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A new one-step block method with generalized three hybrid points for solving initial value problems of second-order ordinary
differential equations directly is proposed. In deriving this method, a power series approximate function is interpolated at {x,,, x,,,..

while its second and third derivatives are collocated at all points {x,,, X,,,,> X,,, <> X,,++> X1 } in the given interval. The proposed method
is then tested on initial value problems of second-order ordinary differential equations solved by other methods previously. The

numerical results confirm the superiority of the new method to the existing methods in terms of accuracy.

1. Introduction

Numerous problems such as chemical kinetics, orbital
dynamics, circuit and control theory, and Newton’s second
law applications involve second-order ordinary differential
equations (ODEs). Normally, those equations have no analyt-
ical solutions. To approximate the solution of such problems
several numerical methods were developed on the hands of
many scholars such as [1-3].

Block methods for solving ODEs were first proposed by
Milne ([4]). Later [5] adopted Milne’s methods to provide
starting values for predictor-corrector scheme. However, the
block methods have some drawbacks and this led to the
introduction of hybrid methods. According to [6], hybrid
methods were initially introduced to overcome zero-stability
barrier that occurred in block methods in Dahlquists ([7]).
Besides the ability to change step size, the other benefit
of these methods is utilizing data off-step points which
contribute to the accuracy of the methods.

To increase the accuracy of the numerical methods
further, researchers such as [8, 9] proposed high method
derivative to overcome stiffness in ODEs. The former pre-
sented another type of hybrid methods called second-
derivative methods, while the later proposed a Simpson’s type

second-derivative method for the solution of a stiff system
of first-order IVPs. These scholars motivated us to develop
a new generalized three-hybrid one-step third-derivative
implicit method for solving second-order ODEs directly
using the approach of interpolation and collocation for the
general use to improve the efficiency of the approximate
solution.

This article is organized as follows: in the coming sec-
tion we demonstrate the derivation of the method, where
we consider three off-step points through the approach of
interpolation and collocation. The details of the analysis of
the method are discussed in Section 3 which include zero
stability, order, consistency, and convergence. In Section 4
some numerical problems are solved and the performance
of the developed method is compared with other methods
mentioned in literature. Finally, the conclusion is discussed
in Section 5.

2. Development of the Method

An approximate power series basis function taking the form

2v+u—1 i

p=Y aj(x_hx”)], &)
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where 4 = 2 and v = 5 are the number of interpolation and
collocation points, respectively, is considered to be a solution
to the following ODE:

y'=f(xny'),
y (@) = py,
’ ’ (2)
Yo (@) = pos
x € [a,b].
On derivation of (1) twice and thrice we obtain
wiusl gl X — x.\J2
" J n
P = 2 ()
o W(G-2!\ h
=f(xpy),
o ' 3)
viu- a] x—x. \J3
n ) n
P () = ()
j:Z3 R(G-3)!\ h
=g9(xny).

Interpolating (1) at x,,,; = x,, + #h, i = {0, r} and collocating
(3) atall points x,,,; = x,+Vh, v = {0, 7,s,t, 1}, where {r, s, t} €
(0,1), a system of equations in matrix form is produced as
below:

AX =T, (4)

where
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Using matrix manipulation to solve (4) for the unknown
coefficients a]'.s and then substituting them back into (1) yield

px) = Z & Yy + B I: Z Bifusi + Zﬁifnﬂ‘]

i=0,r i=r,s,t

1
+h [ Z YiGn+i t ZYign+i] ,
i=0

i=1,s,t

wheren = 0,1,2,...,N - 1, h = x,, — x,,_; is the constant

step size for the partition 7y of the interval [a,b] which
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is given by iy, = [a = x, < x; < < xn <
xy = bl, ;, f5;, and y; are undetermined constants listed
in Appendix I in Supplementary Material available online at
https://doi.org/10.1155/2017/8510948, f,,,; = f(x + ih), and
Gnsi = Af Xpiis Yuri> Vioui)/dx whose first partial derivative is

1
P-4 | 3 e 3]
i=0

i=0,r i=r,s,t
(7)
1
+h’ [ Z Yi,gmi + Z)’ilgnn] .
i=0

i=1,s,t

Evaluating (6) at the noninterpolating points {x,, g X,
X,.1} and (7) at all points x,,;, i = {0,7,s,t, 1}, produces the
following general equations in block form:

1 1
ALY = Ayl N U EN L S DUGH,  (s)

i=0 i=0

where A% is an 8 x 8 identity matrix and

0001000 Th
0001000 sh
0001000 th

Bl _

)

Their entries are listed in Appendix II in Supplementary
Material, while the vectors YE],YE],FL?],FE],GLS],GE] are
defined as follows:
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3. Analysis of the Method

3.1. Zero Stability

Definition 1. The hybrid block method formula (8) is said to
be zero stable if no root of the first characteristic equation
p(R) has modulus greater than one; that is, |R,,| < I and if
R,, = 1 then the multiplicity of R,, must not exceed two.
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To illustrate that the root of the first characteristic
equation satisfies the prior definition we assume that {r, s, t} €
(0, 1) and hence

p (R) = det [RA — A]

ROO -1 000 —-rh
ORO -1 000 -sh
00R -1 000 -th
000R-1000 -h (1
“looo o Roo -1 °
000 0O ORO -1
000 0O 00R -1
000 O 000R-I1
which imply that
) , {o, ifi=1(1)6
RC(R-1>=0=R, = (12)
1, ifi=7,8.

As a result, the developed method is zero stable.

3.2. Order of the Method. The linear operator A associated
with the hybrid block methods formula (8) is defined as

1
Ay (x);h} = ALY - Aty Bl
i=0
(13)

1
- ' plGl.
i=0

Expanding the above equation in Taylor series and combining
like terms we wind up with
Ay (x);h} = Coh’y (x) + C,h'y (x) + C,Hy" (x)
- (14)
oot CP+2hP+2y(P+2) () + -

According to [6, 10] method (8) is said to be of order p if

60:61:..:6p+1:o, )
15

Cpia #0.

The term EP .o is called the error constant and the local
truncation error is given by

tusk = Cpray PP 10 (K. (16)

Comparing like terms of y” and K’ in (14) produces the
coefficients C, = C; = --- = C;; = 0 with vector of error
constants

= —[1] —[3] =l4] —=l6] =[7] (8]
C12—[C12 C12 C12 C12 C12 C12 C12 CIZ] (17)
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where
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which conclude that the order of the developed method is p =

10.
3.3. Consistency

Definition 2. A block method is said to be consistent if its
order p is greater than one.
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TaBLE 1: Comparison of the proposed method with [11].

Computed solution for

X value Exact solution Error in new method Error for [11]
r=1/2;s=2/3;t=3/4
0.100 0.904837418035959520 0.904837418035948970 1.054712E(-14) 2:05E(-11)
0.200 0.818730753077981820 0.818730753077964060 1.776357E(—14) 4:39E(-11)
0.300 0.740818220681717770 0.740818220681694340 2.342571E(-14) 6:55E(-11)
0.400 0.670320046035639330 0.670320046035611350 2.797762E(-14) 8:38E(-11)
0.500 0.606530659712633420 0.606530659712602120 3.130829E(~14) 9:86E(—11)
0.600 0.548811636094026500 0.548811636093992530 3.397282E(~14) 1:10E(-10)
0.700 0.496585303791409530 0.496585303791373890 3.563816E(~14) 1:19E(-10)
0.800 0.449328964117221620 0.449328964117184870 3.674838E(-14) 1:24E(-10)
0.900 0.406569659740599170 0.406569659740561860 3.730349E(-14) 1:28E(-10)
1.000 0.367879441171442330 0.367879441171404920 3.741452E(—14) 1:30E(-10)

TaBLE 2: Comparison of the proposed method with [12].

Computed solution for

X value Exact solution Error in new method Error for [12]
r=1/4;s=1/2;t=3/4
0.100 1.050041729278491400 1.050041729278491200 2.220446E(-16) 1.1102E(-15)
0.200 1.100335347731075600 1.100335347731075300 2.220446E(-16) 5.9952E(-15)
0.300 1.151140435936466800 1.151140435936466100 6.661338E(~16) 2.5535E(-14)
0.400 1.202732554054082100 1.202732554054081000 1.110223E(-15) 7.1054E(-14)
0.500 1.255412811882995200 1.255412811882994800 4.440892E(-16) 1.1568E(-13)
0.600 1.309519604203111900 1.309519604203112800 8.881784E(-16) 1.1990E(-13)
0.700 1.365443754271396400 1.365443754271398000 1.554312E(-15) 6.8567E(—13)
0.800 1.423648930193601900 1.423648930193606400 4.440892E(-15) 3.4754E(-12)
0.900 1.484700278594052000 1.484700278594060600 8.659740E(-16) 1.2219E(-11)
1.000 1.549306144334055000 1.549306144334067700 1.265654E(~14) 3.7282E(-11)

Consistency property is achieved for the hybrid block
method from the above analysis since the order p = 10 > 1.

3.4. Convergence

Theorem 3 (see [16]). Consistency and zero stability are suffi-
cient conditions for a linear multistep method to be convergent

The hybrid block method equation (8) is convergent since
it fulfills both the consistency and zero-stability conditions.

4. Numerical Examples

In this section, the efficiency and the performance of the
general three-hybrid one-step implicit hybrid block method
(8) with order p = 10 is investigated on five test problems.
The first example is highly stift linear IVP problem with step
size h = 1/10, the second is nonlinear IVP with & = 5/100, the
third is linear with & = 1/100, the fourth is a nonlinear system
with i = 1/10, and finally the fifth is a nonlinear undamped
Duffing equation with & = 77/5. It is worth mentioning that
this method works even for large interval and different values
of step size. The values mentioned in this article are chosen

just for the sake of comparison with the existing methods
only.

Problem 4. f(x,y,y') = =1001y" — 1000y, y(0) = 1, y'(0) =
-1,0<x< 1.

Exact Solution. y = e with h = 1/10.
Source (see [11]). See Table 1.

Problem 5. f(x,y,y') = x(y')z, y(0) =1, y'(O) =1/2,0 <
x < 1.

Exact Solution. y = 1 +In((2 + x)/(2 — x)) with h = 5/100.
Source (see [12]). See Table 2.

Problem 6. f(x,y,y') =y, y(0)=0,y'(1) =-1,0< x < 1.
Exact Solution. y = 1 — e* with h = 1/100.

Source (see [13]). See Table 3.

Problem 7 (a system of nonlinear IVP). y{' = 1- cos(x) +
sin(yé) + cos(yé), y,(0) =0, y{(O) =0,0<x<1.
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TaBLE 3: Comparison of the proposed method with [13].
X value Exact solution Computed solution for Error in new method Error for [13]
r=1/5s=1/3;t=1/2
0.100 —0.105170918075647710 —0.105170918075647660 5.551115E(-17) 2.2360E(-13)
0.200 —-0.221402758160169850 —-0.221402758160169990 1.387779E(-16) 1.6425E(-12)
0.300 —0.349858807576003180 —0.349858807576003520 3.330669E(-16) 3.4625E(-12)
0.400 —0.491824697641270570 —0.491824697641271070 4.996004E(-16) 8.6628E(-12)
0.500 —-0.648721270700128640 —-0.648721270700129420 7.771561E(-16) L.1338E(-11)
0.600 —-0.822118800390509550 -0.822118800390510880 1.332268E(-15) 2.0317E(-11)
0.700 —1.013752707470477500 -1.013752707470479300 1.776357E(-15) 3.2476E(-11)
0.800 —1.225540928492468800 —1.225540928492471600 2.886580E(-15) 4.5463E(-11)
0.900 -1.459603111156951200 -1.459603111156955000 3.774758E(-15) 6.1781E(-11)
1.000 —-1.718281828459047300 —-1.718281828459052400 5.107026 E(—15) 8.2113E(-11)
TABLE 4: Exact and approximate solutions for solving y, using the developed method.
X value Exact solution Approximate solution Error in developed method Error in [14]
0.200 0.980066577841241630 0.980066580773730210 2.93E(-09) 3.331E(-08)
0.400 0.921060994002885100 0.921060786088783830 2.08E(-07) 7.27E(-07)
0.600 0.825335614909678330 0.825334546366523920 1.07E(-06) 3.09E(-06)
0.800 0.696706709347165500 0.696703745729634890 2.96E(-06) 8.01E(-06)
1.000 0.540302305868139770 0.540296131232123940 6.17E(-06) 1.60E(-05)
TABLE 5: Exact and approximate solutions for solving y, using the developed method.
X value Exact solution Approximate solution Error in developed method Error in [14]
0.200 0.408407044966673130 0.628318530716756810 1.20E(-12) 5.74E(-12)
0.400 1.036725575684631900 1.256637061492416500 5.65E(—10) 3.40E(-10)
0.600 1.665044106402590500 1.884955593121642800 9.68E(—10) 3.48E(-09)
0.800 2.293362637120548900 2.513274128242366100 5.37E(—09) 1.66E(-08)
1.000 2.921681167838507500 3.141592671767204200 1.82E(-08) 5.24E(-08)
TaBLE 6: Comparison of the proposed method with [15].
X value Exact solution Approximate solution Error in developed method Error in [15]
T —-0.200326851873144250 —0.200326851873131260 1.30E(-14) 2.77E(-6)
2m 0.200027330586423440 0.200027330586373150 5.03E(-14) 2.97E(-8)
4m 0.198830853474466220 0.198830853474288970 1.77E(-13) 1.16E(-7)
6 0.196842430954904000 0.196842430954587670 3.16E(-13) 2.53E(-7)
8 0.194070581011836470 0.194070581011452750 3.84E(-13) 4.28E(-7)
107 0.190527147620306290 0.190527147620002170 3.04E(-13) 6.29E(-7)

Y= 1/(4+ %) = 1/(5 = (in(x))%), y,(0) = 0, y4(0) = 71,  0.246946143e(~3), k5 = 0.304016¢(—6), k, = 0.374e(-9), and

0<x<1.

h=mn/5 (r=1/4,s=1/2,t = 3/4); see Table 6.

Exact Solutions. y, = cos(x), y, = nx, with h = (1/10)(r = 5. Conclusion

1/10,s = 3/10, t = 3/5); see Tables 4 and 5.

A general three-hybrid one-step block method of order 10 has

Problem 8 (the nonlinear undamped Duffing equation). "+  been proposed for the direct solution of general second-order
y+ y3 = Q cos(wx), ¥(0) = ko, y'(O) =0,0<x < 10m. ODEs. The developed method is tested on five different prob-

lems. Numerical analysis shows that the developed method

Exact Solutions. y(x) = k;cos(wx) + k,cos(Bwx) + is consistent and zero stable which conclude its convergence.

ks cos(5wx) + k4 cos(7wx), where w

1.01, Q = 0.002,  The computed results are then compared with the results of

ky = 0200426728069, k; = 0.200179477536, k, =  existing methods in terms of error by considering different



values of r, s, and t. The new method is found to have
superiority over them as shown in Tables 1-6.
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