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Motivated by a number of recent investigations, we consider a new analogue of Bernstein-Durrmeyer operators based on certain
variants. We derive some approximation properties of these operators. We also compute local approximation and Voronovskaja type
asymptotic formula. We illustrate the convergence of aforementioned operators by making use of the software MATLAB which we

stated in the paper.

1. Introduction

In approximation theory, the use of quantum calculus (g-
calculus) has gained momentum in the last decade. In the year
1987, Lupas [1] pioneered the work on g-versions of the Bern-
stein polynomials. After ten years, Phillips gave another g-
variant of Bernstein polynomials. Since then, numerous oper-
ators have been generalized to their quantum variants and
their approximation behaviours have been studied; we indi-
cate the recent books [2, 3] on this topic. Also, see [4-6].
Lately, the further generalization of g-calculus, namely, the
postquantum calculus, symbolized by (p,q)-calculus has
become very contributing. In [7], Mursaleen et al. proposed
the (p, g)-variant of Bernstein polynomials, which was fur-
ther improved in [8]. Further, generalizations of (p, g)-Bern-
stein polynomials are due to Kantorovich and Durrmeyer,
which were, respectively, studied in [9, 10]. Many papers
pertaining to approximation theory and special functions
have been presented recently (cf. [11-21]). The first g-variant
and (p,q)-variant of Bernstein-Durrmeyer operators were
given in [22] and [10], respectively. For postquantum calculus,
some basic theorems and definitions are as follows (cf. [10, 23-
25]).

Dedicated to Professor Vijay Gupta

The (p, gq)-number is defined as
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p
(rlpg=—"—H- pPqc(1]. ¢))
P p-q
It has been observed that [r] pq = pr_1 [r]g/p- By this identity,

the results obtained in (p, g)-calculus cannot be obtained
directly from g-calculus.
The (p, q)-binomial coeflicient is known as

r [r1pq!
=— P4 (0<k<r), (2)
[k]m [r = Kl pg! [K]pq!

where

r

(Mgl =[] Kl,,> =1, [0],,!=1 (3)

k=1
The (p, q)-analogue of (x — w)" is defined by

(xew);)q =(x-w)
2 2 r—1 r—1 (4)
- (px - q) (PPx - qw) - (px-qw) .
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(peaq),
(r41) = 2T
e (p-a) h )

(0<g<p, r=0)

is (p, g)-analogue of Gamma function.
The (p,q)-analogue of derivative of a function f is
defined by

f(px) - f (%)

o ax o Ft0 ©

Dp,qf (x) =

In the case when p = 1, the (p,q)-derivative reduces to
known g-derivative. Like g-derivative, (p, q)-derivative has
the following properties which are product rules for two
functions:

Dy o (f () g(x)) = f(px) Dpyg (x)

+9(qx) Dy, f (%) o
Dyq (f(x)g(x) = g(px) Dy o f (%)

+ f(qx) Dpag ().

Let f be an arbitrary function and w € R. The (p,q)-
integral of f(x) on [0, w] (see [24]) is defined as

w 0 pk pk
J f(x)dp,q“(q—P)wZ k+1f< k+1“’>’
0 k=04 q
if [p| < |q|
w [e) k k
q q
A x=(p- a4 _,),
L f)dyax=(p-q) w];)pk+1f<pk+lw)
if |q| < |p|-

Let m,n € N, the (p,q)-Beta function of first kind be
given by

1
B, (m,n) = L (px)"" (pe qu)p q pa* ©)

The (p, g)-Gamma and (p, g)-Beta functions satisfy (see
[10])

_ inemen—2yen—21/2 Lpg (M) Tp g (1)
B, (m,m) = p rre Y
where m,n € N.

In the present article, we extend the studies of [10]
and discuss their ordinary approximation properties. These
include direct estimates in terms of modulus of smoothness
and Voronovskaja type asymptotic formula. Moreover, the
convergence behaviour is shown graphically using MATLAB.
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2. (p,q)-Durrmeyer-Stancu Operators
and Moments

The g-Durrmeyer operators were considered in [22] and also
studied in [26]. Inspired by the work of [10, 27], we consider
the postquantum Stancu variant of the eminent Durrmeyer
operators. The (p, g)-analogue of Durrmeyer-Stancu opera-

tors for x € [0,1], 0 < &« < fand 0 < g < p < 11is defined
as
quﬁ (f ) [n+ 1],0,&1 kZ:p—(n +3n-k _k)/zbff (1, x)
=0
(1)
nl, t+a
b t (”—) d,t,
L (ppat) f i, 7B )
where
: n k n—-k
o o) = 1] ()" (00 par
pq
(12)

bpq(l X) = [ ] plk=D-nn-1)/2 k(g ex)
k P4
This type of generalization may be useful because of its
flexibility and approximation behaviour may difter for differ-
ent values of « and f3. For « = 3 = 0, we observe that these
operators reduce to the one given in [10].
Lemma 1 (see [28]). Form > 1, ¢; = £ (i=01,2..)

Uiﬁl (x) =B, pq (e, )

T G B
[n ’

Ipa

we have the following recurrence relation:

[n],, U4, (px) = p" (1 - px) D, [UP ()]

(14)
+ [npq pXULL (px).
Further,
4]
Bn,p,q (eO’X) = 1’ (15)
2
Bn,p,q (61, x) =X, (16)
(3)
n—1
_ a2 Prx(1-x)
B, pg(eyx)=x"+ —[n]m , 17)
(4)
pn le (1 _ x)
B, (e5x) = x° W
18
2[n],, pPx (1-x) + p"x(1-x) (1-2xp™") 18)

>

(nl3,,
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XA-x)p 2 (p?+2p+3
Bupa ) =t S0P 20 00)

(n]pq
A=-x)p" 2 1-2xp T+ p2(2-3xp ) (p+2
. P pzp( p)(p )}(19)
(n]g
x(1-x)p* (p —4xp' - 2x+ 6x2p72)
" )
[n]f,,q
Lemma 2. Forx € [0,1],0 < g < p < 1, we have
€]
D (Lx) =1, (20)
(2)
"), +an+2],. +qln? x
D;ﬁ”Zﬁ(t, ) = P nlpg pa T 4Mpg QD
h ([”]P,q + ﬂ) [n+2],4
(3)

Diag (£5x) = {p™ 21,4 13,
+a? [n+2],,[n+3],, +2ap" [n],, [n+3],,
+ {p"q (p+29) [n];’q +2aq [n];,q [n+ 3]p,q} X (22)
+q [n];’q {x2 (n],q + Px(1 - x)}}

-1

(111 + B) 1+ 2], In+ 3pg) >

(4)

Dy (0x) = {p" 0], (P* + 2% + 204 + 7°)

+3ap™ [2],,, [}, [n+4],, + 3’ p" 1], [n

pa
+3],n+4],,+ o [n+ 2]pqn+3],.[n+4],,
o (apa’ + pa+3p°¢" + 30" [nly,

+3ap” (pg +24°) [l [+ 4],

+3a’q [n]f,,q [n+3],,[n+ 4]}7:‘1} X

n 4, 23 5\ 14 (23)
+{p" (204" + 0 +3°) [l

+ 3ocq3 [n];’q [n+ 4]1,,‘1} {xz (M],q

+p"'x(1-x)}+q° [n];)q [ [n];’q
n-1_2 n-2 2

+p X (1-x)[n],g+2[n],,p" "x" (1-x)
+ pzn_zx(l - x) (1 - 2xp_1)}} (([n]p)q + ﬁ)3 [n

-1
+2],,[n+3],,[n+ 4]p,q) )

(5)
Dfl,’z)ﬁ (t4,x) = {P4n [”];,q (p6 + 3p5q + 5p4q2
+ 6p3q3 + 5p2q4 + 3pq5 + qé) + 4o [n];,q [n
+51,, 07" (P° +2p’a+2pq" +q°)

+6a°p™"

(21,4 (11, [+ 4], [n+5],,
+40’p" [n], . [n+3],, [n+4],, [n+5],,
+al [n+2],, n+3],, n+4],,n+5],,
+{p" (12p°q" + 12p’q* + 9pq° + 49" + 8p'q’
+p°q+4p°q) [n]}, , + 4ap™ (4pq’ + p’q
+3p°q" +3q") [n];q [n+5],,+6a’p" (pq
+2q°) ], [n+ 4], [n+5],, +4a’q[n]; , [n
+3],,n+ 4], [n+5],,}x+{p™ (9pq’
+7p°q° +9p’q° +64° +3pq" + p°q’ ) [}, 24
+ 4dap” (qu4 +p°q + 3q5) [n];)q [n+ S]M}

. {x2 (1] g + P ix(1- x)} + {p” (3pq8 +2p°q
+p°q" +49) [n]} , +4aq” [l [n+ 5154}

ks (] 4+ P x (1= %) [n] 0 + 29" 57 (1
—x)[n],y+ P Px(1-x) (1-2xp ')}

+q"° ) {x' (] + x> (1= x) p"7 (p* + 2p

+ 3) [n];’q +x°(1-x) p™? {1 —2xp"

+p 2 (2-3xp") (p+2)} (], +x(1-x)

T (p-axpTt —2x+6x°p )} (([n]p)q

4 -1
+B) [+ 20,1+ 3], In+ 4], n+5],,) -

Proceeding along the lines of [[10], Lemma 3.1] and using
the linearity property of the operators (11), the result follows
immediately. We omit the details.

Lemma 3. Denote

n
pa _ —(n*+3n-k*=k)/21 p:q
Ut () = [n+ 1], Y p "™ BPE (1, x)
k=0

(25)

1 [n], t+a "

. p.q p4q _
Jo b (p. pqt)( (n]pq+ B x) Toat-



Then, the central moments are given as follows:
)

a1 ()

B {alnl}, = (Inlpq + B) 1+ 21,0} x + p" [n] g+ [n+ 2],

([”]M + '8) [n+2],,
(2)
Uit () = [P 21 [l + o [+ 2]
+3]pt 2ap" (1] g [ +3],,+x (p"q (p+29)
n-1 3

3
q [nl,,

_9 ([”]M Plraln+ Z]M) ([n]p)q + /3)

3 2
[Nl +2aqnl,  [n+3],,+p

n-1 3

c[n+ 3]P>'Z) +x° (q3 [n];,q -pq [n];)q

([l + B) In+ 20,y [n+3],, - 2q 12,

(g + B) 11+ 31,) (1] + B) 114 21,

+ 3]11741)71 ’
©)

P‘Z’Z,ﬁ,s (x) = Dﬁ:Z,,B (t3’x) - 3xD£:Z,ﬁ (tz”‘)

+36°DPY (1,5 - °DPY L (1,x) = {p™ [l

. (p3 + 2p2q + 2pq2 + q3) + 3ocp2” (21,4 [n];)q [n

+4],,+ 3<x2p” (Mg [n+3],[n+4],,+ o [n

+2],,n+3],,[n+4],,

+{p”" (4pq’ + pa + 3p°q" +34") [},
+3ap” (pq +24°) [n]f,,q (n+4],,
3022, [+ 3], [n+ 4]} x
+{p" (2pd" + P4 +30°) Inh,

+3aq’ [n];)q (n+ 4]p,q} {x2 (n]q
+p" ' x(1-x)}+4° [n]}, {x’ (15,4

+ "I (1= x) [n],, + 2 [n],, p" %% (1 - %)

Fp" (-0 (1- 2xp_1)}} (([H]P,q + ﬁ)3 [n

+2],,[n+3],,[n+ 4]P,q) S|P,

- [nl?

et o’ [n+2] g 1431, +20p" 1], [n

+3],+ {p"q (p+29) [n];)q

(26)

(27)
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+2aq [n];’q [n+ 3]P,q} X+ q3 [n];’q {xz (Mg

Fp (1 - x)}} (([”]p,q + ‘B)z [n+2],,[n

+ 3»]13,,])71

- {pn [n]p,q+“[n+2]p,q+q[n];,qx} e
([”]P,q +ﬁ) [n+2],,

= fi(na B, p.q.%),

4)

”riﬁﬁA (x) = Dﬁﬁ,ﬁ (t4’ x) - 4"D£:Z,ﬁ (t3’ x)

+6x* D1

o3

(tz, x) - 4x3D£”2)ﬁ (t, x)

+x' DR (1) = {p* [n],, (° +3pP°q + 50"
+6p°q +5p°q" +3pq° + q6) + 4 [n];’q [n
+50,, 0" (P +20°q+2pq" + ')

+6a° pZ”

(2] 4 [n]fxq [n+4]pq[n+5lp,
+4a’p" 1], [n+3],, [n+4],,[n+5],,
+at [n+2],,[n+3],,n+4],,[n+5],,
+{p" (12p°q" +12p°q° +9pq° + 4" + 8p'q’
+p°q+4p°q) [n]) , + 4ap™ (4pqg’ + p'q
+3p°q + 3q4) [n]4p’q [n+5],,+ 60’ p" (pq
+2q) [n]}  [n+ 4], [n+5],,+4a’qn];  [n
+3],,n+4],, [n+5],,}x+{p™ (9pd
+70°q +9p°q° + 6q° +3p*q" + p°q’ ) [n]},
+4ap” (2pq" + p’q’ +39°) [n]“P’q (n+ S]M}
A 1, + P x (-0} + {p" (3pd° + 20°
+0°q° +4q" ) [n]},, + 4aq’ [n], , [n+5],,}

n-2_2

. {x3 [n];,q + " x(1-x) (1], +20" %" (1

- x)[n],, + P x(1-x) (1 - 2xp_1)}
5

+q° ] {x" ]} + * (1=x) p"7 (p* +2p

+3) [n]’

2 2n-2 -1
gt X (1-x)p™ {1—2xp

+ p_2 (2 - 3xp_1) (p+ 2)} (n]pq +x (1 -x)

(28)
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ot (p —4xpt —2x + 6x2p’2)}} (([”]pvq
+B) [n+2],,[n+3,,[n+4],,[n+ S]M)il
—ax{p™ [}, (P* +20°q+2pq" +q’)

+3ap™ [2],,, [}, [n+4],, + 3’ p" 1], [n
+3], I+ 4], +a’ [n+2],,[n+3],, [n+4],,
+{p”" (4p4’ + p’a+3p°q" +3q") n]},

+30p" (pg+24°) [n]), [n+ 41, + 3e’q [n]], [n
+3],,[n+ 4]17"1} x+p" (2pq4 + pzq3 + 3q5)
[y, +3aq’ [n])  [n+4],, {x* 1],

n-1_2

+p" a1~ x)} +q° [n]:)q {x3 [n];,q +p X (1

—x) ],y +2[n],, p" X" (1-x)+ p™"?x (1

~x) (1-2xp7)}} (([n]M + ) n+2],,[n

-1
+3],,[n+4] M) + 657 {p? [2]5 ]2+ [

+2],[n+3],,+2ap" 1], [n+3],,+{p"a(p
+2q) [n]}, + 2aq[n]}  [n+3],,} x +q’ [},
A g + " x (= 0} (1] + B) [
+2],,[n+ 3]1,,[1)_1 — 4 (P g+t [

+20p+q Ul x) (Il + B) 1 +21,,) " |

+x" = fy (ma, B, p.g.x).
(29)

The proof follows immediately by applying Lemma 2.

Remark 4. In order to understand the convergence behaviour
of the sequence of (p, g)-Durrmeyer operators, let g = (g,,)
and p = (p,), such that 0 < g, < p, < 1 and
P — l’qn - I’PZ - “)qz - b,O < b <
a < 1 for n sufficiently large. With this restriction, we have
lim,, oo [n],, o = lim, oo (0! — g1/ (py—4,)) = (a—b)/(1 -
1) = oo.

Remark 5. From Lemma 3 and Remark 4, we have

lim % (x) = lim f) (n,0 B, po %) =0, (30)

lim % | (x) = lim f, (n,0 B, po g x) = 0. (31)

3. Direct Estimates

Let W2 = {g € Cl[0,1] : g" € CJ0, 1]}, then K-functional is
defined as

K, (f,0) = inf{|f - g| +8g"] : g e W}, (32)

where § > 0 and norm-|| - | denotes the uniform norm on
C[0, 1]. Following the acclaimed inequality owing to DeVore
and Lorentz [29], there exists a constant C > 0, such that

K, (f,8) < Cw, (£, V3), (33)

where the second-order modulus of smoothness for f €
C[0, 1] is defined as

w, (f.96)

= sup sup
0<h<d x,x+he(0,1]

I et2m) —2f (x+ )+ (). @Y

The usual modulus of continuity for f € CJ[0, 1] is defined as

w(f,6)=sup sup |f(x+h)-f(x)|. (35)

0<h<d x,x+he[0,1]

Our prime result is the subsequent local theorem.

Theorem 6. Letn > 3 be a natural numberand0 < g < p < 1.
Then, there exists a constant C > 0, such that

DY (i) = £ ()|

o,

< Co, < 1, \/ P‘i’z,ﬁ,z (x) + (yﬁ,’g,ﬁ)l (x))z) (36)

ro(fiukds (),
where f € C[0,1] and x € [0, 1].
Proof. For f € C[0, 1], let
Dy s (fix) = Dy s (f2) + f ()

B f(p” (], +aln+2],,
(], + B) [n+2],, (37)

N q[n]f,,qx )
([”]P,q + ﬁ) [n+2]p,

Then, using Lemma 2, we immediately get

ﬁg’qﬁ (1,x) = ij’qﬁ (1,x)=1,

ﬁﬁjg)ﬁ (t,x) = ij;g)ﬁ (t,x) + x
_p"[n]P’q+(x[n+2]P,q (38)
(["]p,q +B)[n+ 2lpq
2
. qlnly,x _
([”]p,q +B)[n+ 2lpq




Using Taylor’s formula

gﬁ):gu)+ﬂ—ﬂg%m+}‘U—MgHWﬁm, (39)
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we obtain

quﬁ(g,) g(x)+DMﬁ<L(t—u)g"(u)du,x) g(x)+DWﬁ<L(t—u)g"(u)du,x)

X

. g" (u) du.

Thus,

+
X

1o @l < o 0+ (s ) 1o

Furthermore, for f € C[0, 1], we have ||D‘Dqﬁf||
therefore

If1l'and

By, (f:)] <[ (£x)|+1f )

N ‘f(p“ (1], +a[n+2],,
([”]p»q + 18) [n+2],,

L allyx ><
([”]P,q + ﬁ) [n+2]p,

(42)

3071

VfeC[0,1].

Now, for f € C[0,1] and g € W?, we get

DY (fix) = £ ()| = D25 (i) = £ (0

+‘x[”+2]pq

+f<p[]
((n)pg +B) I+ 21,

)
P4

qux
+
UmM+ﬁﬂn+ﬂ

D (f

J(p"[n]p,q+a[n+2]p,q)/([n]M+ﬁ)[n+2]p,q+q[n]f,,qx/([n]P,q+ﬁ)[n+2]p,q

(p” (Mg +eln+2],,
(

t
DﬁiﬁQ%x)—g(xﬂ D52ﬁ<lj|t—uug”(uﬂdu,x
X

pllnl,,taln+2],,

e )
([”]P,q + ,B) [n+2],,

Mbﬂ+ﬁ)M+2bq

qlnl;,x

J(p"hn%q+am+2bﬂ>m[Mpﬂ+ﬁnn+2bﬂ+qbﬂ;qxﬂ[Mpﬂ+ﬁnn+npq

(Mg + )1+ 20y (gt B)Ine2lpy | 4D
—gmﬂ+fﬁﬁwﬂﬁ—guﬂ+wﬁw—fWH
pllnlp, +aln+2],,
+
‘f ( ([”]p,q + ﬁ) [n+2],,
qlnl;, x )
+ - fx)|<4|f-
(T2 F) In 2L, fe|<4|f-4|
g0+ (e, @) He'| + e (5
s, @),
(43)

where we have used (41) and (42).
On taking infimum on the right hand side over all g €
W?, we attain

DP 1 B (f f (x)|
<tk (fdy, 0+ (W0, @)) @

+w (f, “5:2,/3,1 (x)) .
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7+
6l
5+F
4|
y 3r
21
1t
ot
-1}
-2 L L L L L L L L L
0 01 02 03 04 05 06 07 08 09 1
x € [0,1]
n=2 — n =100
---n=5 --- n=1000
n=10

FIGURE I: The difference Dgﬁ‘f (f,x) — f(x) fora =5, B = 20, and
flx)=9-6x— 3x2%.

Lastly, in view of (33), we have

Dﬁ,’iﬁ (fix)-f (x)‘

< Co, < 1, \/ Mﬁ’iﬁ,z (x) + (yg;gﬁ,l (x))Z) (45)
+ w(f’ ("g,g,ﬁ,l (x)>'

The theorem is hence proved. O

Example 7. We present comparisons and graphs for the
convergence of operators DZ 2 s f, x) for various values of the
parameters o, f3, p, and g, such that 0 < g < p < 1 and
0<a<B.Forxe[0,1],a=5 =20, p=0.8,andg=0.3,
the convergence behaviour of the difference of the operators
Dﬁ:Z,ﬁ(f’ x) to the function f, where f(x) =9 -6x — 3x?, for
various values of #, is presented in Figure 1 using MATLAB.

Example 8. The convergence behaviour of the operators
Dﬁﬁ,ﬁ(f’ x) to the function 9 — 6x — 3x* fora = 0 = Bis
illustrated in Figure 2. It may be observed that this shows the
convergence for the operators defined in [10].

Example 9. We compute the error of approximation for the
0 b i h d
perators D, " ﬁ( £, x) depending upon the parameters « an
B at certain points from [0, 1] as shown in Table 1. We consider

n=100, p=0.5q=04and f(x) = 9 - 6x — 3x.

Remark 10. It may be observed from the above example that
we may get better convergence depending upon the flexible
values of & and f3. This is one of the reasons for discussing
operators (11).

We now present the Voronovskaja type asymptotic for-
mula.

-2.5
-3t
—3.5F
—4 |
—4.5
y S5r
—5.5F
-6+
—6.5 F
-7k
-7.5

0 01 02 03 04 05 06 07 08 09 1
x € [0,1]

n=2 — n =100
e n=5 ——~ n=1000
n=10
FIGURE 2: The difference Dg;i’f (fix)— f(x) fora =0, B =0,and
f(x)=9—-6x— 3x2.

TaBLE 1: Error of approximation.

D24 (£, )~ f(0)l D2 ()~ f ()|

* fora =2, =20 fora=0,3=0
0 0.6300 3.2640
0.01 0.5697 3.3624
0.02 0.5088 3.4612
0.03 0.4473 3.5603
0.04 0.3852 3.6599
0.05 0.3225 3.7598
0.06 0.2592 3.8601
0.07 0.1953 3.9608
0.08 0.1308 4.0619
0.09 0.0657 4.1634
0.1 0 4.2652

Theorem 11. Assume f € C[0,1]. If " exists at a point x €

[e/([nl,, 4, + B (], o +)/([n], 5 + P)l, then under the
assumptions of Remark 4, we get

lim [l (DL (fix) - £ )
={a+ra-(2b+p)x} ' (x) (46)

fll (x) '

+ {2ax—(a+b)x2} 5

Proof. Employing Taylor's expansion of f, we get

(t - x)°

FO=fE+ f @ E-x+T 2(x) .

+E(tx) (t - x)*,



where&(t, x) — 0ast — x. Applying Dﬁ “‘Xqﬁ to (47), we obtain

DY (fix) ~ f () = DIy (- %) f' ()

(. 2(’“) (48)

na,fB

+ D (Etx) (t-x),x).
Using Cauchy-Schwarz inequality and (31), we get

DI (& (t,x) (£ - x)° , x)

na,f
(49)
< Do (8 (%), x)\/Dﬁ"aqE t-x)*, x).
As £ (x, x) = 0 and &(,, x) € C[0, 1], we have
lim [n], , Dy~ (& (1,x),x) = 0, (50)
uniformly with respect to x € [a/([n], , + ). ([nl, , +

oc)/([n]p a + B)]. Therefore, from (49) ang (50), we get
lim [n],, o D (E(5,2) (= %), x) = 0. (5)
Thus,

lim, (), (DI (f,2) = £ () = Jim [,

[ngx % (1~ x, %) f' (%)

+2f @D (- ) x) (52)

+DP’;q” (E(t x) (t - x)* x)] ={a+a

—(2b+ B) x} f (x) + {Zax —(a+b) xz} %

O

Remark 12. For the g-Durrmeyer operators discussed in
[22], the recurrence relation was established for g-Bernstein-
Durrmeyer operators (see Theorem 4.3 of [2] and references
therein). However, for (p, q)-Durrmeyer operators Dp o wp it

is not analogous and maybe discussed somewhere else

Remark 13. LetI = [0, 1]. Then, for I* = I x I, let C(I*) be the
space of all real valued continuous functions on I* equipped
with the norm | f|I; = sup(x,y)gzlf(x, Y.

Abstract and Applied Analysis

For f € C(I*)and 0 < p, <1,0< p, <1,0<gq, <1,
and 0 < g, < 1; we construct the bivariate extension of the
(p» q)-analogue of Durrmeyer-Stancu operators (11) as

Py >Pny4ny Gn
D, (frxy) = [m + l]pnl . [+ l]pnz,qnz
C B 43m—k—k) 2 (o3 ko) 2 PPy
: Z anl pnz 1,15,k .k, (1’
Ky=0k,=0
! Pry>Pryny 9
X, )’) L bnl,lnz,kzl,kzl ? (Pnl’Pnz’Pnl G, ts Pnﬂnzs) (53)
t+
< [”1]%1 Gy o
[nl]Pn1>qn, + ﬁ
[n,] sta )
Py
—2 2 1d td s
PnyoGn Puyolny ™
[HZ]pnz,qnz + ‘B 149 2 ny
where (x, y) € I Zand
PPy ( ¢ ) G
ny,1y,k 5k pnl’pnz’pnlqn1 ’Pnzqnzs - k
Hp, 4
ny>ing
n, k, k,
1ol G (u9) < (o
24 Dyl
ny =k, ny=k;,
© Putnt)y, g (Pr© Prtns), , - (54)
'n1 > Py 9ny n my My
bP1P2q1q2(1’x’y):
1,1,k 5k, k k
1 Pnyny 2 Prysny
[hey (e, — DI/2 ks (kp =)=y (=112 ey K
pnl 1= D-ny(ny - pnzz 2 Ny 1y — 1y 2 (1

n,—k; ny—k,
© x)Pnl,qnl (1 © y)pnz,qnz ’

The purpose of this study is to obtain approximation prop-
erties of the bivariate generalization of (p,q)-Bernstein-
Durrmeyer operators defined by (11). We may discuss the
properties elsewhere.

4. Conclusion

In the paper, we have proposed Bernstein-Durrmeyer type
operators based on some certain variants. In the case when
a = 3 = 0, our operators reduce to the acclaimed one as
defined in [21]. We have derived some approximation prop-
erties of Bernstein-Durrmeyer type operators. From those
properties, we have estimated its local approximation and
Voronoskaja type asymptotic formula. Finally, we have shown
some comparisons and illustrative graphs for the convergence
of these operators by using the software MATLAB.
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