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The purpose of this paper is to establish a weighted Montgomery identity for 𝑘 points and then use this identity to prove a new
weighted Ostrowski type inequality. Our results boil down to the results of Liu and Ngô if we take the weight function to be the
identity map. In addition, we also generalize an inequality of Ostrowski-Grüss type on time scales for 𝑘 points. For 𝑘 = 2, we
recapture a result of Tuna and Daghan. Finally, we apply our results to the continuous, discrete, and quantum calculus to obtain
more results in this direction.

1. Introduction

In 1938, Ostrowski [1] proved the following inequality which
approximates a function by its integral average.

Theorem 1. Let 𝑓 : [𝑎, 𝑏] → R be a differentiable mapping
on (𝑎, 𝑏) with the property that |𝑓󸀠(𝑥)| ≤ 𝑀 for all 𝑥 ∈ (𝑎, 𝑏).
Then

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑓 (𝑥) − 1𝑏 − 𝑎 ∫𝑏
𝑎
𝑓 (𝑡) 𝑑𝑡󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ [14 + (𝑥 − (𝑎 + 𝑏) /2)2
(𝑏 − 𝑎)2 ] (𝑏 − 𝑎)𝑀,

(1)

for all 𝑥 ∈ [𝑎, 𝑏]. The constant 1/4 is the best possible in the
sense that it cannot be replaced by a smaller constant.

In 1997, Dragomir and Wang [2] obtained another
inequality of this type.

Theorem 2. If 𝑓 : [𝑎, 𝑏] → R is differentiable on [𝑎, 𝑏] and𝛾 ≤ 𝑓󸀠(𝑥) ≤ Γ, for all 𝑥 ∈ [𝑎, 𝑏] for some constants 𝛾, Γ ∈ R,
then

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑓 (𝑥) − 1𝑏 − 𝑎 ∫𝑏
𝑎
𝑓 (𝑡) 𝑑𝑡

− 𝑓 (𝑏) − 𝑓 (𝑎)𝑏 − 𝑎 (𝑥 − 𝑎 + 𝑏2 )󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ≤
14 (𝑏 − 𝑎) (Γ − 𝛾) ,

(2)

for all 𝑥 ∈ [𝑎, 𝑏].
In 1988, the German Mathematician Hilger [3] intro-

duced the concept of time scales. The time scale calculus is
a unification of the theory of difference equations with that
of differential equations, unifying integral and differential
calculus with the calculus of finite differences, offering for-
malism for studying hybrid discrete-continuous dynamical
system. Since the introduction of this theory, it became a
point of research to extend known classical differential and
integral results to time scales. Following this line of thought,
Bohner and Matthews [4] extendedTheorem 1 to time scales
by proving the following result.

Theorem 3. Let 𝑎, 𝑏, 𝑥, 𝑡 ∈ T , 𝑎 < 𝑏, and 𝑓 : [𝑎, 𝑏] → R be
differentiable. Then, for all 𝑥 ∈ [𝑎, 𝑏], one has

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑓 (𝑥) − 1𝑏 − 𝑎 ∫𝑏
𝑎
𝑓𝜎 (𝑡) Δ𝑡󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝑀𝑏 − 𝑎 (ℎ2 (𝑥, 𝑎) + ℎ2 (𝑥, 𝑏)) ,
(3)
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where ℎ2(⋅, ⋅) is given in Definition 12 and 𝑀 =
sup𝑎<𝑡<𝑏|𝑓Δ(𝑡)| < ∞. This inequality is sharp in the
sense that the right-hand side of (3) cannot be replaced by a
smaller one.

For more generalizations, extensions, and variants of
Theorem 3, we refer the interested reader to papers [5–10] and
the references therein. In 2008, Liu and Ngô [11] generalized
Theorem 3 for 𝑘 points𝑥1, 𝑥2, . . . , 𝑥𝑘. Specifically, they proved
the following theorem.

Theorem 4. Suppose that

(1) 𝑎, 𝑏 ∈ T , 𝐼𝑘 : 𝑎 = 𝑥0 < 𝑥1 < ⋅ ⋅ ⋅ < 𝑥𝑘−1 < 𝑥𝑘 = 𝑏 is a
division of the interval [𝑎, 𝑏] for 𝑥0, 𝑥1, . . . , 𝑥𝑘 ∈ T ,

(2) 𝛼𝑗 ∈ T (𝑗 = 0, 1, . . . , 𝑘 + 1) is 𝑘 + 2 points so that𝛼0 = 𝑎, 𝛼𝑗 ∈ [𝑥𝑗−1, 𝑥𝑗] (𝑗 = 1, . . . , 𝑘) and 𝛼𝑘+1 = 𝑏,
(3) 𝑓 : [𝑎, 𝑏] → R is differentiable function.

Then one has
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫
𝑏

𝑎
𝑓𝜎 (𝑡) Δ𝑡 − 𝑘∑

𝑗=0

(𝛼𝑗+1 − 𝛼𝑗) 𝑓 (𝑥𝑗)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝑀𝑘−1∑
𝑗=0

(ℎ2 (𝑥𝑗, 𝛼𝑗+1) + ℎ2 (𝑥𝑗+1, 𝛼𝑗+1)) ,
(4)

where 𝑀 = sup𝑎<𝑡<𝑏|𝑓Δ(𝑡)|. This inequality is sharp in the
sense that the right-hand side of (4) cannot be replaced by a
smaller one.

As a consequence (by taking 𝜆 = 0) ofTheorem 9 in [12],
Tuna and Daghan obtained the following time scale version
of Theorem 2.

Theorem 5. Let 𝑎, 𝑏, 𝑥, 𝑡 ∈ T , 𝑎 < 𝑏, and 𝑓 : [𝑎, 𝑏] → R be
differentiable. If 𝑓Δ is rd-continuous and 𝛾 ≤ 𝑓Δ(𝑡) ≤ Γ, for all𝑡 ∈ [𝑎, 𝑏] and for some 𝛾, Γ ∈ R, then, for all 𝑥 ∈ [𝑎, 𝑏], one
has

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑓 (𝑥) − 1𝑏 − 𝑎 ∫𝑏
𝑎
𝑓𝜎 (𝑡) Δ𝑡

− Γ + 𝛾2 (𝑏 − 𝑎) [ℎ2 (𝑥, 𝑎) − ℎ2 (𝑥, 𝑏)]
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ Γ − 𝛾2 (𝑏 − 𝑎) [ℎ2 (𝑥, 𝑎) + ℎ2 (𝑥, 𝑏)] .
(5)

The aim of this paper is twofold, namely,

(1) proving a generalized weighted Montgomery identity
for 𝑘 points 𝑥1, 𝑥2, . . . , 𝑥𝑘.Using this identity, we then
obtain a weighted version of Theorem 4. Our result
boils down toTheorem 4, if the weight function is the
identity map,

(2) generalizingTheorem 5 for 𝑘 points𝑥1, 𝑥2, . . . , 𝑥𝑘. For
the case where 𝑘 = 2, we recover Theorem 5.

This present paper is organized as follows. In Section 2,
we provide some time scale essentials that will aid in better
understanding of what follows. Our main results are then
stated and proven in Section 3. Finally, we apply our results
to the continuous, discrete, and quantum calculus to obtain
more results in this direction. A brief conclusion follows
thereafter in Section 4.

2. Preliminaries

Now, we briefly introduce the theory of time scales. For an
in-depth study of the time scale calculus, we recommend the
books of Bohner and Peterson [13, 14].

Definition 6. A time scale T is an arbitrary nonempty closed
subset of R. The forward jump operator 𝜎 : T → T and
backward jump operator 𝜌 : T → T are defined by 𝜎(𝑡) fl
inf{𝑠 ∈ T : 𝑠 > 𝑡} for 𝑡 ∈ T and 𝜌(𝑡) fl sup{𝑠 ∈ T : 𝑠 < 𝑡} for𝑡 ∈ T , respectively. Clearly, we see that 𝜎(𝑡) ≥ 𝑡 and 𝜌(𝑡) ≤ 𝑡
for all 𝑡 ∈ T . If 𝜎(𝑡) > 𝑡, then we say that 𝑡 is right-scattered,
while if 𝜌(𝑡) < 𝑡, then we say that 𝑡 is left-scattered. If 𝜎(𝑡) = 𝑡,
then 𝑡 is called right dense, and if 𝜌(𝑡) = 𝑡, then 𝑡 is called
left dense. Points that are both right dense and left dense are
called dense. The set T𝑘 is defined as follows: if T has a left-
scattered maximum 𝑚, then T𝑘 = T − 𝑚; otherwise, T𝑘 = T .
For 𝑎, 𝑏 ∈ T with 𝑎 ≤ 𝑏, we define the interval [𝑎, 𝑏] in T by[𝑎, 𝑏] = {𝑡 ∈ T : 𝑎 ≤ 𝑡 ≤ 𝑏}. Open intervals and half-open
intervals are defined in the same manner.

Definition 7. The function 𝑓 : T → R, is called differentiable
at 𝑡 ∈ T𝑘, with delta derivative 𝑓Δ(𝑡) ∈ R, if for any given𝜖 > 0 there exists a neighborhood 𝑈 of 𝑡 such that

󵄨󵄨󵄨󵄨󵄨𝑓 (𝜎 (𝑡)) − 𝑓 (𝑠) − 𝑓Δ (𝑡) (𝜎 (𝑡) − 𝑠)󵄨󵄨󵄨󵄨󵄨 ≤ 𝜖 |𝜎 (𝑡) − 𝑠| ,
∀𝑠 ∈ 𝑈. (6)

If T = R, then 𝑓Δ(𝑡) = 𝑑𝑓(𝑡)/𝑑𝑡, and if T = Z, then𝑓Δ(𝑡) = 𝑓(𝑡 + 1) − 𝑓(𝑡).
Definition 8. The function 𝑓 : T → R is said to be 𝑟𝑑-
continuous if it is continuous at all right-dense points 𝑡 ∈ T

and its left-sided limits exist at all left-dense points 𝑡 ∈ T .
Definition 9. Let 𝑓 be 𝑟𝑑-continuous function.Then 𝑔 : T →
R is called an antiderivative of 𝑓 on T if it is differentiable on
T and satisfies 𝑔Δ(𝑡) = 𝑓(𝑡) for any 𝑡 ∈ T𝑘. In this case, one
has

∫𝑏
𝑎
𝑓 (𝑠) Δ𝑠 = 𝑔 (𝑏) − 𝑔 (𝑎) . (7)

Definition 10. The function 𝑓𝜎 : T → R is defined as

𝑓𝜎 (𝑡) fl 𝑓 (𝜎 (𝑡)) (8)

for any 𝑡 ∈ T .
Theorem 11. If 𝑎, 𝑏, 𝑐 ∈ T with 𝑎 < 𝑐 < 𝑏, 𝛼 ∈ R, and 𝑓, 𝑔
are 𝑟𝑑-continuous, then one has the following:
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(i) ∫𝑏
𝑎
[𝑓(𝑡) + 𝑔(𝑡)]Δ𝑡 = ∫𝑏

𝑎
𝑓(𝑡)Δ𝑡 + ∫𝑏

𝑎
𝑔(𝑡)Δ𝑡.

(ii) ∫𝑏
𝑎
𝛼𝑓(𝑡)Δ𝑡 = 𝛼 ∫𝑏

𝑎
𝑓(𝑡)Δ𝑡.

(iii) ∫𝑏
𝑎
𝑓(𝑡)Δ𝑡 = −∫𝑎

𝑏
𝑓(𝑡)Δ𝑡.

(iv) ∫𝑏
𝑎
𝑓(𝑡)Δ𝑡 = ∫𝑐

𝑎
𝑓(𝑡)Δ𝑡 + ∫𝑏

𝑐
𝑓(𝑡)Δ𝑡.

(v) |∫𝑏
𝑎
𝑓(𝑡)Δ𝑡| ≤ ∫𝑏

𝑎
|𝑓(𝑡)|Δ𝑡.

(vi) ∫𝑏
𝑎
𝑓(𝑡)𝑔Δ(𝑡)Δ𝑡 = (𝑓𝑔)(𝑏)−(𝑓𝑔)(𝑎)−∫𝑏

𝑎
𝑓Δ(𝑡)𝑔𝜎(𝑡)Δ𝑡.

Definition 12. Let ℎ𝑘 : T2 → R, 𝑘 ∈ N, be functions that are
recursively defined as

ℎ0 (𝑡, 𝑠) = 1,
ℎ𝑘+1 (𝑡, 𝑠) = ∫𝑡

𝑠
ℎ𝑘 (𝜏, 𝑠) Δ𝜏,

∀𝑠, 𝑡 ∈ T .
(9)

3. Main Results

For the proof of our theorems, we will need the following
lemma.

Lemma 13 (generalized weighted Montgomery identity for 𝑘
points). Suppose that

(1) 𝑎, 𝑏 ∈ T , 𝐼𝑘 : 𝑎 = 𝑥0 < 𝑥1 < ⋅ ⋅ ⋅ < 𝑥𝑘−1 < 𝑥𝑘 = 𝑏 is a
division of the interval [𝑎, 𝑏] for 𝑥0, 𝑥1, . . . , 𝑥𝑘 ∈ T ,

(2) 𝛼𝑗 ∈ T (𝑗 = 0, 1, . . . , 𝑘 + 1) is 𝑘 + 2 points so that𝛼0 = 𝑎, 𝛼𝑗 ∈ [𝑥𝑗−1, 𝑥𝑗] (𝑗 = 1, . . . , 𝑘) and 𝛼𝑘+1 = 𝑏,
(3) 𝑓,𝑤 : [𝑎, 𝑏] → R are differentiable functions.

Then one has the following equation:

∫𝑏
𝑎
𝐾(𝑡, 𝐼𝑘) 𝑓Δ (𝑡) Δ𝑡 + ∫𝑏

𝑎
𝑤Δ (𝑡) 𝑓𝜎 (𝑡) Δ𝑡

= (𝛼1 − 𝑤 (𝑎)) 𝑓 (𝑎) + (𝑤 (𝑏) − 𝛼𝑘) 𝑓 (𝑏)
+ 𝑘−1∑
𝑗=1

(𝛼𝑗+1 − 𝛼𝑗) 𝑓 (𝑥𝑗) ,
(10)

where

𝐾(𝑡, 𝐼𝑘) =

{{{{{{{{{{{{{{{{{{{{{{{

𝑤 (𝑡) − 𝛼1, 𝑡 ∈ [𝑎, 𝑥1) ,
𝑤 (𝑡) − 𝛼2, 𝑡 ∈ [𝑥1, 𝑥2) ,...
𝑤 (𝑡) − 𝛼𝑘−1, 𝑡 ∈ [𝑥𝑘−2, 𝑥𝑘−1) ,
𝑤 (𝑡) − 𝛼𝑘, 𝑡 ∈ [𝑥𝑘−1, 𝑏] .

(11)

Proof. Using items (i), (ii), (iv), and (vi) of Theorem 11, we
have

∫𝑏
𝑎
𝐾(𝑡, 𝐼𝑘) 𝑓Δ (𝑡) Δ𝑡 = 𝑘−1∑

𝑗=0

∫𝑥𝑗+1
𝑥𝑗

𝐾(𝑡, 𝐼𝑘) 𝑓Δ (𝑡) Δ𝑡

= 𝑘−1∑
𝑗=0

∫𝑥𝑗+1
𝑥𝑗

(𝑤 (𝑡) − 𝛼𝑗+1) 𝑓Δ (𝑡) Δ𝑡

= 𝑘−1∑
𝑗=0

[(𝑤 (𝑥𝑗+1) − 𝛼𝑗+1) 𝑓 (𝑥𝑗+1)
− (𝑤 (𝑥𝑗) − 𝛼𝑗+1) 𝑓 (𝑥𝑗) − ∫𝑥𝑗+1

𝑥𝑗

𝑤Δ (𝑡) 𝑓𝜎 (𝑡) Δ𝑡]
= 𝑘−1∑
𝑗=0

[(𝛼𝑗+1 − 𝑤 (𝑥𝑗)) 𝑓 (𝑥𝑗)
+ (𝑤 (𝑥𝑗+1) − 𝛼𝑗+1) 𝑓 (𝑥𝑗+1)
− ∫𝑥𝑗+1
𝑥𝑗

𝑤Δ (𝑡) 𝑓𝜎 (𝑡) Δ𝑡] = (𝛼1 − 𝑤 (𝑎)) 𝑓 (𝑎)
+ (𝑤 (𝑏) − 𝛼𝑘) 𝑓 (𝑏) − ∫𝑏

𝑎
𝑤Δ (𝑡) 𝑓𝜎 (𝑡) Δ𝑡

+ 𝑘−1∑
𝑗=1

(𝛼𝑗+1 − 𝑤 (𝑥𝑗)) 𝑓 (𝑥𝑗) + 𝑘−2∑
𝑗=0

(𝑤 (𝑥𝑗+1)
− 𝛼𝑗+1) 𝑓 (𝑥𝑗+1) = (𝛼1 − 𝑤 (𝑎)) 𝑓 (𝑎) + (𝑤 (𝑏)
− 𝛼𝑘) 𝑓 (𝑏) − ∫𝑏

𝑎
𝑤Δ (𝑡) 𝑓𝜎 (𝑡) Δ𝑡 + 𝑘−1∑

𝑗=1

(𝛼𝑗+1 − 𝛼𝑗)
⋅ 𝑓 (𝑥𝑗) .

(12)

Hence, the result follows.

Remark 14. Theabove lemma becomes Lemma 1 in paper [11]
if we take 𝑤(𝑡) = 𝑡.
Corollary 15. If𝑤(𝑡) = 𝑡2, then𝑤Δ(𝑡) = 𝜎(𝑡)+𝑡 and (10) boils
down to

∫𝑏
𝑎
𝐾(𝑡, 𝐼𝑘) 𝑓Δ (𝑡) Δ𝑡 + ∫𝑏

𝑎
(𝜎 (𝑡) + 𝑡) 𝑓𝜎 (𝑡) Δ𝑡

= (𝛼1 − 𝑎2) 𝑓 (𝑎) + (𝑏2 − 𝛼𝑘) 𝑓 (𝑏)
+ 𝑘−1∑
𝑗=1

(𝛼𝑗+1 − 𝛼𝑗) 𝑓 (𝑥𝑗) ,
(13)

where

𝐾(𝑡, 𝐼𝑘) =
{{{{{{{{{{{{{{{{{{{{{

𝑡2 − 𝛼1, 𝑡 ∈ [𝑎, 𝑥1) ,
𝑡2 − 𝛼2, 𝑡 ∈ [𝑥1, 𝑥2) ,...
𝑡2 − 𝛼𝑘−1, 𝑡 ∈ [𝑥𝑘−2, 𝑥𝑘−1) ,
𝑡2 − 𝛼𝑘, 𝑡 ∈ [𝑥𝑘−1, 𝑏] .

(14)
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Corollary 16. If we take T = R in Corollary 15, (13) becomes

∫𝑏
𝑎
𝐾(𝑡, 𝐼𝑘) 𝑓󸀠 (𝑡) 𝑑𝑡 + 2∫𝑏

𝑎
𝑡𝑓 (𝑡) 𝑑𝑡

= (𝛼1 − 𝑎2) 𝑓 (𝑎) + (𝑏2 − 𝛼𝑘) 𝑓 (𝑏)
+ 𝑘−1∑
𝑗=1

(𝛼𝑗+1 − 𝛼𝑗) 𝑓 (𝑥𝑗) .
(15)

Theorem 17 (weighted Ostrowski type inequality for 𝑘
points). Under the assumptions of Lemma 13, one has the
following inequality:󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨(𝛼1 − 𝑤 (𝑎)) 𝑓 (𝑎) + (𝑤 (𝑏) − 𝛼𝑘) 𝑓 (𝑏)

+ 𝑘−1∑
𝑗=1

(𝛼𝑗+1 − 𝛼𝑗) 𝑓 (𝑥𝑗) − ∫𝑏
𝑎
𝑤Δ (𝑡) 𝑓𝜎 (𝑡) Δ𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ 𝑀∫𝑏

𝑎

󵄨󵄨󵄨󵄨𝐾 (𝑡, 𝐼𝑘)󵄨󵄨󵄨󵄨 Δ𝑡,

(16)

where𝑀 = sup𝑎<𝑡<𝑏|𝑓Δ(𝑡)|.
Proof. The proof of inequality (16) follows by taking the
absolute value of both sides of (10) and then applying item
(v) of Theorem 11.

Remark 18. By choosing 𝑤(𝑡) = 𝑡, we recapture Theorem 4.

Corollary 19 (continuous case). Let T = R. Then, one has
from (16) the following inequality:󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨(𝛼1 − 𝑤 (𝑎)) 𝑓 (𝑎) + (𝑤 (𝑏) − 𝛼𝑘) 𝑓 (𝑏)

+ 𝑘−1∑
𝑗=1

(𝛼𝑗+1 − 𝛼𝑗) 𝑓 (𝑥𝑗) − ∫𝑏
𝑎
𝑤󸀠 (𝑡) 𝑓 (𝑡) 𝑑𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ 𝑀∫𝑏

𝑎

󵄨󵄨󵄨󵄨𝐾 (𝑡, 𝐼𝑘)󵄨󵄨󵄨󵄨 𝑑𝑡,

(17)

where𝑀 = sup𝑎<𝑡<𝑏|𝑓󸀠(𝑡)| and 𝐾(𝑡, 𝐼𝑘) is given by (11).

Corollary 20 (discrete case). Let T = Z, 𝑎 = 0, 𝑏 = 𝑛.
Suppose that

(1) 𝐼𝑘 : 0 = 𝑗0 < 𝑗1 < ⋅ ⋅ ⋅ < 𝑗𝑘−1 < 𝑗𝑘 = 𝑛 is a division of[0, 𝑛] ∩ Z for 𝑗0, 𝑗1, . . . , 𝑗𝑘 ∈ Z;
(2) 𝑝𝑖 ∈ Z (𝑖 = 0, . . . , 𝑘 + 1) is 𝑘 + 2 points so that 𝑝0 =0, 𝑝𝑖 ∈ [𝑗𝑖−1, 𝑗𝑖] ∩ Z (𝑖 = 1, . . . , 𝑘) and 𝑝𝑘+1 = 𝑛;
(3) 𝑓(𝑘) = 𝑥𝑘.

Then, for any differentiable function 𝑤 : [0, 𝑛] ∩ Z → R, and
each 𝑘 = 1, 2, . . . , 𝑛, one has󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨(𝑝1 − 𝑤 (0)) 𝑥0 + (𝑤 (𝑛) − 𝑝𝑘) 𝑥𝑛 + 𝑘−1∑

𝑖=1

(𝑝𝑖+1 − 𝑝𝑖) 𝑥𝑗𝑖

− 𝑛∑
𝑗=1

(𝑤 (𝑗) − 𝑤 (𝑗 − 1)) 𝑥𝑗
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ≤ 𝑀𝑛−1∑

𝑗=0

󵄨󵄨󵄨󵄨𝐾 (𝑗, 𝐼𝑘)󵄨󵄨󵄨󵄨 ,
(18)

where𝑀 = sup𝑖=1,...,𝑛−1|Δ𝑥𝑖| and

𝐾(𝑗, 𝐼𝑘) =

{{{{{{{{{{{{{{{{{{{{{{{

𝑤(𝑗) − 𝑝1, 𝑗 ∈ [0, 𝑗1) ,
𝑤 (𝑗) − 𝑝2, 𝑗 ∈ [𝑗1, 𝑗2) ,...
𝑤 (𝑗) − 𝑝𝑘−1, 𝑗 ∈ [𝑗𝑘−2, 𝑗𝑘−1) ,
𝑤 (𝑗) − 𝑝𝑘, 𝑗 ∈ [𝑗𝑘−1, 𝑛] .

(19)

Next, we formulate and prove a generalization of Theo-
rem 5.

Theorem21 (generalizedOstrowski-Grüss type inequality for𝑘 points). Suppose that
(1) 𝑎, 𝑏 ∈ T , 𝐼𝑘 : 𝑎 = 𝑥0 < 𝑥1 < ⋅ ⋅ ⋅ < 𝑥𝑘−1 < 𝑥𝑘 = 𝑏 is a

division of the interval [𝑎, 𝑏] for 𝑥0, 𝑥1, . . . , 𝑥𝑘 ∈ T ,

(2) 𝛼𝑗 ∈ T (𝑗 = 0, 1, . . . , 𝑘 + 1) is 𝑘 + 2 points so that𝛼0 = 𝑎, 𝛼𝑗 ∈ [𝑥𝑗−1, 𝑥𝑗] (𝑗 = 1, . . . , 𝑘) and 𝛼𝑘+1 = 𝑏,
(3) 𝑓 : [𝑎, 𝑏] → R is differentiable, 𝑓Δ is rd-continuous,

and there exist 𝛾, Γ ∈ R such that 𝛾 ≤ 𝑓Δ(𝑡) ≤ Γ for all𝑡 ∈ [𝑎, 𝑏].
Then one has the following inequality:

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑘∑
𝑗=0

(𝛼𝑗+1 − 𝛼𝑗) 𝑓 (𝑥𝑗) − ∫𝑏
𝑎
𝑓𝜎 (𝑡) Δ𝑡

− Γ + 𝛾2
𝑘−1∑
𝑗=0

(ℎ2 (𝑥𝑗+1, 𝛼𝑗+1) − ℎ2 (𝑥𝑗, 𝛼𝑗+1))
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ Γ − 𝛾2
𝑘−1∑
𝑗=0

(ℎ2 (𝑥𝑗, 𝛼𝑗+1) + ℎ2 (𝑥𝑗+1, 𝛼𝑗+1)) .

(20)

Inequality (20) is sharp in the sense that the constant 1/2 on the
right-hand side cannot be replaced by a smaller one.

Proof. Using Lemma 13 with𝑤(𝑡) = 𝑡, we obtain (see also [11,
Lemma 1])

∫𝑏
𝑎
𝐾(𝑡, 𝐼𝑘) 𝑓Δ (𝑡) Δ𝑡 = 𝑘∑

𝑗=0

(𝛼𝑗+1 − 𝛼𝑗) 𝑓 (𝑥𝑗)

− ∫𝑏
𝑎
𝑓𝜎 (𝑡) Δ𝑡,

(21)
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where

𝐾(𝑡, 𝐼𝑘) =

{{{{{{{{{{{{{{{{{{{{{{{

𝑡 − 𝛼1, 𝑡 ∈ [𝑎, 𝑥1) ,
𝑡 − 𝛼2, 𝑡 ∈ [𝑥1, 𝑥2) ,...
𝑡 − 𝛼𝑘−1, 𝑡 ∈ [𝑥𝑘−2, 𝑥𝑘−1) ,
𝑡 − 𝛼𝑘, 𝑡 ∈ [𝑥𝑘−1, 𝑏] .

(22)

Also, from (22), we get

∫𝑏
𝑎
𝐾(𝑡, 𝐼𝑘) Δ𝑡 = 𝑘−1∑

𝑗=0

∫𝑥𝑗+1
𝑥𝑗

(𝑡 − 𝛼𝑗+1) Δ𝑡

= 𝑘−1∑
𝑗=0

[∫𝛼𝑗+1
𝑥𝑗

(𝑡 − 𝛼𝑗+1) Δ𝑡 + ∫𝑥𝑗+1
𝛼𝑗+1

(𝑡 − 𝛼𝑗+1) Δ𝑡]

= 𝑘−1∑
𝑗=0

[∫𝑥𝑗+1
𝛼𝑗+1

(𝑡 − 𝛼𝑗+1) Δ𝑡 − ∫𝑥𝑗
𝛼𝑗+1

(𝑡 − 𝛼𝑗+1) Δ𝑡]

= 𝑘−1∑
𝑗=0

(ℎ2 (𝑥𝑗+1, 𝛼𝑗+1) − ℎ2 (𝑥𝑗, 𝛼𝑗+1)) .

(23)

Similarly, one gets

∫𝑏
𝑎

󵄨󵄨󵄨󵄨𝐾 (𝑡, 𝐼𝑘)󵄨󵄨󵄨󵄨 Δ𝑡
= 𝑘−1∑
𝑗=0

(ℎ2 (𝑥𝑗, 𝛼𝑗+1) + ℎ2 (𝑥𝑗+1, 𝛼𝑗+1)) .
(24)

Now, let Θ = (Γ + 𝛾)/2. From assumption (3), 𝛾 ≤ 𝑓Δ(𝑡) ≤ Γ
for all 𝑡 ∈ [𝑎, 𝑏] implies that 𝛾 − Θ ≤ 𝑓Δ(𝑡) − Θ ≤ Γ − Θ for
all 𝑡 ∈ [𝑎, 𝑏].This further implies that |𝑓Δ(𝑡) −Θ| ≤ (Γ−𝛾)/2,
for all 𝑡 ∈ [𝑎, 𝑏].Hence,

max
𝑡∈[𝑎,𝑏]

󵄨󵄨󵄨󵄨󵄨𝑓Δ (𝑡) − Θ󵄨󵄨󵄨󵄨󵄨 ≤ Γ − 𝛾2 . (25)

Using (21) and (23), we obtain

∫𝑏
𝑎
𝐾(𝑡, 𝐼𝑘) (𝑓Δ (𝑡) − Θ)Δ𝑡
= 𝑘∑
𝑗=0

(𝛼𝑗+1 − 𝛼𝑗) 𝑓 (𝑥𝑗) − ∫𝑏
𝑎
𝑓𝜎 (𝑡) Δ𝑡

− Θ𝑘−1∑
𝑗=0

(ℎ2 (𝑥𝑗+1, 𝛼𝑗+1) − ℎ2 (𝑥𝑗, 𝛼𝑗+1)) .
(26)

The left-hand side of (26) is estimated as follows:󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫
𝑏

𝑎
𝐾(𝑡, 𝐼𝑘) (𝑓Δ (𝑡) − Θ)Δ𝑡󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ max
𝑡∈[𝑎,𝑏]

󵄨󵄨󵄨󵄨󵄨𝑓Δ (𝑡) − Θ󵄨󵄨󵄨󵄨󵄨 ∫
𝑏

𝑎

󵄨󵄨󵄨󵄨𝐾 (𝑡, 𝐼𝑘)󵄨󵄨󵄨󵄨 Δ𝑡.
(27)

Using relation (25) in (27), we get

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫
𝑏

𝑎
𝐾(𝑡, 𝐼𝑘) (𝑓Δ (𝑡) − Θ)Δ𝑡󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ Γ − 𝛾2 ∫𝑏

𝑎

󵄨󵄨󵄨󵄨𝐾 (𝑡, 𝐼𝑘)󵄨󵄨󵄨󵄨 Δ𝑡.
(28)

Hence, the desired result follows.

Remark 22. If 𝑥1 = 𝑥, 𝛼0 = 𝛼1 = 𝑎, 𝛼2 = 𝛼3 = 𝑥2 = 𝑏, then
Theorem 21 becomesTheorem 5 for the case where 𝑘 = 2.

We now apply Theorem 21 to different time scales.

Corollary 23 (continuous case). Taking T = R inTheorem 21
amounts to the following inequality:

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑘∑
𝑗=0

(𝛼𝑗+1 − 𝛼𝑗) 𝑓 (𝑥𝑗) − ∫𝑏
𝑎
𝑓 (𝑡) 𝑑𝑡

− Γ + 𝛾2 [
[
𝑏2 − 𝑎22 − 𝑘−1∑

𝑗=0

𝛼𝑗+1 (𝑥𝑗+1 − 𝑥𝑗)]]
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ Γ − 𝛾2 [
[
𝑘−1∑
𝑗=0

(𝑥𝑗+1 − 𝑥𝑗2 )2

+ 𝑘−1∑
𝑗=0

(𝛼𝑗+1 − 𝑥𝑗+1 + 𝑥𝑗2 )2]
]
.

(29)

Proof. In this case, ℎ2(𝑡, 𝑠) = (𝑡−𝑠)2/2.Using this in inequality
(20) gives the desired result.

Remark 24. The above corollary is the same as Corollary 2.1
in [15]. In other words, Theorem 21 extends Corollary 2.1, in
paper [15], to time scales.

Corollary 25 (discrete case). Let T = Z, 𝑎 = 0, 𝑏 = 𝑛.
Suppose that

(1) 𝐼𝑘 : 0 = 𝑗0 < 𝑗1 < ⋅ ⋅ ⋅ < 𝑗𝑘−1 < 𝑗𝑘 = 𝑛 is a division of[0, 𝑛] ∩ Z for 𝑗0, 𝑗1, . . . , 𝑗𝑘 ∈ Z;

(2) 𝑝𝑖 ∈ Z (𝑖 = 0, . . . , 𝑘 + 1) is 𝑘 + 2 points so that 𝑝0 =0, 𝑝𝑖 ∈ [𝑗𝑖−1, 𝑗𝑖] ∩ Z (𝑖 = 1, . . . , 𝑘) and 𝑝𝑘+1 = 𝑛;
(3) 𝑓(𝑘) = 𝑥𝑘.

Then one has the following inequality:

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑘∑
𝑖=0

(𝑝𝑖+1 − 𝑝𝑖) 𝑥𝑗𝑖 −
𝑛∑
𝑗=1

𝑥𝑗

+ Γ + 𝛾4 [𝑛2 − 𝑘−1∑
𝑖=0

((2𝑝𝑖+1 − 1) (𝑗𝑖+1 − 𝑗𝑖))]
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
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≤ Γ − 𝛾2 [𝑘−1∑
𝑖=0

(𝑗𝑖+1 − 𝑗𝑖2 )2

+ 𝑘−1∑
𝑖=0

(𝑝𝑖+1 − 𝑗𝑖+1 + 𝑗𝑖2 )2 + 𝑘−1∑
𝑖=0

(𝑝𝑖+1 − 𝑗𝑖+1 + 𝑗𝑖2 )] .
(30)

Proof. The proof follows by using the inequality in Theo-
rem 21 and observing that

ℎ2 (𝑗𝑖, 𝑝𝑖+1) = (𝑗𝑖 − 𝑝𝑖+1) (𝑗𝑖 − 𝑝𝑖+1 − 1)
2 ,

ℎ2 (𝑗𝑖+1, 𝑝𝑖+1) = (𝑗𝑖+1 − 𝑝𝑖+1) (𝑗𝑖+1 − 𝑝𝑖+1 − 1)
2 .

(31)

Corollary 26 (quantum case). Let T = 𝑞N0 , 𝑞 > 1, 𝑎 =𝑞𝑚, 𝑏 = 𝑞𝑛 with𝑚 < 𝑛. Suppose that
(1) 𝐼𝑘 : 𝑞𝑚 = 𝑞𝑗0 < 𝑞𝑗1 < ⋅ ⋅ ⋅ < 𝑞𝑗𝑘−1 < 𝑞𝑗𝑘 = 𝑞𝑛 is a

division of [𝑞𝑚, 𝑞𝑛] ∩ 𝑞N0 for 𝑗0, 𝑗1, . . . , 𝑗𝑘 ∈ N0;

(2) 𝑞𝑝𝑖 ∈ 𝑞N0 (𝑖 = 0, . . . , 𝑘 + 1) is 𝑘 + 2 points so that𝑞𝑝0 = 𝑞𝑚, 𝑞𝑝𝑖 ∈ [𝑞𝑗𝑖−1 , 𝑞𝑗𝑖] ∩ 𝑞N0 (𝑖 = 1, . . . , 𝑘) and𝑞𝑝𝑘+1 = 𝑞𝑛;
(3) 𝑓 : [𝑞𝑚, 𝑞𝑛] → R is differentiable.

Then one has

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑘∑
𝑖=0

(𝑞𝑝𝑖+1 − 𝑞𝑝𝑖) 𝑓 (𝑞𝑗𝑖) − ∫𝑞𝑛
𝑞𝑚

𝑓 (𝑞𝑡) 𝑑𝑞𝑡 − Γ + 𝛾2 (𝑞 + 1)
⋅ 𝑘−1∑
𝑖=0

[(𝑞𝑗𝑖+1 − 𝑞𝑝𝑖+1) (𝑞𝑗𝑖+1 − 𝑞𝑝𝑖+1+1)

− (𝑞𝑗𝑖 − 𝑞𝑝𝑖+1) (𝑞𝑗𝑖 − 𝑞𝑝𝑖+1+1)]󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ≤
Γ − 𝛾2 (𝑞 + 1)

⋅ 𝑘−1∑
𝑖=0

[(𝑞𝑗𝑖+1 − 𝑞𝑝𝑖+1) (𝑞𝑗𝑖+1 − 𝑞𝑝𝑖+1+1) + (𝑞𝑗𝑖 − 𝑞𝑝𝑖+1)
⋅ (𝑞𝑗𝑖 − 𝑞𝑝𝑖+1+1)] .

(32)

Proof. Using Theorem 21 and the fact that, for the quantum
calculus, one has 𝜎(𝑡) = 𝑞𝑡,

ℎ2 (𝑞𝑗𝑖 , 𝑞𝑝𝑖+1) = (𝑞𝑗𝑖 − 𝑞𝑝𝑖+1) (𝑞𝑗𝑖 − 𝑞𝑝𝑖+1+1)
𝑞 + 1 ,

ℎ2 (𝑞𝑗𝑖+1 , 𝑞𝑝𝑖+1) = (𝑞𝑗𝑖+1 − 𝑞𝑝𝑖+1) (𝑞𝑗𝑖+1 − 𝑞𝑝𝑖+1+1)
𝑞 + 1 .

(33)

Corollary 27. Suppose that 𝛼 ∈ [𝑎, 𝑏] ∩ T . Then one has the
following inequality:

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨(𝛼 − 𝑎) 𝑓 (𝑎) + (𝑏 − 𝛼) 𝑓 (𝑏) − ∫𝑏
𝑎
𝑓𝜎 (𝑡) Δ𝑡

− Γ + 𝛾2 [ℎ2 (𝑏, 𝛼) − ℎ2 (𝑎, 𝛼)]
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ≤

Γ − 𝛾2 [ℎ2 (𝑎, 𝛼)
+ ℎ2 (𝑏, 𝛼)] .

(34)

Proof. Inequality (34) follows by choosing 𝑘 = 1, 𝛼0 =𝑎, 𝑥1 = 𝑏, 𝛼0 = 𝑎, 𝛼1 = 𝛼, and 𝛼2 = 𝑏, in Theorem 21.

Remark 28. (1) Taking 𝛼 = 𝑎 in (34), we get

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨(𝑏 − 𝑎) 𝑓 (𝑏) − ∫𝑏
𝑎
𝑓𝜎 (𝑡) Δ𝑡 − Γ + 𝛾2 ℎ2 (𝑏, 𝑎)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ Γ − 𝛾2 ℎ2 (𝑏, 𝑎) .

(35)

(2) Taking 𝛼 = (𝑎 + 𝑏)/2 in (34), we get

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑓 (𝑎) + 𝑓 (𝑏)2 (𝑏 − 𝑎) − ∫𝑏

𝑎
𝑓𝜎 (𝑡) Δ𝑡

− Γ + 𝛾2 [ℎ2 (𝑏, 𝑎 + 𝑏2 ) − ℎ2 (𝑎, 𝑎 + 𝑏2 )]󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ Γ − 𝛾2 [ℎ2 (𝑎, 𝑎 + 𝑏2 ) + ℎ2 (𝑏, 𝑎 + 𝑏2 )] .

(36)

(3) Now, for 𝛼 = 𝑏 in (34), we obtain

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨(𝑏 − 𝑎) 𝑓 (𝑎) − ∫𝑏
𝑎
𝑓𝜎 (𝑡) Δ𝑡 + Γ + 𝛾2 ℎ2 (𝑎, 𝑏)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ Γ − 𝛾2 ℎ2 (𝑎, 𝑏) .

(37)

4. Conclusion

The Ostrowski and Ostrowski-Grüss inequalities have
received great deal of attention from the mathematical
community dealing with inequalities. Giant steps have been
made in extending some of the results to time scales. This
work is tailored towards advancing this move. To be precise,
we proved a generalization of the Montgomery identity
and then used the resultant equation to obtain a weighted
Ostrowski inequality for 𝑘 points, thus generalizing a result
of Liu and Ngô [11]. Furthermore, we obtained an Ostrowski-
Grüss type inequality which generalizes and extends results
of Tuna and Daghan [12] and Feng and Meng [15].
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[11] W. Liu andQ.-A. Ngô, “A generalization of Ostrowski inequality
on time scales for k points,” Applied Mathematics and Compu-
tation, vol. 203, no. 2, pp. 754–760, 2008.

[12] A. Tuna and D. Daghan, “Generalization of Ostrowski and
Ostrowski-Grüss type inequalities on time scales,” Computers
and Mathematics with Applications, vol. 60, no. 3, pp. 803–811,
2010.

[13] M. Bohner and A. Peterson,Dynamic Equations on Time Scales:
An Introduction with Applications, Birkhauser, Boston, Mass,
USA, 2001.

[14] M. Bohner and A. Peterson, Advances in Dynamic Equations on
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