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We provide an Itô formula for stochastic dynamical equation on general time scales. Based on this Itô’s formula we give a closed-
form expression for stochastic exponential on general time scales. We then demonstrate Girsanov’s change of measure formula in
the case of general time scales. Our result is being applied to a Brownian motion on the quantum time scale (𝑞-time scale).

1. Introduction

The theory of dynamical equation on time scales ([1]) has
attracted many researches recently. In particular, attempts of
extension to stochastic dynamical equations and stochastic
analysis on general time scales have been made in several
previous works ([2–6]). In the work [3] the authors mainly
work with a discrete time scale; in [2] the authors introduce
an extension of a function and define the stochastic as well as
deterministic integrals as the usual integrals for the extended
function; in [4] the authors make use of their results on
the quadratic variation of a Brownian motion ([7]) on time
scales and, based on this, they define the stochastic integral
via a generalized version of the Itô isometry; in [6] the
authors introduce the so-called ∇-stochastic integral via the
backward jump operator and they also derive an Itô formula
based on this definition of the stochastic integral. We notice
that different previous works adopt different notions of the
stochastic integral and there lacks a uniform and coherent
theory of a stochastic calculus on general time scales.

The purpose of the present article is to fill in this gap. We
will be mainly working under the framework of [2], in that
we define our stochastic integral using the definition given
in [2]. We then present a general Itô’s formula for stochastic
dynamical equations under the framework of [2]. Our Itô
formulaworks for general time scales and thus fills the gap left
in [3], which deals with only discrete time scales. By making
use of Itô’s formulawe obtain a closed-form expression for the

stochastic exponential on general time scales. We will then
demonstrate a change of measure (Girsanov’s) theorem for
stochastic dynamical equation on time scales.

We would like to point out that our change of measure
formula is different from the continuous process case in that
the density function is not given by the stochastic exponential
but rather is found by the fact that the process on the time
scale can be extended to a continuous process simply by linear
extension.

It is also worthmentioning that our construction is differ-
ent from [8] in that we are working with the case that the time
parameter of the process is running on a time scale, whereas
in [8] and related works (e.g., [9–11]) the authors are working
with the case that the state space of the process is a time scale.

We note that stochastic calculus on the so-called 𝑞-
Brownian motion has been considered in [12–14]. As an
application, we will also work our Itô formula for a Brownian
motion on the quantum time scale (𝑞-time scale) case at the
last section of the paper.

The paper is organized as follows. In Section 2 we discuss
some basic set-up for time scales calculus. In Section 3 we
will briefly review the results in [2] and define the stochastic
integral and stochastic dynamical equation on time scales.
In Section 4 we present and prove our Itô formula. In
Section 5 we discuss the formula for stochastic exponential.
In Section 6 we prove the change of measure (Girsanov’s)
formula. Finally in Section 7 we consider an example of
Brownian motion on a quantum time scale.
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2. Set-Up: Basics of Time Scales Calculus

A time scale T is an arbitrary nonempty closed subset of the
real numbers R, where we assume that T has the topology
that it inherits from the real numbers R with the standard
topology.

We define the forward jump operator by

𝜎 (𝑡) = inf {𝑠 ∈ T : 𝑠 > 𝑡}
∀𝑡 ∈ T such that this set is nonempty, (1)

and the backward jump operator by

𝜌 (𝑡) = sup {𝑠 ∈ T : 𝑠 < 𝑡}
∀𝑡 ∈ T such that this set is nonempty. (2)

Let 𝑡 ∈ T . If 𝜎(𝑡) > 𝑡, then 𝑡 is called right-scattered.
If 𝜎(𝑡) = 𝑡, then 𝑡 is called right-dense. If 𝜌(𝑡) < 𝑡, then 𝑡
is called left-scattered. If 𝜌(𝑡) = 𝑡, then 𝑡 is called left-dense.
Moreover, the sets T𝜅 and T𝜅 are derived from T as follows: if
T has a left-scattered maximum, then T𝜅 is the set T without
that left-scattered maximum; otherwise, T𝜅 = T . If T has a
right-scattered minimum, then T𝜅 is the set T without that
right-scattered minimum; otherwise, T𝜅 = T . The graininess
function is defined by 𝜇(𝑡) = 𝜎(𝑡) − 𝑡 for all 𝑡 ∈ T𝜅.

Notice that since T is closed, for any 𝑡 ∈ T , the points 𝜎(𝑡)
and 𝜌(𝑡) are belonging to T .

For a set 𝐴 ⊂ R we denote the set 𝐴T = 𝐴 ∩ T .
Given a time scale T and a function 𝑓 : T → R, the delta

(or Hilger) derivative 𝑓Δ(𝑡) of 𝑓 at 𝑡 ∈ T is defined as follows
([1, Definition 1.10]).
Definition 1. Assume 𝑓 : T → R is a function and let 𝑡 ∈
T𝜅. Then we define 𝑓Δ(𝑡) to be the number (provided that
it exists) with the property that, given any 𝜀 > 0, there is a
neighborhood 𝑈 of 𝑡 (i.e., 𝑈 = (𝑡 − 𝛿, 𝑡 + 𝛿) ∩ T for some𝛿 > 0) such that[𝑓 (𝜎 (𝑡)) − 𝑓 (𝑠)] − 𝑓Δ (𝑡) [𝜎 (𝑡) − 𝑠] ≤ 𝜀 |𝜎 (𝑡) − 𝑠|

∀𝑠 ∈ 𝑈. (3)

The delta derivative is characterized by the following
theorem [1, Theorem 1.16].
Theorem 2. Assume that 𝑓 : T → R is a function and let𝑡 ∈ T𝜅. Then one has the following:

(i) if 𝑓 is differentiable at 𝑡, then 𝑓 is continuous at 𝑡.
(ii) if 𝑓 is continuous at 𝑡 and 𝑡 is right-scattered, then 𝑓 is

differentiable at 𝑡 with
𝑓Δ (𝑡) = 𝑓 (𝜎 (𝑡)) − 𝑓 (𝑡)𝜎 (𝑡) − 𝑡 . (4)

(iii) If 𝑡 is right-dense, then𝑓 is differentiable at 𝑡 if and only
if the limit

lim
𝑠→𝑡

𝑓 (𝑡) − 𝑓 (𝑠)𝑡 − 𝑠 (5)

exists as a finite number. In this case

𝑓Δ (𝑡) = lim
𝑠→𝑡

𝑓 (𝑡) − 𝑓 (𝑠)𝑡 − 𝑠 . (6)

(iv) If 𝑓 is differentiable at 𝑡, then
𝑓 (𝜎 (𝑡)) = 𝑓 (𝑡) + 𝜇 (𝑡) 𝑓Δ (𝑡) . (7)

3. Stochastic Integrals and Stochastic
Differential Equations on Time Scales

We will adopt the definitions introduced in [2] as our
definition of a Brownian motion and Itô’s stochastic integral
on time scales. In the next section we will derive an Itô
formula corresponding to the stochastic integral defined in
such a way.

Definition 3. A Brownian motion indexed by a time scale
T ⊂ R is an adapted stochastic process {𝑊𝑡}𝑡∈T∪{0} on a filtered
probability space (Ω,F𝑡,P) such that

(1) P(𝑊0 = 0) = 1;
(2) if 𝑠 < 𝑡 and 𝑠, 𝑡 ∈ T , then the increment𝑊𝑡 − 𝑊𝑠 is

independent of F𝑠 and is normally distributed with
mean 0 and variance 𝑡 − 𝑠;

(3) the process𝑊𝑡 is almost surely continuous on T .

Note that property (3) is proved in the work [5].
For a random function 𝑓 : [0,∞)T × Ω → R we define

the extension 𝑓 : [0,∞) × Ω → R by

𝑓 (𝑡, 𝜔) = 𝑓 (sup [0, 𝑡]T , 𝜔) (8)

for all 𝑡 ∈ [0,∞).
We shall make use of the definitions given in [2] for the

classical Lebesgue and Riemann integral. For any random
function 𝑓 : [0,∞)T × Ω → R and 𝑇 < ∞ we define its Δ-
Riemann (Lebesgue) integral as

∫𝑇

0
𝑓 (𝑡, 𝜔) Δ𝑡 = ∫𝑇

0
𝑓 (𝑡, 𝜔) 𝑑𝑡, (9)

where the integral on the right-hand side of the above
equation is interpreted as a standard Riemann (Lebesgue)
integral. In a similar way, the work [2] defines a stochastic
integral for an 𝐿2([0, 𝑇]T )-progressively measurable random
function 𝑓(𝑡, 𝜔) as

∫𝑇

0
𝑓 (𝑡, 𝜔) Δ𝑊𝑡 = ∫𝑇

0
𝑓 (𝑡, 𝜔) 𝑑𝑊𝑡, (10)

where again the right-hand side of the above equation is
interpreted as a standard Itô stochastic integral. Note that the
way (8) in which we define the extension guarantees that the
function 𝑓(𝑡, 𝜔) is progressively measurable.

In [2] the authors then defined the solution of the Δ-
stochastic differential equation indicated by the notation

Δ𝑋𝑡 = 𝑏 (𝑡, 𝑋) Δ𝑡 + 𝜎 (𝑡, 𝑋) Δ𝑊𝑡, (11)
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as the process {𝑋𝑡}𝑡∈[0,𝑇]T
such that

𝑋𝑡2
− 𝑋𝑡1

= ∫𝑡2

𝑡1

𝑏 (𝑡, 𝑋𝑡) Δ𝑡 + ∫𝑡2

𝑡1

𝜎 (𝑡, 𝑋𝑡) Δ𝑊𝑡, (12)

with the deterministic and stochastic integrals on the right-
hand side of the above equality interpreted as was just
mentioned. Under the condition of continuity in the 𝑡-
variable and uniform Lipschitz continuity in the 𝑥-variable of
the functions 𝑏(𝑡, 𝑥) and 𝜎(𝑡, 𝑥), together with being noworse
than linear growth in 𝑥-variable, existence and pathwise
uniqueness of strong solution to (11) are proved in [2].

4. Itô’s Formula for Stochastic Integrals on
Time Scales

Wewill make use of the following fact that is simple to prove.

Proposition 4. The set of all left-scattered or right-scattered
points of T is at most countable.

Proof. If 𝑥 ∈ T is a right-scattered point, then 𝐼𝑥 = (𝑥, 𝜎(𝑥))
is an open interval such that 𝐼𝑥 ∩ T = 0. Similarly, if 𝑥 ∈ T is
a left-scattered point, then 𝐼𝑥 = (𝜌(𝑥), 𝑥) is an open interval
such that 𝐼𝑥 ∩ T = 0. Suppose 𝑥 < 𝑦 and 𝑥, 𝑦 ∈ T . We then
distinguish four different cases.

Case 1 (both 𝑥 and 𝑦 are right-scattered). We argue that in
this case we have 𝐼𝑥 ∩ 𝐼𝑦 = 0. Suppose this is not the case,
then we must have 𝜎(𝑥) > 𝑦. But we see that 𝜎(𝑥) = inf{𝑠 >𝑥 : 𝑠 ∈ T} and 𝑦 ∈ T . So we must have 𝜎(𝑥) ≤ 𝑦. We arrive at
a contradiction.

Case 2 (both 𝑥 and 𝑦 are left-scattered).This case is similar to
Case 1 and we conclude that 𝐼𝑥 ∩ 𝐼𝑦 = 0.
Case 3 (𝑥 is left-scattered; 𝑦 is right-scattered). In this case we
see that 𝐼𝑥 = (𝜌(𝑥), 𝑥) and 𝐼𝑦 = (𝑦, 𝜎(𝑦)), as well as 𝑥 < 𝑦.
This implies that 𝐼𝑥 ∩ 𝐼𝑦 = 0.
Case 4 (𝑥 is right-scattered; 𝑦 is left-scattered). In this case𝐼𝑥 = (𝑥, 𝜎(𝑥)) and 𝐼𝑦 = (𝜌(𝑦), 𝑦). If 𝜎(𝑥) ≤ 𝜌(𝑦), then 𝐼𝑥 ∩𝐼𝑦 = 0. If 𝜎(𝑥) > 𝜌(𝑦), then we see that (𝑥, 𝑦) = 𝐼𝑥 ∪ 𝐼𝑦 so
that (𝑥, 𝑦) ∩ T = 0. That implies further that 𝜎(𝑥) = 𝑦 and𝜌(𝑦) = 𝑥; that is, 𝐼𝑥 = 𝐼𝑦.

Thus we see that for all points 𝑥 ∈ T being left- or
right-scattered, the set of all open intervals of the form 𝐼𝑥 are
disjoint subsets ofR. Henceforth there are at most countably
many such intervals. Each such interval corresponds to one
or two endpoints in T that are either left- or right-scattered.
Thus the total number of left- or right-scattered points in T is
at most countably many.

Let 𝐶 be the (at most) countable set of all left-scattered
or right-scattered points of T . As we have already seen in the
proof of the previous proposition, the set 𝐶 corresponds to
at most countably many open intervalsI = {𝐼1, 𝐼2, . . .} such
that (1) for any 𝑘 ̸= 𝑙, 𝐼𝑘 ∩ 𝐼𝑙 = 0; (2) either the left-endpoint
or right-endpoint or both endpoints of any of the 𝐼𝑘’s are in

T and are left- or right-scattered; (3) 𝐼𝑘 ∩ T = 0 for any𝑘 = 1, 2, . . .; (4) any point in 𝐶 is a left- or right-endpoint
of one of the 𝐼𝑘’s.

We will denote 𝐼𝑘 = (𝑠−𝐼𝑘 , 𝑠+𝐼𝑘). Since, for any 𝑥 ∈ T , the
points 𝜎(𝑥) and 𝜌(𝑥) are in T , we further infer that, for any
such interval 𝐼𝑘, we have the fact that 𝑠−𝐼𝑘 and 𝑠+𝐼𝑘 are in T , so
that 𝑠−𝐼𝑘 is right-scattered and 𝑠+𝐼𝑘 is left-scattered.

We then establish the following Itô formula.
For any two points 𝑡1, 𝑡2 ∈ T , 𝑡1 ≤ 𝑡2, and any open

interval 𝐼𝑘 ∈ I, such that 𝐼𝑘∩[𝑡1, 𝑡2] ̸= 0, we have 𝐼𝑘 ⊂ (𝑡1, 𝑡2).
This is because if that is not the case, then 𝑡1 or 𝑡2 will belong
to 𝐼𝑘, contradictory to the fact that 𝐼𝑘 ∩ T = 0. We conclude
that

{𝐼𝑘 ∈ I : 𝐼𝑘 ∩ [𝑡1, 𝑡2] ̸= 0} = {𝐼𝑘 ∈ I : 𝐼𝑘 ⊂ (𝑡1, 𝑡2)} . (13)

Let us consider a function 𝑓(𝑡, 𝑥) : T × R → R.
Let 𝑓Δ(𝑡, 𝑥), 𝑓Δ2(𝑡, 𝑥) be the first- and second-order delta
(Hilger) derivatives of𝑓with respect to time variable 𝑡 at (𝑡, 𝑥)
and let (𝜕𝑓/𝜕𝑥)(𝑡, 𝑥) and (𝜕2𝑓/𝜕𝑥2)(𝑡, 𝑥) be the first- and
second-order partial derivatives of 𝑓 with respect to space
variable 𝑥 at (𝑡, 𝑥).
Theorem 5 (Itô’s formula). Let any function 𝑓 : T × R → R

be such that 𝑓Δ(𝑡, 𝑥), 𝑓Δ2(𝑡, 𝑥), (𝜕𝑓/𝜕𝑥)(𝑡, 𝑥), (𝜕2𝑓/𝜕𝑥2)(𝑡, 𝑥),(𝜕𝑓Δ/𝜕𝑥)(𝑡, 𝑥), and (𝜕2𝑓Δ/𝜕𝑥2)(𝑡, 𝑥) are continuous on T ×R.
Set any 𝑡1 ≤ 𝑡2, 𝑡1, 𝑡2 ∈ [0,∞)T ; then we have

𝑓 (𝑡2,𝑊𝑡2
) − 𝑓 (𝑡1,𝑊𝑡1

) = ∫𝑡2

𝑡1

𝑓Δ (𝑠,𝑊𝑠) Δ𝑠
+ ∫𝑡2

𝑡1

𝜕𝑓𝜕𝑥 (𝑠,𝑊𝑠) Δ𝑊𝑠 + 12 ∫
𝑡2

𝑡1

𝜕2𝑓𝜕𝑥2
(𝑠,𝑊𝑠) Δ𝑠

+ ∑
𝐼𝑘∈I,𝐼𝑘⊂(𝑡1 ,𝑡2)

[𝑓 (𝑠+𝐼𝑘 ,𝑊𝑠+𝐼𝑘
) − 𝑓 (𝑠+𝐼𝑘 ,𝑊𝑠−𝐼𝑘

)
− 𝜕𝑓𝜕𝑥 (𝑠−𝐼𝑘 ,𝑊𝑠−𝐼𝑘

) (𝑊𝑠+𝐼𝑘
−𝑊𝑠−𝐼𝑘

)
− 12 𝜕

2𝑓𝜕𝑥2
(𝑠−𝐼𝑘 ,𝑊𝑠−𝐼𝑘

) (𝑠+𝐼𝑘 − 𝑠−𝐼𝑘)] .

(14)

Proof. We will make use of the following classical version
(Peano form) of Taylor’s theorem: for any function 𝑓 : T ×
R → R such that (𝜕𝑓/𝜕𝑥)(𝑡, 𝑥) and (𝜕2𝑓/𝜕𝑥2)(𝑡, 𝑥) are
continuous on T ×R, and any 𝑠 ∈ T and 𝑥1, 𝑥2 ∈ R, we have

𝑓 (𝑠, 𝑥2) − 𝑓 (𝑠, 𝑥1) = 𝜕𝑓𝜕𝑥 (𝑠, 𝑥1) (𝑥2 − 𝑥1)
+ 12 𝜕

2𝑓𝜕𝑥2
(𝑠, 𝑥1) (𝑥2 − 𝑥1)2

+ 𝑅𝑓

𝐶 (𝑠; 𝑥1, 𝑥2) ,
(15)
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where
𝑅𝑓

𝐶 (𝑠; 𝑥1, 𝑥2) ≤ 𝑟 (𝑥2 − 𝑥1
) (𝑥2 − 𝑥1)2 , (16)

and 𝑟 : R+ → R+ is an increasing function with lim𝑢↓0𝑟(𝑢) =0.
We will also make use of the time scale Taylor formula

(see [1, Theorem 1.113] as well as [15]) applied to 𝑓(𝑡, 𝑥) up
to first order in 𝑡: for any 𝑠2 > 𝑠1 and 𝑠1, 𝑠2 ∈ T ; we have

𝑓 (𝑠2, 𝑥) − 𝑓 (𝑠1, 𝑥) = 𝑓Δ (𝑠1, 𝑥) (𝑠2 − 𝑠1)
+ 𝑅𝑓

TS (𝑥; 𝑠1, 𝑠2) , (17)

where

𝑅𝑓
TS (𝑥; 𝑠1, 𝑠2) =

∫
𝜌(𝑠2)

𝑠1

(𝑠2 − 𝜎 (𝑠)) 𝑓Δ2 (𝑠) Δ𝑠
≤ 𝑟 (𝑠2 − 𝑠1) 𝑠2 − 𝑠1

(18)

with 𝑟(∙) as before.
Combining (15) and (17) we see that we have

𝑓 (𝑠2, 𝑥2) − 𝑓 (𝑠1, 𝑥1) = [𝑓 (𝑠2, 𝑥2) − 𝑓 (𝑠1, 𝑥2)]
+ [𝑓 (𝑠1, 𝑥2) − 𝑓 (𝑠1, 𝑥1)] = 𝑓Δ (𝑠1, 𝑥2) (𝑠2 − 𝑠1)
+ 𝜕𝑓𝜕𝑥 (𝑠1, 𝑥1) (𝑥2 − 𝑥1) + 12 𝜕

2𝑓𝜕𝑥2
(𝑠1, 𝑥1) (𝑥2 − 𝑥1)2

+ 𝑅𝑓
TS (𝑥2; 𝑠1, 𝑠2) + 𝑅𝑓

𝐶 (𝑠1; 𝑥1, 𝑥2) = [𝑓Δ (𝑠1, 𝑥1)
+ 𝜕𝑓Δ

𝜕𝑥 (𝑠1, 𝑥1) (𝑥2 − 𝑥1)
+ 12 𝜕

2𝑓Δ

𝜕𝑥2
(𝑠1, 𝑥1) (𝑥2 − 𝑥1)2 + 𝑅𝑓Δ

𝐶 (𝑠1; 𝑥1, 𝑥2)] (𝑠2
− 𝑠1) + 𝜕𝑓𝜕𝑥 (𝑠1, 𝑥1) (𝑥2 − 𝑥1) + 12 𝜕

2𝑓𝜕𝑥2
(𝑠1, 𝑥1) (𝑥2

− 𝑥1)2 + 𝑅𝑓
TS (𝑥2; 𝑠1, 𝑠2) + 𝑅𝑓

𝐶 (𝑠1; 𝑥1, 𝑥2)
= 𝑓Δ (𝑠1, 𝑥1) (𝑠2 − 𝑠1) + 𝜕𝑓𝜕𝑥 (𝑠1, 𝑥1) (𝑥2 − 𝑥1) + 12
⋅ 𝜕2𝑓𝜕𝑥2

(𝑠1, 𝑥1) (𝑥2 − 𝑥1)2 + 𝑅 (𝑠1, 𝑠2; 𝑥1, 𝑥2) ,

(19)

with

𝑅 (𝑠1, 𝑠2; 𝑥1, 𝑥2) ≤ 𝑟 (𝑠2 − 𝑠1) 𝑠2 − 𝑠1
+ 𝑟 (𝑥2 − 𝑥1

) (𝑥2 − 𝑥1)2 (20)

for another function 𝑟 : R+ → R+ increasing with
lim𝑢↓0𝑟(𝑢) = 0.

Consider a partition 𝜋(𝑛) : 𝑡1 = 𝑠0 < 𝑠1 < ⋅ ⋅ ⋅ < 𝑠𝑛 = 𝑡2,
such that (1) each 𝑠𝑖 ∈ T ; (2) max𝑖(𝜌(𝑠𝑖) − 𝑠𝑖−1) ≤ 1/2𝑛 for𝑖 = 1, 2, . . . , 𝑛. Notice that by definition 𝜌(𝑠𝑖) = sup{𝑠 < 𝑠𝑖 :𝑠 ∈ T}, so that we can always find 𝑠𝑖−1 ∈ T so that 𝜌(𝑠𝑖) − 𝑠𝑖−1

is sufficiently small.
Let the sets𝐶 andI be defined as before. Let us fix a par-

tition 𝜋(𝑛), and consider a classification of its corresponding
intervals (𝑠𝑖−1, 𝑠𝑖), 𝑖 = 1, 2, . . . , 𝑛. We will classify all intervals(𝑠𝑖−1, 𝑠𝑖) such that for all 𝐼𝑘 ∈ I we have 𝐼𝑘 ∩ (𝑠𝑖−1, 𝑠𝑖) = 0
as class (𝑎); and we classify all intervals (𝑠𝑖−1, 𝑠𝑖) such that
there exist some 𝐼𝑘 ∈ I with (𝑠𝑖−1, 𝑠𝑖) ∩ 𝐼𝑘 ̸= 0 as class(𝑏). For an interval (𝑠𝑖−1, 𝑠𝑖) in class (𝑎), since for all 𝐼𝑘 ∈ I
we have 𝐼𝑘 ∩ (𝑠𝑖−1, 𝑠𝑖) = 0, we see that 𝜌(𝑠𝑖) = 𝑠𝑖, because
otherwise (𝜌(𝑠𝑖), 𝑠𝑖) will be one of the 𝐼𝑘’s. Thus in this case
we have 𝑠𝑖 − 𝑠𝑖−1 < 1/2𝑛. For an interval (𝑠𝑖−1, 𝑠𝑖) in class (𝑏),
since both 𝑠𝑖−1 and 𝑠𝑖 are in T , we see that we have in fact𝐼𝑘 ⊆ (𝑠𝑖−1, 𝑠𝑖). In this case either 𝐼𝑘 = (𝑠𝑖−1, 𝑠𝑖), or 𝐼𝑘 ̸= (𝑠𝑖−1, 𝑠𝑖).
If the latter happens, then (𝜌(𝑠𝑖), 𝑠𝑖) ∈ I is one of the 𝐼𝑘’s and𝜌(𝑠𝑖) − 𝑠𝑖−1 < 1/2𝑛. We also see from the above analysis that
all 𝐼𝑘’s are contained in intervals (𝑠𝑖−1, 𝑠𝑖) that belong to class(𝑏). On the other hand, either each interval (𝑠𝑖−1, 𝑠𝑖) is entirely
one of the 𝐼𝑘’s, or it contains an interval (𝜌(𝑠𝑖), 𝑠𝑖) that is one
of the 𝐼𝑘’s. For the latter case, that is, when 𝑠𝑖−1 < 𝜌(𝑠𝑖) < 𝑠𝑖,
the set of intervals of the form (𝑠𝑖−1, 𝜌(𝑠𝑖)) are disjoint open
intervals such that

∑
(𝑠𝑖−1 ,𝑠𝑖)∈(𝑏),𝑠𝑖−1<𝜌(𝑠𝑖)<𝑠𝑖

(𝜌 (𝑠𝑖) − 𝑠𝑖−1) < 𝑛2𝑛 . (21)

Now we have

𝑓 (𝑡2,𝑊𝑡2
) − 𝑓 (𝑡1,𝑊𝑡1

)
= 𝑛∑

𝑖=1

[𝑓 (𝑠𝑖,𝑊𝑠𝑖
) − 𝑓 (𝑠𝑖−1,𝑊𝑠𝑖−1

)]
= ∑

(𝑎)

[𝑓 (𝑠𝑖,𝑊𝑠𝑖
) − 𝑓 (𝑠𝑖−1,𝑊𝑠𝑖−1

)]
+∑

(𝑏)

[𝑓 (𝑠𝑖,𝑊𝑠𝑖
) − 𝑓 (𝑠𝑖−1,𝑊𝑠𝑖−1

)] = (𝐼) + (𝐼𝐼) .

(22)

We apply (19) term by term in part (𝐼) of (22), and we get
(𝐼) = ∑

(𝑎)

[𝑓 (𝑠𝑖,𝑊𝑠𝑖
) − 𝑓 (𝑠𝑖−1,𝑊𝑠𝑖−1

)]
= ∑

(𝑎)

[𝑓Δ (𝑠𝑖−1,𝑊𝑠𝑖−1
) (𝑠𝑖 − 𝑠𝑖−1)

+ 𝜕𝑓𝜕𝑥 (𝑠𝑖−1,𝑊𝑠𝑖−1
) (𝑊𝑠𝑖

−𝑊𝑠𝑖−1
)

+ 12 𝜕
2𝑓𝜕𝑥2
(𝑠𝑖−1,𝑊𝑠𝑖−1

) (𝑊𝑠𝑖
−𝑊𝑠𝑖−1

)2
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+ 𝑅 (𝑠𝑖−1, 𝑠𝑖;𝑊𝑠𝑖−1
,𝑊𝑠𝑖

)]
= 𝑛∑

𝑖=1

[𝑓Δ (𝑠𝑖−1,𝑊𝑠𝑖−1
) (𝑠𝑖 − 𝑠𝑖−1)

+ 𝜕𝑓𝜕𝑥 (𝑠𝑖−1,𝑊𝑠𝑖−1
) (𝑊𝑠𝑖

−𝑊𝑠𝑖−1
)]

+ (∑
(𝑎)

12 𝜕
2𝑓𝜕𝑥2
(𝑠𝑖−1,𝑊𝑠𝑖−1

) (𝑊𝑠𝑖
−𝑊𝑠𝑖−1

)2

+∑
(𝑏)

12 𝜕
2𝑓𝜕𝑥2
(𝑠𝑖−1,𝑊𝑠𝑖−1

) (𝑠𝑖 − 𝑠𝑖−1))
−∑

(𝑏)

[𝑓Δ (𝑠𝑖−1,𝑊𝑠𝑖−1
) (𝑠𝑖 − 𝑠𝑖−1)

+ 𝜕𝑓𝜕𝑥 (𝑠𝑖−1,𝑊𝑠𝑖−1
) (𝑊𝑠𝑖

−𝑊𝑠𝑖−1
)

+ 12 𝜕
2𝑓𝜕𝑥2
(𝑠𝑖−1,𝑊𝑠𝑖−1

) (𝑠𝑖 − 𝑠𝑖−1)]
+∑

(𝑎)

𝑅 (𝑠𝑖−1, 𝑠𝑖;𝑊𝑠𝑖−1
,𝑊𝑠𝑖

) = (𝐼𝐼𝐼)1 + (𝐼𝐼𝐼)2 + (𝐼𝑉)
+ (𝑉) .

(23)

We have the following four convergence results.

Convergence Result 1.1. By Lemma 6 ((35) and (36)) estab-
lished below we have

P((𝐼𝐼𝐼)1 → ∫𝑡2

𝑡1

𝑓Δ (𝑠,𝑊𝑠) Δ𝑠
+ ∫𝑡2

𝑡1

𝜕𝑓𝜕𝑥 (𝑠,𝑊𝑠) Δ𝑊𝑠 as 𝑛 → ∞) = 1.
(24)

Convergence Result 1.2. By Lemma 7, (43), and Lemma 6, (35),
established below we have

P((𝐼𝐼𝐼)2 → ∫𝑡2

𝑡1

12 𝜕
2𝑓𝜕𝑥2
(𝑠,𝑊𝑠) Δ𝑠 as 𝑛 → ∞)

= 1.
(25)

Convergence Result 2. We have, with probability one, that

(𝑉) = ∑
(𝑎)

𝑅 (𝑠𝑖−1, 𝑠𝑖;𝑊𝑠𝑖−1
,𝑊𝑠𝑖

) → 0 (26)

as 𝑛 → ∞.

In fact, by the Kolmogorov–Čentsov theorem proved in
Theorem 3.1 of [5] we know that for almost all trajectories
of 𝑊𝑡 on T , for each fixed trajectory 𝑊𝑡(𝜔), there exists an𝑛0 = 𝑛0(𝜔) such that for all 𝑛 ≥ 𝑛0, for a partition 𝜋(𝑛) with
a classification of its intervals (𝑠𝑖−1, 𝑠𝑖) into classes (𝑎) and (𝑏)
as above, sup(𝑎)|𝑊𝑠𝑖

− 𝑊𝑠𝑖−1
| ≤ 𝛿/2𝛾𝑛/5 for some fixed 𝛿 > 0

and 𝛾 > 0. From here we can estimate

E∑
(𝑎)

𝑅 (𝑠𝑖−1, 𝑠𝑖;𝑊𝑠𝑖−1
,𝑊𝑠𝑖

)
≤ E∑

(𝑎)

[𝑟 (𝑠𝑖 − 𝑠𝑖−1) (𝑠𝑖 − 𝑠𝑖−1)
+ 𝑟 (𝑊𝑠𝑖

−𝑊𝑠𝑖−1

) (𝑊𝑠𝑖
−𝑊𝑠𝑖−1

)2] ≤ 𝑟 ( 12𝑛 ) (𝑡2
− 𝑡1) + 𝑟 ( 𝛿2𝛾𝑛/5) (𝑡2 − 𝑡1) ;

(27)

that is,

P( lim
𝑛→∞

∑
(𝑎)

𝑅 (𝑠𝑖−1, 𝑠𝑖;𝑊𝑠𝑖−1
,𝑊𝑠𝑖

) = 0) = 1. (28)

Convergence Result 3. Let

(𝐼𝐼) + (𝐼𝑉) = 𝐴𝑛 = 𝐴𝑛 (𝜔) = ∑
(𝑏)

[𝑓 (𝑠𝑖,𝑊𝑠𝑖
)

− 𝑓 (𝑠𝑖−1,𝑊𝑠𝑖−1
) − 𝑓Δ (𝑠𝑖−1,𝑊𝑠𝑖−1

) (𝑠𝑖 − 𝑠𝑖−1)
− 𝜕𝑓𝜕𝑥 (𝑠𝑖−1,𝑊𝑠𝑖−1

) (𝑊𝑠𝑖
−𝑊𝑠𝑖−1

)
− 12 𝜕

2𝑓𝜕𝑥2
(𝑠𝑖−1,𝑊𝑠𝑖−1

) (𝑠𝑖 − 𝑠𝑖−1)] ,
𝐵𝑛 = 𝐵𝑛 (𝜔) = ∑

𝐼𝑘∈I,𝐼𝑘⊂(𝑡1 ,𝑡2)

[𝑓 (𝑠+𝐼𝑘 ,𝑊𝑠+𝐼𝑘
)

− 𝑓 (𝑠−𝐼𝑘 ,𝑊𝑠−𝐼𝑘
) − 𝑓Δ (𝑠−𝐼𝑘 ,𝑊𝑠−𝐼𝑘

) (𝑠+𝐼𝑘 − 𝑠−𝐼𝑘)
− 𝜕𝑓𝜕𝑥 (𝑠−𝐼𝑘 ,𝑊𝑠−𝐼𝑘

) (𝑊𝑠+𝐼𝑘
−𝑊𝑠−𝐼𝑘

)
− 12 𝜕

2𝑓𝜕𝑥2
(𝑠−𝐼𝑘 ,𝑊𝑠−𝐼𝑘

) (𝑠+𝐼𝑘 − 𝑠−𝐼𝑘)] .

(29)

We claim that we have

P (𝐴𝑛 (𝜔) − 𝐵𝑛 (𝜔) → 0 as 𝑛 → ∞) = 1. (30)
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In fact, from the analysis that leads to estimate (17) we see that
we can write 𝐴𝑛 − 𝐵𝑛 as

𝐴𝑛 − 𝐵𝑛 = ∑
(𝑠𝑖−1 ,𝑠𝑖)∈(𝑏),𝑠𝑖−1<𝜌(𝑠𝑖)<𝑠𝑖

[𝑓 (𝑠𝑖,𝑊𝑠𝑖
)

− 𝑓 (𝑠𝑖−1,𝑊𝑠𝑖−1
) − 𝑓Δ (𝑠𝑖−1,𝑊𝑠𝑖−1

) (𝑠𝑖 − 𝑠𝑖−1)
− 𝜕𝑓𝜕𝑥 (𝑠𝑖−1,𝑊𝑠𝑖−1

) (𝑊𝑠𝑖
−𝑊𝑠𝑖−1

)
− 12 𝜕

2𝑓𝜕𝑥2
(𝑠𝑖−1,𝑊𝑠𝑖−1

) (𝑠𝑖 − 𝑠𝑖−1)]
− ∑

(𝑠𝑖−1 ,𝑠𝑖)∈(𝑏),𝑠𝑖−1<𝜌(𝑠𝑖)<𝑠𝑖

[𝑓 (𝑠𝑖,𝑊𝑠𝑖
)

− 𝑓 (𝜌 (𝑠𝑖) ,𝑊𝜌(𝑠𝑖)
)

− 𝑓Δ (𝜌 (𝑠𝑖) ,𝑊𝜌(𝑠𝑖)
) (𝑠𝑖 − 𝜌 (𝑠𝑖))

− 𝜕𝑓𝜕𝑥 (𝜌 (𝑠𝑖) ,𝑊𝜌(𝑠𝑖)
) (𝑊𝑠𝑖

−𝑊𝜌(𝑠𝑖)
)

− 12 𝜕
2𝑓𝜕𝑥2
(𝜌 (𝑠𝑖) ,𝑊𝜌(𝑠𝑖)

) (𝑠𝑖 − 𝜌 (𝑠𝑖))]
− ∑

𝐼𝑘∈I,𝐼𝑘⊂(𝑠𝑖−1 ,𝜌(𝑠𝑖)) for some (𝑠𝑖−1 ,𝑠𝑖)∈(𝑏)

[𝑓 (𝑠+𝐼𝑘 ,𝑊𝑠+𝐼𝑘
)

− 𝑓 (𝑠−𝐼𝑘 ,𝑊𝑠−𝐼𝑘
) − 𝑓Δ (𝑠−𝐼𝑘 ,𝑊𝑠−𝐼𝑘

) (𝑠+𝐼𝑘 − 𝑠−𝐼𝑘)
− 𝜕𝑓𝜕𝑥 (𝑠−𝐼𝑘 ,𝑊𝑠−𝐼𝑘

) (𝑊𝑠+𝐼𝑘
−𝑊𝑠−𝐼𝑘

)
− 12 𝜕

2𝑓𝜕𝑥2
(𝑠−𝐼𝑘 ,𝑊𝑠−𝐼𝑘

) (𝑠+𝐼𝑘 − 𝑠−𝐼𝑘)] = (𝑉𝐼)1 + (𝑉𝐼)2
+ (𝑉𝐼)3 + (𝑉𝐼)4 − (𝑉𝐼𝐼) .

(31)

Here

(𝑉𝐼)1 = ∑
(𝑠𝑖−1,𝑠𝑖)∈(𝑏),𝑠𝑖−1<𝜌(𝑠𝑖)<𝑠𝑖

[𝑓 (𝜌 (𝑠𝑖) ,𝑊𝜌(𝑠𝑖)
)

− 𝑓 (𝑠𝑖−1,𝑊𝑠𝑖−1
)] ,

(𝑉𝐼)2 = ∑
(𝑠𝑖−1,𝑠𝑖)∈(𝑏),𝑠𝑖−1<𝜌(𝑠𝑖)<𝑠𝑖

[𝑓Δ (𝜌 (𝑠𝑖) ,𝑊𝜌(𝑠𝑖)
) (𝑠𝑖

− 𝜌 (𝑠𝑖)) − 𝑓Δ (𝑠𝑖−1,𝑊𝑠𝑖−1
) (𝑠𝑖 − 𝑠𝑖−1)]

= ∑
(𝑠𝑖−1 ,𝑠𝑖)∈(𝑏),𝑠𝑖−1<𝜌(𝑠𝑖)<𝑠𝑖

[(𝑓Δ (𝜌 (𝑠𝑖) ,𝑊𝜌(𝑠𝑖)
)

− 𝑓Δ (𝑠𝑖−1,𝑊𝑠𝑖−1
)) (𝑠𝑖 − 𝑠𝑖−1) − 𝑓Δ (𝜌 (𝑠𝑖) ,𝑊𝜌(𝑠𝑖)

)
⋅ (𝜌 (𝑠𝑖) − 𝑠𝑖−1)] ,

(𝑉𝐼)3 = ∑
(𝑠𝑖−1 ,𝑠𝑖)∈(𝑏),𝑠𝑖−1<𝜌(𝑠𝑖)<𝑠𝑖

[𝑓Δ (𝜌 (𝑠𝑖) ,𝑊𝜌(𝑠𝑖)
) (𝑊𝑠𝑖

−𝑊𝜌(𝑠𝑖)
) − 𝑓Δ (𝑠𝑖−1,𝑊𝑠𝑖−1

) (𝑊𝑠𝑖
−𝑊𝑠𝑖−1

)]
= ∑

(𝑠𝑖−1 ,𝑠𝑖)∈(𝑏),𝑠𝑖−1<𝜌(𝑠𝑖)<𝑠𝑖

[(𝑓Δ (𝜌 (𝑠𝑖) ,𝑊𝜌(𝑠𝑖)
)

− 𝑓Δ (𝑠𝑖−1,𝑊𝑠𝑖−1
)) (𝑊𝑠𝑖

−𝑊𝑠𝑖−1
)

− 𝑓Δ (𝜌 (𝑠𝑖) ,𝑊𝜌(𝑠𝑖)
) (𝑊𝜌(𝑠𝑖)

−𝑊𝑠𝑖−1
)] ,

(𝑉𝐼)4 = ∑
(𝑠𝑖−1 ,𝑠𝑖)∈(𝑏),𝑠𝑖−1<𝜌(𝑠𝑖)<𝑠𝑖

[𝑓Δ (𝜌 (𝑠𝑖) ,𝑊𝜌(𝑠𝑖)
) (𝑠𝑖

− 𝜌 (𝑠𝑖)) − 𝑓Δ (𝑠𝑖−1,𝑊𝑠𝑖−1
) (𝑠𝑖 − 𝑠𝑖−1)]

= ∑
(𝑠𝑖−1 ,𝑠𝑖)∈(𝑏),𝑠𝑖−1<𝜌(𝑠𝑖)<𝑠𝑖

[𝑓Δ (𝑠𝑖−1,𝑊𝑠𝑖−1
) (𝑠𝑖−1 − 𝜌 (𝑠𝑖))

+ (𝑓Δ (𝜌 (𝑠𝑖) ,𝑊𝜌(𝑠𝑖)
) − 𝑓Δ (𝑠𝑖−1,𝑊𝑠𝑖−1

)) (𝑠𝑖
− 𝜌 (𝑠𝑖))] ,

(𝑉𝐼𝐼) = ∑
𝐼𝑘∈I,𝐼𝑘⊂(𝑠𝑖−1 ,𝜌(𝑠𝑖)) for some (𝑠𝑖−1 ,𝑠𝑖)∈(𝑏)

[𝑓 (𝑠+𝐼𝑘 ,𝑊𝑠+𝐼𝑘
)

− 𝑓 (𝑠−𝐼𝑘 ,𝑊𝑠−𝐼𝑘
) − 𝑓Δ (𝑠−𝐼𝑘 ,𝑊𝑠−𝐼𝑘

) (𝑠+𝐼𝑘 − 𝑠−𝐼𝑘)
− 𝜕𝑓𝜕𝑥 (𝑠−𝐼𝑘 ,𝑊𝑠−𝐼𝑘

) (𝑊𝑠+𝐼𝑘
−𝑊𝑠−𝐼𝑘

) − 12 𝜕
2𝑓𝜕𝑥2
(𝑠−𝐼𝑘 ,𝑊𝑠−𝐼𝑘

)
⋅ (𝑠+𝐼𝑘 − 𝑠−𝐼𝑘)] .

(32)

From (21), the Kolmogorov–Čentsov theorem proved in
Theorem 3.1 of [5], as well as the assumptions about function𝑓, we see that

P ((𝑉𝐼)1 + (𝑉𝐼)2 + (𝑉𝐼)3 + (𝑉𝐼)4 + |(𝑉𝐼𝐼)|
→ 0 as 𝑛 → ∞) = 1. (33)

From here we immediately see the claim (30).
Note that for any interval 𝐼𝑘 = (𝑠−𝐼𝑘 , 𝑠+𝐼𝑘) we have𝑓Δ(𝑠−𝐼𝑘 ,𝑊𝑠−𝐼𝑘

) = (𝑓(𝑠+𝐼𝑘 ,𝑊𝑠−𝐼𝑘
)−𝑓(𝑠𝐼−

𝑘
,𝑊𝑠−𝐼𝑘

))/(𝑠+𝐼𝑘−𝑠−𝐼𝑘); therefore
we see that

𝐵𝑛 = 𝐵𝑛 (𝜔) = ∑
𝐼𝑘∈I,𝐼𝑘⊂(𝑡1 ,𝑡2)

[𝑓 (𝑠+𝐼𝑘 ,𝑊𝑠+𝐼𝑘
)

− 𝑓 (𝑠−𝐼𝑘 ,𝑊𝑠−𝐼𝑘
) − [𝑓 (𝑠+𝐼𝑘 ,𝑊𝑠−𝐼𝑘

) − 𝑓 (𝑠𝐼−
𝑘
,𝑊𝑠−𝐼𝑘

)]
− 𝜕𝑓𝜕𝑥 (𝑠−𝐼𝑘 ,𝑊𝑠−𝐼𝑘

) (𝑊𝑠+𝐼𝑘
−𝑊𝑠−𝐼𝑘

)
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− 12 𝜕
2𝑓𝜕𝑥2
(𝑠−𝐼𝑘 ,𝑊𝑠−𝐼𝑘

) (𝑠+𝐼𝑘 − 𝑠−𝐼𝑘)]
= ∑

𝐼𝑘∈I,𝐼𝑘⊂(𝑡1 ,𝑡2)

[𝑓 (𝑠+𝐼𝑘 ,𝑊𝑠+𝐼𝑘
) − 𝑓 (𝑠+𝐼𝑘 ,𝑊𝑠−𝐼𝑘

)
− 𝜕𝑓𝜕𝑥 (𝑠−𝐼𝑘 ,𝑊𝑠−𝐼𝑘

) (𝑊𝑠+𝐼𝑘
−𝑊𝑠−𝐼𝑘

)
− 12 𝜕

2𝑓𝜕𝑥2
(𝑠−𝐼𝑘 ,𝑊𝑠−𝐼𝑘

) (𝑠+𝐼𝑘 − 𝑠−𝐼𝑘)] .
(34)

Combining the convergence results (24), (25), (28), and
(30), together with (22) and (23) and (34), we establish (14).

The next two lemmas are used in the above proof of Itô’s
formula, but they are also of independent interest.

Lemma 6 (convergence of Δ-deterministic and stochastic
integrals). Given a time scale T and 𝑡1, 𝑡2 ∈ T , 𝑡1 < 𝑡2; a
probability space (Ω,F,P); a Brownian motion {𝑊𝑡}𝑡∈T on the
time scale T , for any progressively measurable random function𝑓 that is continuous on [𝑡1, 𝑡2] ∩ T , viewed as a 𝐿2([𝑡1, 𝑡2]T )-
progressively measurable random function 𝑓(𝑡, 𝜔) on T , and
the families of partitions 𝜋(𝑛) : 𝑡1 = 𝑠0 < 𝑠1 < ⋅ ⋅ ⋅ < 𝑠𝑛 = 𝑡2,𝑠0, 𝑠1, . . . , 𝑠𝑛 ∈ T ,max𝑖=1,2,...,𝑛(𝜌(𝑠𝑖) − 𝑠𝑖−1) < 1/2𝑛, one has

P( lim
𝑛→∞

𝑛∑
𝑖=1

𝑓 (𝑠𝑖−1, 𝜔) (𝑠𝑖 − 𝑠𝑖−1) = ∫𝑡2

𝑡1

𝑓 (𝑠, 𝜔) Δ𝑠)
= 1,

(35)

P( lim
𝑛→∞

𝑛∑
𝑖=1

𝑓 (𝑠𝑖−1, 𝜔) (𝑊𝑠𝑖
−𝑊𝑠𝑖−1

)
= ∫𝑡2

𝑡1

𝑓 (𝑠, 𝜔) Δ𝑊𝑠) = 1.
(36)

Proof. As we have seen in the proof of Itô’s formula, for a
given partition 𝜋(𝑛) : 𝑡1 = 𝑠0 < 𝑠1 < ⋅ ⋅ ⋅ < 𝑠𝑛 = 𝑡2, such that𝑠𝑖 ∈ T for 𝑖 = 0, 1, . . . , 𝑛, and max𝑖=1,2,...,𝑛(𝜌(𝑠𝑖) − 𝑠𝑖−1) < 1/2𝑛,
we can classify all intervals of the form (𝑠𝑖−1, 𝑠𝑖) into two
classes (𝑎) and (𝑏): class (𝑎) is those open intervals (𝑠𝑖−1, 𝑠𝑖)
such that it does not contain any open intervals 𝐼𝑘 ∈ I; class(𝑏) is those open intervals (𝑠𝑖−1, 𝑠𝑖) such that it contains at least
one open interval 𝐼𝑘 ∈ I, the latter of which has endpoints
that are left- or right-scattered.

Let us form a family of partitions 𝜎(𝑛) : 𝑡1 = 𝑟0 < 𝑟1 <⋅ ⋅ ⋅ < 𝑟𝑚 = 𝑡2, so that the partition 𝜎(𝑛) is the partition 𝜋(𝑛)

together with all points in T that are of the form 𝑟𝑗 = 𝜌(𝑠𝑖) for
some 𝑠𝑖 in the partition𝜋(𝑛). Note that under this construction
we have 𝑟0, 𝑟1, . . . , 𝑟𝑚 ∈ T . In fact, for any interval (𝑠𝑖−1, 𝑠𝑖) in(𝑎), there is an identical interval (𝑟𝑗−1, 𝑟𝑗) in the partition 𝜎(𝑛)

corresponding to it; for any interval (𝑠𝑖−1, 𝑠𝑖) in (𝑏), there are

two intervals (𝑟𝑗−2, 𝑟𝑗−1) and (𝑟𝑗−1, 𝑟𝑗) corresponding to it, so
that 𝑟𝑗−1 = 𝜌(𝑠𝑖). And by (21) we know that

∑
(𝑠𝑖−1 ,𝑠𝑖)∈(𝑏),(𝑟𝑗−2 ,𝑟𝑗−1) is corresponding to it

(𝑟𝑗−1 − 𝑟𝑗−2) < 𝑛2𝑛 . (37)

Note that the number 𝑚 depends on 𝑛 and the partition𝜋(𝑛) : 𝑚 = 𝑚(𝑛, 𝜋(𝑛)). In particular 𝑚 → ∞ as 𝑛 → ∞.
For simplicity we will suppress this dependence later in our
proof.

Let us recall the definition of deterministic and stochasticΔ-integrals as defined in Section 2. Let 𝑓 be the extension of𝑓 that we have in (8): for any 𝑡 ∈ T ,

𝑓 (𝑡, 𝜔) = 𝑓 (sup [0, 𝑡]T , 𝜔) . (38)

Note that if 𝑡 ∈ T is such that 𝜌(𝑡) = 𝑡, then 𝑓(𝑡, 𝜔) = 𝑓(𝑡, 𝜔);
otherwise if 𝑡 ∈ T is such that 𝜌(𝑡) < 𝑡, then 𝑓(𝑡, 𝜔) =𝑓(𝜌(𝑡), 𝜔). Thus we see that

P( lim
𝑛→∞

𝑚∑
𝑗=1

𝑓 (𝑟𝑗−1, 𝜔) (𝑟𝑗 − 𝑟𝑗−1) = ∫𝑡2

𝑡1

𝑓 (𝑠, 𝜔) 𝑑𝑠)
= 1,

P( lim
𝑛→∞

𝑚∑
𝑗=1

𝑓 (𝑟𝑗−1, 𝜔) (𝑊𝑟𝑗
−𝑊𝑟𝑗−1

)

= ∫𝑡2

𝑡1

𝑓 (𝑠, 𝜔) 𝑑𝑊𝑠) = 1.

(39)

So it suffices to prove that

P( lim
𝑛→∞

[
[

𝑛∑
𝑖=1

𝑓 (𝑠𝑖−1, 𝜔) (𝑠𝑖 − 𝑠𝑖−1)

− 𝑚∑
𝑗=1

𝑓 (𝑟𝑗−1, 𝜔) (𝑟𝑗 − 𝑟𝑗−1)]] = 0) = 1,

P( lim
𝑛→∞

[
[

𝑛∑
𝑖=1

𝑓 (𝑠𝑖−1, 𝜔) (𝑊𝑠𝑖
−𝑊𝑠𝑖−1

)

− 𝑚∑
𝑗=1

𝑓 (𝑟𝑗−1, 𝜔) (𝑊𝑟𝑗
−𝑊𝑟𝑗−1

)]] = 0) = 1.

(40)

In fact, for any interval (𝑠𝑖−1, 𝑠𝑖) in class (𝑎), there exist an
interval (𝑟𝑗−1, 𝑟𝑗) identical to the interval (𝑠𝑖−1, 𝑠𝑖), so that
𝑓 (𝑠𝑖−1, 𝜔) (𝑠𝑖 − 𝑠𝑖−1) − 𝑓 (𝑟𝑗−1, 𝜔) (𝑟𝑗 − 𝑟𝑗−1) = 0,
𝑓 (𝑠𝑖−1, 𝜔) (𝑊𝑠𝑖

−𝑊𝑠𝑖−1
) − 𝑓 (𝑟𝑗−1, 𝜔) (𝑊𝑟𝑗

−𝑊𝑟𝑗−1
)

= 0.
(41)
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For any open interval (𝑠𝑖−1, 𝑠𝑖) in class (𝑏), there are two
corresponding intervals (𝑟𝑗−2, 𝑟𝑗−1) and (𝑟𝑗−1, 𝑟𝑗) such that𝑟𝑗−2 = 𝑠𝑖−1, 𝑟𝑗−1 = 𝜌(𝑠𝑖), and 𝑟𝑗 = 𝑠𝑖. In this case

𝑓 (𝑠𝑖−1, 𝜔) (𝑠𝑖 − 𝑠𝑖−1) − 𝑓 (𝑟𝑗−1, 𝜔) (𝑟𝑗 − 𝑟𝑗−1)
− 𝑓 (𝑟𝑗−2, 𝜔) (𝑟𝑗−1 − 𝑟𝑗−2) = 𝑓 (𝑠𝑖−1, 𝜔) (𝑠𝑖 − 𝑠𝑖−1)
− 𝑓 (𝜌 (𝑠𝑖) , 𝜔) (𝑠𝑖 − 𝜌 (𝑠𝑖))
− 𝑓 (𝑠𝑖−1, 𝜔) (𝜌 (𝑠𝑖) − 𝑠𝑖−1)
= (𝑓 (𝑠𝑖−1, 𝜔) − 𝑓 (𝜌 (𝑠𝑖) , 𝜔)) (𝑠𝑖 − 𝜌 (𝑠𝑖)) ,

𝑓 (𝑠𝑖−1, 𝜔) (𝑊𝑠𝑖
−𝑊𝑠𝑖−1

) − 𝑓 (𝑟𝑗−1, 𝜔) (𝑊𝑟𝑗
−𝑊𝑟𝑗−1

)
− 𝑓 (𝑟𝑗−2, 𝜔) (𝑊𝑟𝑗−1

−𝑊𝑟𝑗−2
)

= 𝑓 (𝑠𝑖−1, 𝜔) (𝑊𝑠𝑖
−𝑊𝑠𝑖−1

)
− 𝑓 (𝜌 (𝑠𝑖) , 𝜔) (𝑊𝑠𝑖

−𝑊𝜌(𝑠𝑖)
)

− 𝑓 (𝑠𝑖−1, 𝜔) (𝑊𝜌(𝑠𝑖)
−𝑊𝑠𝑖−1

)
= (𝑓 (𝑠𝑖−1, 𝜔) − 𝑓 (𝜌 (𝑠𝑖) , 𝜔)) (𝑊𝑠𝑖

−𝑊𝜌(𝑠𝑖)
) .

(42)

From the above calculations and the fact that we have (21)
and that 𝑓 is continuous on [𝑡1, 𝑡2] ∩ T , together with the fact
that 𝑠𝑗−1, 𝜌(𝑠𝑗) ∈ T , 0 ≤ 𝜌(𝑠𝑗) − 𝑠𝑗−1 ≤ 1/2𝑛, we see the claim
as follows.

Lemma 7 (convergence of quadratic variation of Brownian
motion on time scale). Given a time scale T and 𝑡1, 𝑡2 ∈ T ,𝑡1 < 𝑡2; a probability space (Ω,F,P); a Brownian motion{𝑊𝑡}𝑡∈T on the time scale T , let any 𝐿2([𝑡1, 𝑡2]T )-progressively
measurable random function 𝑓(𝑡, 𝜔) on T be defined such
that E𝑓2(𝑡, 𝜔) is uniformly bounded on [𝑡1, 𝑡2]. Consider the
families of partitions 𝜋(𝑛) : 𝑡1 = 𝑠0 < 𝑠1 < ⋅ ⋅ ⋅ < 𝑠𝑛 = 𝑡2,𝑠0, 𝑠1, . . . , 𝑠𝑛 ∈ T ,max𝑖=1,2,...,𝑛(𝜌(𝑠𝑖)−𝑠𝑖−1) < 1/2𝑛. One classifies
all the intervals (𝑠𝑖−1, 𝑠𝑖), 𝑖 = 1, 2, . . . , 𝑛 into two classes (𝑎) and(𝑏) as before. Then one has

P( lim
𝑛→∞

[∑
(𝑎)

𝑓 (𝑠𝑖−1, 𝜔) (𝑊𝑠𝑖
−𝑊𝑠𝑖−1

)2

−∑
(𝑎)

𝑓 (𝑠𝑖−1, 𝜔) (𝑠𝑖 − 𝑠𝑖−1)] = 0) = 1.
(43)

Proof. We notice that for all intervals (𝑠𝑖−1, 𝑠𝑖) ∈ (𝑎) we have𝜌(𝑠𝑖) = 𝑠𝑖−1 and thus 𝑠𝑖 − 𝑠𝑖−1 < 1/2𝑛. Let us denote that
𝑉𝑛 = [∑

(𝑎)

𝑓 (𝑠𝑖−1, 𝜔) (𝑊𝑠𝑖
−𝑊𝑠𝑖−1

)2

−∑
(𝑎)

𝑓 (𝑠𝑖−1, 𝜔) (𝑠𝑖 − 𝑠𝑖−1)] .
(44)

Since 𝑓(𝑡, 𝜔) is progressively measurable, we see that𝑓(𝑠𝑖−1, 𝜔) is independent of𝑊𝑠𝑖
−𝑊𝑠𝑖−1

. Thus

E𝑉𝑛 = E[∑
(𝑎)

𝑓 (𝑠𝑖−1, 𝜔) (𝑊𝑠𝑖
−𝑊𝑠𝑖−1

)2

−∑
(𝑎)

𝑓 (𝑠𝑖−1, 𝜔) (𝑠𝑖 − 𝑠𝑖−1)]
= ∑

(𝑎)

E𝑓 (𝑠𝑖−1, 𝜔) (𝑠𝑖 − 𝑠𝑖−1)
−∑

(𝑎)

E𝑓 (𝑠𝑖−1, 𝜔) (𝑠𝑖 − 𝑠𝑖−1) = 0.

(45)

Furthermore

var 𝑉𝑛 = E[∑
(𝑎)

𝑓 (𝑠𝑖−1, 𝜔) (𝑊𝑠𝑖
−𝑊𝑠𝑖−1

)2

−∑
(𝑎)

𝑓 (𝑠𝑖−1, 𝜔) (𝑠𝑖 − 𝑠𝑖−1)]
2 = E∑

(𝑎)

𝑓 (𝑠𝑖−1, 𝜔)
⋅ 𝑓 (𝑠𝑗−1, 𝜔) [(𝑊𝑠𝑖

−𝑊𝑠𝑖−1
)2 − (𝑠𝑖 − 𝑠𝑖−1)]

⋅ [(𝑊𝑠𝑗
−𝑊𝑠𝑗−1

)2 − (𝑠𝑗 − 𝑠𝑗−1)] = ∑
(𝑎)

E𝑓 (𝑠𝑖−1, 𝜔)
⋅ 𝑓 (𝑠𝑗−1, 𝜔) [(𝑊𝑠𝑖

−𝑊𝑠𝑖−1
)2 − (𝑠𝑖 − 𝑠𝑖−1)]

⋅ [(𝑊𝑠𝑗
−𝑊𝑠𝑗−1

)2 − (𝑠𝑗 − 𝑠𝑗−1)] .

(46)

If 𝑖 < 𝑗, then 𝑓(𝑠𝑖−1, 𝜔)𝑓(𝑠𝑗−1, 𝜔)[(𝑊𝑠𝑖
− 𝑊𝑠𝑖−1

)2 − (𝑠𝑖 −𝑠𝑖−1)] is independent of [(𝑊𝑠𝑗
− 𝑊𝑠𝑗−1

)2 − (𝑠𝑗 − 𝑠𝑗−1)], so we
have E𝑓(𝑠𝑖−1, 𝜔)𝑓(𝑠𝑗−1, 𝜔)[(𝑊𝑠𝑖

−𝑊𝑠𝑖−1
)2 − (𝑠𝑖 − 𝑠𝑖−1)] ⋅ [(𝑊𝑠𝑗

−𝑊𝑠𝑗−1
)2 − (𝑠𝑗 − 𝑠𝑗−1)] = 0. Similarly, for 𝑖 > 𝑗 we also have

E𝑓(𝑠𝑖−1, 𝜔)𝑓(𝑠𝑗−1, 𝜔)[(𝑊𝑠𝑖
−𝑊𝑠𝑖−1

)2−(𝑠𝑖−𝑠𝑖−1)]⋅[(𝑊𝑠𝑗
−𝑊𝑠𝑗−1

)2−(𝑠𝑗 − 𝑠𝑗−1)] = 0. This implies that

var 𝑉𝑛 = ∑
(𝑎)

E𝑓2 (𝑠𝑖−1, 𝜔) [(𝑊𝑠𝑖
−𝑊𝑠𝑖−1

)2

− (𝑠𝑖 − 𝑠𝑖−1)]2 = ∑
(𝑎)

E𝑓2 (𝑠𝑖−1, 𝜔)E [(𝑊𝑠𝑖
−𝑊𝑠𝑖−1

)2

− (𝑠𝑖 − 𝑠𝑖−1)]2 = ∑
(𝑎)

E𝑓2 (𝑠𝑖−1, 𝜔)E [(𝑊𝑠𝑖
−𝑊𝑠𝑖−1

)4

− 2 (𝑊𝑠𝑖
−𝑊𝑠𝑖−1

)2 (𝑠𝑖 − 𝑠𝑖−1) + (𝑠𝑖 − 𝑠𝑖−1)2]
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= ∑
(𝑎)

E𝑓2 (𝑠𝑖−1, 𝜔) [3 (𝑠𝑖 − 𝑠𝑖−1)2 − 2 (𝑠𝑖 − 𝑠𝑖−1)2
+ (𝑠𝑖 − 𝑠𝑖−1)2] = 2∑

(𝑎)

E𝑓2 (𝑠𝑖−1, 𝜔) (𝑠𝑖 − 𝑠𝑖−1)2

≤ 12𝑛−1
( max

𝑠∈[𝑡1 ,𝑡2]
E𝑓2 (𝑠, 𝜔))∑

(𝑎)

(𝑠𝑖 − 𝑠𝑖−1) → 0
(47)

as 𝑛 → ∞. This together with the fact that E𝑉𝑛 = 0 for any 𝑛
implies claim (43) of the lemma.

The argument above leads us to an Itô formula for𝑓(𝑡,𝑊𝑡). Making use of the same methods, one can derive
a more general Itô formula for the solution 𝑋𝑡 to the Δ-
stochastic differential equation (11). We will not repeat the
proof, but we will claim the following theorem.

Theorem 8 (general Itô’s formula). Let 𝑋𝑡 be the solution
to the Δ-stochastic differential equation (11). Let any function𝑓 : T × R → R be such that 𝑓Δ(𝑡, 𝑥), 𝑓Δ2(𝑡, 𝑥), (𝜕𝑓/𝜕𝑥)(𝑡, 𝑥),(𝜕2𝑓/𝜕𝑥2)(𝑡, 𝑥), (𝜕𝑓Δ/𝜕𝑥)(𝑡, 𝑥), and (𝜕2𝑓Δ/𝜕𝑥2)(𝑡, 𝑥) are con-
tinuous on T ×R. For any 𝑡1 ≤ 𝑡2, 𝑡1, 𝑡2 ∈ [0,∞)T one has

𝑓 (𝑡2, 𝑋𝑡2
) − 𝑓 (𝑡1, 𝑋𝑡1

) = ∫𝑡2

𝑡1

𝑏 (𝑠, 𝑋𝑠) 𝑓Δ (𝑠, 𝑋𝑠) Δ𝑠
+ ∫𝑡2

𝑡1

𝜎 (𝑠, 𝑋𝑠) 𝜕𝑓𝜕𝑥 (𝑠, 𝑋𝑠) Δ𝑊𝑠 + 12
⋅ ∫𝑡2

𝑡1

𝜎2 (𝑠, 𝑋𝑠) 𝜕2𝑓𝜕𝑥2
(𝑠, 𝑋𝑠) Δ𝑠

+ ∑
𝐼𝑘∈I,𝐼𝑘⊂(𝑡1 ,𝑡2)

[𝑓 (𝑠+𝐼𝑘 ,𝑊𝑠+𝐼𝑘
) − 𝑓 (𝑠+𝐼𝑘 ,𝑊𝑠−𝐼𝑘

) − 𝜎 (𝑠−𝐼𝑘 ,
𝑊𝑠−𝐼𝑘

) 𝜕𝑓𝜕𝑥 (𝑠−𝐼𝑘 ,𝑊𝑠−𝐼𝑘
) (𝑊𝑠+𝐼𝑘

−𝑊𝑠−𝐼𝑘
)

− 12𝜎2 (𝑠−𝐼𝑘 ,
𝑊𝑠−𝐼𝑘

) 𝜕2𝑓𝜕𝑥2
(𝑠−𝐼𝑘 ,𝑊𝑠−𝐼𝑘

) (𝑠+𝐼𝑘 − 𝑠−𝐼𝑘)] .

(48)

5. The Stochastic Exponential on Time Scales

Our target in this section is to establish a closed-form formula
for the stochastic exponential in the case of general time scales
T .

Definition 9. One says an adapted stochastic process 𝐴(𝑡)
defined on the filtered probability space (Ω,F𝑡,P) is stochas-
tic regressive with respect to the Brownian motion𝑊𝑡 on the
time scale T if and only if for any right-scattered point 𝑡 ∈ T

one has

(1 + 𝐴 (𝑡)) (𝑊𝜎(𝑡) −𝑊𝑡) ̸= 0, a.s. ∀𝑡 ∈ T . (49)

The set of stochastic regressive processes will be denoted by
R𝑊.

The following definition of a stochastic exponential was
also introduced in [3].

Definition 10 (stochastic exponential). Let 𝑡0 ∈ T and 𝐴 ∈
R𝑊; then the unique solution of the Δ-stochastic differential
equation

Δ𝑋𝑡 = 𝐴 (𝑡)𝑋𝑡Δ𝑊𝑡,
𝑋 (𝑡0) = 1,

𝑡 ∈ T

(50)

is called the stochastic exponential and is denoted by

𝑋∙ = E𝐴 (∙, 𝑡0) . (51)

We note thatE𝐴(𝑡, 𝑡0) as a solution to (50) can be written
into an integral equation

E𝐴 (𝑡, 𝑡0) = 1 + ∫𝑡

𝑡0

𝐴 (𝑠)E𝐴 (𝑠, 𝑡0) Δ𝑊𝑠, ∀𝑡 ∈ T . (52)

We will be making use of the set-up we have in Section 4
about Itô’s formula. Let 𝑡0 < 𝑡 and 𝑡0, 𝑡 ∈ T . Let the sets 𝐶 and
I be defined as in Section 4 corresponding to the interval[𝑡1, 𝑡2] = [𝑡0, 𝑡]. Let 𝐼𝑘 ∈ I and 𝐼𝑘 = (𝑠−𝐼𝑘 , 𝑠+𝐼𝑘). We note that𝑠−𝐼𝑘 = 𝜌(𝑠+𝐼𝑘), 𝑠+𝐼𝑘 = 𝜎(𝑠−𝐼𝑘). Let

𝐷(𝑡, 𝑡0) = ∑
𝐼𝑘∈I,𝐼𝑘⊂(𝑡0 ,𝑡)

𝐴(𝑠−𝐼𝑘) (𝑊𝑠+𝐼𝑘
−𝑊𝑠−𝐼𝑘

)
− 12 ∑

𝐼𝑘∈I,𝐼𝑘⊂(𝑡0 ,𝑡)

𝐴2 (𝑠−𝐼𝑘) (𝑠+𝐼𝑘 − 𝑠−𝐼𝑘) .
(53)

We define

𝑈(𝑡, 𝑡0) = ∏
𝐼𝑘∈I,𝐼𝑘⊂(𝑡0 ,𝑡)

[1 + 𝐴 (𝑠−𝐼𝑘) (𝑊𝑠+𝐼𝑘
−𝑊𝑠−𝐼𝑘

)] ,
𝑉 (𝑡, 𝑡0)
= exp(∫𝑡

𝑡0

𝐴 (𝑠) Δ𝑊𝑠 − 12 ∫
𝑡

𝑡0

𝐴2 (𝑠) Δ𝑠 − 𝐷 (𝑡, 𝑡0)) .
(54)

Theorem 11 (stochastic exponential on time scales). The
stochastic exponential has the closed-form expression

E𝐴 (𝑡, 𝑡0) = 𝑈 (𝑡, 𝑡0) 𝑉 (𝑡, 𝑡0) . (55)

Proof. Consider the process

𝑌𝑡 = ∫𝑡

𝑡0

𝐴 (𝑠) Δ𝑊𝑠 − 12 ∫
𝑡

𝑡0

𝐴2 (𝑠) Δ𝑠 − 𝐷 (𝑡, 𝑡0) . (56)

Let us introduce another function 𝛼(𝑡) such that

𝛼 (𝑡) = {{{
0, when 𝑡 = 𝑠−𝐼𝑘 or 𝑡 = 𝑠+𝐼𝑘 ,𝐴 (𝑡) , otherwise. (57)
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We see now that the process 𝑌𝑡 is a solution to the Δ-
stochastic differential equation

Δ𝑌𝑡 = 𝛼 (𝑡) Δ𝑊𝑠 − 12𝛼2 (𝑡) Δ𝑠,
𝑌𝑡0

= 0. (58)

Notice that 𝑌𝑠−𝐼𝑘
= 𝑌𝑠+𝐼𝑘

for any 𝐼𝑘 = (𝑠−𝐼𝑘 , 𝑠+𝐼𝑘) ∈ I. Taking
this into account, as well as the fact that 𝛼(𝑠) = 0 whenever𝑡 = 𝑠−𝐼𝑘 or 𝑡 = 𝑠+𝐼𝑘 , we can apply the general Itô formula (48)
to the function 𝑉(𝑡, 𝑡0) = exp(𝑌𝑡) and we will get

exp (𝑌𝑡) − 1 = ∫𝑡

𝑡0

𝛼 (𝑠) exp (𝑌𝑠) Δ𝑊𝑠

− 12 ∫
𝑡

𝑡0

𝛼2 (𝑠) exp (𝑌𝑠) Δ𝑠
+ 12 ∫

𝑡

𝑡0

𝛼2 (𝑠) exp (𝑌𝑠) Δ𝑠
= ∫𝑡

𝑡0

𝛼 (𝑠) exp (𝑌𝑠) Δ𝑊𝑠.

(59)

Thus

𝑉 (𝑡, 𝑡0) = 1 + ∫𝑡

𝑡0

𝛼 (𝑠) 𝑉 (𝑠, 𝑡0) Δ𝑊𝑠, (60)

or in other words

Δ𝑉 (𝑡, 𝑡0) = 𝛼 (𝑡) 𝑉 (𝑡, 𝑡0) Δ𝑊𝑡. (61)

Let us now consider the function E𝐴(𝑡, 𝑡0) =𝑈(𝑡, 𝑡0)𝑉(𝑡, 𝑡0). We claim that

𝑈(𝑡, 𝑡0) 𝑉 (𝑡, 𝑡0) − 1
= ∫𝑡

𝑡0

𝐴 (𝑠)𝑈 (𝑠, 𝑡0) 𝑉 (𝑠, 𝑡0) Δ𝑊𝑠. (62)

Notice that

𝑈(𝑠+𝐼𝑘 , 𝑡0) = [1 + 𝐴 (𝑠−𝐼𝑘) (𝑊𝑠+𝐼𝑘
−𝑊𝑠−𝐼𝑘

)]𝑈 (𝑠−𝐼𝑘 , 𝑡0)
= 𝑈 (𝑠−𝐼𝑘 , 𝑡0)
+ 𝐴 (𝑠−𝐼𝑘)𝑈 (𝑠−𝐼𝑘 , 𝑡0) (𝑊𝑠+𝐼𝑘

−𝑊𝑠−𝐼𝑘
) ;

(63)

that is,

𝑈(𝑠+𝐼𝑘 , 𝑡0) − 𝑈 (𝑠−𝐼𝑘 , 𝑡0)
= 𝐴 (𝑠−𝐼𝑘)𝑈 (𝑠−𝐼𝑘 , 𝑡0) (𝑊𝑠+𝐼𝑘

−𝑊𝑠−𝐼𝑘
) . (64)

Using this fact, the above claimed identity (62) can be written
as

𝑈 (𝑡, 𝑡0) 𝑉 (𝑡, 𝑡0) − 1 = ∫𝑡

𝑡0

𝛼 (𝑠) 𝑈 (𝑠, 𝑡0) 𝑉 (𝑠, 𝑡0) Δ𝑊𝑠

+ ∑
𝐼𝑘∈I,𝐼𝑘⊂(𝑡0 ,𝑡)

𝐴(𝑠−𝐼𝑘)𝑈 (𝑠−𝐼𝑘 , 𝑡0)𝑉 (𝑠−𝐼𝑘 , 𝑡0)
⋅ (𝑊𝑠+𝐼𝑘

−𝑊𝑠−𝐼𝑘
) = ∫𝑡

𝑡0

𝛼 (𝑠)𝑈 (𝑠, 𝑡0) 𝑉 (𝑠, 𝑡0) Δ𝑊𝑠

+ ∑
𝐼𝑘∈I,𝐼𝑘⊂(𝑡0 ,𝑡)

𝑉(𝑠−𝐼𝑘 , 𝑡0) (𝑈 (𝑠+𝐼𝑘 , 𝑡0) − 𝑈 (𝑠−𝐼𝑘 , 𝑡0)) .

(65)

In fact, with respect to the partition 𝜋(𝑛) : 𝑡0 = 𝑠0 < 𝑠1 <⋅ ⋅ ⋅ < 𝑠𝑛−1 < 𝑠𝑛 = 𝑡 that we have been using, we have

𝑈 (𝑡, 𝑡0) 𝑉 (𝑡, 𝑡0) − 1 = 𝑛∑
𝑖=1

[𝑈 (𝑠𝑖, 𝑡0) 𝑉 (𝑠𝑖, 𝑡0)
− 𝑈 (𝑠𝑖−1, 𝑡0) 𝑉 (𝑠𝑖−1, 𝑡0)]
= 𝑛∑

𝑖=1

[(𝑈 (𝑠𝑖, 𝑡0) − 𝑈 (𝑠𝑖−1, 𝑡0))
⋅ (𝑉 (𝑠𝑖, 𝑡0) − 𝑉 (𝑠𝑖−1, 𝑡0)) + 𝑈 (𝑠𝑖−1, 𝑡0)
⋅ (𝑉 (𝑠𝑖, 𝑡0) − 𝑉 (𝑠𝑖−1, 𝑡0)) + 𝑉 (𝑠𝑖−1, 𝑡0)
⋅ (𝑈 (𝑠𝑖, 𝑡0) − 𝑈 (𝑠𝑖−1, 𝑡0))] = 𝑛∑

𝑖=1

(𝑈 (𝑠𝑖, 𝑡0)
− 𝑈 (𝑠𝑖−1, 𝑡0)) (𝑉 (𝑠𝑖, 𝑡0) − 𝑉 (𝑠𝑖−1, 𝑡0))
+ 𝑛∑

𝑖=1

𝑈(𝑠𝑖−1, 𝑡0) (𝑉 (𝑠𝑖, 𝑡0) − 𝑉 (𝑠𝑖−1, 𝑡0))
+ 𝑛∑

𝑖=1

𝑉 (𝑠𝑖−1, 𝑡0) (𝑈 (𝑠𝑖, 𝑡0) − 𝑈 (𝑠𝑖−1, 𝑡0)) = (𝐼)
+ (𝐼𝐼) + (𝐼𝐼𝐼) .

(66)

Here

(𝐼) = 𝑛∑
𝑖=1

(𝑈 (𝑠𝑖, 𝑡0) − 𝑈 (𝑠𝑖−1, 𝑡0))
⋅ (𝑉 (𝑠𝑖, 𝑡0) − 𝑉 (𝑠𝑖−1, 𝑡0)) ,

(𝐼𝐼) = 𝑛∑
𝑖=1

𝑈 (𝑠𝑖−1, 𝑡0) (𝑉 (𝑠𝑖, 𝑡0) − 𝑉 (𝑠𝑖−1, 𝑡0)) ,
(𝐼𝐼𝐼) = 𝑛∑

𝑖=1

𝑉 (𝑠𝑖−1, 𝑡0) (𝑈 (𝑠𝑖, 𝑡0) − 𝑈 (𝑠𝑖−1, 𝑡0)) .

(67)

We can apply the previous arguments and classify the
intervals (𝑠𝑖−1, 𝑠𝑖) into classes (𝑎) and (𝑏). Notice that, on each
interval (𝑠−𝐼𝑘 , 𝑠+𝐼𝑘), the function 𝑉(𝑡, 𝑡0) remains constant and
the function𝑈(𝑡, 𝑡0) has a jump, and on each interval (𝑠𝑖−1, 𝑠𝑖)
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in class (𝑎) the function𝑈(𝑡, 𝑡0) is a constant.This observation
and similar arguments (whichwe leave to the reader) as in the
previous section will enable us to prove that, with probability
one, as 𝑛 → ∞, we will have

(𝐼) → 0,
(𝐼𝐼) → ∫𝑡

𝑡0

𝛼 (𝑠) 𝑈 (𝑠, 𝑡0) 𝑉 (𝑠, 𝑡0) Δ𝑊𝑠,
(𝐼𝐼𝐼)
→ ∑

𝐼𝑘∈I,𝐼𝑘⊂(𝑡0 ,𝑡)

𝑉(𝑠−𝐼𝑘 , 𝑡0) (𝑈 (𝑠+𝐼𝑘 , 𝑡0) − 𝑈 (𝑠−𝐼𝑘 , 𝑡0)) .
(68)

So we proved (65) and thus (62).

6. Change of Measure and
Girsanov’s Theorem on Time Scales

We demonstrate in this section a change of measure formula
(Girsanov’s formula) for Brownian motion on time scales.
Our analysis is based on the method of extension that was
introduced in Section 3 (originally from [2]).

Let us consider two processes: the standard Brownian
motion {𝑊𝑡}𝑡∈T on (Ω,F𝑡,P) on the time scale T and the
process

𝐵𝑡 = 𝑊𝑡 − ∫𝑡

0
𝐴 (𝑠) Δ𝑠, (69)

on the time scale 𝑡 ∈ T .
Let us consider an extension of the (probably random)

function𝐴(𝑠) as in (8). Let us define the so obtained extension
function to be 𝐴(𝑠). Recall that (8) implies that

𝐴 (𝑠, 𝜔) = 𝐴 (sup [0, 𝑠]T , 𝜔) . (70)

Let �̃�𝑡 be a standard Brownianmotion on [0,∞). If we define
𝐵𝑡 = �̃�𝑡 − ∫𝑡

0
𝐴 (𝑠) 𝑑𝑠, (71)

then the process 𝐵𝑡 agrees with 𝐵𝑡 for any time point 𝑡 ∈ T .
For any 𝑡, 𝑡0 ∈ T , 𝑡 > 𝑡0, let
G𝐴 (𝑡, 𝑡0) = exp(∫𝑡

𝑡0

𝐴 (𝑠) 𝑑𝑊𝑠 − 12 ∫
𝑡

𝑡0

𝐴2 (𝑠) 𝑑𝑠)
= exp(∫𝑡

𝑡0

𝐴 (𝑠) 𝑑𝑊𝑠 − 12 ∫
𝑡

𝑡0

𝐴2 (𝑠) 𝑑𝑠)
= exp(∫𝑡

𝑡0

𝐴 (𝑠) Δ𝑊𝑠 − 12 ∫
𝑡

𝑡0

𝐴2 (𝑠) Δ𝑠) .
(72)

It is easy to see that the functionG𝐴(𝑡, 𝑡0) is the standard
Girsanov’s density function for the process 𝐵𝑡 with respect
to the standard Brownian motion �̃�𝑡. Since 𝐵𝑡 and �̃�𝑡 have
the same distributions as 𝐵𝑡 and𝑊𝑡 on the time scale T , we
conclude with the following twoTheorems.

Theorem 12 (Novikov’s condition on time scales). If for every𝑡 ≥ 0 one has
E exp(∫𝑡

0
𝐴2 (𝑠) Δ𝑠) < ∞, (73)

then for every 𝑡 ≥ 0 one has
EG𝐴 (𝑡, 𝑡0) = 1. (74)

Let (73) be satisfied. Let 𝑇 > 0 and pick 𝑇 > 𝑡0, 𝑡0, 𝑇 ∈
T . Consider a new measure P𝐵 on (Ω,F𝑡), defining by it
Radon–Nikodym derivative with respect to P𝑊, as

𝑑P𝐵

𝑑P𝑊
= G𝐴 (𝑇, 𝑡0) . (75)

Theorem 13 (Girsanov’s change of measure on time scales).
Under the measure P𝐵 the process 𝐵𝑡, 𝑡 ∈ [0, 𝑇]T , is a standard
Brownian motion on T .

7. Application to Brownian Motion on a
Quantum Time Scale

In this section we are going to apply our result to a quantum
time scale (𝑞-time scale, see [1, Example 1.41]). Let 𝑞 > 1 and

𝑞Z fl {𝑞𝑘 : 𝑘 ∈ Z} ,
𝑞Z fl 𝑞Z ∪ {0} . (76)

The quantum time scale (𝑞-time scale) is defined by T =𝑞Z. Given the quantum time scale T , one can then construct
a Brownian motion𝑊𝑡 on T according to Definition 3.

We have

𝜎 (𝑡) = inf {𝑞𝑛 : 𝑛 ∈ [𝑚 + 1,∞)} = 𝑞𝑚+1 = 𝑞𝑞𝑚 = 𝑞𝑡 (77)

if 𝑡 = 𝑞𝑚 ∈ T and obviously 𝜎(0) = 0. So we obtain
𝜎 (𝑡) = 𝑞𝑡,
𝜌 (𝑡) = 𝑡𝑞 ,

∀𝑡 ∈ T

(78)

and consequently

𝜇 (𝑡) = 𝜎 (𝑡) − 𝑡 = (𝑞 − 1) 𝑡 ∀𝑡 ∈ T . (79)

Here 0 is a right-dense minimum and every other point
in T is isolated. For a function 𝑓 : T → R we have

𝑓Δ (𝑡) = 𝑓 (𝜎 (𝑡)) − 𝑓 (𝑡)𝜇 (𝑡) = 𝑓 (𝑞𝑡) − 𝑓 (𝑡)(𝑞 − 1) 𝑡
∀𝑡 ∈ T \ {0} ,

𝑓Δ (0) = lim
𝑠→0

𝑓 (0) − 𝑓 (𝑠)0 − 𝑠 = lim
𝑠→0

𝑓 (𝑠) − 𝑓 (0)𝑠
(80)

provided the limit exists.
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The open intervals 𝐼𝑘 that we have constructed in
Section 4 have the form 𝐼𝑘 = (𝑞𝑘, 𝑞𝑘+1) where 𝑘 ∈ Z. For any
two points 𝑡1 < 𝑡2, 𝑡1, 𝑡2 ∈ T , if 𝑡1, 𝑡2 ̸= 0, then 𝑡1 = 𝑞𝑘1 and𝑡2 = 𝑞𝑘2 for two integers 𝑘1 < 𝑘2. In this case we can apply
(14) and we get

𝑓 (𝑞𝑘2 ,𝑊𝑞𝑘2 ) − 𝑓 (𝑞𝑘1 ,𝑊𝑞𝑘1 ) = ∫𝑞𝑘2

𝑞𝑘1
𝑓Δ (𝑠,𝑊𝑠) Δ𝑠

+ ∫𝑞𝑘2

𝑞𝑘1

𝜕𝑓𝜕𝑥 (𝑠,𝑊𝑠) Δ𝑊𝑠 + 12 ∫
𝑞𝑘2

𝑞𝑘1

𝜕2𝑓𝜕𝑥2
(𝑠,𝑊𝑠) Δ𝑠

+ 𝑘2−1∑
𝑘=𝑘1

[𝑓 (𝑞𝑘+1,𝑊𝑞𝑘+1) − 𝑓 (𝑞𝑘+1,𝑊𝑞𝑘)
− 𝜕𝑓𝜕𝑥 (𝑞𝑘,𝑊𝑞𝑘) (𝑊𝑞𝑘+1 −𝑊𝑞𝑘)
− 12 𝜕

2𝑓𝜕𝑥2
(𝑞𝑘,𝑊𝑞𝑘) (𝑞𝑘+1 − 𝑞𝑘)] .

(81)

Since T \ {0} is a discrete time scale, we have

∫𝑞𝑘2

𝑞𝑘1

𝜕𝑓𝜕𝑥 (𝑠,𝑊𝑠) Δ𝑊𝑠

= 𝑘2−1∑
𝑘=𝑘1

𝜕𝑓𝜕𝑥 (𝑞𝑘,𝑊𝑞𝑘) (𝑊𝑞𝑘+1 −𝑊𝑞𝑘) ,
12 ∫

𝑞𝑘2

𝑞𝑘1

𝜕2𝑓𝜕𝑥2
(𝑠,𝑊𝑠) Δ𝑠

= 𝑘2−1∑
𝑘=𝑘1

12 𝜕
2𝑓𝜕𝑥2
(𝑞𝑘,𝑊𝑞𝑘) (𝑞𝑘+1 − 𝑞𝑘) .

(82)

Moreover, we have

∫𝑞𝑘2

𝑞𝑘1
𝑓Δ (𝑠,𝑊𝑠) Δ𝑠

= 𝑘2−1∑
𝑘=𝑘1

𝑓 (𝑞𝑘+1,𝑊𝑞𝑘) − 𝑓 (𝑞𝑘,𝑊𝑞𝑘)𝑞𝑘+1 − 𝑞𝑘 (𝑞𝑘+1 − 𝑞𝑘)

= 𝑘2−1∑
𝑘=𝑘1

[𝑓 (𝑞𝑘+1,𝑊𝑞𝑘) − 𝑓 (𝑞𝑘,𝑊𝑞𝑘)] .
(83)

Therefore (81) becomes

𝑓 (𝑞𝑘2 ,𝑊𝑞𝑘2 ) − 𝑓 (𝑞𝑘1 ,𝑊𝑞𝑘1 )
= 𝑘2−1∑

𝑘=𝑘1

{[𝑓 (𝑞𝑘+1,𝑊𝑞𝑘) − 𝑓 (𝑞𝑘,𝑊𝑞𝑘)]
+ [𝑓 (𝑞𝑘+1,𝑊𝑞𝑘+1) − 𝑓 (𝑞𝑘+1,𝑊𝑞𝑘)]}
= 𝑘2−1∑

𝑘=𝑘1

[𝑓 (𝑞𝑘+1,𝑊𝑞𝑘+1) − 𝑓 (𝑞𝑘,𝑊𝑞𝑘)] ,

(84)

which is a trivial telescoping identity. This justifies (14) in the
case away from 0.

Let us consider now the case when 𝑡1 = 0 and 𝑡2 = 𝑞𝑘 > 0
for some 𝑘 ∈ Z. In this case we have, according to (14), that

𝑓 (𝑞𝑘,𝑊𝑞𝑘) − 𝑓 (0, 0) = ∫𝑞𝑘

0
𝑓Δ (𝑠,𝑊𝑠) Δ𝑠

+ ∫𝑞𝑘

0

𝜕𝑓𝜕𝑥 (𝑠,𝑊𝑠) Δ𝑊𝑠 + 12 ∫
𝑞𝑘

0

𝜕2𝑓𝜕𝑥2
(𝑠,𝑊𝑠) Δ𝑠

+ 𝑘−1∑
𝑗=−∞

[𝑓 (𝑞𝑗+1,𝑊𝑞𝑗+1) − 𝑓 (𝑞𝑗+1,𝑊𝑞𝑗)
− 𝜕𝑓𝜕𝑥 (𝑞𝑗,𝑊𝑞𝑗) (𝑊𝑞𝑗+1 −𝑊𝑞𝑗)
− 12 𝜕

2𝑓𝜕𝑥2
(𝑞𝑗,𝑊𝑞𝑗) (𝑞𝑗+1 − 𝑞𝑗)] .

(85)

One can justify that in this case we have

∫𝑞𝑘

0

𝜕𝑓𝜕𝑥 (𝑠,𝑊𝑠) Δ𝑊𝑠

= 𝑘−1∑
𝑗=−∞

𝜕𝑓𝜕𝑥 (𝑞𝑗,𝑊𝑞𝑗) (𝑊𝑞𝑗+1 −𝑊𝑞𝑗) ,
12 ∫

𝑞𝑘

0

𝜕2𝑓𝜕𝑥2
(𝑠,𝑊𝑠) Δ𝑠

= 𝑘−1∑
𝑗=−∞

12 𝜕
2𝑓𝜕𝑥2
(𝑞𝑗,𝑊𝑞𝑗) (𝑞𝑗+1 − 𝑞𝑗) .

(86)

Moreover, we have

∫𝑞𝑘

0
𝑓Δ (𝑠,𝑊𝑠) Δ𝑠
= 𝑘−1∑

𝑗=−∞

𝑓 (𝑞𝑗+1,𝑊𝑞𝑗) − 𝑓 (𝑞𝑗,𝑊𝑞𝑗)𝑞𝑗+1 − 𝑞𝑗 (𝑞𝑗+1 − 𝑞𝑗)

= 𝑘−1∑
𝑗=−∞

[𝑓 (𝑞𝑗+1,𝑊𝑞𝑗) − 𝑓 (𝑞𝑗,𝑊𝑞𝑗)] .
(87)

Therefore (81) becomes

𝑓 (𝑞𝑘,𝑊𝑞𝑘) − 𝑓 (0, 0)
= 𝑘−1∑

𝑗=−∞

{[𝑓 (𝑞𝑗+1,𝑊𝑞𝑗) − 𝑓 (𝑞𝑗,𝑊𝑞𝑗)]
+ [𝑓 (𝑞𝑗+1,𝑊𝑞𝑗+1) − 𝑓 (𝑞𝑗+1,𝑊𝑞𝑗)]}
= 𝑘−1∑

𝑗=−∞

[𝑓 (𝑞𝑗+1,𝑊𝑞𝑗+1) − 𝑓 (𝑞𝑗,𝑊𝑞𝑗)] ,

(88)
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which is also a telescoping identity. This justifies (14) in the
case including 0.

Making use of Theorem 11, it is easy to write down the
stochastic exponential for the quantum time scale:

E𝐴 (0, 𝑞𝑘) = 𝑘−1∏
𝑗=−∞

[1 + 𝐴 (𝑞𝑗) (𝑊𝑞𝑗+1 −𝑊𝑞𝑗)] . (89)
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