚𝑘
(B𝑚𝑘

(𝑋))(𝑇) admits 𝑋(𝑇) as its
Gevrey asymptotic expansion of order 1/𝑘 with respect to 𝑇



Abstract and Applied Analysis 9

in 𝑆𝑑,𝜃,𝑅1/𝑘 . More precisely, for every 𝜋/𝑘 < 𝜃1 < 𝜃, there exist𝐶,𝑀 > 0 such that

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩L
𝑑
𝑚𝑘
(B𝑚𝑘

(𝑋)) (𝑇) − 𝑛−1∑
𝑝=1

𝑎𝑝𝑇𝑝
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩E

≤ 𝐶𝑀𝑛Γ (1 + 𝑛𝑘) |𝑇|𝑛 ,
(53)

for every 𝑛 ≥ 2 and 𝑇 ∈ 𝑆𝑑,𝜃1 ,𝑅1/𝑘 . Watson’s lemma
(see Proposition 11 p. 75 in [25]) allows us to affirm that
L𝑑

𝑚𝑘
(B𝑚𝑘

(𝑋))(𝑇) is unique provided that the opening 𝜃1 is
larger than 𝜋/𝑘.

(2) Whenever E is a Banach algebra, the set of holomor-
phic functions having Gevrey asymptotic expansion of order1/𝑘 on a sector with values in E turns out to be a differential
algebra (see Theorems 18, 19, and 20 in [25]). This and the
uniqueness provided by Watson’s lemma allow us to obtain
some properties on 𝑚𝑘-summable formal power series in
direction 𝑑.

By⋆wedenote the product in the Banach algebra and also
the Cauchy product of formal power series with coefficients
in E. Let 𝑋1, 𝑋2 ∈ 𝑇E[[𝑇]] be 𝑚𝑘-summable formal power
series in direction𝑑. Let 𝑞1 ≥ 𝑞2 ≥ 1be integers.Then𝑋1+𝑋2,𝑋1 ⋆ 𝑋2, and 𝑇𝑞1𝜕𝑞2𝑇 𝑋1, which are elements of 𝑇E[[𝑇]], are𝑚𝑘-summable in direction 𝑑. Moreover, one has

L
𝑑
𝑚𝑘
(B𝑚𝑘

(𝑋1)) (𝑇) +L𝑑
𝑚𝑘
(B𝑚𝑘

(𝑋2)) (𝑇)
=L

𝑑
𝑚𝑘
(B𝑚𝑘

(𝑋1 + 𝑋2)) (𝑇) ,
L

𝑑
𝑚𝑘
(B𝑚𝑘

(𝑋1)) (𝑇) ⋆L𝑑
𝑚𝑘
(B𝑚𝑘

(𝑋2)) (𝑇)
=L

𝑑
𝑚𝑘
(B𝑚𝑘

(𝑋1 ⋆ 𝑋2)) (𝑇) ,
𝑇𝑞1𝜕𝑞2𝑇 L

𝑑
𝑚𝑘
(B𝑚𝑘

(𝑋1)) (𝑇)
=L

𝑑
𝑚𝑘
(B𝑚𝑘

(𝑇𝑞1𝜕𝑞2𝑇 𝑋1)) (𝑇) ,

(54)

for every 𝑇 ∈ 𝑆𝑑,𝜃,𝑅1/𝑘 .
The next proposition is written without proof for it can be

found in [3], Proposition 6.

Proposition 8. Let 𝑓(𝑡) = ∑𝑛≥1 𝑓𝑛𝑡𝑛 and 𝑔(𝑡) = ∑𝑛≥1 𝑔𝑛𝑡𝑛
which belong to E[[𝑡]], where (E, ‖ ⋅ ‖E) is a Banach algebra.
Let 𝑘,𝑚 ≥ 1 be integers. The following formal identities hold.

B𝑚𝑘
(𝑡𝑘+1𝜕𝑡𝑓 (𝑡)) (𝜏) = 𝑘𝜏𝑘B𝑚𝑘

(𝑓 (𝑡)) (𝜏) ,
B𝑚𝑘

(𝑡𝑚𝑓 (𝑡)) (𝜏) = 𝜏𝑘Γ (𝑚/𝑘)
⋅ ∫𝜏𝑘

0
(𝜏𝑘 − 𝑠)𝑚/𝑘−1B𝑚𝑘

(𝑓 (𝑡)) (𝑠1/𝑘) 𝑑𝑠𝑠 ,

B𝑚𝑘
(𝑓 (𝑡) ⋆ 𝑔 (𝑡)) (𝜏)
= 𝜏𝑘 ∫𝜏𝑘

0
B𝑚𝑘

(𝑓 (𝑡)) ((𝜏𝑘 − 𝑠)1/𝑘)
⋆B𝑚𝑘

(𝑔 (𝑡)) (𝑠1/𝑘) 1(𝜏𝑘 − 𝑠) 𝑠𝑑𝑠.
(55)

In the last part of the section, we recall without proofs
some properties of the inverse Fourier transform acting on
continuous functions with exponential decay on R; see [3],
Proposition 7 for more details.

Proposition 9. (1) Let 𝑓 : R → R be a continuous function
with a constant 𝐶 > 0 such that |𝑓(𝑚)| ≤ 𝐶 exp(−𝛽|𝑚|) for all𝑚 ∈ R, for some 𝛽 > 0. The inverse Fourier transform of 𝑓 is
defined by the integral representation

F
−1 (𝑓) (𝑥) = 1(2𝜋)1/2 ∫

+∞

−∞
𝑓 (𝑚) exp (𝑖𝑥𝑚) 𝑑𝑚 (56)

for all 𝑥 ∈ R. It turns out that the functionF−1(𝑓) extends to
an analytic function on the horizontal strip𝐻𝛽 = {𝑧 ∈ C | |Im (𝑧)| < 𝛽} . (57)

Let 𝜙(𝑚) = 𝑖𝑚𝑓(𝑚). Then, we have the commuting relation

𝜕𝑧F−1 (𝑓) (𝑧) = F
−1 (𝜙) (𝑧) (58)

for all 𝑧 ∈ 𝐻𝛽.
(2) Let 𝑓, 𝑔 ∈ 𝐸(𝛽,𝜇) and let 𝜓(𝑚) = (1/(2𝜋)1/2)𝑓 ⋆ 𝑔(𝑚),

the convolution product of 𝑓 and 𝑔, for all 𝑚 ∈ R. From
Proposition 2, we know that𝜓 ∈ 𝐸(𝛽,𝜇). Moreover, the following
formula

F
−1 (𝑓) (𝑧)F−1 (𝑔) (𝑧) = F

−1 (𝜓) (𝑧) (59)

holds for all 𝑧 ∈ 𝐻𝛽.

4. Layout of the Main Nonlinear PDE and
Related Auxiliary Problems

Let 𝑞,𝑀, 𝑝 ≥ 0, 𝐷 ≥ 2 be integers. For all 0 ≤ 𝑙 ≤ 𝑞, let 𝑘𝑙,𝑚𝑙

be nonnegative integers and 𝑎𝑙 be complex numbers with 𝑎0 ̸=0 such that 𝑘𝑙 < 𝑘𝑙+1 for 𝑙 ∈ {0, . . . , 𝑞−1}. For all 0 ≤ 𝑙 ≤ 𝑀, we
consider nonnegative integers ℎ𝑙, 𝜇𝑙 and complex numbers 𝑐𝑙
with 𝑐0 ̸= 0 such that ℎ𝑙 < ℎ𝑙+1 for 𝑙 ∈ {0, . . . ,𝑀 − 1}. For all0 ≤ 𝑙 ≤ 𝑝, we denote by 𝑛𝑙 and 𝑏𝑙 nonnegative integers such
that 𝑏𝑙 < 𝑏𝑙+1 for 𝑙 ∈ {0, . . . , 𝑝 − 1}. For 1 ≤ 𝑙 ≤ 𝐷, we set
nonnegative integers Δ 𝑙, 𝑑𝑙, and 𝛿𝑙 such that 1 ≤ 𝛿𝑙 < 𝛿𝑙+1 for𝑙 ∈ {1, . . . , 𝐷 − 1}.

Let 𝑄(𝑋), 𝑅𝑙(𝑋) ∈ C[𝑋], 1 ≤ 𝑙 ≤ 𝐷, be polynomials
which can be factorized as 𝑄(𝑋) = 𝑋V𝑄(𝑋), 𝑅𝑙(𝑋) =𝑋V𝑅̃𝑙(𝑋), for some common integer V ≥ 1, where 𝑄(𝑋) and𝑅̃𝑙(𝑋) are polynomials that satisfy

deg (𝑄) = deg (𝑅̃𝐷) ≥ deg (𝑅̃𝑙) ,
𝑄 (𝑖𝑚) ̸= 0, 𝑅̃𝐷 (𝑖𝑚) ̸= 0 (60)

for all𝑚 ∈ R and all 1 ≤ 𝑙 ≤ 𝐷 − 1.
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We consider the following nonlinear singularly perturbed
PDE:

𝑄 (𝜕𝑧)(( 𝑞∑
𝑙=0

𝑎𝑙𝜖𝑚𝑙𝑡𝑘𝑙)𝑢 (𝑡, 𝑧, 𝜖)
+ (𝑀∑

𝑙=0

𝑐𝑙𝜖𝜇𝑙𝑡ℎ𝑙)𝑢2 (𝑡, 𝑧, 𝜖)) = 𝑝∑
𝑗=0

𝑏𝑗 (𝑧) 𝜖𝑛𝑗𝑡𝑏𝑗

+ 𝐷∑
𝑙=1

𝜖Δ 𝑙𝑡𝑑𝑙𝜕𝛿𝑙𝑡 𝑅𝑙 (𝜕𝑧) 𝑢 (𝑡, 𝑧, 𝜖) .
(61)

The coefficients 𝑏𝑗(𝑧) are constructed as follows. For all 0 ≤𝑗 ≤ 𝑝, we consider functions 𝑚 󳨃→ 𝐵𝑗(𝑚) that belong to the
Banach space 𝐸(𝛽,𝜇) for some 𝜇 > 1 and 𝛽 > 0. We define𝐵𝑗(𝑚) = (𝑖𝑚)V𝐵𝑗(𝑚) where V is the integer introduced above,
for 0 ≤ 𝑗 ≤ 𝑝. We set

𝑏𝑗 (𝑧) = F
−1 (𝑚 󳨃󳨀→ 𝐵𝑗 (𝑚)) (𝑧) , 0 ≤ 𝑗 ≤ 𝑝, (62)

whereF−1 denotes the Fourier inverse transform defined in
Proposition 9. From (58), it turns out by construction that one
can write 𝑏𝑗(𝑧) = 𝜕V𝑧𝑏̃𝑗(𝑧), where 𝑏̃𝑗(𝑧) is the inverse Fourier
transform of 𝐵𝑗(𝑚).
Remark 10. The reason why we make these factorizations
hypotheses on the polynomials 𝑄(𝑋), 𝑅𝑙(𝑋), and the func-
tions 𝐵𝑗(𝑚) will be explained later on in Remark 14 of next
section and is related to the construction of the Banach spaces
in Section 2 and their Fourier inverse transforms.

Within this work, we will search for time rescaled solu-
tions of (61) of the form

𝑢 (𝑡, 𝑧, 𝜖) = 𝜖𝛽𝑈(𝜖𝛼𝑡, 𝑧, 𝜖) , (63)

where 𝛼, 𝛽 ∈ Q are two rational numbers and 𝛼 > 0. Then,
the expression𝑈(𝑇, 𝑧, 𝜖) needs to formally solve the following
nonlinear PDE:

𝑄 (𝜕𝑧)(( 𝑞∑
𝑙=0

𝑎𝑙𝜖𝑚𝑙+𝛽−𝛼𝑘𝑙𝑇𝑘𝑙)𝑈 (𝑇, 𝑧, 𝜖)
+ (𝑀∑

𝑙=0

𝑐𝑙𝜖𝜇𝑙+2𝛽−𝛼ℎ𝑙𝑇ℎ𝑙)𝑈2 (𝑇, 𝑧, 𝜖))
= 𝑝∑

𝑗=0

𝑏𝑗 (𝑧) 𝜖𝑛𝑗−𝛼𝑏𝑗𝑇𝑏𝑗

+ 𝐷∑
𝑙=1

𝜖Δ 𝑙+𝛼(𝛿𝑙−𝑑𝑙)+𝛽𝑇𝑑𝑙𝑅𝑙 (𝜕𝑧) 𝜕𝛿𝑙𝑇𝑈 (𝑇, 𝑧, 𝜖) .

(64)

4.1. Construction of a Distinguished Solution. We make the
additional assumption that 𝛼, 𝛽 set above can be chosen in
such a way that the following inequalities

Δ 𝑙 + 𝛼 (𝛿𝑙 − 𝑑𝑙) + 𝛽 > 0,
𝑛𝑗 − 𝛼𝑏𝑗 > 0 (65)

for all 1 ≤ 𝑙 ≤ 𝐷, 0 ≤ 𝑗 ≤ 𝑝 and
𝑚𝑙 + 𝛽 − 𝛼𝑘𝑙 = 0,
𝑚𝑗 + 𝛽 − 𝛼𝑘𝑗 > 0 (66)

for all 0 ≤ 𝑙 ≤ 𝑠 and all 𝑠 + 1 ≤ 𝑗 ≤ 𝑞, for some integer0 ≤ 𝑠 ≤ 𝑞 − 1, together with
𝜇𝑙 + 2𝛽 − 𝛼ℎ𝑙 = 0,
𝜇𝑗 + 2𝛽 − 𝛼ℎ𝑗 > 0 (67)

for all 0 ≤ 𝑙 ≤ 𝑠󸀠 and all 𝑠󸀠 + 1 ≤ 𝑗 ≤ 𝑀, for some integer0 ≤ 𝑠󸀠 ≤ 𝑀 − 1, hold.
Remark 11. In the case 𝑞 = 1, 𝑘0, 𝑘1 ≥ 1, the roots of
the polynomial (in 𝑡) 𝑃(𝑡, 𝜖) = 𝑎0𝜖𝑚0𝑡𝑘0 + 𝑎1𝜖𝑚1𝑡𝑘1 all have
modulus equal to

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 𝑎1𝑎0
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
1/(𝑘0−𝑘1) |𝜖|(𝑚1−𝑚0)/(𝑘0−𝑘1) (68)

except the trivial root 0. The constraints (66) imply in
particular that 𝑚1 − 𝑚0 > 𝛼(𝑘1 − 𝑘0). As a result, all the
nonvanishing roots of 𝑃(𝑡, 𝜖) tend to∞ as 𝜖 tends to 0 and
0 is therefore the only root (with order 𝑘0) of 𝑃(𝑡, 𝜖) in the
vicinity of 0 as 𝜖 stays near the origin.

Let us assume that the expression 𝑈(𝑇, 𝑧, 𝜖) is allowed to
be written as a perturbation series with respect to 𝜖:

𝑈 (𝑇, 𝑧, 𝜖) = 𝑈0 (𝑇) + ∑
𝑛≥1

𝑈𝑛 (𝑇, 𝑧) 𝜖𝑛, (69)

where the constant term 𝑈0(𝑇) is taken independently of 𝑧
and is not identically equal to 0.The coefficient𝑈0(𝑇) is called
the slow curve of (64) in the terminology of [6].

In the following, we make the assumption that 𝑈0(𝑇)
solves the following second-order algebraic equation:

( 𝑠∑
𝑙=0

𝑎𝑙𝑇𝑘𝑙)𝑈0 (𝑇) + ( 𝑠󸀠∑
𝑙=0

𝑐𝑙𝑇ℎ𝑙)(𝑈0 (𝑇))2 = 0. (70)

As 𝑈0(𝑇) is not identically vanishing, it must be equal to−(∑𝑠𝑙=0 𝑎𝑙𝑇𝑘𝑙)/(∑𝑠󸀠𝑙=0 𝑐𝑙𝑇ℎ𝑙). Bearing in mind that 𝑎0, 𝑐0 ̸= 0, we
get its asymptotic behaviour

𝑈0 (𝑇) ∼ −𝑎0𝑐0 𝑇𝑘0−ℎ0 (71)

as 𝑇 tends to 0.

Remark 12. Under the hypotheses (60) and (62), we observe,
by factoring out the operator 𝜕V𝑧 from (64), that 𝑈(𝑇, 𝑧, 𝜖)
must solve the related PDE

𝑄 (𝜕𝑧)(( 𝑞∑
𝑙=0

𝑎𝑙𝜖𝑚𝑙+𝛽−𝛼𝑘𝑙𝑇𝑘𝑙)𝑈 (𝑇, 𝑧, 𝜖)
+ (𝑀∑

𝑙=0

𝑐𝑙𝜖𝜇𝑙+2𝛽−𝛼ℎ𝑙𝑇ℎ𝑙)𝑈2 (𝑇, 𝑧, 𝜖))
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= 𝑝∑
𝑗=0

𝑏̃𝑗 (𝑧) 𝜖𝑛𝑗−𝛼𝑏𝑗𝑇𝑏𝑗 + 𝐹 (𝑇, 𝑧, 𝜖)
+ 𝐷∑
𝑙=1

𝜖Δ 𝑙+𝛼(𝛿𝑙−𝑑𝑙)+𝛽𝑇𝑑𝑙 𝑅̃𝑙 (𝜕𝑧) 𝜕𝛿𝑙𝑇𝑈 (𝑇, 𝑧, 𝜖) ,
(72)

where the forcing term𝐹(𝑇, 𝑧, 𝜖) is a polynomial in 𝑧of degree
less than V − 1. According to the assumptions (65), (66), and
(67) and using the fact that 𝑄(0) ̸= 0, by taking 𝜖 = 0 into
(72), we see that the constraint (70) is equivalent to the fact
that 𝐹(𝑇, 𝑧, 0) ≡ 0. The precise shape of the term 𝐹(𝑇, 𝑧, 𝜖)
will be given later in Section 6; see (183).

In a first step, we express𝑈(𝑇, 𝑧, 𝜖) as a small perturbation
of 𝑈0(𝑇) that can be expressed in the form

𝑈0 (𝑇) = −𝑎0𝑐0 𝑇𝑘0−ℎ0 − 𝑎0𝑐0 𝑇𝑘0−ℎ0𝐽 (𝑇) , (73)

where 𝐽(𝑇) = ∑𝑗≥1 𝐽𝑗𝑇𝑗 is a convergent series near 𝑇 = 0;
namely,

𝑈 (𝑇, 𝑧, 𝜖) = −𝑎0𝑐0 𝑇𝑘0−ℎ0 − 𝑎0𝑐0 𝑇𝑘0−ℎ0𝐽 (𝑇)
+ 𝑇𝛾𝑉 (𝑇, 𝑧, 𝜖) (74)

for some integer 𝛾 ∈ Z and some expression 𝑉(𝑇, 𝑥, 𝜖). By
plugging this last expansion inside (64) and using the Leibniz
rule, we get

𝑄 (𝜕𝑧)(( 𝑠∑
𝑙=0

𝑎𝑙𝑇𝑘𝑙 + 𝑞∑
𝑙=𝑠+1

𝑎𝑙𝜖𝑚𝑙+𝛽−𝛼𝑘𝑙𝑇𝑘𝑙)
⋅ (−𝑎0𝑐0 𝑇𝑘0−ℎ0 − 𝑎0𝑐0 𝑇𝑘0−ℎ0𝐽 (𝑇) + 𝑇𝛾𝑉 (𝑇, 𝑧, 𝜖))
+ ( 𝑠󸀠∑

𝑙=0

𝑐𝑙𝑇ℎ𝑙 + 𝑀∑
𝑙=𝑠󸀠+1

𝑐𝑙𝜖𝜇𝑙+2𝛽−𝛼ℎ𝑙𝑇ℎ𝑙)
⋅ (−𝑎0𝑐0 𝑇𝑘0−ℎ0 − 𝑎0𝑐0 𝑇𝑘0−ℎ0𝐽 (𝑇) + 𝑇𝛾𝑉 (𝑇, 𝑧, 𝜖))

2)
= 𝑝∑

𝑗=0

𝑏𝑗 (𝑧) 𝜖𝑛𝑗−𝛼𝑏𝑗𝑇𝑏𝑗 + 𝐷∑
𝑙=1

𝜖Δ 𝑙+𝛼(𝛿𝑙−𝑑𝑙)+𝛽𝑇𝑑𝑙𝑅𝑙 (𝜕𝑧)
⋅ (−𝑎0𝑐0

𝛿𝑙−1∏
𝑑=0

(𝑘0 − ℎ0 − 𝑑) 𝑇𝑘0−ℎ0−𝛿𝑙 − 𝑎0𝑐0
⋅ ∑
𝑞1+𝑞2=𝛿𝑙

𝛿𝑙!𝑞1!𝑞2! 𝜕𝑞1𝑇 (𝑇𝑘0−ℎ0) 𝜕𝑞2𝑇 𝐽 (𝑇)
+ ∑
𝑞1+𝑞2=𝛿𝑙

𝛿𝑙!𝑞1!𝑞2!
𝑞1−1∏
𝑑=0

(𝛾 − 𝑑) 𝑇𝛾−𝑞1𝜕𝑞2𝑇 𝑉 (𝑇, 𝑧, 𝜖)) ,

(75)

where we put ∏−1
𝑑=0(𝛾 − 𝑑) = 1 by convention. At this

level, we observe the important fact that the coefficient

in front of 𝑄(𝜕𝑧)𝑉(𝑇, 𝑧, 𝜖) contains the term 𝑎0𝑇𝑘0+𝛾 −2(𝑎0/𝑐0)𝑇𝑘0−ℎ0+𝛾𝑐0𝑇ℎ0 = −𝑎0𝑇𝑘0+𝛾 thatwewant to set apart. As
a result, we get the following equation satisfied by 𝑉(𝑇, 𝑧, 𝜖):
𝑄 (𝜕𝑧) 𝑉 (𝑇, 𝑧, 𝜖)(−𝑎0𝑇𝑘0+𝛾

+ ( 𝑠∑
𝑙=1

𝑎𝑙𝑇𝑘𝑙 + 𝑞∑
𝑙=𝑠+1

𝑎𝑙𝜖𝑚𝑙+𝛽−𝛼𝑘𝑙𝑇𝑘𝑙)𝑇𝛾 − 2(𝑎0𝑐0 )
⋅ 𝑇𝑘0−ℎ0+𝛾( 𝑠󸀠∑

𝑙=1

𝑐𝑙𝑇ℎ𝑙 + 𝑀∑
𝑙=𝑠󸀠+1

𝑐𝑙𝜖𝜇𝑙+2𝛽−𝛼ℎ𝑙𝑇ℎ𝑙)
− 2(𝑎0𝑐0 )𝑇𝑘0−ℎ0+𝛾𝐽 (𝑇)
× ( 𝑠󸀠∑

𝑙=0

𝑐𝑙𝑇ℎ𝑙 + 𝑀∑
𝑙=𝑠󸀠+1

𝑐𝑙𝜖𝜇𝑙+2𝛽−𝛼ℎ𝑙𝑇ℎ𝑙)) + 𝑄 (𝜕𝑧)
⋅ 𝑉2 (𝑇, 𝑧, 𝜖) 𝑇2𝛾( 𝑠󸀠∑

𝑙=0

𝑐𝑙𝑇ℎ𝑙 + 𝑀∑
𝑙=𝑠󸀠+1

𝑐𝑙𝜖𝜇𝑙+2𝛽−𝛼ℎ𝑙𝑇ℎ𝑙)
= 𝑝∑

𝑗=0

𝑏𝑗 (𝑧) 𝜖𝑛𝑗−𝛼𝑏𝑗𝑇𝑏𝑗 + 𝐷∑
𝑙=1

𝜖Δ 𝑙+𝛼(𝛿𝑙−𝑑𝑙)+𝛽

⋅ ( ∑
𝑞1+𝑞2=𝛿𝑙

𝛿𝑙!𝑞1!𝑞2!
⋅ 𝑞1−1∏
𝑑=0

(𝛾 − 𝑑) 𝑇𝑑𝑙+𝛾−𝑞1𝑅𝑙 (𝜕𝑧) 𝜕𝑞2𝑇 𝑉 (𝑇, 𝑧, 𝜖)) .

(76)

We now introduce some additional constraints on the inte-
gers 𝛾, 𝑘𝑙, ℎ𝑗, 𝑏ℎ, for 0 ≤ 𝑙 ≤ 𝑞, 0 ≤ 𝑗 ≤ 𝑀, 0 ≤ ℎ ≤ 𝑝 and𝑑𝑙, 𝛿𝑙, for 1 ≤ 𝑙 ≤ 𝐷. Namely, we impose that the following
inequalities hold:

𝑘0 − ℎ𝑝 ≤ 𝛾 (77)

for 0 ≤ 𝑝 ≤ 𝑀, together with

𝛾 ≤ 𝑏𝑗 − 𝑘0 (78)

for all 0 ≤ 𝑗 ≤ 𝑝 and finally

𝑘0 < 𝑑𝐷 − 𝛿𝐷,
𝑘0 ≤ 𝑑𝑙 − 𝛿𝑙 (79)

for all 1 ≤ 𝑙 ≤ 𝐷 − 1.
Remark 13. (1) For the case 𝑘0 > ℎ0, from (77), we need 𝛾 ≥𝑘0 − ℎ0 > 0. As a consequence of (78), we get that 𝑏𝑗 > 𝑘0, for0 ≤ 𝑗 ≤ 𝑝. Let, for instance, 𝑞 = 1,𝑀 = 1, 𝑝 = 0, and 𝐷 = 2.
We set 𝛼 = 2, 𝛽 = 1, 𝛾 = 6, 𝜅 = 1 and we choose the powers
of 𝑡 and 𝜖 in the coefficients of (61) as follows:

𝑚0 = 3,
𝑘0 = 2,
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𝑚1 = 6,
𝑘1 = 3,
𝜇0 = 0,
ℎ0 = 1,
𝜇1 = 3,
ℎ1 = 2,
𝑛0 = 19,
𝑏0 = 9,
Δ 1 = 12,
𝑑1 = 5,
𝛿1 = 1,
Δ 2 = 20,
𝑑2 = 6,
𝛿2 = 2.

(80)

For these data, we can check that the constraints (65), (66),
(67), (77), (78), and (79) above are fulfilled. Moreover, all the
forthcoming requirements (88), (105), (106), (107), and (184)
stated inTheorem 19 are also verified. In this special case, the
main equation (61) writes

𝑄 (𝜕𝑧) ((𝑎0𝜖3𝑡2 + 𝑎1𝜖6𝑡3) 𝑢 (𝑡, 𝑧, 𝜖)
+ (𝑐0𝑡 + 𝑐1𝜖3𝑡2) 𝑢2 (𝑡, 𝑧, 𝜖)) = 𝑏0 (𝑧) 𝜖19𝑡9
+ 𝜖12𝑡5𝜕𝑡𝑅1 (𝜕𝑧) 𝑢 (𝑡, 𝑧, 𝜖) + 𝜖20𝑡6𝜕2𝑡 𝑅2 (𝜕𝑧) 𝑢 (𝑡, 𝑧, 𝜖) .

(81)

We can divide this last equation by 𝑡, but not by 𝜖, and
the resulting equation still possesses a turning point and an
irregular singularity at 𝑡 = 0.

(2) For the case ℎ0 > 𝑘0, we may take 𝛾 < 0 and hence
one can choose some 𝑏𝑗 < 𝑘0 for some 0 ≤ 𝑗 ≤ 𝑝. Let, for
instance, 𝑞 = 1,𝑀 = 1, 𝑝 = 0, and 𝐷 = 2. We choose 𝛼 = 2,𝛽 = −1, 𝛾 = −2, and 𝜅 = 1 and we select the powers of 𝑡 and𝜖 in the coefficients of (61) as follows:

𝑚0 = 5,
𝑘0 = 2,
𝑚1 = 10,
𝑘1 = 4,
𝜇0 = 14,
ℎ0 = 6,
𝜇1 = 19,
ℎ1 = 8,
𝑛0 = 3,

𝑏0 = 1,
Δ 1 = 10,
𝑑1 = 5,
𝛿1 = 1,
Δ 2 = 12,
𝑑2 = 6,
𝛿2 = 2.

(82)

For these data, we can figure out that the constraints (65),
(66), (67), (77), (78), and (79) above are satisfied. Moreover,
all the forthcoming requirements (88), (105), (106), (107), and
(184) stated inTheorem 19 are also verified. In this particular
case, the main equation (61) writes

𝑄 (𝜕𝑧) ((𝑎0𝜖5𝑡2 + 𝑎1𝜖10𝑡4) 𝑢 (𝑡, 𝑧, 𝜖)
+ (𝑐0𝜖14𝑡6 + 𝑐1𝜖19𝑡8) 𝑢2 (𝑡, 𝑧, 𝜖)) = 𝑏0 (𝑧) 𝜖3𝑡
+ 𝜖10𝑡5𝜕𝑡𝑅1 (𝜕𝑧) 𝑢 (𝑡, 𝑧, 𝜖) + 𝜖12𝑡6𝜕2𝑡 𝑅2 (𝜕𝑧) 𝑢 (𝑡, 𝑧, 𝜖) .

(83)

We can divide this latter equation by 𝜖3 and by 𝑡. The
corresponding equation still suffers the presence of a turning
point and an irregular singularity at 𝑡 = 0.

In a second step, we divide the left- and right-hand sides
of (76) by the monomial 𝑇𝑘0+𝛾. We obtain the following
equation:

𝑄 (𝜕𝑧) 𝑉 (𝑇, 𝑧, 𝜖)(−𝑎0
+ ( 𝑠∑

𝑙=1

𝑎𝑙𝑇𝑘𝑙 + 𝑞∑
𝑙=𝑠+1

𝑎𝑙𝜖𝑚𝑙+𝛽−𝛼𝑘𝑙𝑇𝑘𝑙)𝑇−𝑘0 − 2(𝑎0𝑐0 )
⋅ 𝑇−ℎ0 ( 𝑠󸀠∑

𝑙=1

𝑐𝑙𝑇ℎ𝑙 + 𝑀∑
𝑙=𝑠󸀠+1

𝑐𝑙𝜖𝜇𝑙+2𝛽−𝛼ℎ𝑙𝑇ℎ𝑙) − 2(𝑎0𝑐0 )
⋅ 𝑇−ℎ0𝐽 (𝑇) × ( 𝑠󸀠∑

𝑙=0

𝑐𝑙𝑇ℎ𝑙 + 𝑀∑
𝑙=𝑠󸀠+1

𝑐𝑙𝜖𝜇𝑙+2𝛽−𝛼ℎ𝑙𝑇ℎ𝑙))
+ 𝑄 (𝜕𝑧) 𝑉2 (𝑇, 𝑧, 𝜖) 𝑇−𝑘0+𝛾( 𝑠󸀠∑

𝑙=0

𝑐𝑙𝑇ℎ𝑙

+ 𝑀∑
𝑙=𝑠󸀠+1

𝑐𝑙𝜖𝜇𝑙+2𝛽−𝛼ℎ𝑙𝑇ℎ𝑙) = 𝑝∑
𝑗=0

𝑏𝑗 (𝑧) 𝜖𝑛𝑗−𝛼𝑏𝑗𝑇𝑏𝑗−𝑘0−𝛾

+ 𝐷∑
𝑙=1

𝜖Δ 𝑙+𝛼(𝛿𝑙−𝑑𝑙)+𝛽( ∑
𝑞1+𝑞2=𝛿𝑙

𝛿𝑙!𝑞1!𝑞2!
𝑞1−1∏
𝑑=0

(𝛾 − 𝑑)
⋅ 𝑇𝑑𝑙−𝑘0−𝑞1𝑅𝑙 (𝜕𝑧) 𝜕𝑞2𝑇 𝑉 (𝑇, 𝑧, 𝜖)) .

(84)
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Notice that the additional constraints (65), (66), (67) and
(77), (78), (79) ensure that the coefficients of the PDE (84)
are analytic with respect to 𝑇 and 𝜖 on a neighborhood of the
origin in C2. Moreover, the coefficient of 𝑄(𝜕𝑧)𝑉(𝑇, 𝑧, 𝜖) is
invertible at 𝑇 = 0 since 𝑎0 ̸= 0. We will see later that this
fact is essential in order to solve this equation within some
function space of analytic functions.

We look for solutions which are rescaled in time of the
form

𝑉 (𝑇, 𝑧, 𝜖) = V (𝜖𝜒𝑇, 𝑧, 𝜖) , (85)

where

𝜒 = Δ𝐷 + 𝛼 (𝛿𝐷 − 𝑑𝐷) + 𝛽𝑑𝐷 − 𝑘0 − 𝛿𝐷 . (86)

As a result, provided that T = 𝜖𝜒𝑇 holds, the expression
V(T , 𝑧, 𝜖) is supposed to solve the following equation:

𝑄 (𝜕𝑧)V (T , 𝑧, 𝜖) (−𝑎0 + 𝑠∑
𝑙=1

𝑎𝑙𝜖−𝜒(𝑘𝑙−𝑘0)T𝑘𝑙−𝑘0
+ 𝑞∑
𝑙=𝑠+1

𝑎𝑙𝜖𝑚𝑙+𝛽−𝛼𝑘𝑙−𝜒(𝑘𝑙−𝑘0)T𝑘𝑙−𝑘0 − 2(𝑎0𝑐0 )
⋅ ( 𝑠󸀠∑

𝑙=1

𝑐𝑙𝜖−𝜒(ℎ𝑙−ℎ0)Tℎ𝑙−ℎ0

+ 𝑀∑
𝑙=𝑠󸀠+1

𝑐𝑙𝜖𝜇𝑙+2𝛽−𝛼ℎ𝑙−𝜒(ℎ𝑙−ℎ0)Tℎ𝑙−ℎ0) − 2(𝑎0𝑐0 )
⋅ 𝐽 (𝜖−𝜒T) ×( 𝑠󸀠∑

𝑙=0

𝑐𝑙𝜖−𝜒(ℎ𝑙−ℎ0)Tℎ𝑙−ℎ0

+ 𝑀∑
𝑙=𝑠󸀠+1

𝑐𝑙𝜖𝜇𝑙+2𝛽−𝛼ℎ𝑙−𝜒(ℎ𝑙−ℎ0)Tℎ𝑙−ℎ0)) + 𝑄 (𝜕𝑧)V2 (T ,
𝑧, 𝜖) 𝜖−𝜒(−𝑘0+𝛾)T−𝑘0+𝛾( 𝑠󸀠∑

𝑙=0

𝑐𝑙𝜖−𝜒ℎ𝑙Tℎ𝑙

+ 𝑀∑
𝑙=𝑠󸀠+1

𝑐𝑙𝜖𝜇𝑙+2𝛽−𝛼ℎ𝑙−𝜒ℎ𝑙Tℎ𝑙) = 𝑝∑
𝑗=0

𝑏𝑗 (𝑧)
⋅ 𝜖𝑛𝑗−𝛼𝑏𝑗−𝜒(𝑏𝑗−𝑘0−𝛾)T𝑏𝑗−𝑘0−𝛾 + 𝐷−1∑

𝑙=1

𝜖Δ 𝑙+𝛼(𝛿𝑙−𝑑𝑙)+𝛽

× ∑
𝑞1+𝑞2=𝛿𝑙

𝛿𝑙!𝑞1!𝑞2!
𝑞1−1∏
𝑑=0

(𝛾 − 𝑑) 𝜖−𝜒(𝑑𝑙−𝑘0−𝑞1)
⋅ T𝑑𝑙−𝑘0−𝑞1𝑅𝑙 (𝜕𝑧) 𝜖𝜒𝑞2𝜕𝑞2T V (T , 𝑧, 𝜖)
+ 𝜖Δ𝐷+𝛼(𝛿𝐷−𝑑𝐷)+𝛽 ∑

𝑞1+𝑞2=𝛿𝐷,𝑞1≥1

𝛿𝐷!𝑞1!𝑞2!
𝑞1−1∏
𝑑=0

(𝛾 − 𝑑)

⋅ 𝜖−𝜒(𝑑𝐷−𝑘0−𝑞1)T𝑑𝐷−𝑘0−𝑞1 × 𝑅𝐷 (𝜕𝑧) 𝜖𝜒𝑞2𝜕𝑞2T V (T , 𝑧, 𝜖)
+ T𝑑𝐷−𝑘0𝑅𝐷 (𝜕𝑧) 𝜕𝛿𝐷T V (T , 𝑧, 𝜖) .

(87)

We make further assumptions on the coefficients 𝑑𝑙 and𝛿𝑙 for 1 ≤ 𝑙 ≤ 𝐷 which are stronger than the constraint (79).
Assume the existence of integers 𝜅 ≥ 1 and 𝑑𝑙,0 ≥ 1 such that

𝑑𝐷 − 𝑘0 = 𝛿𝐷 (𝜅 + 1) ,
𝑑𝑙 − 𝑘0 = 𝛿𝑙 (𝜅 + 1) + 𝑑𝑙,0 (88)

for all 1 ≤ 𝑙 ≤ 𝐷 − 1. Then, for all 1 ≤ 𝑙 ≤ 𝐷, and all integers𝑞1 ≥ 0, 𝑞2 ≥ 0 with 𝑞1 + 𝑞2 = 𝛿𝑙 we deduce the existence
of a nonnegative integer 𝑑𝑙,𝑞1 ,𝑞2 which is larger than 1 except𝑑𝐷,0,𝛿𝐷 = 0 such that

𝑑𝑙 − 𝑘0 − 𝑞1 = (𝜅 + 1) 𝑞2 + 𝑑𝑙,𝑞1 ,𝑞2 . (89)

Indeed, if one puts 𝑑𝐷,0 = 0, from (88), we can write

𝑑𝑙,𝑞1 ,𝑞2 = 𝑑𝑙 − 𝑘0 − 𝑞1 − (𝜅 + 1) 𝑞2
= 𝛿𝑙 (𝜅 + 1) + 𝑑𝑙,0 − 𝑞1 − (𝜅 + 1) 𝑞2
= (𝑞1 + 𝑞2) (𝜅 + 1) + 𝑑𝑙,0 − 𝑞1 − (𝜅 + 1) 𝑞2
= 𝑞1𝜅 + 𝑑𝑙,0.

(90)

According to (88) and (89), with the help of formula (8.7)
from [26], p. 3630, we can expand the following pieces
appearing in (87) satisfied by V(T , 𝑧, 𝜖):
T
𝑑𝐷−𝑘0𝜕𝛿𝐷T V (T , 𝑧, 𝜖) = ((T𝜅+1𝜕T)𝛿𝐷

+ ∑
1≤𝑝≤𝛿𝐷−1

𝐴𝛿𝐷,𝑝
T
𝜅(𝛿𝐷−𝑝) (T𝜅+1𝜕T)𝑝)V (T , 𝑧, 𝜖) ,

T
𝑑𝑙−𝑘0−(𝛿𝑙−1)𝜕TV (T , 𝑧, 𝜖) = T

𝑑𝑙,𝛿𝑙−1,1 (T𝜅+1𝜕T)V (T , 𝑧, 𝜖) ,
T
𝑑𝑙−𝑘0−𝑞1𝜕𝑞2T V (T , 𝑧, 𝜖) = T

𝑑𝑙 ,𝑞1,𝑞2T
(𝜅+1)𝑞2𝜕𝑞2T V (T , 𝑧, 𝜖)

= T
𝑑𝑙 ,𝑞1,𝑞2 ((T𝜅+1𝜕T)𝑞2

+ ∑
1≤𝑝≤𝑞2−1

𝐴𝑞2 ,𝑝
T
𝜅(𝑞2−𝑝) (T𝜅+1𝜕T)𝑝)V (T , 𝑧, 𝜖)

(91)

for all 1 ≤ 𝑙 ≤ 𝐷 and all integers 𝑞1 ≥ 0 and 𝑞2 ≥ 2 such that𝑞1 + 𝑞2 = 𝛿𝑙, for some real constants 𝐴𝛿𝐷,𝑝
, 1 ≤ 𝑝 ≤ 𝛿𝐷 − 1,

and 𝐴𝑞2 ,𝑝
, 1 ≤ 𝑝 ≤ 𝑞2 − 1.

In a third step, let us assume that the expression V(T , 𝑧, 𝜖)
has a formal power series expansion

V (T , 𝑧, 𝜖) = ∑
𝑛≥1

V𝑛 (𝑧, 𝜖) T𝑛, (92)
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where each coefficient V𝑛(𝑧, 𝜖) is defined as an inverse Fourier
transform

V𝑛 (𝑧, 𝜖) = F
−1 (𝑚 󳨃󳨀→ 𝜔𝑛 (𝑚, 𝜖)) (𝑧) (93)

for some function 𝑚 󳨃→ 𝜔𝑛(𝑚, 𝜖) belonging to the Banach
space 𝐸(𝛽,𝜇) and depending holomorphically on 𝜖 on some
punctured disc𝐷(0, 𝜖0) \ {0} centered at 0 with radius 𝜖0 > 0.
We consider the formal power series

𝜔𝜅 (𝜏, 𝑚, 𝜖) = ∑
𝑛≥1

𝜔𝑛 (𝑚, 𝜖)Γ (𝑛/𝜅) 𝜏𝑛 (94)

obtained by formally applying 𝑚𝜅-Borel transform with
respect to T and Fourier transform with respect to 𝑧 to the

power series (92). The constraints (88) are introduced in
such a way that 𝜔𝜅(𝜏, 𝑚, 𝜖) satisfies some integral equation
by making use of the properties of the 𝑚𝜅-Borel transform
of formal series and Fourier inverse transforms described in
Propositions 8 and 9with the help of the prepared expansions
(91). Namely, after division by the power (𝑖𝑚)V, which is by
construction a common factor of the functions𝑄(𝑖𝑚),𝑅𝑙(𝑖𝑚),
and 𝐵𝑗(𝑚) for 1 ≤ 𝑙 ≤ 𝐷, 0 ≤ 𝑗 ≤ 𝑝, we get the new problem

𝐿𝜏,𝑚,𝜖 (𝜔𝜅 (𝜏, 𝑚, 𝜖)) = 𝑅𝜏,𝑚,𝜖 (𝜔𝜅 (𝜏, 𝑚, 𝜖)) (95)

with vanishing initial data 𝜔𝜅(0, 𝑚, 𝜖) ≡ 0, where

𝐿𝜏,𝑚,𝜖 (𝜔𝜅 (𝜏, 𝑚, 𝜖)) = 𝑄 (𝑖𝑚)(−𝑎0𝜔𝜅 (𝜏, 𝑚, 𝜖) + 𝑠∑
𝑙=1

𝑎𝑙𝜖−𝜒(𝑘𝑙−𝑘0) 𝜏𝜅Γ ((𝑘𝑙 − 𝑘0) /𝜅) ∫
𝜏𝜅

0
(𝜏𝜅 − 𝑠)(𝑘𝑙−𝑘0)/𝜅−1 𝜔𝜅 (𝑠1/𝜅, 𝑚, 𝜖) 𝑑𝑠𝑠

+ 𝑞∑
𝑙=𝑠+1

𝑎𝑙𝜖𝑚𝑙+𝛽−𝛼𝑘𝑙−𝜒(𝑘l−𝑘0) 𝜏𝜅Γ ((𝑘𝑙 − 𝑘0) /𝜅) ∫
𝜏𝜅

0
(𝜏𝜅 − 𝑠)(𝑘𝑙−𝑘0)/𝜅−1 𝜔𝜅 (𝑠1/𝜅, 𝑚, 𝜖) 𝑑𝑠𝑠 − 2 (𝑎0𝑐0 )(

𝑠󸀠∑
𝑙=1

𝑐𝑙𝜖−𝜒(ℎ𝑙−ℎ0)

⋅ 𝜏𝜅Γ ((ℎ𝑙 − ℎ0) /𝜅) ∫
𝜏𝜅

0
(𝜏𝜅 − 𝑠)(ℎ𝑙−ℎ0)/𝜅−1 𝜔𝜅 (𝑠1/𝜅, 𝑚, 𝜖) 𝑑𝑠𝑠 +

𝑀∑
𝑙=𝑠󸀠+1

𝑐𝑙𝜖𝜇𝑙+2𝛽−𝛼ℎ𝑙𝜖−𝜒(ℎ𝑙−ℎ0) 𝜏𝜅Γ ((ℎ𝑙 − ℎ0) /𝜅) ∫
𝜏𝜅

0
(𝜏𝜅

− 𝑠)(ℎ𝑙−ℎ0)/𝜅−1 𝜔𝜅 (𝑠1/𝜅, 𝑚, 𝜖) 𝑑𝑠𝑠 ) − 2(𝑎0𝑐0 )(
𝑠󸀠∑
𝑙=0

𝑐𝑙∑
𝑗≥1

𝐽𝑗𝜖−𝜒(ℎ𝑙−ℎ0+𝑗) 𝜏𝜅Γ ((ℎ𝑙 − ℎ0 + 𝑗) /𝜅) ∫
𝜏𝜅

0
(𝜏𝜅 − 𝑠)(ℎ𝑙−ℎ0+𝑗)/𝜅−1

⋅ 𝜔𝜅 (𝑠1/𝜅, 𝑚, 𝜖) 𝑑𝑠𝑠 +
𝑀∑

𝑙=𝑠󸀠+1

𝑐𝑙∑
𝑗≥1

𝐽𝑗𝜖𝜇𝑙+2𝛽−𝛼ℎ𝑙𝜖−𝜒(ℎ𝑙−ℎ0+𝑗) 𝜏𝜅Γ ((ℎ𝑙 − ℎ0 + 𝑗) /𝜅) ∫
𝜏𝜅

0
(𝜏𝜅 − 𝑠)(ℎ𝑙−ℎ0+𝑗)/𝜅−1

⋅ 𝜔𝜅 (𝑠1/𝜅, 𝑚, 𝜖) 𝑑𝑠𝑠 ) + 𝑄 (𝑖𝑚)(
𝑠󸀠∑
𝑙=0

𝑐𝑙𝜖−𝜒(−𝑘0+𝛾+ℎ𝑙) 𝜏𝜅Γ ((−𝑘0 + 𝛾 + ℎ𝑙) /𝜅) ∫
𝜏𝜅

0
(𝜏𝜅 − 𝑠)(−𝑘0+𝛾+ℎ𝑙)/𝜅−1

× {𝑠∫𝑠
0
∫+∞
−∞

1(2𝜋)1/2𝜔𝜅 ((𝑠 − 𝑠󸀠)1/𝜅 , 𝑚 − 𝑚1, 𝜖) 𝜔𝜅 ((𝑠󸀠)1/𝜅 , 𝑚1, 𝜖) 1(𝑠 − 𝑠󸀠) 𝑠󸀠 𝑑𝑠󸀠𝑑𝑚1} 𝑑𝑠𝑠
+ 𝑀∑
𝑙=𝑠󸀠+1

𝑐𝑙𝜖𝜇𝑙+2𝛽−𝛼ℎ𝑙−𝜒(ℎ𝑙−𝑘0+𝛾) 𝜏𝜅Γ ((−𝑘0 + 𝛾 + ℎ𝑙) /𝜅) ∫
𝜏𝜅

0
(𝜏𝜅 − 𝑠)(−𝑘0+𝛾+ℎ𝑙)/𝜅−1

× {𝑠∫𝑠
0
∫+∞
−∞

1(2𝜋)1/2𝜔𝜅 ((𝑠 − 𝑠󸀠)1/𝜅 , 𝑚 − 𝑚1, 𝜖) 𝜔𝜅 ((𝑠󸀠)1/𝜅 , 𝑚1, 𝜖) 1(𝑠 − 𝑠󸀠) 𝑠󸀠 𝑑𝑠󸀠𝑑𝑚1} 𝑑𝑠𝑠 ) ,

(96)

𝑅𝜏,𝑚,𝜖 (𝜔𝜅 (𝜏, 𝑚, 𝜖)) = 𝑝∑
𝑗=0

𝐵𝑗 (𝑚) 𝜖𝑛𝑗−𝛼𝑏𝑗−𝜒(𝑏𝑗−𝑘0−𝛾) 𝜏𝑏𝑗−𝑘0−𝛾Γ ((𝑏𝑗 − 𝑘0 − 𝛾) /𝜅) +
𝐷−1∑
𝑙=1

𝜖Δ 𝑙+𝛼(𝛿𝑙−𝑑𝑙)+𝛽 × ∑
𝑞1+𝑞2=𝛿𝑙

𝛿𝑙!𝑞1!𝑞2!
𝑞1−1∏
𝑑=0

(𝛾 − 𝑑)
⋅ 𝜖−𝜒(𝑑𝑙−𝑘0−𝑞1−𝑞2)𝑅̃𝑙 (𝑖𝑚) × { 𝜏𝜅Γ (𝑑𝑙,𝑞1 ,𝑞2/𝜅) ∫

𝜏𝜅

0
(𝜏𝜅 − 𝑠)𝑑𝑙,𝑞1,𝑞2 /𝜅−1 𝜅𝑞2𝑠𝑞2𝜔𝜅 (𝑠1/𝜅, 𝑚, 𝜖) 𝑑𝑠𝑠 + ∑

1≤𝑝≤𝑞2−1

𝐴𝑞2 ,𝑝

⋅ 𝜏𝜅Γ ((𝑑𝑙,𝑞1 ,𝑞2 + 𝜅 (𝑞2 − 𝑝)) /𝜅) ∫
𝜏𝜅

0
(𝜏𝜅 − 𝑠)(𝑑𝑙,𝑞1,𝑞2+𝜅(𝑞2−𝑝))/𝜅−1 𝜅𝑝𝑠𝑝𝜔𝜅 (𝑠1/𝜅, 𝑚, 𝜖) 𝑑𝑠𝑠 } + 𝜖Δ𝐷+𝛼(𝛿𝐷−𝑑𝐷)+𝛽
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× ∑
𝑞1+𝑞2=𝛿𝐷,𝑞1≥1

𝛿𝐷!𝑞1!𝑞2!
𝑞1−1∏
𝑑=0

(𝛾 − 𝑑) 𝜖−𝜒(𝑑𝐷−𝑘0−𝑞1−𝑞2)𝑅̃𝐷 (𝑖𝑚) × { 𝜏𝜅Γ (𝑑𝐷,𝑞1 ,𝑞2/𝜅) ∫
𝜏𝜅

0
(𝜏𝜅 − 𝑠)𝑑𝐷,𝑞1,𝑞2 /𝜅−1

⋅ 𝜅𝑞2𝑠𝑞2𝜔𝜅 (𝑠1/𝜅, 𝑚, 𝜖) 𝑑𝑠𝑠 + ∑
1≤𝑝≤𝑞2−1

𝐴𝑞2 ,𝑝

𝜏𝜅Γ ((𝑑𝐷,𝑞1 ,𝑞2 + 𝜅 (𝑞2 − 𝑝)) /𝜅) ∫
𝜏𝜅

0
(𝜏𝜅 − 𝑠)(𝑑𝐷,𝑞1,𝑞2+𝜅(𝑞2−𝑝))/𝜅−1

⋅ 𝜅𝑝𝑠𝑝𝜔𝜅 (𝑠1/𝜅, 𝑚, 𝜖) 𝑑𝑠𝑠 } + 𝑅̃𝐷 (𝑖𝑚){{{(𝜅𝜏
𝜅)𝛿𝐷 𝜔𝜅 (𝜏, 𝑚, 𝜖) + ∑

1≤𝑝≤𝛿𝐷−1

𝐴𝛿𝐷,𝑝

𝜏𝜅Γ (𝜅 (𝛿𝐷 − 𝑝) /𝜅) × ∫
𝜏𝜅

0
(𝜏𝜅

− 𝑠)𝜅(𝛿𝐷−𝑝)/𝜅−1 𝜅𝑝𝑠𝑝𝜔𝜅 (𝑠1/𝜅, 𝑚, 𝜖) 𝑑𝑠𝑠 }}} .
(97)

By convention, the two sums∑1≤𝑝≤𝑞2−1[⋅ ⋅ ⋅ ] appearing in (97)
are vanishing provided that 𝑞2 ∈ {0, 1}.
Remark 14. The hypotheses (60) and (62) ensure that (87)
does not contain terms that involve isolated polynomials in
T which are not inverse Fourier transformable.

5. Analytic Solutions of a Convolution
Problem with Complex Parameters

Our main goal in this section is the construction of a unique
solution of problem (95)within the Banach spaces introduced
in Section 2.

We make the following further assumptions. The condi-
tions below are very similar to the ones proposed in Section 4
of [3]. Namely, we demand that there exists an unbounded
sector𝑆𝑄̃,𝑅̃𝐷= {𝑧 ∈ C | |𝑧| ≥ 𝑟𝑄̃,𝑅̃𝐷 , 󵄨󵄨󵄨󵄨󵄨arg (𝑧) − 𝑑𝑄̃,𝑅̃𝐷 󵄨󵄨󵄨󵄨󵄨 ≤ 𝜂𝑄̃,𝑅̃𝐷} (98)

with direction 𝑑𝑄̃,𝑅̃𝐷 ∈ R and aperture 𝜂𝑄̃,𝑅̃𝐷 > 0 for some
radius 𝑟𝑄̃,𝑅̃𝐷 > 0 such that

𝑄 (𝑖𝑚)𝑅̃𝐷 (𝑖𝑚) ∈ 𝑆𝑄̃,𝑅̃𝐷 (99)

for all 𝑚 ∈ R. The polynomial 𝑃̃𝑚(𝜏) = −𝑄(𝑖𝑚)𝑎0 −𝑅̃𝐷(𝑖𝑚)𝜅𝛿𝐷𝜏𝛿𝐷𝜅 can be factorized in the form

𝑃̃𝑚 (𝜏) = −𝑅̃𝐷 (𝑖𝑚) 𝜅𝛿𝐷𝛿𝐷𝜅−1∏
𝑙=0

(𝜏 − 𝑞𝑙 (𝑚)) , (100)

where

𝑞𝑙 (𝑚) = (
󵄨󵄨󵄨󵄨󵄨𝑎0𝑄 (𝑖𝑚)󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑅̃𝐷 (𝑖𝑚)󵄨󵄨󵄨󵄨󵄨 𝜅𝛿𝐷)

1/𝛿𝐷𝜅

⋅ exp(√−1(arg( −𝑎0𝑄 (𝑖𝑚)𝑅̃𝐷 (𝑖𝑚) 𝜅𝛿𝐷)
1𝛿𝐷𝜅 + 2𝜋𝑙𝛿𝐷𝜅))

(101)

for all 0 ≤ 𝑙 ≤ 𝛿𝐷𝜅 − 1 and all𝑚 ∈ R.

We select an unbounded sector 𝑆𝑑 centered at 0 and a
small closed disc 𝐷(0, 𝜌) and we require the sector 𝑆𝑄̃,𝑅̃𝐷 to
fulfill the next conditions.

(1) There exists a constant𝑀1 > 0 such that

󵄨󵄨󵄨󵄨𝜏 − 𝑞𝑙 (𝑚)󵄨󵄨󵄨󵄨 ≥ 𝑀1 (1 + |𝜏|) (102)

for all 0 ≤ 𝑙 ≤ 𝛿𝐷𝜅 − 1, all 𝑚 ∈ R, and all 𝜏 ∈ 𝑆𝑑 ∪ 𝐷(0, 𝜌).
Indeed, from (99) and the explicit expression (101) of 𝑞𝑙(𝑚),
we first observe that |𝑞𝑙(𝑚)| > 2𝜌 for every𝑚 ∈ R, all 0 ≤ 𝑙 ≤𝛿𝐷𝜅 − 1 for an appropriate choice of 𝑟𝑄̃,𝑅̃𝐷 and of 𝜌 > 0. We
also see that, for all 𝑚 ∈ R and all 0 ≤ 𝑙 ≤ 𝛿𝐷𝜅 − 1, the roots𝑞𝑙(𝑚) remain in a union U of unbounded sectors centered
at 0 that do not cover a full neighborhood of the origin in
C∗ provided that 𝜂𝑄̃,𝑅̃𝐷 is small enough. Therefore, one can
choose an adequate sector 𝑆𝑑 such that 𝑆𝑑 ∩ U = 0 with the
property that for all 0 ≤ 𝑙 ≤ 𝛿𝐷𝜅 − 1 the quotients 𝑞𝑙(𝑚)/𝜏 lay
outside some small disc centered at 1 in C for all 𝜏 ∈ 𝑆𝑑 and
all𝑚 ∈ R. This yields (102) for some small constant𝑀1 > 0.

(2) There exists a constant𝑀2 > 0 such that

󵄨󵄨󵄨󵄨󵄨𝜏 − 𝑞𝑙0 (𝑚)󵄨󵄨󵄨󵄨󵄨 ≥ 𝑀2

󵄨󵄨󵄨󵄨󵄨𝑞𝑙0 (𝑚)󵄨󵄨󵄨󵄨󵄨 (103)

for some 𝑙0 ∈ {0, . . . , 𝛿𝐷𝜅 − 1}, all 𝑚 ∈ R, and all 𝜏 ∈ 𝑆𝑑 ∪𝐷(0, 𝜌). Indeed, for the sector 𝑆𝑑 and the disc𝐷(0, 𝜌) chosen
as above in (1), we notice that for any fixed 0 ≤ 𝑙0 ≤ 𝛿𝐷𝜅 − 1,
the quotient 𝜏/𝑞𝑙0(𝑚) stays outside a small disc centered at 1
in C for all 𝜏 ∈ 𝑆𝑑 ∪ 𝐷(0, 𝜌) and all𝑚 ∈ R. Hence (103) must
hold for some small constant𝑀2 > 0.

By construction of the roots (101) in the factorization
(100) and using the lower bound estimates (102) and (103),
we get a constant 𝐶𝑃̃ > 0 such that

󵄨󵄨󵄨󵄨󵄨𝑃̃𝑚 (𝜏)󵄨󵄨󵄨󵄨󵄨 ≥ 𝑀𝛿𝐷𝜅−1
1 𝑀2

󵄨󵄨󵄨󵄨󵄨𝑅̃𝐷 (𝑖𝑚) 𝜅𝛿𝐷 󵄨󵄨󵄨󵄨󵄨
⋅ ( 󵄨󵄨󵄨󵄨󵄨𝑎0𝑄 (𝑖𝑚)󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑅̃𝐷 (𝑖𝑚)󵄨󵄨󵄨󵄨󵄨 𝜅𝛿𝐷)

1/𝛿𝐷𝜅 (1 + |𝜏|)𝛿𝐷𝜅−1
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≥ 𝑀𝛿𝐷𝜅−1
1 𝑀2

𝜅𝛿𝐷 󵄨󵄨󵄨󵄨𝑎0󵄨󵄨󵄨󵄨1/𝛿𝐷𝜅(𝜅𝛿𝐷)1/𝛿𝐷𝜅 (𝑟𝑄̃,𝑅̃𝐷)1/𝛿𝐷𝜅 󵄨󵄨󵄨󵄨󵄨𝑅̃𝐷 (𝑖𝑚)󵄨󵄨󵄨󵄨󵄨
× (min

𝑥≥0

(1 + 𝑥)𝛿𝐷𝜅−1(1 + 𝑥𝜅)𝛿𝐷−1/𝜅) (1 + |𝜏|𝜅)𝛿𝐷−1/𝜅
= 𝐶𝑃̃ (𝑟𝑄̃,𝑅̃𝐷)1/𝛿𝐷𝜅 󵄨󵄨󵄨󵄨󵄨𝑅̃𝐷 (𝑖𝑚)󵄨󵄨󵄨󵄨󵄨 (1 + |𝜏|𝜅)𝛿𝐷−1/𝜅

(104)

for all 𝜏 ∈ 𝑆𝑑 ∪ 𝐷(0, 𝜌) and all𝑚 ∈ R.
In the next proposition, we provide sufficient condi-

tions under which the main convolution equation (95) pos-
sesses solutions 𝜔𝑑𝜅 (𝜏, 𝑚, 𝜖) in the Banach space 𝐹𝑑(],𝛽,𝜇,𝜒,𝛼,𝜅,𝜖)
described in Section 2.

Proposition 15. Under the additional assumptions

(𝜒 + 𝛼) (−𝑘0 + 𝛾 + ℎ𝑙 − 𝜅𝛿𝐷 + 1) − 𝜒 (−𝑘0 + 𝛾 + ℎ𝑙)
≥ 0,

𝛿𝐷 ≥ 2𝜅 , −𝑘0 + 𝛾 + ℎ𝑙 > 0, 𝑏𝑗 − 𝑘0 − 𝛾 ≥ 1,
(105)

for all 0 ≤ 𝑙 ≤ 𝑀, 0 ≤ 𝑗 ≤ 𝑝,
Δ 𝑙 + 𝛼 (𝛿𝑙 − 𝑑𝑙) + 𝛽

+ (𝜒 + 𝛼) 𝜅(𝑑𝑙,𝑞1 ,𝑞2𝜅 + 𝑞2 − 𝛿𝐷 + 1𝜅)
− 𝜒 (𝑑𝑙 − 𝑘0 − 𝛿𝑙) ≥ 0, 𝛿𝐷 ≥ 1𝜅 + 𝛿𝑙

(106)

for all 𝑞1 ≥ 0, 𝑞2 ≥ 1 such that 𝑞1 + 𝑞2 = 𝛿𝑙, for 1 ≤ 𝑙 ≤ 𝐷 − 1
and

Δ𝐷 + 𝛼 (𝛿𝐷 − 𝑑𝐷) + 𝛽
+ (𝜒 + 𝛼) 𝜅(𝑑𝐷,𝑞1 ,𝑞2𝜅 + 𝑞2 − 𝛿𝐷 + 1𝜅)
− 𝜒 (𝑑𝐷 − 𝑘0 − 𝛿𝐷) ≥ 0

(107)

for all 𝑞1 ≥ 1, 𝑞2 ≥ 1 such that 𝑞1+𝑞2 = 𝛿𝐷, there exist a radius𝑟𝑄̃,𝑅̃𝐷 > 0, 𝜖0 > 0 and a constant 𝜛 > 0 such that (95) has a
unique solution 𝜔𝑑𝜅 (𝜏, 𝑚, 𝜖) in the Banach space 𝐹𝑑(],𝛽,𝜇,𝜒,𝛼,𝜅,𝜖)
which suffers the bounds󵄩󵄩󵄩󵄩󵄩𝜔𝑑𝜅 (𝜏, 𝑚, 𝜖)󵄩󵄩󵄩󵄩󵄩(],𝛽,𝜇,𝜒,𝛼,𝜅,𝜖) ≤ 𝜛 (108)

for all 𝜖 ∈ 𝐷(0, 𝜖0) \ {0}, where the direction 𝑑 ∈ R can be
chosen for any sector 𝑆𝑑 that fulfills the constraints (102) and
(103) above.

Proof.Weundertake the proofwith a lemma that studies some
shrinking map on the Banach spaces mentioned above and
reduces the main convolution problem (95) to the existence
of a unique fixed point for this map.

Lemma 16. Taking for granted the fact that the assumptions
(105), (106), and (107) hold, one can select the constant 𝑟𝑄̃,𝑅̃𝐷 >0 large enough and a constant 𝜛 > 0 small enough such that
for all 𝜖 ∈ 𝐷(0, 𝜖0) \ {0}, the mapH𝜖 defined as

H𝜖 =H
1
𝜖 +H2

𝜖 +H3
𝜖 , (109)

where

H
1
𝜖 (𝑤 (𝜏,𝑚)) fl 𝑝∑

𝑗=0

𝐵𝑗 (𝑚) 𝜖𝑛𝑗−𝛼𝑏𝑗−𝜒(𝑏𝑗−𝑘0−𝛾) 𝜏𝑏𝑗−𝑘0−𝛾𝑃̃𝑚 (𝜏) Γ ((𝑏𝑗 − 𝑘0 − 𝛾) /𝜅) − 𝑄 (𝑖𝑚)(
𝑠∑
𝑙=1

𝑎𝑙𝜖−𝜒(𝑘𝑙−𝑘0) 𝜏𝜅𝑃̃𝑚 (𝜏) Γ ((𝑘𝑙 − 𝑘0) /𝜅)
⋅ ∫𝜏𝜅

0
(𝜏𝜅 − 𝑠)(𝑘𝑙−𝑘0)/𝜅−1 𝑤(𝑠1/𝜅, 𝑚) 𝑑𝑠𝑠 +

𝑞∑
𝑙=𝑠+1

𝑎𝑙𝜖𝑚𝑙+𝛽−𝛼𝑘𝑙−𝜒(𝑘𝑙−𝑘0) 𝜏𝜅𝑃̃𝑚 (𝜏) Γ ((𝑘𝑙 − 𝑘0) /𝜅) ∫
𝜏𝜅

0
(𝜏𝜅 − 𝑠)(𝑘𝑙−𝑘0)/𝜅−1

⋅ 𝑤 (𝑠1/𝜅, 𝑚) 𝑑𝑠𝑠 − 2 (𝑎0𝑐0 )(
𝑠󸀠∑
𝑙=1

𝑐𝑙𝜖−𝜒(ℎ𝑙−ℎ0) 𝜏𝜅𝑃̃𝑚 (𝜏) Γ ((ℎ𝑙 − ℎ0) /𝜅) ∫
𝜏𝜅

0
(𝜏𝜅 − 𝑠)(ℎ𝑙−ℎ0)/𝜅−1 𝑤(𝑠1/𝜅, 𝑚) 𝑑𝑠𝑠

+ 𝑀∑
𝑙=𝑠󸀠+1

𝑐𝑙𝜖𝜇𝑙+2𝛽−𝛼ℎ𝑙𝜖−𝜒(ℎ𝑙−ℎ0) 𝜏𝜅𝑃̃𝑚 (𝜏) Γ ((ℎ𝑙 − ℎ0) /𝜅) ∫
𝜏𝜅

0
(𝜏𝜅 − 𝑠)(ℎ𝑙−ℎ0)/𝜅−1 𝑤(𝑠1/𝜅, 𝑚) 𝑑𝑠𝑠 ) − 2(𝑎0𝑐0 )(

𝑠󸀠∑
𝑙=0

𝑐𝑙
⋅ ∑
𝑗≥1

𝐽𝑗𝜖−𝜒(ℎ𝑙−ℎ0+𝑗) 𝜏𝜅𝑃̃𝑚 (𝜏) Γ ((ℎ𝑙 − ℎ0 + 𝑗) /𝜅) ∫
𝜏𝜅

0
(𝜏𝜅 − 𝑠)(ℎ𝑙−ℎ0+𝑗)/𝜅−1 𝑤(𝑠1/𝜅, 𝑚) 𝑑𝑠𝑠 +

𝑀∑
𝑙=𝑠󸀠+1

𝑐𝑙∑
𝑗≥1

𝐽𝑗𝜖𝜇𝑙+2𝛽−𝛼ℎ𝑙𝜖−𝜒(ℎ𝑙−ℎ0+𝑗)

× 𝜏𝜅𝑃̃𝑚 (𝜏) Γ ((ℎ𝑙 − ℎ0 + 𝑗) /𝜅) ∫
𝜏𝜅

0
(𝜏𝜅 − 𝑠)(ℎ𝑙−ℎ0+𝑗)/𝜅−1 𝑤(𝑠1/𝜅, 𝑚) 𝑑𝑠𝑠 )) ,

(110)
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H
2
𝜖 (𝑤 (𝜏,𝑚)) fl −𝑄 (𝑖𝑚)( 𝑠󸀠∑

𝑙=0

𝑐𝑙𝜖−𝜒(−𝑘0+𝛾+ℎ𝑙) 𝜏𝜅𝑃̃𝑚 (𝜏) Γ ((−𝑘0 + 𝛾 + ℎ𝑙) /𝜅) ∫
𝜏𝜅

0
(𝜏𝜅 − 𝑠)(−𝑘0+𝛾+ℎ𝑙)/𝜅−1

× {𝑠∫𝑠
0
∫+∞
−∞

1(2𝜋)1/2𝑤((𝑠 − 𝑠󸀠)1/𝜅 , 𝑚 − 𝑚1)𝑤((𝑠󸀠)1/𝜅 , 𝑚1) 1(𝑠 − 𝑠󸀠) 𝑠󸀠 𝑑𝑠󸀠𝑑𝑚1} 𝑑𝑠𝑠 +
𝑀∑

𝑙=𝑠󸀠+1

𝑐𝑙𝜖𝜇𝑙+2𝛽−𝛼ℎ𝑙−𝜒(ℎ𝑙−𝑘0+𝛾)
⋅ 𝜏𝜅𝑃̃𝑚 (𝜏) Γ ((−𝑘0 + 𝛾 + ℎ𝑙) /𝜅) ∫

𝜏𝜅

0
(𝜏𝜅 − 𝑠)(−𝑘0+𝛾+ℎ𝑙)/𝜅−1

× {𝑠∫𝑠
0
∫+∞
−∞

1(2𝜋)1/2𝑤((𝑠 − 𝑠󸀠)1/𝜅 , 𝑚 − 𝑚1)𝑤((𝑠󸀠)1/𝜅 , 𝑚1) 1(𝑠 − 𝑠󸀠) 𝑠󸀠 𝑑𝑠󸀠𝑑𝑚1} 𝑑𝑠𝑠 ) +
𝐷−1∑
𝑙=1

𝜖Δ 𝑙+𝛼(𝛿𝑙−𝑑𝑙)+𝛽

× ∑
𝑞1+𝑞2=𝛿𝑙

𝛿𝑙!𝑞1!𝑞2!
𝑞1−1∏
𝑑=0

(𝛾 − 𝑑) 𝜖−𝜒(𝑑𝑙−𝑘0−𝑞1−𝑞2)𝑅̃𝑙 (𝑖𝑚) × { 𝜏𝜅𝑃̃𝑚 (𝜏) Γ (𝑑𝑙,𝑞1 ,𝑞2/𝜅) ∫
𝜏𝜅

0
(𝜏𝜅 − 𝑠)𝑑𝑙,𝑞1,𝑞2 /𝜅−1 𝜅𝑞2𝑠𝑞2𝑤(𝑠1/𝜅, 𝑚) 𝑑𝑠𝑠

+ ∑
1≤𝑝≤𝑞2−1

𝐴𝑞2 ,𝑝

𝜏𝜅𝑃̃𝑚 (𝜏) Γ ((𝑑𝑙,𝑞1 ,𝑞2 + 𝜅 (𝑞2 − 𝑝)) /𝜅) ∫
𝜏𝜅

0
(𝜏𝜅 − 𝑠)(𝑑𝑙,𝑞1,𝑞2+𝜅(𝑞2−𝑝))/𝜅−1 𝜅𝑝𝑠𝑝𝑤(𝑠1/𝜅, 𝑚) 𝑑𝑠𝑠 } ,

(111)

along with

H
3
𝜖 (𝑤 (𝜏,𝑚)) fl 𝜖Δ𝐷+𝛼(𝛿𝐷−𝑑D)+𝛽 × ∑

𝑞1+𝑞2=𝛿𝐷,𝑞1≥1

𝛿𝐷!𝑞1!𝑞2!
⋅ 𝑞1−1∏
𝑑=0

(𝛾 − 𝑑) 𝜖−𝜒(𝑑𝐷−𝑘0−𝑞1−𝑞2)𝑅̃𝐷 (𝑖𝑚)
× { 𝜏𝜅𝑃̃𝑚 (𝜏) Γ (𝑑𝐷,𝑞1 ,𝑞2/𝜅) ∫

𝜏𝜅

0
(𝜏𝜅 − 𝑠)𝑑𝐷,𝑞1,𝑞2 /𝜅−1

⋅ 𝜅𝑞2𝑠𝑞2𝑤(𝑠1/𝜅, 𝑚) 𝑑𝑠𝑠 + ∑
1≤𝑝≤𝑞2−1

𝐴𝑞2,𝑝

⋅ 𝜏𝜅𝑃̃𝑚 (𝜏) Γ ((𝑑𝐷,𝑞1 ,𝑞2 + 𝜅 (𝑞2 − 𝑝)) /𝜅)
⋅ ∫𝜏𝜅

0
(𝜏𝜅 − 𝑠)(𝑑𝐷,𝑞1,𝑞2+𝜅(𝑞2−𝑝))/𝜅−1

⋅ 𝜅𝑝𝑠𝑝𝑤(𝑠1/𝜅, 𝑚) 𝑑𝑠𝑠 } + 𝑅̃𝐷 (𝑖𝑚)
⋅ {{{ ∑

1≤𝑝≤𝛿𝐷−1

𝐴𝛿𝐷,𝑝

𝜏𝜅𝑃̃𝑚 (𝜏) Γ (𝜅 (𝛿𝐷 − 𝑝) /𝜅)
× ∫𝜏𝜅

0
(𝜏𝜅 − 𝑠)𝜅(𝛿𝐷−𝑝)/𝜅−1 𝜅𝑝𝑠𝑝𝑤(𝑠1/𝜅, 𝑚) 𝑑𝑠𝑠 }}} ,

(112)

satisfies the next properties.
(i) The following inclusion holds:

H𝜖 (𝐵 (0, 𝜛)) ⊂ 𝐵 (0, 𝜛) , (113)

where 𝐵(0, 𝜛) is the closed ball of radius 𝜛 > 0 centered at 0 in𝐹𝑑(],𝛽,𝜇,𝜒,𝛼,𝜅,𝜖), for all 𝜖 ∈ 𝐷(0, 𝜖0) \ {0}.
(ii) One has

󵄩󵄩󵄩󵄩H𝜖 (𝑤1) −H𝜖 (𝑤2)󵄩󵄩󵄩󵄩(],𝛽,𝜇,𝜒,𝛼,𝜅,𝜖)
≤ 12 󵄩󵄩󵄩󵄩𝑤1 − 𝑤2󵄩󵄩󵄩󵄩(],𝛽,𝜇,𝜒,𝛼,𝜅,𝜖)

(114)

for all 𝑤1, 𝑤2 ∈ 𝐵(0, 𝜛), for all 𝜖 ∈ 𝐷(0, 𝜖0) \ {0}.
Proof. We first deal with the property (113). Let 𝜖 ∈ 𝐷(0, 𝜖0) \{0} and consider 𝑤(𝜏,𝑚) ∈ 𝐹𝑑(],𝛽,𝜇,𝜒,𝛼,𝜅,𝜖). We take 𝜛 > 0 such
that ‖𝑤(𝜏,𝑚)‖(],𝛽,𝜇,𝜒,𝛼,𝜅,𝜖) ≤ 𝜛.

We start providing norm estimates for each piece of the
mapH1

𝜖 .
From Lemma 4, we deduce the existence of a constant𝐶1 > 0 depending on 𝜅, 𝛾, 𝑘0, and 𝑏𝑗 for 0 ≤ 𝑗 ≤ 𝑝 such

that

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐵𝑗 (𝑚) 𝜖−𝜒(𝑏𝑗−𝑘0−𝛾) 𝜏
𝑏𝑗−𝑘0−𝛾

𝑃̃𝑚 (𝜏)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩(],𝛽,𝜇,𝜒,𝛼,𝜅,𝜖)

≤ 𝐶1𝐶𝑃̃ (𝑟𝑄̃,𝑅̃𝐷)1/𝛿𝐷𝜅
󵄩󵄩󵄩󵄩󵄩𝐵𝑗 (𝑚)󵄩󵄩󵄩󵄩󵄩(𝛽,𝜇)

inf𝑚∈R
󵄨󵄨󵄨󵄨󵄨𝑅̃𝐷 (𝑖𝑚)󵄨󵄨󵄨󵄨󵄨 |𝜖|

(𝑏𝑗−𝑘0−𝛾)𝛼 .
(115)

According to Proposition 5(1), we obtain a constant 𝐶2 > 0
depending on ], 𝜅, 𝑘𝑙, for 0 ≤ 𝑙 ≤ 𝑞, ℎ𝑙, for 0 ≤ 𝑙 ≤ 𝑀,𝑄(𝑋), 𝑅̃𝐷(𝑋), and a constant 𝐶2(𝑗) depending on ], 𝜅, ℎ𝑙 for0 ≤ 𝑙 ≤ 𝑀, 𝑄(𝑋), 𝑅̃𝐷(𝑋) and 𝑗 such that

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝜖−𝜒(𝑘𝑙−𝑘0)𝑄 (𝑖𝑚) 𝜏
𝜅

𝑃̃𝑚 (𝜏) ∫
𝜏𝜅

0
(𝜏𝜅 − 𝑠)(𝑘𝑙−𝑘0)/𝜅−1
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⋅ 𝑤 (𝑠1/𝜅, 𝑚) 𝑑𝑠𝑠
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩(],𝛽,𝜇,𝜒,𝛼,𝜅,𝜖)

≤ 𝐶2𝐶𝑃̃ (𝑟𝑄̃,𝑅̃𝐷)1/𝛿𝐷𝜅 |𝜖|
𝛼(𝑘𝑙−𝑘0) ‖𝑤 (𝜏,𝑚)‖(],𝛽,𝜇,𝜒,𝛼,𝜅,𝜖) ,

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝜖−𝜒(ℎ𝑙−ℎ0)𝑄 (𝑖𝑚) 𝜏
𝜅

𝑃̃𝑚 (𝜏) ∫
𝜏𝜅

0
(𝜏𝜅 − 𝑠)(ℎ𝑙−ℎ0)/𝜅−1

⋅ 𝑤 (𝑠1/𝜅, 𝑚) 𝑑𝑠𝑠
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩(],𝛽,𝜇,𝜒,𝛼,𝜅,𝜖)

≤ 𝐶2𝐶𝑃̃ (𝑟𝑄̃,𝑅̃𝐷)1/𝛿𝐷𝜅 |𝜖|
𝛼(ℎ𝑙−ℎ0) ‖𝑤 (𝜏,𝑚)‖(],𝛽,𝜇,𝜒,𝛼,𝜅,𝜖) ,

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝜖−𝜒(ℎ𝑙−ℎ0+𝑗)𝑄 (𝑖𝑚)𝑃̃𝑚 (𝜏) 𝜏𝜅 ∫
𝜏𝜅

0
(𝜏𝜅 − 𝑠)(ℎ𝑙−ℎ0+𝑗)/𝜅−1

⋅ 𝑤 (𝑠1/𝜅, 𝑚) 𝑑𝑠𝑠
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩(],𝛽,𝜇,𝜒,𝛼,𝜅,𝜖)

≤ 𝐶2 (𝑗)𝐶𝑃̃ (𝑟𝑄̃,𝑅̃D
)1/𝛿𝐷𝜅 |𝜖|𝛼(ℎ𝑙−ℎ0+𝑗) ‖𝑤 (𝜏,𝑚)‖(],𝛽,𝜇,𝜒,𝛼,𝜅,𝜖) .

(116)

Moreover, it appears from the proof of Proposition 5 that the
next bounds hold for 𝐶2(𝑗): there exist a constant 𝐶2 > 0
depending on ], 𝜅, ℎ𝑙 for 0 ≤ 𝑙 ≤ 𝑀, 𝑄, 𝑅̃𝐷 and a constant𝐴2 > 0 depending on ], 𝜅, ℎ𝑙 for 0 ≤ 𝑙 ≤ 𝑀 such that

𝐶2 (𝑗) ≤ 𝐶2𝐴𝑗2Γ(ℎ𝑙 − ℎ0 + 𝑗𝜅 ) (117)

for all 𝑗 ≥ 1. In the following, we will make use of the
notations from the proof of Proposition 5. From the classical
estimates

sup
𝑥≥0
𝑥𝑚1𝑒−𝑚2𝑥 = (𝑚1𝑚2

)𝑚1 𝑒−𝑚1 (118)

for any real numbers 𝑚1 ≥ 0, 𝑚2 > 0, we deduce that for all𝑗 ≥ 1 such that (ℎ𝑙 − ℎ0 + 𝑗)/𝜅 − 1 > 0
sup
𝑥≥0

1 + 𝑥2𝑥1/𝜅 𝑒−]𝑥𝑥𝐺1 (𝑥) ≤ sup
𝑥≥0
(1 + 𝑥2)

⋅ 𝑥(ℎ𝑙−ℎ0+𝑗)/𝜅𝑒−(]/2)𝑥 (12)
1/𝜅 𝜅

≤ ((ℎ𝑙 − ℎ0 + 𝑗𝜅]/2 )(ℎ𝑙−ℎ0+𝑗)/𝜅 exp(−ℎ𝑙 − ℎ0 + 𝑗𝜅 )
+ ((ℎ𝑙 − ℎ0 + 𝑗) /𝜅 + 2

]/2 )(ℎ𝑙−ℎ0+𝑗)/𝜅+2

⋅ exp(−(ℎ𝑙 − ℎ0 + 𝑗𝜅 + 2)))(12)
1/𝜅 𝜅.

(119)

Furthermore, according to the Stirling formula Γ(𝑥) ∼√2𝜋𝑥𝑥−1/2𝑒−𝑥 as 𝑥 → +∞ and bearing in mind the
functional relation Γ(𝑥 + 1) = 𝑥Γ(𝑥) for all 𝑥 > 0, we get
two constants 𝐶̌2 > 0 and 𝐴2 > 0 independent of 𝑗 such that

sup
𝑥≥0

1 + 𝑥2𝑥1/𝜅 𝑒−]𝑥𝑥𝐺1 (𝑥) ≤ 𝐶̌2𝐴𝑗2 (Γ(ℎ𝑙 − ℎ0 + 𝑗𝜅 )
+ Γ(ℎ𝑙 − ℎ0 + 𝑗𝜅 + 2))
≤ 𝐶̌2𝐴𝑗2 (Γ(ℎ𝑙 − ℎ0 + 𝑗𝜅 ) + (ℎ𝑙 − ℎ0 + 𝑗𝜅 + 1)
⋅ (ℎ𝑙 − ℎ0 + 𝑗𝜅 ) Γ(ℎ𝑙 − ℎ0 + 𝑗𝜅 )) .

(120)

On the other hand, by direct inspection, we observe that there
exists a constant 𝐶̌2.1 > 0 (independent of 𝑗 and 𝜖) such that

sup
0≤𝑥<1

1 + 𝑥2𝑥1/𝜅 𝑒−]𝑥 𝑥(1 + |𝜖|(𝜒+𝛼)𝜅 𝑥)𝛾1 𝐺2 (𝑥) ≤ 𝐶̌2.1. (121)

Furthermore, there exists a constant 𝐾2.1(𝑗) depending on ],𝜅, ℎ𝑙 for 0 ≤ 𝑙 ≤ 𝑀 and 𝑗, such that

sup
𝑥≥1

1 + 𝑥2𝑥1/𝜅 𝑒−]𝑥 𝑥(1 + |𝜖|(𝜒+𝛼)𝜅 𝑥)𝛾1 𝐺2 (𝑥)
≤ sup

𝑥≥1

1 + 𝑥21 + (𝑥/2)2𝐾2.1 (𝑗) .
(122)

Now, after a thorough examination of the proof of Proposi-
tion 2 out of [23], one can check that there exists a constant𝐾̌2.1 > 0 independent of 𝑗 such that

𝐾2.1 (𝑗) ≤ 𝐾̌2.1Γ(ℎ𝑙 − ℎ0 + 𝑗𝜅 ) (123)

for all 𝑗 ≥ 1. Finally, gathering (120), (121), (122), and (123)
yields the estimates (117).

Besides, we choose the radius 𝑟𝑄̃,𝑅̃𝐷 > 0 large enough and𝜛 in such a manner that

𝑝∑
𝑗=0

𝐶1𝐶𝑃̃ (𝑟𝑄̃,𝑅̃𝐷)1/𝛿𝐷𝜅 Γ ((𝑏𝑗 − 𝑘0 − 𝛾) /𝜅)
⋅
󵄩󵄩󵄩󵄩󵄩𝐵𝑗 (𝑚)󵄩󵄩󵄩󵄩󵄩(𝛽,𝜇)

inf𝑚∈R
󵄨󵄨󵄨󵄨󵄨𝑅̃𝐷 (𝑖𝑚)󵄨󵄨󵄨󵄨󵄨 |𝜖|

𝑛𝑗−𝛼𝑏𝑗+(𝑏𝑗−𝑘0−𝛾)𝛼 + 𝑠∑
𝑙=1

󵄨󵄨󵄨󵄨𝑎𝑙󵄨󵄨󵄨󵄨
⋅ 𝐶2𝐶𝑃̃ (𝑟𝑄̃,𝑅̃𝐷)1/𝛿𝐷𝜅 Γ ((𝑘𝑙 − 𝑘0) /𝜅) |𝜖|

𝛼(𝑘𝑙−𝑘0) 𝜛
+ 𝑞∑
𝑙=𝑠+1

󵄨󵄨󵄨󵄨𝑎𝑙󵄨󵄨󵄨󵄨



Abstract and Applied Analysis 19

⋅ 𝐶2𝐶𝑃̃ (𝑟𝑄̃,𝑅̃𝐷)1/𝛿𝐷𝜅 Γ ((𝑘𝑙 − 𝑘0) /𝜅) |𝜖|
𝑚𝑙+𝛽−𝛼𝑘𝑙+𝛼(𝑘𝑙−𝑘0)

⋅ 𝜛 + 2 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 𝑎0𝑐0
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 (

𝑠󸀠∑
𝑙=1

󵄨󵄨󵄨󵄨𝑐𝑙󵄨󵄨󵄨󵄨
⋅ 𝐶2𝐶𝑃̃ (𝑟𝑄̃,𝑅̃𝐷)1/𝛿𝐷𝜅 Γ ((ℎ𝑙 − ℎ0) /𝜅) |𝜖|

𝛼(ℎ𝑙−ℎ0) 𝜛
+ 𝑀∑
𝑙=𝑠󸀠+1

󵄨󵄨󵄨󵄨𝑐𝑙󵄨󵄨󵄨󵄨
⋅ 𝐶2𝐶𝑃̃ (𝑟𝑄̃,𝑅̃𝐷)1/𝛿𝐷𝜅 Γ ((ℎ𝑙 − ℎ0) /𝜅) |𝜖|

𝜇𝑙+2𝛽−𝛼ℎ𝑙

⋅ |𝜖|𝛼(ℎ𝑙−ℎ0) 𝜛) + 2 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 𝑎0𝑐0
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 (

𝑠󸀠∑
𝑙=0

󵄨󵄨󵄨󵄨𝑐𝑙󵄨󵄨󵄨󵄨
⋅ ∑
𝑗≥1

󵄨󵄨󵄨󵄨󵄨𝐽𝑗󵄨󵄨󵄨󵄨󵄨 𝐶2𝐴𝑗2𝐶𝑃̃ (𝑟𝑄̃,𝑅̃𝐷)1/𝛿𝐷𝜅 |𝜖|
𝛼(ℎ𝑙−ℎ0+𝑗) 𝜛 + 𝑀∑

𝑙=𝑠󸀠+1

󵄨󵄨󵄨󵄨𝑐𝑙󵄨󵄨󵄨󵄨
⋅ ∑
𝑗≥1

󵄨󵄨󵄨󵄨󵄨𝐽𝑗󵄨󵄨󵄨󵄨󵄨 𝐶2𝐴𝑗2𝐶𝑃̃ (𝑟𝑄̃,𝑅̃𝐷)1/𝛿𝐷𝜅 |𝜖|
𝜇𝑙+2𝛽−𝛼ℎ𝑙 |𝜖|𝛼(ℎ𝑙−ℎ0+𝑗) 𝜛)

≤ 𝜛3 .
(124)

Notice that the infinite sums over the integers 𝑗 ≥ 0 are
convergent in the left-hand side of inequality (124), provided
that 𝜖0 > 0 is small enough, according to the fact that there
exist two constants 𝐽1, 𝐽2 > 0 such that |𝐽𝑗| ≤ 𝐽1(𝐽2)𝑗 for all𝑗 ≥ 1 since 𝐽(𝑇) = ∑𝑗≥1 𝐽𝑗𝑇𝑗 is a convergent series near𝑇 = 0.

From the definition of H1
𝜖 given by (110), we deduce the

following inequality:

󵄩󵄩󵄩󵄩󵄩H1
𝜖 (𝑤 (𝜏,𝑚))󵄩󵄩󵄩󵄩󵄩(],𝛽,𝜇,𝜒,𝛼,𝜅,𝜖) ≤ 𝜛3 . (125)

Hereafter, we focus on norm estimates for each part of the
mapH2

𝜖 . We set

ℎ (𝜏,𝑚) = 𝜏𝜅−1 ∫𝜏𝜅
0
∫+∞
−∞
𝑤((𝜏𝜅 − 𝑠󸀠)1/𝜅 , 𝑚 − 𝑚1)

⋅ 𝑤 ((𝑠󸀠)1/𝜅 , 𝑚1) 1(𝜏𝜅 − 𝑠󸀠) 𝑠󸀠 𝑑𝑠󸀠𝑑𝑚1.
(126)

Regarding Proposition 6, we get a constant 𝐶3 > 0
(depending on 𝜇, 𝜅) such that

‖ℎ (𝜏,𝑚)‖(],𝛽,𝜇,𝜒,𝛼,𝜅,𝜖) ≤ 𝐶3|𝜖|𝜒+𝛼 ‖𝑤 (𝜏,𝑚)‖2(],𝛽,𝜇,𝜒,𝛼,𝜅,𝜖) . (127)

On the other hand, using Proposition 5(2), we grab a constant𝐶󸀠2 > 0 (depending on ], 𝜅, 𝛾, 𝛿𝐷, 𝑘0, ℎ𝑙 for 0 ≤ 𝑙 ≤ 𝑀 and𝑄(𝑋), 𝑅̃𝐷(𝑋)) such that

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝜖−𝜒(−𝑘0+𝛾+ℎ𝑙)𝑄 (𝑖𝑚)𝑃̃𝑚 (𝜏) 𝜏𝜅 ∫
𝜏𝜅

0
(𝜏𝜅 − 𝑠)(−𝑘0+𝛾+ℎ𝑙)/𝜅−1 𝑠1/𝜅−1ℎ (𝑠1/𝜅, 𝑚) 𝑑𝑠󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩(],𝛽,𝜇,𝜒,𝛼,𝜅,𝜖)

≤ 𝐶󸀠2𝐶𝑃̃ (𝑟𝑄̃,𝑅̃𝐷)1/𝛿𝐷𝜅 |𝜖|
(𝜒+𝛼)𝜅((−𝑘0+𝛾+ℎ𝑙)/𝜅+1/𝜅)−𝜒(−𝑘0+𝛾+ℎ𝑙)−(𝜒+𝛼)𝜅(𝛿𝐷−1/𝜅) ‖ℎ (𝜏,𝑚)‖(],𝛽,𝜇,𝜒,𝛼,𝜅,𝜖) .

(128)

Therefore, gathering (127) and (128) returns

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝜖−𝜒(−𝑘0+𝛾+ℎ𝑙)𝑄 (𝑖𝑚)𝑃̃𝑚 (𝜏) 𝜏𝜅 ∫
𝜏𝜅

0
(𝜏𝜅 − 𝑠)(−𝑘0+𝛾+ℎ𝑙)/𝜅−1

× {𝑠∫𝑠
0
∫+∞
−∞
𝑤((𝑠 − 𝑠󸀠)1/𝜅 , 𝑚 − 𝑚1)𝑤((𝑠󸀠)1/𝜅 , 𝑚1) 1(𝑠 − 𝑠󸀠) 𝑠󸀠 𝑑𝑠󸀠𝑑𝑚1} 𝑑𝑠𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩(],𝛽,𝜇,𝜒,𝛼,𝜅,𝜖)
≤ 𝐶󸀠2𝐶3𝐶𝑃̃ (𝑟𝑄̃,𝑅̃𝐷)1/𝛿𝐷𝜅 |𝜖|

(𝜒+𝛼)(−𝑘0+𝛾+ℎ𝑙−𝜅𝛿𝐷+1)−𝜒(−𝑘0+𝛾+ℎ𝑙) ‖𝑤 (𝜏,𝑚)‖2(],𝛽,𝜇,𝜒,𝛼,𝜅,𝜖) .
(129)
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Bearing in mind Proposition 5(1), we get a constant 𝐶2 > 0
(depending on ], 𝜅, 𝑑𝑙, 𝛿𝑙 and 𝑅̃𝑙(𝑋), 𝑅̃𝐷(𝑋) for 1 ≤ 𝑙 ≤ 𝐷−1),
such that

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝜖−𝜒(𝑑𝑙−𝑘0−𝛿𝑙) 𝑅̃𝑙 (𝑖𝑚)𝑃̃𝑚 (𝜏) 𝜏𝜅 ∫
𝜏𝜅

0
(𝜏𝜅 − 𝑠)𝑑𝑙,𝛿𝑙 ,0/𝜅−1

⋅ 𝑤 (𝑠1/𝜅, 𝑚) 𝑑𝑠𝑠
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩(],𝛽,𝜇,𝜒,𝛼,𝜅,𝜖)

≤ 𝐶2𝐶𝑃̃ (𝑟𝑄̃,𝑅̃𝐷)1/𝛿𝐷𝜅 |𝜖|
(𝜒+𝛼)𝑑𝑙,𝛿𝑙 ,0−𝜒(𝑑𝑙−𝑘0−𝛿𝑙) ‖𝑤 (𝜏,𝑚)‖(],𝛽,𝜇,𝜒,𝛼,𝜅,𝜖)

= 𝐶2𝐶𝑃̃ (𝑟𝑄̃,𝑅̃𝐷)1/𝛿𝐷𝜅 |𝜖|
𝛼(𝑑𝑙−𝑘0−𝛿𝑙) ‖𝑤 (𝜏,𝑚)‖(],𝛽,𝜇,𝜒,𝛼,𝜅,𝜖) .

(130)

Likewise, we can apply Proposition 5(2) in order to exhibit a
constant 𝐶󸀠2 > 0 (depending on ], 𝜅, 𝑑𝑙, 𝛿𝑙, 𝑘0, 𝛿𝐷 and 𝑅̃𝑙(𝑋),𝑅̃𝐷(𝑋) for 1 ≤ 𝑙 ≤ 𝐷 − 1) with
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝜖−𝜒(𝑑𝑙−𝑘0−𝛿𝑙) 𝑅̃𝑙 (𝑖𝑚)𝑃̃𝑚 (𝜏)
⋅ 𝜏𝜅 ∫𝜏𝜅

0
(𝜏𝜅 − 𝑠)𝑑𝑙,𝑞1,𝑞2 /𝜅−1 𝑠𝑞2𝑤(𝑠1/𝜅, 𝑚) 𝑑𝑠𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩(],𝛽,𝜇,𝜒,𝛼,𝜅,𝜖)
≤ 𝐶󸀠2𝐶𝑃̃ (𝑟𝑄̃,𝑅̃𝐷)1/𝛿𝐷𝜅 |𝜖|

(𝜒+𝛼)𝜅(𝑑𝑙,𝑞1 ,𝑞2 /𝜅+𝑞2−𝛿𝐷+1/𝜅)−𝜒(𝑑𝑙−𝑘0−𝛿𝑙)

⋅ ‖𝑤 (𝜏,𝑚)‖(],𝛽,𝜇,𝜒,𝛼,𝜅,𝜖)

(131)

for all 𝑞1 ≥ 0 and 𝑞2 ≥ 1 with 𝑞1 + 𝑞2 = 𝛿𝑙. Besides,
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝜖−𝜒(𝑑𝑙−𝑘0−𝛿𝑙) 𝑅̃𝑙 (𝑖𝑚)𝑃̃𝑚 (𝜏) 𝜏𝜅 ∫

𝜏𝜅

0
(𝜏𝜅 − 𝑠)𝑑𝑙,𝑞1,𝑞2 /𝜅+𝑞2−𝑝−1

⋅ 𝑠𝑝𝑤(𝑠1/𝜅, 𝑚) 𝑑𝑠𝑠
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩(],𝛽,𝜇,𝜒,𝛼,𝜅,𝜖)

≤ 𝐶󸀠2𝐶𝑃̃ (𝑟𝑄̃,𝑅̃𝐷)1/𝛿𝐷𝜅 |𝜖|
(𝜒+𝛼)𝜅(𝑑𝑙,𝑞1 ,𝑞2 /𝜅+𝑞2−𝛿𝐷+1/𝜅)−𝜒(𝑑𝑙−𝑘0−𝛿𝑙)

⋅ ‖𝑤 (𝜏,𝑚)‖(],𝛽,𝜇,𝜒,𝛼,𝜅,𝜖)

(132)

provided that 𝑞2 ≥ 2 and 1 ≤ 𝑝 ≤ 𝑞2 − 1, with 𝑞1 + 𝑞2 = 𝛿𝑙.
Now, we choose 𝑟𝑄̃,𝑅̃𝐷 > 0 and 𝜛 in such a way that

𝑠󸀠∑
𝑙=0

󵄨󵄨󵄨󵄨𝑐𝑙󵄨󵄨󵄨󵄨 𝐶󸀠2𝐶3𝐶𝑃̃ (𝑟𝑄̃,𝑅̃𝐷)1/𝛿𝐷𝜅 Γ ((−𝑘0 + 𝛾 + ℎ𝑙) /𝜅) (2𝜋)1/2
⋅ |𝜖|(𝜒+𝛼)(−𝑘0+𝛾+ℎ𝑙−𝜅𝛿𝐷+1)−𝜒(−𝑘0+𝛾+ℎ𝑙) 𝜛2 + 𝑀∑

𝑙=𝑠󸀠+1

󵄨󵄨󵄨󵄨𝑐𝑙󵄨󵄨󵄨󵄨
⋅ 𝐶󸀠2𝐶3𝐶𝑃̃ (𝑟𝑄̃,𝑅̃𝐷)1/𝛿𝐷𝜅 Γ ((−𝑘0 + 𝛾 + ℎ𝑙) /𝜅) (2𝜋)1/2

× |𝜖|(𝜒+𝛼)(−𝑘0+𝛾+ℎ𝑙−𝜅𝛿𝐷+1)−𝜒(−𝑘0+𝛾+ℎ𝑙) |𝜖|𝜇𝑙+2𝛽−𝛼ℎ𝑙 𝜛2
+ 𝐷−1∑

𝑙=1

|𝜖|Δ 𝑙+𝛼(𝛿𝑙−𝑑𝑙)+𝛽 [[
𝛿𝑙−1∏
𝑑=0

󵄨󵄨󵄨󵄨𝛾 − 𝑑󵄨󵄨󵄨󵄨
⋅ 𝐶2𝐶𝑃̃ (𝑟𝑄̃,𝑅̃𝐷)1/𝛿𝐷𝜅 Γ (𝑑𝑙,𝛿𝑙,0/𝜅) |𝜖|

𝛼(𝑑𝑙−𝑘0−𝛿𝑙) 𝜛

+ ∑
𝑞1+𝑞2=𝛿𝑙,𝑞2≥1

𝛿𝑙!𝑞1!𝑞2!
𝑞1−1∏
𝑑=0

󵄨󵄨󵄨󵄨𝛾 − 𝑑󵄨󵄨󵄨󵄨
⋅ ( 𝐶󸀠2𝜅𝑞2𝐶𝑃̃ (𝑟𝑄̃,𝑅̃𝐷)1/𝛿𝐷𝜅 Γ (𝑑𝑙,𝑞1 ,𝑞2/𝜅)
× |𝜖|(𝜒+𝛼)𝜅(𝑑𝑙,𝑞1 ,𝑞2 /𝜅+𝑞2−𝛿𝐷+1/𝜅)−𝜒(𝑑𝑙−𝑘0−𝛿𝑙) 𝜛
+ ∑
1≤𝑝≤𝑞2−1

󵄨󵄨󵄨󵄨󵄨𝐴𝑞2 ,𝑝

󵄨󵄨󵄨󵄨󵄨
⋅ 𝐶󸀠2𝜅𝑝𝐶𝑃̃ (𝑟𝑄̃,𝑅̃𝐷)1/𝛿𝐷𝜅 Γ (𝑑𝑙,𝑞1 ,𝑞2/𝜅 + 𝑞2 − 𝑝)
× |𝜖|(𝜒+𝛼)𝜅(𝑑𝑙,𝑞1 ,𝑞2 /𝜅+𝑞2−𝛿𝐷+1/𝜅)−𝜒(𝑑𝑙−𝑘0−𝛿𝑙) 𝜛)]] ≤

𝜛3 .
(133)

With the help of the definition ofH2
𝜖 given by (111), we deduce

that

󵄩󵄩󵄩󵄩󵄩H2
𝜖 (𝑤 (𝜏,𝑚))󵄩󵄩󵄩󵄩󵄩(],𝛽,𝜇,𝜒,𝛼,𝜅,𝜖) ≤ 𝜛3 . (134)

Ultimately, we direct our attention to norm estimates forH3
𝜖 .

Taking notice of Proposition 5(1), we get a constant𝐶2 > 0
(depending on ], 𝜅, 𝑘0, 𝛿𝐷, 𝑑𝐷), such that

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝜖−𝜒(𝑑𝐷−𝑘0−𝛿𝐷) 𝑅̃𝐷 (𝑖𝑚)𝑃̃𝑚 (𝜏) 𝜏𝜅 ∫
𝜏𝜅

0
(𝜏𝜅 − 𝑠)𝑑𝐷,𝛿𝐷,0/𝜅−1

⋅ 𝑤 (𝑠1/𝜅, 𝑚) 𝑑𝑠𝑠
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩(],𝛽,𝜇,𝜒,𝛼,𝜅,𝜖)

≤ 𝐶2𝐶𝑃̃ (𝑟𝑄̃,𝑅̃𝐷)1/𝛿𝐷𝜅 |𝜖|
(𝜒+𝛼)𝑑𝐷,𝛿𝐷,0−𝜒(𝑑𝐷−𝑘0−𝛿𝐷)

⋅ ‖𝑤 (𝜏,𝑚)‖(],𝛽,𝜇,𝜒,𝛼,𝜅,𝜖)
= 𝐶2𝐶𝑃̃ (𝑟𝑄̃,𝑅̃𝐷)1/𝛿𝐷𝜅 |𝜖|

𝛼(𝑑𝐷−𝑘0−𝛿𝐷) ‖𝑤 (𝜏,𝑚)‖(],𝛽,𝜇,𝜒,𝛼,𝜅,𝜖) .

(135)
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Moreover, we can apply Proposition 5(2) in order to exhibit a
constant 𝐶󸀠2 > 0 (depending on ], 𝜅, 𝑘0, 𝑑𝐷, and 𝛿𝐷) with
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝜖−𝜒(𝑑𝐷−𝑘0−𝛿𝐷) 𝑅̃𝐷 (𝑖𝑚)𝑃̃𝑚 (𝜏)
⋅ 𝜏𝜅 ∫𝜏𝜅

0
(𝜏𝜅 − 𝑠)𝑑𝐷,𝑞1,𝑞2 /𝜅−1 𝑠𝑞2𝑤(𝑠1/𝜅, 𝑚) 𝑑𝑠𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩(],𝛽,𝜇,𝜒,𝛼,𝜅,𝜖)
≤ 𝐶󸀠2𝐶𝑃̃ (𝑟𝑄̃,𝑅̃𝐷)1/𝛿𝐷𝜅 |𝜖|

(𝜒+𝛼)𝜅(𝑑𝐷,𝑞1,𝑞2 /𝜅+𝑞2−𝛿𝐷+1/𝜅)−𝜒(𝑑𝐷−𝑘0−𝛿𝐷)

⋅ ‖𝑤 (𝜏,𝑚)‖(],𝛽,𝜇,𝜒,𝛼,𝜅,𝜖)

(136)

for all 𝑞1 ≥ 1 and 𝑞2 ≥ 1 with 𝑞1 + 𝑞2 = 𝛿𝐷. Besides,
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝜖−𝜒(𝑑𝐷−𝑘0−𝛿𝐷) 𝑅̃𝐷 (𝑖𝑚)𝑃̃𝑚 (𝜏) 𝜏𝜅 ∫

𝜏𝜅

0
(𝜏𝜅 − 𝑠)𝑑𝐷,𝑞1,𝑞2 /𝜅+𝑞2−𝑝−1

⋅ 𝑠𝑝𝑤(𝑠1/𝜅, 𝑚) 𝑑𝑠𝑠
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩(],𝛽,𝜇,𝜒,𝛼,𝜅,𝜖)

≤ 𝐶󸀠2𝐶𝑃̃ (𝑟𝑄̃,𝑅̃𝐷)1/𝛿𝐷𝜅 |𝜖|
(𝜒+𝛼)𝜅(𝑑𝐷,𝑞1,𝑞2 /𝜅+𝑞2−𝛿𝐷+1/𝜅)−𝜒(𝑑𝐷−𝑘0−𝛿𝐷)

⋅ ‖𝑤 (𝜏,𝑚)‖(],𝛽,𝜇,𝜒,𝛼,𝜅,𝜖)

(137)

provided that 𝑞1 ≥ 1, 𝑞2 ≥ 2, and 1 ≤ 𝑝 ≤ 𝑞2−1with 𝑞1+𝑞2 =𝛿𝐷. Finally, we can select a constant 𝐶󸀠2 > 0 (depending on ],𝜅, and 𝛿𝐷) such that

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩 𝑅̃𝐷 (𝑖𝑚)𝑃̃𝑚 (𝜏) 𝜏𝜅 ∫
𝜏𝜅

0
(𝜏𝜅 − 𝑠)𝛿𝐷−𝑝−1 𝑠𝑝𝑤(𝑠1/𝜅, 𝑚) 𝑑𝑠𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩(],𝛽,𝜇,𝜒,𝛼,𝜅,𝜖)
≤ 𝐶󸀠2𝐶𝑃̃ (𝑟𝑄̃,𝑅̃𝐷)1/𝛿𝐷𝜅 |𝜖|

𝜒+𝛼 ‖𝑤 (𝜏,𝑚)‖(],𝛽,𝜇,𝜒,𝛼,𝜅,𝜖)
(138)

for all 1 ≤ 𝑝 ≤ 𝛿𝐷 − 1. We make the choice for the size of
radius 𝑟𝑄̃,𝑅̃𝐷 and 𝜛 in such a manner that

|𝜖|Δ𝐷+𝛼(𝛿𝐷−𝑑𝐷)+𝛽 [[
𝛿𝐷−1∏
𝑑=0

󵄨󵄨󵄨󵄨𝛾 − 𝑑󵄨󵄨󵄨󵄨
⋅ 𝐶2𝐶𝑃̃ (𝑟𝑄̃,𝑅̃𝐷)1/𝛿𝐷𝜅 Γ (𝑑𝐷,𝛿𝐷,0/𝜅) |𝜖|

𝛼(𝑑𝐷−𝑘0−𝛿𝐷) 𝜛

+ ∑
𝑞1+𝑞2=𝛿𝐷,𝑞1≥1,𝑞2≥1

𝛿𝐷!𝑞1!𝑞2!
𝑞1−1∏
𝑑=0

󵄨󵄨󵄨󵄨𝛾 − 𝑑󵄨󵄨󵄨󵄨
⋅ ( 𝐶󸀠2𝜅𝑞2𝐶𝑃̃ (𝑟𝑄̃,𝑅̃𝐷)1/𝛿𝐷𝜅 Γ (𝑑𝐷,𝑞1 ,𝑞2/𝜅)
× |𝜖|(𝜒+𝛼)𝜅(𝑑𝐷,𝑞1,𝑞2 /𝜅+𝑞2−𝛿𝐷+1/𝜅)−𝜒(𝑑𝐷−𝑘0−𝛿𝐷) 𝜛
+ ∑
1≤𝑝≤𝑞2−1

󵄨󵄨󵄨󵄨󵄨𝐴𝑞2 ,𝑝

󵄨󵄨󵄨󵄨󵄨

⋅ 𝐶󸀠2𝜅𝑝𝐶𝑃̃ (𝑟𝑄̃,𝑅̃𝐷)1/𝛿𝐷𝜅 Γ (𝑑𝐷,𝑞1 ,𝑞2/𝜅 + 𝑞2 − 𝑝)
× |𝜖|(𝜒+𝛼)𝜅(𝑑𝐷,𝑞1,𝑞2 /𝜅+𝑞2−𝛿𝐷+1/𝜅)−𝜒(𝑑𝐷−𝑘0−𝛿𝐷) 𝜛)]]
+ ∑
1≤𝑝≤𝛿𝐷−1

󵄨󵄨󵄨󵄨󵄨𝐴𝛿𝐷,𝑝

󵄨󵄨󵄨󵄨󵄨
⋅ 𝐶󸀠2𝜅𝑝𝐶𝑃̃ (𝑟𝑄̃,𝑅̃𝐷)1/𝛿𝐷𝜅 Γ (𝛿𝐷 − 𝑝) |𝜖|

𝜒+𝛼 𝜛 ≤ 𝜛3 .
(139)

From the construction of the mapH3
𝜖 , it is now clear that

󵄩󵄩󵄩󵄩󵄩H3
𝜖 (𝑤 (𝜏,𝑚))󵄩󵄩󵄩󵄩󵄩(],𝛽,𝜇,𝜒,𝛼,𝜅,𝜖) ≤ 𝜛3 . (140)

Eventually, gathering (125), (134), and (140) yields the first
claim (113).

In the last part of the proof, we fix our attention to the
affirmation (114). Let 𝑤1(𝜏,𝑚), 𝑤2(𝜏, 𝑚) ∈ 𝐹𝑑(],𝛽,𝜇,𝜒,𝛼,𝜅,𝜖) with󵄩󵄩󵄩󵄩𝑤1 (𝜏, 𝑚)󵄩󵄩󵄩󵄩(],𝛽,𝜇,𝜒,𝛼,𝜅,𝜖) ≤ 𝜛,󵄩󵄩󵄩󵄩𝑤2 (𝜏, 𝑚)󵄩󵄩󵄩󵄩(],𝛽,𝜇,𝜒,𝛼,𝜅,𝜖) ≤ 𝜛. (141)

We first prove that H1
𝜖 is a shrinking map. According to

estimates (116) we obtain a constant 𝐶2 > 0 (depending on
], 𝜅, 𝑘𝑙, for 0 ≤ 𝑙 ≤ 𝑞, ℎ𝑙, for 0 ≤ 𝑙 ≤ 𝑀, 𝑄(𝑋), 𝑅̃𝐷(𝑋)) and a
constant 𝐶2(𝑗) satisfying the estimates (117) such that
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝜖−𝜒(𝑘𝑙−𝑘0)𝑄 (𝑖𝑚) 𝜏

𝜅

𝑃̃𝑚 (𝜏) ∫
𝜏𝜅

0
(𝜏𝜅 − 𝑠)(𝑘𝑙−𝑘0)/𝜅−1

⋅ (𝑤1 (𝑠1/𝜅, 𝑚) − 𝑤2 (𝑠1/𝜅, 𝑚)) 𝑑𝑠𝑠
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩(],𝛽,𝜇,𝜒,𝛼,𝜅,𝜖)

≤ 𝐶2𝐶𝑃̃ (𝑟𝑄̃,𝑅̃𝐷)1/𝛿𝐷𝜅 |𝜖|
𝛼(𝑘𝑙−𝑘0) 󵄩󵄩󵄩󵄩𝑤1 (𝜏, 𝑚) − 𝑤2 (𝜏, 𝑚)󵄩󵄩󵄩󵄩(],𝛽,𝜇,𝜒,𝛼,𝜅,𝜖) ,

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝜖−𝜒(ℎ𝑙−ℎ0)𝑄 (𝑖𝑚) 𝜏
𝜅

𝑃̃𝑚 (𝜏) ∫
𝜏𝜅

0
(𝜏𝜅 − 𝑠)(ℎ𝑙−ℎ0)/𝜅−1

⋅ (𝑤1 (𝑠1/𝜅, 𝑚) − 𝑤2 (𝑠1/𝜅, 𝑚)) 𝑑𝑠𝑠
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩(],𝛽,𝜇,𝜒,𝛼,𝜅,𝜖)

≤ 𝐶2𝐶𝑃̃ (𝑟𝑄̃,𝑅̃𝐷)1/𝛿𝐷𝜅 |𝜖|
𝛼(ℎ𝑙−ℎ0) 󵄩󵄩󵄩󵄩𝑤1 (𝜏, 𝑚) − 𝑤2 (𝜏, 𝑚)󵄩󵄩󵄩󵄩(],𝛽,𝜇,𝜒,𝛼,𝜅,𝜖) ,

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝜖−𝜒(ℎ𝑙−ℎ0+𝑗)𝑄 (𝑖𝑚)𝑃̃𝑚 (𝜏) 𝜏𝜅 ∫
𝜏𝜅

0
(𝜏𝜅 − 𝑠)(ℎ𝑙−ℎ0+𝑗)/𝜅−1

⋅ (𝑤1 (𝑠1/𝜅, 𝑚) − 𝑤2 (𝑠1/𝜅, 𝑚)) 𝑑𝑠𝑠
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩(],𝛽,𝜇,𝜒,𝛼,𝜅,𝜖)

≤ 𝐶2 (𝑗)𝐶𝑃̃ (𝑟𝑄̃,𝑅̃𝐷)1/𝛿𝐷𝜅 |𝜖|
𝛼(ℎ𝑙−ℎ0+𝑗) 󵄩󵄩󵄩󵄩𝑤1 (𝜏, 𝑚)

− 𝑤2 (𝜏, 𝑚)󵄩󵄩󵄩󵄩(],𝛽,𝜇,𝜒,𝛼,𝜅,𝜖) .

(142)
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Therefore, we choose the radius 𝑟𝑄̃,𝑅̃𝐷 > 0 large enough in
order that

𝑠∑
𝑙=1

󵄨󵄨󵄨󵄨𝑎𝑙󵄨󵄨󵄨󵄨 𝐶2𝐶𝑃̃ (𝑟𝑄̃,𝑅̃𝐷)1/𝛿𝐷𝜅 Γ ((𝑘𝑙 − 𝑘0) /𝜅) |𝜖|
𝛼(𝑘𝑙−𝑘0)

+ 𝑞∑
𝑙=𝑠+1

󵄨󵄨󵄨󵄨𝑎𝑙󵄨󵄨󵄨󵄨
⋅ 𝐶2𝐶𝑃̃ (𝑟𝑄̃,𝑅̃𝐷)1/𝛿𝐷𝜅 Γ ((𝑘𝑙 − 𝑘0) /𝜅) |𝜖|

𝑚𝑙+𝛽−𝛼𝑘𝑙+𝛼(𝑘𝑙−𝑘0)

+ 2 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 𝑎0𝑐0
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 (

𝑠󸀠∑
𝑙=1

󵄨󵄨󵄨󵄨𝑐𝑙󵄨󵄨󵄨󵄨
⋅ 𝐶2𝐶𝑃̃ (𝑟𝑄̃,𝑅̃𝐷)1/𝛿𝐷𝜅 Γ ((ℎ𝑙 − ℎ0) /𝜅) |𝜖|

𝛼(ℎ𝑙−ℎ0)

+ 𝑀∑
𝑙=𝑠󸀠+1

󵄨󵄨󵄨󵄨𝑐𝑙󵄨󵄨󵄨󵄨
⋅ 𝐶2𝐶𝑃̃ (𝑟𝑄̃,𝑅̃𝐷)1/𝛿𝐷𝜅 Γ ((ℎ𝑙 − ℎ0) /𝜅) |𝜖|

𝜇𝑙+2𝛽−𝛼ℎ𝑙

⋅ |𝜖|𝛼(ℎ𝑙−ℎ0)) + 2 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 𝑎0𝑐0
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 (

𝑠󸀠∑
𝑙=0

󵄨󵄨󵄨󵄨𝑐𝑙󵄨󵄨󵄨󵄨
⋅ ∑
𝑗≥1

󵄨󵄨󵄨󵄨󵄨𝐽𝑗󵄨󵄨󵄨󵄨󵄨 𝐶2𝐴𝑗2𝐶𝑃̃ (𝑟𝑄̃,𝑅̃𝐷)1/𝛿𝐷𝜅 |𝜖|
𝛼(ℎ𝑙−ℎ0+𝑗) + 𝑀∑

𝑙=𝑠󸀠+1

󵄨󵄨󵄨󵄨𝑐𝑙󵄨󵄨󵄨󵄨
⋅ ∑
𝑗≥1

󵄨󵄨󵄨󵄨󵄨𝐽𝑗󵄨󵄨󵄨󵄨󵄨 𝐶2𝐴𝑗2𝐶𝑃̃ (𝑟𝑄̃,𝑅̃𝐷)1/𝛿𝐷𝜅 |𝜖|
𝜇𝑙+2𝛽−𝛼ℎ𝑙 |𝜖|𝛼(ℎ𝑙−ℎ0+𝑗))

≤ 16 .

(143)

As a result, we can set down󵄩󵄩󵄩󵄩󵄩H1
𝜖 (𝑤1 (𝜏, 𝑚)) −H1

𝜖 (𝑤2 (𝜏, 𝑚))󵄩󵄩󵄩󵄩󵄩(],𝛽,𝜇,𝜒,𝛼,𝜅,𝜖)
≤ 16 󵄩󵄩󵄩󵄩𝑤1 (𝜏,𝑚) − 𝑤2 (𝜏, 𝑚)󵄩󵄩󵄩󵄩(],𝛽,𝜇,𝜒,𝛼,𝜅,𝜖) .

(144)

We turn toH2
𝜖 and show that it is a shrinking map as well. As

a preparation, we may first rewrite

𝑤1 ((𝜏𝜅 − 𝑠󸀠)1/𝜅 , 𝑚 − 𝑚1)𝑤1 ((𝑠󸀠)1/𝜅 , 𝑚1)
− 𝑤2 ((𝜏𝜅 − 𝑠󸀠)1/𝜅 , 𝑚 − 𝑚1)𝑤2 ((𝑠󸀠)1/𝜅 , 𝑚1)
= (𝑤1 ((𝜏𝜅 − 𝑠󸀠)1/𝜅 , 𝑚 − 𝑚1)
− 𝑤2 ((𝜏𝜅 − 𝑠󸀠)1/𝜅 , 𝑚 − 𝑚1))𝑤1 ((𝑠󸀠)1/𝜅 , 𝑚1)
+ 𝑤2 ((𝜏𝜅 − 𝑠󸀠)1/𝜅 , 𝑚 − 𝑚1)(𝑤1 ((𝑠󸀠)1/𝜅 , 𝑚1)
− 𝑤2 ((𝑠󸀠)1/𝜅 , 𝑚1)) .

(145)

For 𝑗 = 1, 2, we set
ℎ𝑗 (𝜏, 𝑚) = 𝜏𝜅−1 ∫𝜏𝜅

0
∫+∞
−∞
𝑤𝑗 ((𝜏𝜅 − 𝑠󸀠)1/𝜅 , 𝑚 − 𝑚1)

⋅ 𝑤𝑗 ((𝑠󸀠)1/𝜅 , 𝑚1) 1(𝜏𝜅 − 𝑠󸀠) 𝑠󸀠 𝑑𝑠󸀠𝑑𝑚1.
(146)

Regarding both the factorization (145) above and Proposi-
tion 6, we get a constant 𝐶3 > 0 (depending on 𝜇, 𝜅) such
that

󵄩󵄩󵄩󵄩ℎ1 (𝜏, 𝑚) − ℎ2 (𝜏, 𝑚)󵄩󵄩󵄩󵄩(],𝛽,𝜇,𝜒,𝛼,𝜅,𝜖)
≤ 𝐶3|𝜖|𝜒+𝛼 (󵄩󵄩󵄩󵄩𝑤1 (𝜏, 𝑚)󵄩󵄩󵄩󵄩(],𝛽,𝜇,𝜒,𝛼,𝜅,𝜖)
+ 󵄩󵄩󵄩󵄩𝑤2 (𝜏, 𝑚)󵄩󵄩󵄩󵄩(],𝛽,𝜇,𝜒,𝛼,𝜅,𝜖)) × 󵄩󵄩󵄩󵄩𝑤1 (𝜏, 𝑚)
− 𝑤2 (𝜏, 𝑚)󵄩󵄩󵄩󵄩(],𝛽,𝜇,𝜒,𝛼,𝜅,𝜖) .

(147)

From (128) together with (147) we pick up a constant 𝐶󸀠2 > 0
(depending on ], 𝜅, 𝛾, 𝛿𝐷, 𝑘0, ℎ𝑙 for 0 ≤ 𝑙 ≤ 𝑀 and 𝑄(𝑋),𝑅̃𝐷(𝑋)) such that

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝜖−𝜒(−𝑘0+𝛾+ℎ𝑙)𝑄 (𝑖𝑚)𝑃̃𝑚 (𝜏) 𝜏𝜅 ∫
𝜏𝜅

0
(𝜏𝜅 − 𝑠)(−𝑘0+𝛾+ℎ𝑙)/𝜅−1 𝑠1/𝜅−1 (ℎ1 (𝑠1/𝜅, 𝑚) − ℎ2 (𝑠1/𝜅, 𝑚)) 𝑑𝑠󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩(],𝛽,𝜇,𝜒,𝛼,𝜅,𝜖)

≤ 𝐶󸀠2𝐶𝑃̃ (𝑟𝑄̃,𝑅̃𝐷)1/𝛿𝐷𝜅 |𝜖|
(𝜒+𝛼)𝜅((−𝑘0+𝛾+ℎ𝑙)/𝜅+1/𝜅)−𝜒(−𝑘0+𝛾+ℎ𝑙)−(𝜒+𝛼)𝜅(𝛿𝐷−1/𝜅) 󵄩󵄩󵄩󵄩ℎ1 (𝜏, 𝑚) − ℎ2 (𝜏,𝑚)󵄩󵄩󵄩󵄩(],𝛽,𝜇,𝜒,𝛼,𝜅,𝜖)

≤ 𝐶󸀠2𝐶3𝐶𝑃̃ (𝑟𝑄̃,𝑅̃𝐷)1/𝛿𝐷𝜅 |𝜖|
(𝜒+𝛼)(−𝑘0+𝛾+ℎ𝑙−𝜅𝛿𝐷+1)−𝜒(−𝑘0+𝛾+ℎ𝑙)

× (󵄩󵄩󵄩󵄩𝑤1 (𝜏, 𝑚)󵄩󵄩󵄩󵄩(],𝛽,𝜇,𝜒,𝛼,𝜅,𝜖) + 󵄩󵄩󵄩󵄩𝑤2 (𝜏, 𝑚)󵄩󵄩󵄩󵄩(],𝛽,𝜇,𝜒,𝛼,𝜅,𝜖)) 󵄩󵄩󵄩󵄩𝑤1 (𝜏, 𝑚) − 𝑤2 (𝜏, 𝑚)󵄩󵄩󵄩󵄩(],𝛽,𝜇,𝜒,𝛼,𝜅,𝜖) .

(148)
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Bearing in mind (130), we get a constant 𝐶2 > 0 (depending
on ], 𝜅, 𝑑𝑙, 𝛿𝑙 and 𝑅̃𝑙(𝑋), 𝑅̃𝐷(𝑋) for 1 ≤ 𝑙 ≤ 𝐷 − 1), such that

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝜖−𝜒(𝑑𝑙−𝑘0−𝛿𝑙) 𝑅̃𝑙 (𝑖𝑚)𝑃̃𝑚 (𝜏) 𝜏𝜅 ∫
𝜏𝜅

0
(𝜏𝜅 − 𝑠)𝑑𝑙,𝛿𝑙 ,0/𝜅−1

⋅ (𝑤1 (𝑠1/𝜅, 𝑚) − 𝑤2 (𝑠1/𝜅, 𝑚)) 𝑑𝑠𝑠
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩(],𝛽,𝜇,𝜒,𝛼,𝜅,𝜖)

≤ 𝐶2𝐶𝑃̃ (𝑟𝑄̃,𝑅̃𝐷)1/𝛿𝐷𝜅 |𝜖|
𝛼(𝑑𝑙−𝑘0−𝛿𝑙) 󵄩󵄩󵄩󵄩𝑤1 (𝜏, 𝑚)

− 𝑤2 (𝜏,𝑚)󵄩󵄩󵄩󵄩(],𝛽,𝜇,𝜒,𝛼,𝜅,𝜖) .

(149)

Likewise, we can apply (131) in order to exhibit a constant𝐶󸀠2 > 0 (depending on ], 𝜅, 𝑑𝑙, 𝛿𝑙, 𝑘0, 𝛿𝐷 and 𝑅̃𝑙(𝑋), 𝑅̃𝐷(𝑋)
for 1 ≤ 𝑙 ≤ 𝐷 − 1) with󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝜖−𝜒(𝑑𝑙−𝑘0−𝛿𝑙) 𝑅̃𝑙 (𝑖𝑚)𝑃̃𝑚 (𝜏) 𝜏𝜅 ∫

𝜏𝜅

0
(𝜏𝜅 − 𝑠)𝑑𝑙,𝑞1,𝑞2 /𝜅−1

⋅ 𝑠𝑞2 (𝑤1 (𝑠1/𝜅, 𝑚) − 𝑤2 (𝑠1/𝜅, 𝑚)) 𝑑𝑠𝑠
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩(],𝛽,𝜇,𝜒,𝛼,𝜅,𝜖)

≤ 𝐶󸀠2𝐶𝑃̃ (𝑟𝑄̃,𝑅̃𝐷)1/𝛿𝐷𝜅 |𝜖|
(𝜒+𝛼)𝜅(𝑑𝑙,𝑞1 ,𝑞2 /𝜅+𝑞2−𝛿𝐷+1/𝜅)−𝜒(𝑑𝑙−𝑘0−𝛿𝑙)

⋅ 󵄩󵄩󵄩󵄩𝑤1 (𝜏, 𝑚) − 𝑤2 (𝜏, 𝑚)󵄩󵄩󵄩󵄩(],𝛽,𝜇,𝜒,𝛼,𝜅,𝜖)
(150)

for all 𝑞1 ≥ 0 and 𝑞2 ≥ 1with 𝑞1 +𝑞2 = 𝛿𝑙. Furthermore, from
(132) we deduce

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝜖−𝜒(𝑑𝑙−𝑘0−𝛿𝑙) 𝑅̃𝑙 (𝑖𝑚)𝑃̃𝑚 (𝜏) 𝜏𝜅 ∫
𝜏𝜅

0
(𝜏𝜅 − 𝑠)𝑑𝑙,𝑞1,𝑞2 /𝜅+𝑞2−𝑝−1

⋅ 𝑠𝑝 (𝑤1 (𝑠1/𝜅, 𝑚) − 𝑤2 (𝑠1/𝜅, 𝑚)) 𝑑𝑠𝑠
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩(],𝛽,𝜇,𝜒,𝛼,𝜅,𝜖)

≤ 𝐶󸀠2𝐶𝑃̃ (𝑟𝑄̃,𝑅̃𝐷)1/𝛿𝐷𝜅 |𝜖|
(𝜒+𝛼)𝜅(𝑑𝑙,𝑞1 ,𝑞2 /𝜅+𝑞2−𝛿𝐷+1/𝜅)−𝜒(𝑑𝑙−𝑘0−𝛿𝑙)

⋅ 󵄩󵄩󵄩󵄩𝑤1 (𝜏, 𝑚) − 𝑤2 (𝜏, 𝑚)󵄩󵄩󵄩󵄩(],𝛽,𝜇,𝜒,𝛼,𝜅,𝜖)

(151)

provided that 𝑞2 ≥ 2 and 1 ≤ 𝑝 ≤ 𝑞2 − 1, with 𝑞1 + 𝑞2 = 𝛿𝑙.
Now, we sort 𝑟𝑄̃,𝑅̃𝐷 > 0 and 𝜛 in such a way that

𝑠󸀠∑
𝑙=0

󵄨󵄨󵄨󵄨𝑐𝑙󵄨󵄨󵄨󵄨 𝐶󸀠2𝐶3𝐶𝑃̃ (𝑟𝑄̃,𝑅̃𝐷)1/𝛿𝐷𝜅 Γ ((−𝑘0 + 𝛾 + ℎ𝑙) /𝜅) (2𝜋)1/2 |𝜖|
(𝜒+𝛼)(−𝑘0+𝛾+ℎ𝑙−𝜅𝛿𝐷+1)−𝜒(−𝑘0+𝛾+ℎ𝑙) × (󵄩󵄩󵄩󵄩𝑤1 (𝜏, 𝑚)󵄩󵄩󵄩󵄩(],𝛽,𝜇,𝜒,𝛼,𝜅,𝜖)

+ 󵄩󵄩󵄩󵄩𝑤2 (𝜏, 𝑚)󵄩󵄩󵄩󵄩(],𝛽,𝜇,𝜒,𝛼,𝜅,𝜖)) + 𝑀∑
𝑙=𝑠󸀠+1

󵄨󵄨󵄨󵄨𝑐𝑙󵄨󵄨󵄨󵄨 𝐶󸀠2𝐶3𝐶𝑃̃ (𝑟𝑄̃,𝑅̃𝐷)1/𝛿𝐷𝜅 Γ ((−𝑘0 + 𝛾 + ℎ𝑙) /𝜅) (2𝜋)1/2 |𝜖|
(𝜒+𝛼)(−𝑘0+𝛾+ℎ𝑙−𝜅𝛿𝐷+1)−𝜒(−𝑘0+𝛾+ℎ𝑙)

× |𝜖|𝜇𝑙+2𝛽−𝛼ℎ𝑙 (󵄩󵄩󵄩󵄩𝑤1 (𝜏, 𝑚)󵄩󵄩󵄩󵄩(],𝛽,𝜇,𝜒,𝛼,𝜅,𝜖) + 󵄩󵄩󵄩󵄩𝑤2 (𝜏, 𝑚)󵄩󵄩󵄩󵄩(],𝛽,𝜇,𝜒,𝛼,𝜅,𝜖)) + 𝐷−1∑
𝑙=1

|𝜖|Δ 𝑙+𝛼(𝛿𝑙−𝑑𝑙)+𝛽 [[
𝛿𝑙−1∏
𝑑=0

󵄨󵄨󵄨󵄨𝛾 − 𝑑󵄨󵄨󵄨󵄨
⋅ 𝐶2𝐶𝑃̃ (𝑟𝑄̃,𝑅̃𝐷)1/𝛿𝐷𝜅 Γ (𝑑𝑙,𝛿𝑙,0/𝜅) |𝜖|

𝛼(𝑑𝑙−𝑘0−𝛿𝑙) + ∑
𝑞1+𝑞2=𝛿𝑙,𝑞2≥1

𝛿𝑙!𝑞1!𝑞2!
𝑞1−1∏
𝑑=0

󵄨󵄨󵄨󵄨𝛾 − 𝑑󵄨󵄨󵄨󵄨( 𝐶󸀠2𝜅𝑞2𝐶𝑃̃ (𝑟𝑄̃,𝑅̃𝐷)1/𝛿𝐷𝜅 Γ (𝑑𝑙,𝑞1 ,𝑞2/𝜅)
× |𝜖|(𝜒+𝛼)𝜅(𝑑𝑙,𝑞1 ,𝑞2 /𝜅+𝑞2−𝛿𝐷+1/𝜅)−𝜒(𝑑𝑙−𝑘0−𝛿𝑙) + ∑

1≤𝑝≤𝑞2−1

󵄨󵄨󵄨󵄨󵄨𝐴𝑞2 ,𝑝

󵄨󵄨󵄨󵄨󵄨 𝐶󸀠2𝜅𝑝𝐶𝑃̃ (𝑟𝑄̃,𝑅̃𝐷)1/𝛿𝐷𝜅 Γ (𝑑𝑙,𝑞1 ,𝑞2/𝜅 + 𝑞2 − 𝑝)
× |𝜖|(𝜒+𝛼)𝜅(𝑑𝑙,𝑞1 ,𝑞2 /𝜅+𝑞2−𝛿𝐷+1/𝜅)−𝜒(𝑑𝑙−𝑘0−𝛿𝑙))]] ≤

16 .

(152)

Subsequently, we obtain󵄩󵄩󵄩󵄩󵄩H2
𝜖 (𝑤1 (𝜏, 𝑚)) −H2

𝜖 (𝑤2 (𝜏, 𝑚))󵄩󵄩󵄩󵄩󵄩(],𝛽,𝜇,𝜒,𝛼,𝜅,𝜖)
≤ 16 󵄩󵄩󵄩󵄩𝑤1 (𝜏, 𝑚) − 𝑤2 (𝜏, 𝑚)󵄩󵄩󵄩󵄩(],𝛽,𝜇,𝜒,𝛼,𝜅,𝜖) .

(153)

The last operation will be devoted to the proof that H3
𝜖 is a

shrinking map.

Taking notice of (135), we get a constant 𝐶2 > 0
(depending on ], 𝜅, 𝑘0, 𝛿𝐷, and 𝑑𝐷), such that

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝜖−𝜒(𝑑𝐷−𝑘0−𝛿𝐷) 𝑅̃𝐷 (𝑖𝑚)𝑃̃𝑚 (𝜏) 𝜏𝜅 ∫
𝜏𝜅

0
(𝜏𝜅 − 𝑠)𝑑𝐷,𝛿𝐷,0/𝜅−1

⋅ (𝑤1 (𝑠1/𝜅, 𝑚) − 𝑤2 (𝑠1/𝜅, 𝑚)) 𝑑𝑠𝑠
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩(],𝛽,𝜇,𝜒,𝛼,𝜅,𝜖)
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≤ 𝐶2𝐶𝑃̃ (𝑟𝑄̃,𝑅̃𝐷)1/𝛿𝐷𝜅 |𝜖|
𝛼(𝑑𝐷−𝑘0−𝛿𝐷) 󵄩󵄩󵄩󵄩𝑤1 (𝜏, 𝑚)

− 𝑤2 (𝜏, 𝑚)󵄩󵄩󵄩󵄩(],𝛽,𝜇,𝜒,𝛼,𝜅,𝜖) .
(154)

Moreover, we may have a look at (136) in order to exhibit a
constant 𝐶󸀠2 > 0 (depending on ], 𝜅, 𝑘0, 𝑑𝐷, and 𝛿𝐷) with
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝜖−𝜒(𝑑𝐷−𝑘0−𝛿𝐷) 𝑅̃𝐷 (𝑖𝑚)𝑃̃𝑚 (𝜏) 𝜏𝜅 × ∫

𝜏𝜅

0
(𝜏𝜅 − 𝑠)𝑑𝐷,𝑞1,𝑞2 /𝜅−1

⋅ 𝑠𝑞2 (𝑤1 (𝑠1/𝜅, 𝑚) − 𝑤2 (𝑠1/𝜅, 𝑚)) 𝑑𝑠𝑠
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩(],𝛽,𝜇,𝜒,𝛼,𝜅,𝜖)

≤ 𝐶󸀠2𝐶𝑃̃ (𝑟𝑄̃,𝑅̃𝐷)1/𝛿𝐷𝜅 |𝜖|
(𝜒+𝛼)𝜅(𝑑𝐷,𝑞1,𝑞2 /𝜅+𝑞2−𝛿𝐷+1/𝜅)−𝜒(𝑑𝐷−𝑘0−𝛿𝐷)

⋅ 󵄩󵄩󵄩󵄩𝑤1 (𝜏, 𝑚) − 𝑤2 (𝜏, 𝑚)󵄩󵄩󵄩󵄩(],𝛽,𝜇,𝜒,𝛼,𝜅,𝜖)

(155)

for all 𝑞1 ≥ 1 and 𝑞2 ≥ 1 with 𝑞1 + 𝑞2 = 𝛿𝐷. Besides, from
(137), we see that

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝜖−𝜒(𝑑𝐷−𝑘0−𝛿𝐷) 𝑅̃𝐷 (𝑖𝑚)𝑃̃𝑚 (𝜏) 𝜏𝜅 × ∫
𝜏𝜅

0
(𝜏𝜅 − 𝑠)𝑑𝐷,𝑞1,𝑞2 /𝜅+𝑞2−𝑝−1

⋅ 𝑠𝑝 (𝑤1 (𝑠1/𝜅, 𝑚) − 𝑤2 (𝑠1/𝜅, 𝑚)) 𝑑𝑠𝑠
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩(],𝛽,𝜇,𝜒,𝛼,𝜅,𝜖)

≤ 𝐶󸀠2𝐶𝑃̃ (𝑟𝑄̃,𝑅̃𝐷)1/𝛿𝐷𝜅 |𝜖|
(𝜒+𝛼)𝜅(𝑑𝐷,𝑞1,𝑞2 /𝜅+𝑞2−𝛿𝐷+1/𝜅)−𝜒(𝑑𝐷−𝑘0−𝛿𝐷)

⋅ 󵄩󵄩󵄩󵄩𝑤1 (𝜏, 𝑚) − 𝑤2 (𝜏, 𝑚)󵄩󵄩󵄩󵄩(],𝛽,𝜇,𝜒,𝛼,𝜅,𝜖)

(156)

provided that 𝑞1 ≥ 1, 𝑞2 ≥ 2, and 1 ≤ 𝑝 ≤ 𝑞2 − 1 with𝑞1 + 𝑞2 = 𝛿𝐷. Finally, having a glance at (138), we can select a
constant 𝐶󸀠2 > 0 (depending on ], 𝜅, and 𝛿𝐷) such that

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩 𝑅̃𝐷 (𝑖𝑚)𝑃̃𝑚 (𝜏) 𝜏𝜅 ∫
𝜏𝜅

0
(𝜏𝜅 − 𝑠)𝛿𝐷−𝑝−1 𝑠𝑝 (𝑤1 (𝑠1/𝜅, 𝑚)

− 𝑤2 (𝑠1/𝜅, 𝑚)) 𝑑𝑠𝑠
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩(],𝛽,𝜇,𝜒,𝛼,𝜅,𝜖)

≤ 𝐶󸀠2𝐶𝑃̃ (𝑟𝑄̃,𝑅̃𝐷)1/𝛿𝐷𝜅 |𝜖|
𝜒+𝛼 󵄩󵄩󵄩󵄩𝑤1 (𝜏, 𝑚) − 𝑤2 (𝜏,

𝑚)󵄩󵄩󵄩󵄩(],𝛽,𝜇,𝜒,𝛼,𝜅,𝜖)

(157)

for all 1 ≤ 𝑝 ≤ 𝛿𝐷 − 1. In the meanwhile, we select the size of
radius 𝑟𝑄̃,𝑅̃𝐷 in such a manner that

|𝜖|Δ𝐷+𝛼(𝛿𝐷−𝑑𝐷)+𝛽 [[
𝛿𝐷−1∏
𝑑=0

󵄨󵄨󵄨󵄨𝛾 − 𝑑󵄨󵄨󵄨󵄨
⋅ 𝐶2𝐶𝑃̃ (𝑟𝑄̃,𝑅̃𝐷)1/𝛿𝐷𝜅 Γ (𝑑𝐷,𝛿𝐷,0/𝜅) |𝜖|

𝛼(𝑑𝐷−𝑘0−𝛿𝐷)

+ ∑
𝑞1+𝑞2=𝛿𝐷,𝑞1≥1,𝑞2≥1

𝛿𝐷!𝑞1!𝑞2!
𝑞1−1∏
𝑑=0

󵄨󵄨󵄨󵄨𝛾 − 𝑑󵄨󵄨󵄨󵄨
⋅ ( 𝐶󸀠2𝜅𝑞2𝐶𝑃̃ (𝑟𝑄̃,𝑅̃𝐷)1/𝛿𝐷𝜅 Γ (𝑑𝐷,𝑞1 ,𝑞2/𝜅)
× |𝜖|(𝜒+𝛼)𝜅(𝑑𝐷,𝑞1,𝑞2 /𝜅+𝑞2−𝛿𝐷+1/𝜅)−𝜒(𝑑𝐷−𝑘0−𝛿𝐷)
+ ∑
1≤𝑝≤𝑞2−1

󵄨󵄨󵄨󵄨󵄨𝐴𝑞2 ,𝑝

󵄨󵄨󵄨󵄨󵄨
⋅ 𝐶󸀠2𝜅𝑝𝐶𝑃̃ (𝑟𝑄̃,𝑅̃𝐷)1/𝛿𝐷𝜅 Γ (𝑑𝐷,𝑞1 ,𝑞2/𝜅 + 𝑞2 − 𝑝)
× |𝜖|(𝜒+𝛼)𝜅(𝑑𝐷,𝑞1,𝑞2 /𝜅+𝑞2−𝛿𝐷+1/𝜅)−𝜒(𝑑𝐷−𝑘0−𝛿𝐷))]]
+ ∑
1≤𝑝≤𝛿𝐷−1

󵄨󵄨󵄨󵄨󵄨𝐴𝛿𝐷,𝑝

󵄨󵄨󵄨󵄨󵄨
⋅ 𝐶󸀠2𝜅𝑝𝐶𝑃̃ (𝑟𝑄̃,𝑅̃𝐷)1/𝛿𝐷𝜅 Γ (𝛿𝐷 − 𝑝) |𝜖|

𝜒+𝛼 ≤ 16 .

(158)

The following inequality must then hold:󵄩󵄩󵄩󵄩󵄩H3
𝜖 (𝑤1 (𝜏, 𝑚)) −H3

𝜖 (𝑤2 (𝜏, 𝑚))󵄩󵄩󵄩󵄩󵄩(],𝛽,𝜇,𝜒,𝛼,𝜅,𝜖)
≤ 16 󵄩󵄩󵄩󵄩𝑤1 (𝜏, 𝑚) − 𝑤2 (𝜏, 𝑚)󵄩󵄩󵄩󵄩(],𝛽,𝜇,𝜒,𝛼,𝜅,𝜖) .

(159)

Gathering (144), (153), and (159) legitimates estimates (114).
At the very end of the proof, we now take for granted that

all conditions (124), (133), (139), (143), (152), and (158) hold
for the radii 𝑟𝑄̃,𝑅̃𝐷 and𝜛. Then both (113) and (114) hold at the
same time and Lemma 16 is shown.

We consider the closed ball 𝐵(0, 𝜛) just built above in
Lemma 16 which is actually a complete metric space with
respect to the metric induced by the Banach space norm‖ ⋅ ‖(],𝛽,𝜇,𝜒,𝛼,𝜅,𝜖). From the lemma above, we get that H𝜖 is a
contractive map from 𝐵(0, 𝜛) into itself. Due to the classical
contractive mapping theorem, we deduce that the map H𝜖

has a unique fixed point denoted by 𝜔𝑑𝜅 (𝜏, 𝑚, 𝜖) in the ball𝐵(0, 𝜛), meaning that

H𝜖 (𝜔𝑑𝜅 (𝜏, 𝑚, 𝜖)) = 𝜔𝑑𝜅 (𝜏,𝑚, 𝜖) (160)
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for a unique 𝜔𝑑𝜅 (𝜏, 𝑚, 𝜖) ∈ 𝐹𝑑(],𝛽,𝜇,𝜒,𝛼,𝜅,𝜖) such that‖𝜔𝑑𝜅 (𝜏, 𝑚, 𝜖)‖(],𝛽,𝜇,𝜒,𝛼,𝜅,𝜖) ≤ 𝜛, for all 𝜖 ∈ 𝐷(0, 𝜖0) \ {0}.
Moreover, the function 𝜔𝑑𝜅 (𝜏,𝑚, 𝜖) depends holomorphically
on 𝜖 in𝐷(0, 𝜖0) \ {0}.

Now, if one sets apart the terms −𝑎0𝑄(𝑖𝑚)𝜔𝜅(𝜏, 𝑚, 𝜖)
in the left-hand side 𝐿𝜏,𝑚,𝜖 and 𝑅̃𝐷(𝑖𝑚)(𝜅𝜏𝜅)𝛿𝐷𝜔𝜅(𝜏, 𝑚, 𝜖) in
the right-hand side 𝑅𝜏,𝑚,𝜖 of (95), we observe by dividing
with the polynomial 𝑃̃𝑚(𝜏) given in (100) that (95) can be
exactly rewritten as (160). Therefore, the unique fixed point𝜔𝑑𝜅 (𝜏, 𝑚, 𝜖) of H𝜖 in 𝐵(0, 𝜛) precisely solves problem (95)
with vanishing initial data 𝜔𝜅(0, 𝑚, 𝜖) ≡ 0. This yields the
proposition.

6. Singular Analytic Solutions on Sectors to
the Main Problem

We go back to the sequence of formal constructions per-
formed in Section 4 under the new light shed in Section 5
on problem (95).

We first recall the definitions of a good covering and
associated sets of sectors as introduced in [3].

Definition 17. Let 𝜍 ≥ 2 be an integer. For all 0 ≤ 𝑝 ≤ 𝜍 − 1,
we consider open sectorsE𝑝 centered at 0, with radius 𝜖0 > 0
and opening 𝜋/(𝜒 + 𝛼)𝜅 + 𝜉𝑝 with 𝜉𝑝 > 0 small enough such
thatE𝑝 ∩E𝑝+1 ̸= 0, for all 0 ≤ 𝑝 ≤ 𝜍− 1 (with the convention
that E𝜍 = E0). Moreover, we assume that the intersection of
any three different elements in {E𝑝}0≤𝑝≤𝜍−1 is empty and that∪𝜍−1𝑝=0E𝑝 = U \ {0}, whereU is some neighborhood of 0 in C.
Such a set of sectors {E𝑝}0≤𝑝≤𝜍−1 is called a good covering in
C∗.

Definition 18. Let {E𝑝}0≤𝑝≤𝜍−1 be a good covering in C∗. Let
T be an open bounded sector centered at 0 with radius 𝑟T
and consider a family of open sectors

𝑆d𝑝 ,𝜃,𝜖0𝑟T
= {𝑇 ∈ C∗ | |𝑇| < 𝜖0𝑟T, 󵄨󵄨󵄨󵄨󵄨d𝑝 − arg (𝑇)󵄨󵄨󵄨󵄨󵄨 < 𝜃2}

(161)

with aperture 𝜃 > 𝜋/𝜅 and where d𝑝 ∈ R, for all 0 ≤ 𝑝 ≤𝜍−1, are directions which satisfy the following constraints: let𝑞𝑙(𝑚) be the roots of the polynomials (100) defined by (101)
and 𝑆d𝑝 and 0 ≤ 𝑝 ≤ 𝜍 − 1 be unbounded sectors centered at
0 with directions d𝑝 and with small aperture. We assume the
following.

(1) There exists a constant𝑀1 > 0 such that󵄨󵄨󵄨󵄨𝜏 − 𝑞𝑙 (𝑚)󵄨󵄨󵄨󵄨 ≥ 𝑀1 (1 + |𝜏|) (162)

for all 0 ≤ 𝑙 ≤ 𝛿𝐷𝜅 − 1; all𝑚 ∈ R; all 𝜏 ∈ 𝑆d𝑝 ∪ 𝐷(0, 𝜌), for all0 ≤ 𝑝 ≤ 𝜍 − 1.
(2) There exists a constant𝑀2 > 0 such that󵄨󵄨󵄨󵄨󵄨𝜏 − 𝑞𝑙0 (𝑚)󵄨󵄨󵄨󵄨󵄨 ≥ 𝑀2

󵄨󵄨󵄨󵄨󵄨𝑞𝑙0 (𝑚)󵄨󵄨󵄨󵄨󵄨 (163)

for some 𝑙0 ∈ {0, . . . , 𝛿𝐷𝜅− 1}; all𝑚 ∈ R; all 𝜏 ∈ 𝑆d𝑝 ∪𝐷(0, 𝜌),
for all 0 ≤ 𝑝 ≤ 𝜍 − 1.

(3) For all 0 ≤ 𝑝 ≤ 𝜍 − 1, all 𝑡 ∈ T; all 𝜖 ∈ E𝑝; we have
that 𝜖𝛼+𝜒𝑡 ∈ 𝑆d𝑝 ,𝜃,𝜖𝛼+𝜒0 𝑟T

.
We say that the family {(𝑆d𝑝 ,𝜃,𝜖0𝑟T)0≤𝑝≤𝜍−1,T} is associated

with the good covering {E𝑝}0≤𝑝≤𝜍−1.
In the next main first outcome, we construct a family of

actual holomorphic solutions to the principal equation (61)
which may be meromorphic at (𝜖, 𝑡) = (0, 0) and defined
on the sectors E𝑝 with respect to the complex parameter 𝜖.
Furthermore, we can also control the difference between any
two neighboring solutions on the intersectionsE𝑝∩E𝑝+1 and
state that it is exponentially flat of order at most (𝜒+𝛼)𝜅with
respect to 𝜖.
Theorem19. One considers the nonlinear singularly perturbed
PDE (61) and takes for granted that all the assumptions (60),
(62), (65), (66), (67), (77), (78), (79), (88), (99), (105), (106),
and (107) hold for some rational numbers 𝛼 > 1, 𝛽 ∈ Q and
integers 𝛾 ∈ Z, 𝜅 ≥ 1. Let {E𝑝}0≤𝑝≤𝜍−1 a good covering inC∗ be
given, for which a family of open sectors {(𝑆d𝑝 ,𝜃,𝜖0𝑟T)0≤𝑝≤𝜍−1,T}
associated with this good covering can be singled out.

Then, there exist a radius 𝑟𝑄̃,𝑅̃𝐷 > 0 large enough and 𝜖0 > 0
small enough, for which a family {𝑢d𝑝(𝑡, 𝑧, 𝜖)}0≤𝑝≤𝜍−1 of actual
solutions of (61) can be built up. More exactly, the functions𝑢d𝑝(𝑡, 𝑧, 𝜖) solve the following singularly perturbed PDE:
𝑄 (𝜕𝑧)(( 𝑞∑

𝑙=0

𝑎𝑙𝜖𝑚𝑙𝑡𝑘𝑙)𝑢d𝑝 (𝑡, 𝑧, 𝜖)
+ (𝑀∑

𝑙=0

𝑐𝑙𝜖𝜇𝑙𝑡ℎ𝑙)(𝑢d𝑝)2 (𝑡, 𝑧, 𝜖)) = 𝑝∑
𝑗=0

𝑏̃𝑗 (𝑧) 𝜖𝑛𝑗𝑡𝑏𝑗

+ 𝐹 (𝜖𝛼𝑡, 𝜖) + 𝐷∑
𝑙=1

𝜖Δ 𝑙𝑡𝑑𝑙𝜕𝛿𝑙𝑡 𝑅̃𝑙 (𝜕𝑧) 𝑢 (𝑡, 𝑧, 𝜖)
(164)

with an additional part of forcing term 𝐹(𝜖𝛼𝑡, 𝜖) where 𝐹(𝑇, 𝜖)
is given by expression (183) and defines a holomorphic bounded
function provided that the additional constraints (184) are
fulfilled. Each function 𝑢d𝑝(𝑡, 𝑧, 𝜖) can be decomposed as

𝑢d𝑝 (𝑡, 𝑧, 𝜖) = 𝜖𝛽 (−𝑎0𝑐0 (𝜖𝛼𝑡)𝑘0−ℎ0
− 𝑎0𝑐0 (𝜖𝛼𝑡)𝑘0−ℎ0 𝐽 (𝜖𝛼𝑡) + (𝜖𝛼𝑡)𝛾 Vd𝑝 (𝑡, 𝑧, 𝜖)) ,

(165)

where 𝐽(𝑇) is holomorphic on some disc 𝐷(0, 𝑑𝐽), 𝑑𝐽 > 0,
and Vd𝑝(𝑡, 𝑧, 𝜖) defines a bounded holomorphic function on
T × 𝐻𝛽󸀠 × E𝑝 for any given 0 < 𝛽󸀠 < 𝛽, with Vd𝑝(0, 𝑧, 𝜖) ≡ 0
on 𝐻𝛽󸀠 × E𝑝. Furthermore, there exist constants 𝐾𝑝,𝑀𝑝 > 0
and 𝜎 > 0 (independent of 𝜖) such that

sup
𝑡∈T∩𝐷(0,𝜎),𝑧∈𝐻

𝛽󸀠

󵄨󵄨󵄨󵄨󵄨Vd𝑝+1 (𝑡, 𝑧, 𝜖) − Vd𝑝 (𝑡, 𝑧, 𝜖)󵄨󵄨󵄨󵄨󵄨
≤ 𝐾𝑝 exp(− 𝑀𝑝|𝜖|(𝜒+𝛼)𝜅)

(166)
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for all 𝜖 ∈ E𝑝+1∩E𝑝, for all 0 ≤ 𝑝 ≤ 𝜍−1 (where by convention
Vd𝜍 = Vd0 ).

Proof. We plan to construct actual solutions of the main
equation (61) by performing backwards the sequence of
constructions described in Section 4 starting from problem
(95) solved in Section 5.

Let {E𝑝}0≤𝑝≤𝜍−1 be a good covering in C∗ and let{(𝑆d𝑝 ,𝜃,𝜖0𝑟T)0≤𝑝≤𝜍−1,T} be a family of sectors associated with
this good covering. From Proposition 15, we see that, for
each direction d𝑝, one can get a solution 𝜔d𝑝𝜅 (𝜏, 𝑚, 𝜖) of
the convolution equation (95) that belongs to the space𝐹d𝑝
(],𝛽,𝜇,𝜒,𝛼,𝜅,𝜖) and thus satisfies the following bounds:

󵄨󵄨󵄨󵄨󵄨󵄨𝜔d𝑝𝜅 (𝜏, 𝑚, 𝜖)󵄨󵄨󵄨󵄨󵄨󵄨 ≤ 𝜛 (1 + |𝑚|)−𝜇 𝑒−𝛽|𝑚|
󵄨󵄨󵄨󵄨𝜏/𝜖𝜒+𝛼󵄨󵄨󵄨󵄨1 + |𝜏/𝜖𝜒+𝛼|2𝜅

⋅ exp(] 󵄨󵄨󵄨󵄨󵄨󵄨󵄨 𝜏𝜖𝜒+𝛼 󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝜅)

(167)

for all 𝜏 ∈ 𝐷(0, 𝜌)∪𝑆d𝑝 , all𝑚 ∈ R, and all 𝜖 ∈ 𝐷(0, 𝜖0)\{0}, for
some well chosen 𝜛 > 0. Besides, these functions 𝜔d𝑝𝜅 (𝜏, 𝑚, 𝜖)
are analytic continuations with respect to 𝜏 of a common
convergent series

𝜔𝜅 (𝜏, 𝑚, 𝜖) = ∑
𝑛≥1

𝜔𝑛 (𝑚, 𝜖)Γ (𝑛/𝜅) 𝜏𝑛 (168)

with coefficients in the Banach space 𝐸(𝛽,𝜇) solution of (95)
for all 𝜏 ∈ 𝐷(0, 𝜌). In particular, we see that the formal power
series

Ω𝜅 (T , 𝑚, 𝜖) = ∑
𝑛≥1

𝜔𝑛 (𝑚, 𝜖) T𝑛 (169)

is 𝑚𝜅-summable in direction d𝑝 as a series with coefficients
in the Banach space 𝐸(𝛽,𝜇) for all 𝜖 ∈ 𝐷(0, 𝜖0) \ {0} in the sense
of Definition 7. We denote by

Ωd𝑝
𝜅 (T , 𝑚, 𝜖) = 𝜅∫

𝐿𝛾

𝜔d𝑝𝜅 (𝑢,𝑚, 𝜖) exp(−(𝑢
T
)𝜅) 𝑑𝑢𝑢 (170)

its 𝑚𝜅-sum in direction d𝑝, where 𝐿𝛾 = R+𝑒𝑖𝛾 ⊂ 𝑆d𝑝 , which
defines an𝐸(𝛽,𝜇)-valued analytic functionwith respect to T on
a sector

𝑆d𝑝 ,𝜃,ℎ󸀠|𝜖|𝜒+𝛼
= {T ∈ C∗ : |T | < ℎ󸀠 |𝜖|𝜒+𝛼 , 󵄨󵄨󵄨󵄨󵄨d𝑝 − arg (T)󵄨󵄨󵄨󵄨󵄨 < 𝜃2}

(171)

for 𝜋/𝜅 < 𝜃 < 𝜋/𝜅 + Ap(𝑆d𝑝) (where Ap(𝑆d𝑝) denotes the
aperture of the sector 𝑆d𝑝) and some ℎ󸀠 > 0 (independent of𝜖), for all 𝜖 ∈ 𝐷(0, 𝜖0) \ {0}.

Bearing in mind the identities of Proposition 8 and using
the properties for the𝑚𝜅-sum with respect to derivatives and
products (within the Banach algebraE = 𝐸(𝛽,𝜇) equippedwith
the convolution product ⋆ as described in Proposition 2), we

check that the functionsΩd𝑝
𝜅 (T , 𝑚, 𝜖)must solve the following

problem:

LT ,𝑚,𝜖 (Ωd𝑝
𝜅 (T , 𝑚, 𝜖)) =RT ,𝑚,𝜖 (Ωd𝑝

𝜅 (T , 𝑚, 𝜖)) , (172)

where

LT ,𝑚,𝜖 (Ωd𝑝
𝜅 (T , 𝑚, 𝜖)) = 𝑄 (𝑖𝑚)Ωd𝑝

𝜅 (T , 𝑚, 𝜖)(−𝑎0
+ 𝑠∑
𝑙=1

𝑎𝑙𝜖−𝜒(𝑘𝑙−𝑘0)T𝑘𝑙−𝑘0
+ 𝑞∑
𝑙=𝑠+1

𝑎𝑙𝜖𝑚𝑙+𝛽−𝛼𝑘𝑙−𝜒(𝑘𝑙−𝑘0)T𝑘𝑙−𝑘0 − 2(𝑎0𝑐0 )
⋅ ( 𝑠󸀠∑

𝑙=1

𝑐𝑙𝜖−𝜒(ℎ𝑙−ℎ0)Tℎ𝑙−ℎ0

+ 𝑀∑
𝑙=𝑠󸀠+1

𝑐𝑙𝜖𝜇𝑙+2𝛽−𝛼ℎ𝑙−𝜒(ℎ𝑙−ℎ0)Tℎ𝑙−ℎ0) − 2(𝑎0𝑐0 )
⋅ 𝐽 (𝜖−𝜒T)( 𝑠󸀠∑

𝑙=0

𝑐𝑙𝜖−𝜒(ℎ𝑙−ℎ0)Tℎ𝑙−ℎ0

+ 𝑀∑
𝑙=𝑠󸀠+1

𝑐𝑙𝜖𝜇𝑙+2𝛽−𝛼ℎ𝑙−𝜒(ℎ𝑙−ℎ0)Tℎ𝑙−ℎ0)) + 𝑄 (𝑖𝑚)
⋅ ( 1(2𝜋)1/2 ∫

+∞

−∞
Ωd𝑝
𝜅 (T , 𝑚 − 𝑚1, 𝜖)

⋅ Ωd𝑝
𝜅 (T , 𝑚1, 𝜖) 𝑑𝑚1) 𝜖−𝜒(−𝑘0+𝛾)T−𝑘0+𝛾

× ( 𝑠󸀠∑
𝑙=0

𝑐𝑙𝜖−𝜒ℎ𝑙Tℎ𝑙 + 𝑀∑
𝑙=𝑠󸀠+1

𝑐𝑙𝜖𝜇𝑙+2𝛽−𝛼ℎ𝑙−𝜒ℎ𝑙Tℎ𝑙) ,

(173)

RT ,𝑚,𝜖 (Ωd𝑝
𝜅 (T , 𝑚, 𝜖)) = 𝑝∑

𝑗=0

𝐵𝑗 (𝑚)
⋅ 𝜖𝑛𝑗−𝛼𝑏𝑗−𝜒(𝑏𝑗−𝑘0−𝛾)T𝑏𝑗−𝑘0−𝛾 + 𝐷−1∑

𝑙=1

𝜖Δ 𝑙+𝛼(𝛿𝑙−𝑑𝑙)+𝛽

× ∑
𝑞1+𝑞2=𝛿𝑙

𝛿𝑙!𝑞1!𝑞2!
𝑞1−1∏
𝑑=0

(𝛾 − 𝑑) 𝜖−𝜒(𝑑𝑙−𝑘0−𝑞1−𝑞2)𝑅̃𝑙 (𝑖𝑚)
× T𝑑𝑙,𝑞1,𝑞2 {(T𝜅+1𝜕T)𝑞2 + ∑

1≤𝑝≤𝑞2−1

𝐴𝑞2 ,𝑝
T
𝜅(𝑞2−𝑝)

⋅ (T𝜅+1𝜕T)𝑝}Ωd𝑝
𝜅 (T , 𝑚, 𝜖) + 𝜖Δ𝐷+𝛼(𝛿𝐷−𝑑𝐷)+𝛽
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× ∑
𝑞1+𝑞2=𝛿𝐷,𝑞1≥1

𝛿𝐷!𝑞1!𝑞2!
𝑞1−1∏
𝑑=0

(𝛾 − 𝑑)
⋅ 𝜖−𝜒(𝑑𝐷−𝑘0−𝑞1−𝑞2)𝑅̃𝐷 (𝑖𝑚) × T𝑑𝐷,𝑞1,𝑞2 {(T𝜅+1𝜕T)𝑞2

+ ∑
1≤𝑝≤𝑞2−1

𝐴𝑞2 ,𝑝
T
𝜅(𝑞2−𝑝) (T𝜅+1𝜕T)𝑝}Ωd𝑝

𝜅 (T , 𝑚, 𝜖)
+ 𝑅̃𝐷 (𝑖𝑚){{{(T

𝜅+1𝜕T)𝛿𝐷 + ∑
1≤𝑝≤𝛿𝐷−1

𝐴𝛿𝐷,𝑝
T
𝜅(𝛿𝐷−𝑝)

⋅ (T𝜅+1𝜕T)𝑝}}}Ω
d𝑝
𝜅 (T , 𝑚, 𝜖) .

(174)

We examine now the function

V
d𝑝 (T , 𝑧, 𝜖) = F

−1 (𝑚 󳨃󳨀→ Ωd𝑝
𝜅 (T , 𝑚, 𝜖)) (𝑧) (175)

which defines a bounded holomorphic function with respect
to T on 𝑆d𝑝 ,𝜃,ℎ󸀠|𝜖|𝜒+𝛼 , with respect to 𝑧 on 𝐻𝛽󸀠 for any 0 <𝛽󸀠 < 𝛽, and for all 𝜖 on 𝐷(0, 𝜖0) \ {0}. Using the properties of
the Fourier inverse transform described in Proposition 9 and
watching out the expansions (91), we extract from equality
(172) the next equation satisfied by Vd𝑝(T , 𝑧, 𝜖); namely,

𝑄 (𝜕𝑧)Vd𝑝 (T , 𝑧, 𝜖)(−𝑎0 + 𝑠∑
𝑙=1

𝑎𝑙𝜖−𝜒(𝑘𝑙−𝑘0)T𝑘𝑙−𝑘0
+ 𝑞∑
𝑙=𝑠+1

𝑎𝑙𝜖𝑚𝑙+𝛽−𝛼𝑘𝑙−𝜒(𝑘𝑙−𝑘0)T𝑘𝑙−𝑘0 − 2(𝑎0𝑐0 )
⋅ ( 𝑠󸀠∑

𝑙=1

𝑐𝑙𝜖−𝜒(ℎ𝑙−ℎ0)Tℎ𝑙−ℎ0

+ 𝑀∑
𝑙=𝑠󸀠+1

𝑐𝑙𝜖𝜇𝑙+2𝛽−𝛼ℎ𝑙−𝜒(ℎ𝑙−ℎ0)Tℎ𝑙−ℎ0) − 2(𝑎0𝑐0 )
⋅ 𝐽 (𝜖−𝜒T)( 𝑠󸀠∑

𝑙=0

𝑐𝑙𝜖−𝜒(ℎ𝑙−ℎ0)Tℎ𝑙−ℎ0

+ 𝑀∑
𝑙=𝑠󸀠+1

𝑐𝑙𝜖𝜇𝑙+2𝛽−𝛼ℎ𝑙−𝜒(ℎ𝑙−ℎ0)Tℎ𝑙−ℎ0)) + 𝑄 (𝜕𝑧)
⋅ (Vd𝑝)2 (T , 𝑧, 𝜖) 𝜖−𝜒(−𝑘0+𝛾)T−𝑘0+𝛾( 𝑠󸀠∑

𝑙=0

𝑐𝑙𝜖−𝜒ℎ𝑙Tℎ𝑙

+ 𝑀∑
𝑙=𝑠󸀠+1

𝑐𝑙𝜖𝜇𝑙+2𝛽−𝛼ℎ𝑙−𝜒ℎ𝑙Tℎ𝑙) = 𝑝∑
𝑗=0

𝑏̃𝑗 (𝑧)

⋅ 𝜖𝑛𝑗−𝛼𝑏𝑗−𝜒(𝑏𝑗−𝑘0−𝛾)T𝑏𝑗−𝑘0−𝛾 + 𝐷−1∑
𝑙=1

𝜖Δ 𝑙+𝛼(𝛿𝑙−𝑑𝑙)+𝛽

× ∑
𝑞1+𝑞2=𝛿𝑙

𝛿𝑙!𝑞1!𝑞2!
𝑞1−1∏
𝑑=0

(𝛾 − 𝑑) 𝜖−𝜒(𝑑𝑙−𝑘0−𝑞1)T𝑑𝑙−𝑘0−𝑞1
⋅ 𝑅̃𝑙 (𝜕𝑧) 𝜖𝜒𝑞2𝜕𝑞2T V

d𝑝 (T , 𝑧, 𝜖)
+ 𝜖Δ𝐷+𝛼(𝛿𝐷−𝑑𝐷)+𝛽 ∑

𝑞1+𝑞2=𝛿𝐷,𝑞1≥1

𝛿𝐷!𝑞1!𝑞2!
𝑞1−1∏
𝑑=0

(𝛾 − 𝑑)
⋅ 𝜖−𝜒(𝑑𝐷−𝑘0−𝑞1)T𝑑𝐷−𝑘0−𝑞1 × 𝑅̃𝐷 (𝜕𝑧) 𝜖𝜒𝑞2𝜕𝑞2T V

d𝑝 (T , 𝑧,
𝜖) + T𝑑𝐷−𝑘0 𝑅̃𝐷 (𝜕𝑧) 𝜕𝛿𝐷T V

d𝑝 (T , 𝑧, 𝜖) .
(176)

We now set T = 𝜖𝜒𝑇 and we focus on the function

𝑉d𝑝 (𝑇, 𝑧, 𝜖) = V
d𝑝 (𝜖𝜒𝑇, 𝑧, 𝜖) (177)

which defines a bounded holomorphic function with respect
to 𝑇 such that 𝑇 ∈ 𝜖−𝜒𝑆d𝑝 ,𝜃,ℎ󸀠|𝜖|𝜒+𝛼 and with respect to 𝑧 on𝐻𝛽󸀠 for any 0 < 𝛽󸀠 < 𝛽, for all 𝜖 ∈ 𝐷(0, 𝜖0) \ {0}. Having
a quick look at (176), we observe that 𝑉d𝑝(𝑇, 𝑧, 𝜖) solves a
related equation which after multiplication by 𝑇𝑘0+𝛾 yields
𝑄 (𝜕𝑧) 𝑉d𝑝 (𝑇, 𝑧, 𝜖)(−𝑎0𝑇𝑘0+𝛾

+ ( 𝑠∑
𝑙=1

𝑎𝑙𝑇𝑘𝑙 + 𝑞∑
𝑙=𝑠+1

𝑎𝑙𝜖𝑚𝑙+𝛽−𝛼𝑘𝑙𝑇𝑘𝑙)𝑇𝛾 − 2(𝑎0𝑐0 )
⋅ 𝑇𝑘0−ℎ0+𝛾( 𝑠󸀠∑

𝑙=1

𝑐𝑙𝑇ℎ𝑙 + 𝑀∑
𝑙=𝑠󸀠+1

𝑐𝑙𝜖𝜇𝑙+2𝛽−𝛼ℎ𝑙𝑇ℎ𝑙)
− 2(𝑎0𝑐0 )𝑇𝑘0−ℎ0+𝛾𝐽 (𝑇)
⋅ ( 𝑠󸀠∑

𝑙=0

𝑐𝑙𝑇ℎ𝑙 + 𝑀∑
𝑙=𝑠󸀠+1

𝑐𝑙𝜖𝜇𝑙+2𝛽−𝛼ℎ𝑙𝑇ℎ𝑙)) + 𝑄 (𝜕𝑧)
⋅ (𝑉d𝑝)2 (𝑇, 𝑧, 𝜖) 𝑇2𝛾( 𝑠󸀠∑

𝑙=0

𝑐𝑙𝑇ℎ𝑙

+ 𝑀∑
𝑙=𝑠󸀠+1

𝑐𝑙𝜖𝜇𝑙+2𝛽−𝛼ℎ𝑙𝑇ℎ𝑙) = 𝑝∑
𝑗=0

𝑏̃𝑗 (𝑧) 𝜖𝑛𝑗−𝛼𝑏𝑗𝑇𝑏𝑗

+ 𝐷∑
𝑙=1

𝜖Δ 𝑙+𝛼(𝛿𝑙−𝑑𝑙)+𝛽( ∑
𝑞1+𝑞2=𝛿𝑙

𝛿𝑙!𝑞1!𝑞2!
⋅ 𝑞1−1∏
𝑑=0

(𝛾 − 𝑑) 𝑇𝑑𝑙+𝛾−𝑞1 𝑅̃𝑙 (𝜕𝑧) 𝜕𝑞2𝑇 𝑉d𝑝 (𝑇, 𝑧, 𝜖)) .

(178)
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In the next step, we introduce the function

𝑈d𝑝 (𝑇, 𝑧, 𝜖) = −𝑎0𝑐0 𝑇𝑘0−ℎ0 − 𝑎0𝑐0 𝑇𝑘0−ℎ0𝐽 (𝑇)
+ 𝑇𝛾𝑉d𝑝 (𝑇, 𝑧, 𝜖) (179)

which defines a holomorphic function with respect to 𝑇 such
that 𝑇 ∈ 𝜖−𝜒𝑆d𝑝 ,𝜃,ℎ󸀠|𝜖|𝜒+𝛼 and with respect to 𝑧 on 𝐻𝛽󸀠 for any0 < 𝛽󸀠 < 𝛽, for all 𝜖 ∈ 𝐷(0, 𝜖0) \ {0}. Notice that this function
may be meromorphic at 𝑇 = 0, provided that ℎ0 > 𝑘0. Taking
(178) into consideration, we see that the function 𝑈d𝑝(𝑇, 𝑧, 𝜖)
solves the next PDE with forcing term

𝑄 (𝜕𝑧)(( 𝑞∑
𝑙=0

𝑎𝑙𝜖𝑚𝑙+𝛽−𝛼𝑘𝑙𝑇𝑘𝑙)𝑈d𝑝 (𝑇, 𝑧, 𝜖)
+ (𝑀∑

𝑙=0

𝑐𝑙𝜖𝜇𝑙+2𝛽−𝛼ℎ𝑙𝑇ℎ𝑙)(𝑈d𝑝)2 (𝑇, 𝑧, 𝜖))
= 𝑝∑

𝑗=0

𝑏̃𝑗 (𝑧) 𝜖𝑛𝑗−𝛼𝑏𝑗𝑇𝑏𝑗 + 𝐹 (𝑇, 𝜖)
+ 𝐷∑
𝑙=1

𝜖Δ 𝑙+𝛼(𝛿𝑙−𝑑𝑙)+𝛽𝑇𝑑𝑙 𝑅̃𝑙 (𝜕𝑧) 𝜕𝛿𝑙𝑇𝑈d𝑝 (𝑇, 𝑧, 𝜖)

(180)

which is exactly (72) announced in Remark 12 of Section 4.1,
where 𝐹(𝑇, 𝜖) is a contribution to the forcing term equal to

𝐹 (𝑇, 𝜖) = −𝑄 (0) (𝑎0𝑐0 𝑇𝑘0−ℎ0 + 𝑎0𝑐0 𝑇𝑘0−ℎ0𝐽 (𝑇))
× (−𝑎0𝑇𝑘0 + ( 𝑠∑

𝑙=1

𝑎𝑙𝑇𝑘𝑙 + 𝑞∑
𝑙=𝑠+1

𝑎𝑙𝜖𝑚𝑙+𝛽−𝛼𝑘𝑙𝑇𝑘𝑙)
− 2(𝑎0𝑐0 )𝑇𝑘0−ℎ0 (

𝑠󸀠∑
𝑙=1

𝑐𝑙𝑇ℎ𝑙 + 𝑀∑
𝑙=𝑠󸀠+1

𝑐𝑙𝜖𝜇𝑙+2𝛽−𝛼ℎ𝑙𝑇ℎ𝑙)
− 2(𝑎0𝑐0 )𝑇𝑘0−ℎ0𝐽 (𝑇)
⋅ ( 𝑠󸀠∑

𝑙=0

𝑐𝑙𝑇ℎ𝑙 + 𝑀∑
𝑙=𝑠󸀠+1

𝑐𝑙𝜖𝜇𝑙+2𝛽−𝛼ℎ𝑙𝑇ℎ𝑙)) − 𝑄 (0) (𝑎0𝑐0
⋅ 𝑇𝑘0−ℎ0 + 𝑎0𝑐0 𝑇𝑘0−ℎ0𝐽 (𝑇))

2( 𝑠󸀠∑
𝑙=0

𝑐𝑙𝑇ℎ𝑙

+ 𝑀∑
𝑙=𝑠󸀠+1

𝑐𝑙𝜖𝜇𝑙+2𝛽−𝛼ℎ𝑙𝑇ℎ𝑙) + 𝐷∑
𝑙=1

𝜖Δ 𝑙+𝛼(𝛿𝑙−𝑑𝑙)+𝛽𝑇𝑑𝑙 𝑅̃𝑙 (0)
⋅ 𝜕𝛿𝑙𝑇 (𝑎0𝑐0 𝑇𝑘0−ℎ0 + 𝑎0𝑐0 𝑇𝑘0−ℎ0𝐽 (𝑇)) .

(181)

Using the fact that 𝑈0(𝑇) solves the second-order algebraic
equation (70) and noticing the following identity:

− 𝑎0𝑇𝑘0 + 𝑠∑
𝑙=1

𝑎𝑙𝑇𝑘𝑙 − 2(𝑎0𝑐0 )𝑇𝑘0−ℎ0 (
𝑠󸀠∑
𝑙=1

𝑐𝑙𝑇ℎ𝑙)
= ( 𝑠∑

𝑙=0

𝑎𝑙𝑇𝑘𝑙) − 2(𝑎0𝑐0 )𝑇𝑘0−ℎ0 (
𝑠󸀠∑
𝑙=0

𝑐𝑙𝑇ℎ𝑙) ,
(182)

we can abridge the latter expression of 𝐹(𝑇, 𝜖) as
𝐹 (𝑇, 𝜖) = 𝑄 (0)𝑈0 (𝑇)(( 𝑞∑

𝑙=𝑠+1

𝑎𝑙𝜖𝑚𝑙+𝛽−𝛼𝑘𝑙𝑇𝑘𝑙)
− 2(𝑎0𝑐0 )𝑇𝑘0−ℎ0 (

𝑀∑
𝑙=𝑠󸀠+1

𝑐𝑙𝜖𝜇𝑙+2𝛽−𝛼ℎ𝑙𝑇ℎ𝑙)
− 2(𝑎0𝑐0 )𝑇𝑘0−ℎ0𝐽 (𝑇)(

𝑀∑
𝑙=𝑠󸀠+1

𝑐𝑙𝜖𝜇𝑙+2𝛽−𝛼ℎ𝑙𝑇ℎ𝑙))
− 𝑄 (0)𝑈20 (𝑇)( 𝑀∑

𝑙=𝑠󸀠+1

𝑐𝑙𝜖𝜇𝑙+2𝛽−𝛼ℎ𝑙𝑇ℎ𝑙)
+ 𝐷∑
𝑙=1

𝜖Δ 𝑙+𝛼(𝛿𝑙−𝑑𝑙)+𝛽𝑇𝑑𝑙 𝑅̃𝑙 (0) 𝜕𝛿𝑙𝑇 (𝑎0𝑐0 𝑇𝑘0−ℎ0
+ 𝑎0𝑐0 𝑇𝑘0−ℎ0𝐽 (𝑇)) .

(183)

Observe that 𝐹(𝑇, 𝜖) is bounded holomorphic with respect
to 𝜖 and is analytic in 𝑇 near 0 provided that the following
additional conditions hold:

𝑘𝑙 + 𝑘0 − ℎ0 ≥ 0,
ℎ𝑝 + 2 (𝑘0 − ℎ0) ≥ 0,
𝑑𝑚 + 𝑘0 − ℎ0 − 𝛿𝑚 ≥ 0

(184)

for all 𝑠 + 1 ≤ 𝑙 ≤ 𝑞, 𝑠󸀠 + 1 ≤ 𝑝 ≤ 𝑀, and 1 ≤ 𝑚 ≤ 𝐷.
Finally, we put

𝑢d𝑝 (𝑡, 𝑧, 𝜖) = 𝜖𝛽𝑈d𝑝 (𝜖𝛼𝑡, 𝑧, 𝜖)
= 𝜖𝛽 (𝑈0 (𝜖𝛼𝑡) + (𝜖𝛼𝑡)𝛾 Vd𝑝 (𝜖𝜒+𝛼𝑡, 𝑧, 𝜖)) (185)

which defines a holomorphic function with respect to 𝑡 on
T, with respect to 𝑧 ∈ 𝐻𝛽󸀠 for any 0 < 𝛽󸀠 < 𝛽, and
with respect to 𝜖 ∈ E𝑝, where T and E𝑝 are sectors
described in Definition 18. As a result, 𝑢d𝑝(𝑡, 𝑧, 𝜖) admits the
decomposition (165) with Vd𝑝(𝑡, 𝑧, 𝜖) = Vd𝑝(𝜖𝜒+𝛼𝑡, 𝑧, 𝜖) which
determines a bounded holomorphic function onT×𝐻𝛽󸀠×E𝑝

for any given 0 < 𝛽󸀠 < 𝛽 with the property Vd𝑝(0, 𝑧, 𝜖) ≡ 0
for all (𝑧, 𝜖) ∈ 𝐻𝛽󸀠 × E𝑝. Again, the function 𝑢d𝑝(𝑡, 𝑧, 𝜖) may
be meromorphic in both 𝑡 and 𝜖 in the vicinity of the origin.
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From (180) and (183)we deduce that𝑢d𝑝(𝑡, 𝑧, 𝜖) solves the next
main problem

𝑄 (𝜕𝑧)(( 𝑞∑
𝑙=0

𝑎𝑙𝜖𝑚𝑙𝑡𝑘𝑙)𝑢d𝑝 (𝑡, 𝑧, 𝜖)
+ (𝑀∑

𝑙=0

𝑐𝑙𝜖𝜇𝑙𝑡ℎ𝑙)(𝑢d𝑝)2 (𝑡, 𝑧, 𝜖)) = 𝑝∑
𝑗=0

𝑏̃𝑗 (𝑧) 𝜖𝑛𝑗𝑡𝑏𝑗

+ 𝐹 (𝜖𝛼𝑡, 𝜖) + 𝐷∑
𝑙=1

𝜖Δ 𝑙𝑡𝑑𝑙𝜕𝛿𝑙𝑡 𝑅̃𝑙 (𝜕𝑧) 𝑢d𝑝 (𝑡, 𝑧, 𝜖)
(186)

with additional forcing term𝐹(𝜖𝛼𝑡, 𝜖). As a spin-off, by apply-
ing the operator 𝜕V𝑧 on the left- and right-hand side of this last
equation, we see that 𝑢d𝑝(𝑡, 𝑧, 𝜖) is also an actual solution of
problem (61) disclosed at the beginning of Section 4.

In the last part of the proof, we proceed to justify
estimates (166).The steps of the verification are similar to the
arguments displayed in Theorem 1 of [3], but we choose to
present them for the sake of completeness. Let 𝑝 ∈ {0, . . . , 𝜍 −1}. By the sequence of constructions performed above, we see
that the function Vd𝑝(𝑡, 𝑧, 𝜖) can be written as a 𝑚𝜅-Laplace
and Fourier transform

Vd𝑝 (𝑡, 𝑧, 𝜖) = 𝜅(2𝜋)1/2 ∫
+∞

−∞
∫
𝐿𝛾𝑝

𝜔d𝑝𝜅 (𝑢,𝑚, 𝜖)
⋅ exp(−( 𝑢𝜖𝜒+𝛼𝑡)

𝜅) 𝑒𝑖𝑧𝑚 𝑑𝑢𝑢 𝑑𝑚,
(187)

where 𝐿𝛾𝑝 = R+𝑒𝑖𝛾𝑝 ⊂ 𝑆d𝑝 . Using the fact that the func-
tion 𝑢 󳨃→ 𝜔𝜅(𝑢,𝑚, 𝜖)exp(−(𝑢/𝜖𝜒+𝛼𝑡)𝜅)/𝑢 is holomorphic on𝐷(0, 𝜌) for all (𝑚, 𝜖) ∈ R × (𝐷(0, 𝜖0) \ {0}), its integral
along the union of a segment starting from 0 to (𝜌/2)𝑒𝑖𝛾𝑝+1 ,
an arc of circle with radius 𝜌/2 which connects (𝜌/2)𝑒𝑖𝛾𝑝+1
and (𝜌/2)𝑒𝑖𝛾𝑝 , and a segment starting from (𝜌/2)𝑒𝑖𝛾𝑝 to 0 are
vanishing.Therefore, we can write the difference Vd𝑝+1 −Vd𝑝 as
a sum of three integrals:

Vd𝑝+1 (𝑡, 𝑧, 𝜖) − Vd𝑝 (𝑡, 𝑧, 𝜖) = 𝜅(2𝜋)1/2
⋅ ∫+∞

−∞
∫
𝐿𝜌/2,𝛾𝑝+1

𝜔d𝑝+1𝜅 (𝑢,𝑚, 𝜖) 𝑒−(𝑢/𝜖𝜒+𝛼𝑡)𝜅𝑒𝑖𝑧𝑚 𝑑𝑢𝑢 𝑑𝑚
− 𝜅(2𝜋)1/2 ∫

+∞

−∞
∫
𝐿𝜌/2,𝛾𝑝

𝜔d𝑝𝜅 (𝑢,𝑚, 𝜖)
⋅ 𝑒−(𝑢/𝜖𝜒+𝛼𝑡)𝜅𝑒𝑖𝑧𝑚 𝑑𝑢𝑢 𝑑𝑚 + 𝜅(2𝜋)1/2
⋅ ∫+∞

−∞
∫
𝐶𝜌/2,𝛾𝑝,𝛾𝑝+1

𝜔𝜅 (𝑢,𝑚, 𝜖) 𝑒−(𝑢/𝜖𝜒+𝛼𝑡)𝜅𝑒𝑖𝑧𝑚 𝑑𝑢𝑢 𝑑𝑚,

(188)

where 𝐿𝜌/2,𝛾𝑝+1 = [𝜌/2, +∞)𝑒𝑖𝛾𝑝+1 , 𝐿𝜌/2,𝛾𝑝 = [𝜌/2, +∞)𝑒𝑖𝛾𝑝 ,
and 𝐶𝜌/2,𝛾𝑝 ,𝛾𝑝+1 is an arc of circle with radius connecting(𝜌/2)𝑒𝑖𝛾𝑝 and (𝜌/2)𝑒𝑖𝛾𝑝+1 with a well chosen orientation.

We give estimates for the quantity

𝐼1 = 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝜅(2𝜋)1/2 ∫

+∞

−∞
∫
𝐿𝜌/2,𝛾𝑝+1

𝜔d𝑝+1𝜅 (𝑢,𝑚, 𝜖)

⋅ 𝑒−(𝑢/𝜖𝜒+𝛼𝑡)𝜅𝑒𝑖𝑧𝑚 𝑑𝑢𝑢 𝑑𝑚
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 .

(189)

By construction, the direction 𝛾𝑝+1 (which depends on 𝜖𝜒+𝛼𝑡)
is chosen in such a way that cos(𝜅(𝛾𝑝+1 − arg(𝜖𝜒+𝛼𝑡))) ≥ 𝛿1,
for all 𝜖 ∈ E𝑝 ∩E𝑝+1, for all 𝑡 ∈ T, and for some fixed 𝛿1 > 0.
From the estimates (167), we get that

𝐼1 ≤ 𝜅(2𝜋)1/2 ∫
+∞

−∞
∫+∞
𝜌/2
𝜛 (1 + |𝑚|)−𝜇 𝑒−𝛽|𝑚|

⋅ 𝑟/ |𝜖|𝜒+𝛼1 + (𝑟/ |𝜖|𝜒+𝛼)2𝜅 × exp(]( 𝑟|𝜖|𝜒+𝛼)
𝜅)

⋅ exp(−cos (𝜅 (𝛾𝑝+1 − arg (𝜖𝜒+𝛼𝑡)))|𝜖𝜒+𝛼𝑡|𝜅 𝑟𝜅)
⋅ 𝑒−𝑚 Im(𝑧) 𝑑𝑟𝑟 𝑑𝑚 ≤ 𝜅𝜛(2𝜋)1/2 ∫

+∞

−∞
𝑒−(𝛽−𝛽󸀠)|𝑚|𝑑𝑚

⋅ ∫+∞
𝜌/2

1|𝜖|𝜒+𝛼 exp(−( 𝛿1|𝑡|𝜅 − ])( 𝑟|𝜖|𝜒+𝛼)
𝜅)𝑑𝑟

≤ 2𝜅𝜛(2𝜋)1/2 ∫
+∞

0
𝑒−(𝛽−𝛽󸀠)𝑚𝑑𝑚

⋅ ∫+∞
𝜌/2

|𝜖|(𝜒+𝛼)(𝜅−1)(𝛿1/ |𝑡|𝜅 − ]) 𝜅 (𝜌/2)𝜅−1
× (𝛿1/ |𝑡|𝜅 − ]) 𝜅𝑟𝜅−1|𝜖|(𝜒+𝛼)𝜅
⋅ exp(−( 𝛿1|𝑡|𝜅 − ])( 𝑟|𝜖|𝜒+𝛼)

𝜅)𝑑𝑟 ≤ 2𝜅𝜛(2𝜋)1/2
⋅ |𝜖|(𝜒+𝛼)(𝜅−1)(𝛽 − 𝛽󸀠) (𝛿1/ |𝑡|𝜅 − ]) 𝜅 (𝜌/2)𝜅−1
⋅ exp(−( 𝛿1|𝑡|𝜅 − ]) (𝜌/2)

𝜅

|𝜖|(𝜒+𝛼)𝜅) ≤ 2𝜅𝜛(2𝜋)1/2
⋅ |𝜖|(𝜒+𝛼)(𝜅−1)(𝛽 − 𝛽󸀠) 𝛿2𝜅 (𝜌/2)𝜅−1 exp(−𝛿2

(𝜌/2)𝜅|𝜖|(𝜒+𝛼)𝜅)

(190)

for all 𝑡 ∈ T and |Im(𝑧)| ≤ 𝛽󸀠 with |𝑡| < (𝛿1/(𝛿2 + ]))1/𝜅, for
some 𝛿2 > 0, and for all 𝜖 ∈ E𝑝 ∩E𝑝+1.
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In the same way, we also give estimates for the integral

𝐼2 = 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝜅(2𝜋)1/2

⋅ ∫+∞
−∞
∫
𝐿𝜌/2,𝛾𝑝

𝜔d𝑝𝜅 (𝑢,𝑚, 𝜖) 𝑒−(𝑢/𝜖𝜒+𝛼𝑡)𝜅𝑒𝑖𝑧𝑚 𝑑𝑢𝑢 𝑑𝑚
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 .

(191)

Namely, the direction 𝛾𝑝 (which depends on 𝜖𝜒+𝛼𝑡) is chosen
in such a way that cos(𝜅(𝛾𝑝 − arg(𝜖𝜒+𝛼𝑡))) ≥ 𝛿1, for all 𝜖 ∈
E𝑝 ∩ E𝑝+1, for all 𝑡 ∈ T, and for some fixed 𝛿1 > 0. Again
from the estimates (167) and following the same steps as in
(190), we deduce that

𝐼2 ≤ 2𝜅𝜛(2𝜋)1/2 |𝜖|(𝜒+𝛼)(𝜅−1)(𝛽 − 𝛽󸀠) 𝛿2𝜅 (𝜌/2)𝜅−1
⋅ exp(−𝛿2 (𝜌/2)𝜅|𝜖|(𝜒+𝛼)𝜅)

(192)

for all 𝑡 ∈ T and |Im(𝑧)| ≤ 𝛽󸀠 with |𝑡| < (𝛿1/(𝛿2 + ]))1/𝜅, for
some 𝛿2 > 0, and for all 𝜖 ∈ E𝑝 ∩E𝑝+1.

Finally, we give upper bound estimates for the integral

𝐼3 = 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝜅(2𝜋)1/2 ∫

+∞

−∞
∫
𝐶𝜌/2,𝛾𝑝,𝛾𝑝+1

𝜔𝜅 (𝑢,𝑚, 𝜖)
⋅ 𝑒−(𝑢/𝜖𝜒+𝛼𝑡)𝜅𝑒𝑖𝑧𝑚 𝑑𝑢𝑢 𝑑𝑚

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 .
(193)

By construction, the arc of circle 𝐶𝜌/2,𝛾𝑝 ,𝛾𝑝+1 is chosen in such
a way that cos(𝜅(𝜃− arg(𝜖𝜒+𝛼𝑡))) ≥ 𝛿1, for all 𝜃 ∈ [𝛾𝑝, 𝛾𝑝+1] (if𝛾𝑝 < 𝛾𝑝+1) and 𝜃 ∈ [𝛾𝑝+1, 𝛾𝑝] (if 𝛾𝑝+1 < 𝛾𝑝), for all 𝑡 ∈ T, for
all 𝜖 ∈ E𝑝 ∩E𝑝+1, and for some fixed 𝛿1 > 0. Bearing in mind
(167) and (118), we get that

𝐼3 ≤ 𝜅(2𝜋)1/2 ∫
+∞

−∞

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫
𝛾𝑝+1

𝛾𝑝

𝜛 (1 + |𝑚|)−𝜇 𝑒−𝛽|𝑚|
⋅ (𝜌/2) / |𝜖|𝜒+𝛼1 + ((𝜌/2) / |𝜖|𝜒+𝛼)2𝜅 × exp(]( 𝜌/2|𝜖|𝜒+𝛼)

𝜅)
⋅ exp(−cos (𝜅 (𝜃 − arg (𝜖𝜒+𝛼𝑡)))|𝜖𝜒+𝛼𝑡|𝜅 (𝜌2)

𝜅)
⋅ 𝑒−𝑚 Im(𝑧)𝑑𝜃󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 𝑑𝑚 ≤

𝜅𝜛(2𝜋)1/2
⋅ ∫+∞

−∞
𝑒−(𝛽−𝛽󸀠)|𝑚|𝑑𝑚 × 󵄨󵄨󵄨󵄨󵄨𝛾𝑝 − 𝛾𝑝+1󵄨󵄨󵄨󵄨󵄨 𝜌/2|𝜖|𝜒+𝛼

⋅ exp(−(𝛿1/ |𝑡|𝜅 − ])2 ( 𝜌/2|𝜖|𝜒+𝛼)
𝜅)

× exp(−(𝛿1/ |𝑡|𝜅 − ])2 ( 𝜌/2|𝜖|𝜒+𝛼)
𝜅)

≤ 2𝜅𝜛 󵄨󵄨󵄨󵄨󵄨𝛾𝑝 − 𝛾𝑝+1󵄨󵄨󵄨󵄨󵄨(2𝜋)1/2 (𝛽 − 𝛽󸀠) sup𝑥≥0
𝑥1/𝜅𝑒−(𝛿1/|𝑡|𝜅−])𝑥

× exp(−(𝛿1/ |𝑡|𝜅 − ])2 ( 𝜌/2|𝜖|𝜒+𝛼)
𝜅)

≤ 2𝜅𝜛 󵄨󵄨󵄨󵄨󵄨𝛾𝑝 − 𝛾𝑝+1󵄨󵄨󵄨󵄨󵄨(2𝜋)1/2 (𝛽 − 𝛽󸀠) (1/𝜅𝛿2 )
1/𝜅 𝑒−1/𝜅

⋅ exp(−𝛿22 ( 𝜌/2|𝜖|𝜒+𝛼)
𝜅)

(194)

for all 𝑡 ∈ T and |Im(𝑧)| ≤ 𝛽󸀠 with |𝑡| < (𝛿1/(𝛿2 + ]))1/𝜅, for
some 𝛿2 > 0, and for all 𝜖 ∈ E𝑝 ∩E𝑝+1.

Finally, gathering the three above inequalities (190), (192),
and (194), we deduce from decomposition (188) that

󵄨󵄨󵄨󵄨󵄨Vd𝑝+1 (𝑡, 𝑧, 𝜖) − Vd𝑝 (𝑡, 𝑧, 𝜖)󵄨󵄨󵄨󵄨󵄨 ≤ 4𝜅𝜛(2𝜋)1/2
⋅ |𝜖|(𝜒+𝛼)(𝜅−1)(𝛽 − 𝛽󸀠) 𝛿2𝜅 (𝜌/2)𝜅−1 exp(−𝛿2

(𝜌/2)𝜅|𝜖|(𝜒+𝛼)𝜅)
+ 2𝜅𝜛 󵄨󵄨󵄨󵄨󵄨𝛾𝑝 − 𝛾𝑝+1󵄨󵄨󵄨󵄨󵄨(2𝜋)1/2 (𝛽 − 𝛽󸀠) (1/𝜅𝛿2 )

1/𝜅 𝑒−1/𝜅
⋅ exp(−𝛿22 ( 𝜌/2|𝜖|𝜒+𝛼)

𝜅)

(195)

for all 𝑡 ∈ T and |Im(𝑧)| ≤ 𝛽󸀠 with |𝑡| < (𝛿1/(𝛿2 + ]))1/𝑘, for
some 𝛿2 > 0, and for all 𝜖 ∈ E𝑝 ∩E𝑝+1. Therefore, inequality
(166) holds.

7. Parametric Gevrey Asymptotic
Expansions of the Solutions

7.1. 𝑘-Summable Formal Series and Ramis-Sibuya Theorem.
We recall the definition of 𝑘-Borel summability of formal
series with coefficients in a Banach space as introduced in [5].

Definition 20. Let 𝑘 ≥ 1 be an integer. A formal series

𝑋(𝜖) = ∞∑
𝑗=0

𝑎𝑗𝜖𝑗 ∈ F [[𝜖]] (196)

with coefficients in a Banach space (F , ‖ ⋅ ‖F ) is said to be 𝑘-
summable with respect to 𝜖 in the direction 𝑑 ∈ R if

(i) the existence of 𝜌 ∈ R+ is ensured such that the
following formal series, called formal Borel transform of 𝑋
of order 𝑘,

B𝑘 (𝑋) (𝜏) = ∞∑
𝑗=0

𝑎𝑗𝜏𝑗Γ (1 + 𝑗/𝑘) ∈ F [[𝜏]] (197)

is absolutely convergent for |𝜏| < 𝜌;
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(ii) one can select a 𝛿 > 0 such that the series B𝑘(𝑋)(𝜏)
can be analytically continued with respect to 𝜏 in a sector𝑆𝑑,𝛿 = {𝜏 ∈ C∗ : |𝑑 − arg(𝜏)| < 𝛿}. Moreover, there exist𝐶 > 0, and 𝐾 > 0, such that󵄩󵄩󵄩󵄩󵄩B𝑘 (𝑋) (𝜏)󵄩󵄩󵄩󵄩󵄩F ≤ 𝐶𝑒𝐾|𝜏|𝑘 (198)

for all 𝜏 ∈ 𝑆𝑑,𝛿.
If the definition above is fulfilled, the vector valued

Laplace transform of order 𝑘 of B𝑘(𝑋)(𝜏) in the direction 𝑑
is set as

L
𝑑
𝑘 (B𝑘 (𝑋)) (𝜖)
= 𝜖−𝑘 ∫

𝐿𝛾

B𝑘 (𝑋) (𝑢) 𝑒−(𝑢/𝜖)𝑘𝑘𝑢𝑘−1𝑑𝑢, (199)

along a half line 𝐿𝛾 = R+𝑒𝑖𝛾 ⊂ 𝑆𝑑,𝛿 ∪ {0}, where 𝛾 depends on𝜖 and is chosen in such a way that cos(𝑘(𝛾−arg(𝜖))) ≥ 𝛿1 > 0,
for some fixed 𝛿1, for all 𝜖 in a sector

𝑆𝑑,𝜃,𝑅1/𝑘 = {𝜖 ∈ C∗ : |𝜖| < 𝑅1/𝑘, 󵄨󵄨󵄨󵄨𝑑 − arg (𝜖)󵄨󵄨󵄨󵄨 < 𝜃2} , (200)

where 𝜋/𝑘 < 𝜃 < 𝜋/𝑘 + 2𝛿 and 0 < 𝑅 < 𝛿1/𝐾. The function
L𝑑

𝑘(B𝑘(𝑋))(𝜖) is called the 𝑘-sumof the formal series𝑋(𝑡) in
the direction 𝑑. It is bounded and holomorphic on the sector𝑆𝑑,𝜃,𝑅1/𝑘 and has the formal series 𝑋(𝜖) as Gevrey asymptotic
expansion of order 1/𝑘 with respect to 𝜖 on 𝑆𝑑,𝜃,𝑅1/𝑘 . This
means that, for all 𝜋/𝑘 < 𝜃1 < 𝜃, there exist 𝐶,𝑀 > 0 such
that 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩L

𝑑
𝑘 (B𝑘 (𝑋)) (𝜖) − 𝑛−1∑

𝑝=0

𝑎𝑝𝜖𝑝
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩F

≤ 𝐶𝑀𝑛Γ (1 + 𝑛𝑘) |𝜖|𝑛
(201)

for all 𝑛 ≥ 1, all 𝜖 ∈ 𝑆𝑑,𝜃1 ,𝑅1/𝑘 .
Now, we state a cohomological criterion for 𝑘-

summability of formal series with coefficients in Banach
spaces (see [25], p. 121 or [27], Lemma XI-2-6) which is
known as the Ramis-Sibuya theorem in the literature.

Theorem (RS). Let (F , ‖ ⋅ ‖F ) be a Banach space over C and{E𝑝}0≤𝑝≤𝜍−1 be a good covering in C∗. For all 0 ≤ 𝑝 ≤ 𝜍 − 1, let𝐺𝑝 be a holomorphic function from E𝑝 into the Banach space(F , ‖ ⋅ ‖F ) and let the cocycle Θ𝑝(𝜖) = 𝐺𝑝+1(𝜖) − 𝐺𝑝(𝜖) be a
holomorphic function from the sector 𝑍𝑝 = E𝑝+1 ∩ E𝑝 into F
(with the convention that E𝜍 = E0 and 𝐺𝜍 = 𝐺0). One makes
the following assumptions.

(1)The functions𝐺𝑝(𝜖) are bounded as 𝜖 ∈ E𝑝 tends to the
origin in C, for all 0 ≤ 𝑝 ≤ 𝜍 − 1.

(2)The functionsΘ𝑝(𝜖) are exponentially flat of order 𝑘 on𝑍𝑝, for all 0 ≤ 𝑝 ≤ 𝜍 − 1.This means that there exist constants𝐶𝑝, 𝐴𝑝 > 0 such that󵄩󵄩󵄩󵄩󵄩Θ𝑝 (𝜖)󵄩󵄩󵄩󵄩󵄩F ≤ 𝐶𝑝𝑒−𝐴𝑝/|𝜖|𝑘 (202)

for all 𝜖 ∈ 𝑍𝑝, all 0 ≤ 𝑝 ≤ 𝜍 − 1.

Then, for all 0 ≤ 𝑝 ≤ 𝜍 − 1, the functions 𝐺𝑝(𝜖) are the𝑘-sums on E𝑝 of a common 𝑘-summable formal series 𝐺(𝜖) ∈
F[[𝜖]].
7.2. Parametric Gevrey Asymptotic Expansions of the Solutions
and Construction of (𝜒 + 𝛼)𝜅-Sums. In this subsection,
we state the second main result of our work, namely, the
existence of a formal power series in the parameter 𝜖 whose
coefficients are bounded holomorphic functions on the prod-
uct of a sector with small radius centered at 0 and a strip
in C2 which is the common Gevrey asymptotic expansion
of order 1/(𝜒 + 𝛼)𝜅 of the functions Vd𝑝(𝑡, 𝑧, 𝜖) appearing in
the expansion (165) of the solutions 𝑢d𝑝(𝑡, 𝑧, 𝜖) to the main
equations (61) and (164) established inTheorem 19.

Theorem21. Let one assume that the hypotheses ofTheorem 19
hold. Then, there exists a formal power series

V̂ (𝑡, 𝑧, 𝜖) = ∑
𝑚≥0

V𝑚 (𝑡, 𝑧) 𝜖𝑚 (203)

whose coefficients V𝑚(𝑡, 𝑧) belong to the Banach space F of
bounded holomorphic functions on (T ∩ 𝐷(0, 𝜎)) × 𝐻𝛽󸀠

equipped with supremum norm, where 𝜎 > 0 is defined in
Theorem 19, and such that the functions Vd𝑝(𝑡, 𝑧, 𝜖) from the
decomposition (165) are its (𝜒 + 𝛼)𝜅-sums on the sectors E𝑝,
for all 0 ≤ 𝑝 ≤ 𝜍 − 1, viewed as holomorphic functions from
E𝑝 into F . In other words, for all 0 ≤ 𝑝 ≤ 𝜍 − 1, there exist two
constants 𝐶𝑝,𝑀𝑝 > 0 such that

sup
𝑡∈T∩𝐷(0,𝜎),𝑧∈𝐻

𝛽󸀠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨Vd𝑝 (𝑡, 𝑧, 𝜖) −
𝑛−1∑
𝑚=0

V𝑚 (𝑡, 𝑧) 𝜖𝑚󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ 𝐶𝑝𝑀𝑛

𝑝Γ(1 + 𝑛(𝜒 + 𝛼) 𝜅) |𝜖|𝑛
(204)

for all 𝑛 ≥ 1; all 𝜖 ∈ E𝑝.

Proof. We consider the family of functions Vd𝑝(𝑡, 𝑧, 𝜖), 0 ≤𝑝 ≤ 𝜍 − 1, constructed in Theorem 19. For all 0 ≤ 𝑝 ≤𝜍 − 1, we define 𝐺𝑝(𝜖) fl (𝑡, 𝑧) 󳨃→ Vd𝑝(𝑡, 𝑧, 𝜖), which is by
construction a holomorphic and bounded function from E𝑝

into the Banach space F of bounded holomorphic functions
on (T ∩ 𝐷(0, 𝜎)) × 𝐻𝛽󸀠 equipped with the supremum norm,
where T is introduced in Definition 18, 𝜎 > 0 is set in
Theorem 19, and 𝛽󸀠 > 0 is the width of the strip𝐻𝛽󸀠 on which
the coefficients 𝑏𝑗(𝑧) are defined with respect to 𝑧 (see (62)).
Bearing in mind the estimates (166), we see that the cocycleΘ𝑝(𝜖) = 𝐺𝑝+1(𝜖)−𝐺𝑝(𝜖) is exponentially flat of order (𝜒+𝛼)𝜅
on 𝑍𝑝 = E𝑝 ∩ E𝑝+1, for any 0 ≤ 𝑝 ≤ 𝜍 − 1. Therefore,
according to Theorem (RS) stated above, we obtain a formal
power series

𝐺 (𝜖) = ∑
𝑚≥0

V𝑚 (𝑡, 𝑧) 𝜖𝑚 š V̂ (𝑡, 𝑧, 𝜖) ∈ F [[𝜖]] (205)

such that the functions 𝐺𝑝(𝜖) are the (𝜒 + 𝛼)𝜅-sums onE𝑝 of𝐺(𝜖) as F-valued functions, for all 0 ≤ 𝑝 ≤ 𝜍 − 1. The result
follows.
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