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The existence of nonzero periodic travelling wave solutions for a general discrete nonlinear Schrödinger equation (DNLS) on one-
dimensional lattices is proved.TheDNLS features a general nonlinear termand variable range of interactions going beyond the usual
nearest-neighbour interaction.The problem of the existence of travelling wave solutions is converted into a fixed point problem for
an operator on some appropriate function space which is solved by means of Schauder’s Fixed Point Theorem.

1. Introduction

Coherent structures arising in the form of travelling waves,
solitons, and breathers in systems of coupled oscillators
have attracted considerable interest not least due to the
important role they play for applications in physics, biology,
and chemistry (for reviews see [1–3]). In this context a variety
of nonlinear lattice systems has been studied including
Fermi-Pasta-Ulam systems, discrete nonlinear Klein-Gordon
systems, phase oscillator lattices, Josephson junction sys-
tems, reaction-diffusion systems, and the discrete nonlinear
Schrödinger equation. Some exact results concerning the
existence, stability, and uniqueness of coherent structures in
the above-mentioned systems have been obtained; see, for
example, [4–27].

In particular with regard to the existence of periodic
travelling waves (TWs) in nonlinear lattice systems various
methods have been used. For instance, the existence of small
amplitude waves in nonlinear discrete Klein-Gordon systems
was proved with the usage of spatial dynamics and centre
manifold reduction [15, 21]. For the Frenkel-Kontorovamodel
the existence of TWs was shown by means of fixed point
methods in [16]. Utilising a modified Lyapunov-Schmidt
technique, existence of periodic TWs in Newton’s cradle
was proved in [25]. Systems with nonlocal interactions were
considered in [19, 24, 28].

In [24] existence and bifurcation results for periodic TWs
of a general infinite DNLS system as given in (1) in the
next section were derived using variational methods. With
the current study we present a (less involved) proof of the
existence of periodic TWs for the same system but on finite
lattices. To obtain our existence result, some appropriate
function space is introduced on which the original problem
is formulated as a fixed point problem for a corresponding
operator. By exploiting Schauder’s Fixed Point Theorem the
existence of periodic TWs is established.Themain advantage
of considering finite lattices is that for periodic TW solutions
the associated conserved norm (power), given in terms of
a sum over the squares of the amplitudes at the lattice
sites, is of finite value. Hereby the coercivity of the power
can be used to define suitable subsets in function space in
order to apply Schauder’s Fixed PointTheorem. Nevertheless,
imposing periodic boundary conditions an infinite lattice is
constructed. The presented method can readily be applied
to prove the existence of periodic TWs not only in general
DNLS systems of higher dimensions but also in various other
nonlinear lattice systems.

2. General DNLS Systems

In the current study we are interested in the existence of
periodic TW solutions of the following general discrete
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nonlinear Schrödinger equation on finite one-dimensional
lattices:

𝑖𝑑𝜓𝑛𝑑𝑡 = 𝑁𝑐∑
𝑗=1

𝜅𝑗 [𝜓𝑛+𝑗 − 2𝜓𝑛 + 𝜓𝑛−𝑗] + 𝐹 (󵄨󵄨󵄨󵄨𝜓𝑛󵄨󵄨󵄨󵄨2) 𝜓𝑛,
1 ≤ 𝑛 ≤ 𝑁,

(1)

with 𝜓𝑛 ∈ C.
The solutions satisfy periodicity conditions:

𝜓𝑁+𝑚 (𝑡) = 𝜓𝑚 (𝑡) , (2)

for 𝑚 ∈ Z; namely, we consider the DNLS on rings.
Moreover, by means of the periodic boundary conditions
an infinite one-dimensional lattice can be obtained. Each
unit interacts with its 𝑁𝑐 neighbouring oscillators to the left
and right, respectively. 𝑁𝑐 = 1, . . . , [(𝑁 − 1)/2] determines
the interaction radius, which ranges from nearest-neighbour
interaction obtained for 𝑁𝑐 = 1 to global coupling when𝑁𝑐 = (𝑁 − 1)/2 and𝑁 is odd.

Assume the following condition on 𝐹(|𝜓𝑛|2) holds.(A) 𝐹 ∈ 𝐶(R+,R) for R+ = [0,∞), 𝐹(0) = 0. There are
constants 𝑎 > 0, 𝑏 > 0 such that

|𝐹 (𝑥)| < 𝑎 (1 + 𝑥𝑏) , (3)

for any 𝑥 ≥ 0.
The standard DNLS, arising for 𝐹(|𝜓𝑛|2) = |𝜓𝑛|2 and𝜅1 ̸= 0, 𝜅𝑗 ̸=1 = 0 in (1), is known to support periodic

travelling wave solutions (see, e.g., [29]). Asmentioned above
the existence of periodic TWs in system (1) on the lattice Z
was given in [24] using variational methods. Here we present
a proof of the existence of periodic travelling wave solutions
of (1) on finite lattices. Nevertheless, by imposing periodic
boundary conditions an infinite lattice is constructed. For the
existence statement we introduce some appropriate function
space on which the original problem is converted into a fixed
point problem for a corresponding operator. By means of
Schauder’s Fixed Point Theorem the existence of periodic
TWs is established.

System (1) possesses two conserved quantities: the energy

H = 𝑁∑
𝑛=1

[𝐺 (󵄨󵄨󵄨󵄨𝜓𝑛󵄨󵄨󵄨󵄨2) − ∑
𝑚 ̸=𝑛

𝜅𝑚 󵄨󵄨󵄨󵄨𝜓𝑚 − 𝜓𝑛󵄨󵄨󵄨󵄨2] ,
𝐺 (𝑥) = ∫𝑥

0
𝑓 (𝑥) 𝑑𝑥,

(4)

and the power

P = 𝑁∑
𝑛=1

󵄨󵄨󵄨󵄨𝜓𝑛󵄨󵄨󵄨󵄨2 . (5)

We consider travelling wave solutions of the form

𝜓𝑛 (𝑡) = Ψ (𝑘𝑛 − 𝜔𝑡) , (6)

with a 2𝜋-periodic function Ψ(𝑢), 𝑢 = 𝑘𝑛 − 𝜔𝑡, where 𝑘 ∈(−𝜋, 𝜋) and 𝜔 ∈ R \ {0} are the wave parameters.

In order for a travelling wave solution to satisfy the peri-
odicity conditions in (2) we adopt the lattice size accordingly.
This means that for a given wavenumber |𝑘| = 𝜋𝑞 with
rational 𝑞 = 𝑟/𝑠 and two relatively prime integers 𝑟, 𝑠 ∈
Z+ \ {0}, 𝑟 < 𝑠, the number of sites of the lattice, 𝑁, is
supposed to be an appropriatemultiple of theminimal spatial
period of the associated periodic travelling wave, determined
by 𝐿 = 𝑠/𝑟, so that the periodicity conditions in (2) are
fulfilled.

3. Statement of the Existence Problem

Regarding the existence of periodic travelling wave solutions
we state the following.

Theorem 1. Let (A) hold. Then for any rational number 𝑞 ∈
Q∩(0, 1) there exists nonzero periodic travelling wave solution𝜓𝑛(𝑡) = Ψ(𝑘𝑛−𝜔𝑡) ≡ Ψ(𝑢) of (1) withΨ ∈ 𝐶1(R,C), such that

Ψ (𝑢 + 2𝜋) = Ψ (𝑢) , ∀𝑢 ∈ R, (7)

provided that

|𝜔| ≥ R(1 + 𝑝 𝑎 (1 +P𝑏)
R (1 + 𝑞) + 4𝜅 + 𝑎 (1 +P𝑏)) , (8)

where

𝜅 = 𝑁𝑐∑
𝑗=1

𝜅𝑗, (9)

𝑝 = 𝑞 + 11 − 𝑞 , (10)

𝑞 = {{{{{{{

1𝑞 for 0 < 𝑞 < 1211 − 𝑞 for 12 ≤ 𝑞 < 1, (11)

andR determines the range [−R,R] of the function𝑔 ∈ 𝐶(R\{0},R) given by

𝑔 (𝑥) = 2𝑥
𝑁𝑐∑
𝑗=1

𝜅𝑗 sin2 (𝑗𝑥) . (12)

In the following we reformulate the original problem as a
fixed point problem in a Banach space in a similar vein to the
approach in [16].

4. Proof of the Existence Theorem

To prove the assertions of the theorem we utilise Schauder’s
Fixed Point Theorem (see, e.g., in [30]): let 𝑀 be a closed
convex subset of a Banach space𝑋. Suppose 𝑇 : 𝑀 → 𝑀 is
continuous mapping such that 𝑇(𝑀) is a relatively compact
subset of𝑀. Then 𝑇 has a fixed point.
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Proof. Travelling wave solutions Ψ satisfy the advance-delay
equation

−𝑖𝜔Ψ󸀠 (𝑢) = 𝑁𝑐∑
𝑗=1

𝜅𝑗Δ 𝑗Ψ (𝑢) + 𝐹 (|Ψ (𝑢)|2)Ψ (𝑢) , (13)

where Δ 𝑗Ψ(𝑢) = Ψ(𝑢 + 𝑗) − 2Ψ(𝑢) + Ψ(𝑢 − 𝑗) and Ψ(𝑢 +2𝜋) = Ψ(𝑢), ∀𝑢 ∈ R, so that according to the Bloch-Floquet
Theorem a solution must be of the form

Ψ (𝑢) = exp (𝑖𝑞𝑢)Φ (𝑢) , (14)

where 𝑞 ∈ Q ∩ (0, 1) and
Φ (𝑢 + 2𝜋) = Φ (𝑢) , ∀𝑢 ∈ R. (15)

Substituting (14) into (13) one obtains

−𝑖𝜔Φ󸀠 (𝑢) + 𝜔𝑞Φ (𝑢) = 𝑁𝑐∑
𝑗=1

𝜅𝑗Δ̃ 𝑗Φ (𝑢)
+ 𝐹 (|Φ (𝑢)|2)Φ (𝑢) ,

(16)

with

Δ̃ 𝑗Φ (𝑢) = Φ (𝑢 + 𝑗) exp (𝑖𝑞𝑗) − 2Φ (𝑢)
+ Φ (𝑢 − 𝑗) exp (−𝑖𝑞𝑗) . (17)

Thus, the task amounts to finding 2𝜋-periodic functionsΦ ∈ 𝐶1(R,C) satisfying (16).
For the forthcoming discussion (16) is suitably rearranged

as follows:

− 𝑖𝜔Φ󸀠 (𝑢) + 𝜔𝑞Φ (𝑢) − 𝑁𝑐∑
𝑗=1

𝜅𝑗Δ̃ 𝑗Φ (𝑢)
= 𝐹 (|Φ (𝑢)|2)Φ (𝑢) .

(18)

Note that terms nonlinear in Φ feature only on the r.h.s. of
(18).

Let 𝑞 ∈ Q∩(0, 1) be fixed.We identifyCwithR2. Denote
by𝑋ℎ𝑞 the real Banach spaces

𝑋ℎ𝑞 = {Θ ∈ 𝐶ℎ2𝜋 (R,C)} , ℎ = 0, 1, (19)

where 𝐶ℎ𝜋(R,C) is the Banach space of 2𝜋-periodic and 𝐶ℎ
functions Θ : R → C equipped with norms given by

‖Θ‖𝐶02𝜋 = max
𝑢∈[0,2𝜋]

|Θ (𝑢)| , Θ ∈ 𝐶02𝜋 (R,C) ,
‖Θ‖𝐶12𝜋 = max

𝑢∈[0,2𝜋]
|Θ (𝑢)| + max

𝑢∈(0,2𝜋)

󵄨󵄨󵄨󵄨󵄨Θ󸀠 (𝑢)󵄨󵄨󵄨󵄨󵄨 ,
Θ ∈ 𝐶12𝜋 (R,C) ,

(20)

respectively.𝑋1𝑞 is compactly embedded in𝑋0𝑞 (𝑋1𝑞 ⋐ 𝑋0𝑞).
We decompose functions Θ ∈ 𝑋1𝑞 in a Fourier series

Θ (𝑢) = ∑
𝑙∈Z

Θ𝑙 exp (𝑖𝑙𝑢) . (21)

Related to the l.h.s. of (18)we consider the linearmapping:𝑀𝑞 : 𝑋1𝑞 → 𝑋0𝑞:

𝑀𝑞 (Θ) = −𝑖𝜔Θ󸀠 (𝑢) + 𝜔𝑞Θ (𝑢) − 𝑁𝑐∑
𝑗=1

𝜅𝑗Δ̃ 𝑗Θ (𝑢) . (22)

We demonstrate that this mapping is invertible and get an
upper bound for the norm of its inverse.

Applying the operator 𝑀𝑞 to the Fourier elements
exp(𝑖𝑙𝑢) in (21) results in

𝑀𝑞 exp (𝑖𝑙𝑢) = ]𝑙 (𝑞) exp (𝑖𝑙𝑢) , (23)

where

]𝑙 (𝑞) = 𝜔 (𝑞 + 𝑙) + 4𝑁𝑐∑
𝑗=1

𝜅𝑗 sin2 (𝑞 + 𝑙2 𝑗) . (24)

By the assumption (8) one has ]𝑙(𝑞) ̸= 0, ∀𝑙 ∈ Z, so that
themapping𝑀𝑞 possesses an inverse obeying𝑀−1𝑞 exp(𝑖𝑙𝑢) =
(1/]𝑙) exp(𝑖𝑙𝑢). For the bounded linear operator𝑀−1𝑞 : 𝑋0𝑞 →𝑋1𝑞 one derives:

󵄩󵄩󵄩󵄩󵄩𝑀−1𝑞 󵄩󵄩󵄩󵄩󵄩𝑋0𝑞 ,𝑋1𝑞 ≡ 󵄩󵄩󵄩󵄩󵄩𝑀−1𝑞 󵄩󵄩󵄩󵄩󵄩 = sup
0 ̸=Θ∈𝑋0𝑞

󵄩󵄩󵄩󵄩󵄩𝑀−1𝑞 Θ󵄩󵄩󵄩󵄩󵄩𝑋1𝑞‖Θ‖𝑋0𝑞 = sup
0 ̸=Θ∈𝑋0𝑞

󵄩󵄩󵄩󵄩∑𝑙∈Z (1/]𝑙)Θ𝑙 exp (𝑖𝑙𝑢)󵄩󵄩󵄩󵄩𝑋1𝑞‖Θ‖𝑋0𝑞
= sup
0 ̸=Θ∈𝑋0𝑞

(sup𝑢∈[0,2𝜋] 󵄨󵄨󵄨󵄨∑𝑙∈Z (1/]𝑙)Θ𝑙 exp (𝑖𝑙𝑢)󵄨󵄨󵄨󵄨 + sup𝑢∈[0,2𝜋]
󵄨󵄨󵄨󵄨󵄨(∑𝑙∈Z (1/]𝑙)Θ𝑙 exp (𝑖𝑙𝑢))󸀠󵄨󵄨󵄨󵄨󵄨)‖Θ‖𝑋0𝑞

≤ sup
𝑙∈Z

1 + |𝑙|󵄨󵄨󵄨󵄨]𝑙󵄨󵄨󵄨󵄨 sup
0 ̸=Θ∈𝑋0𝑞

sup𝑢∈[0,2𝜋]
󵄨󵄨󵄨󵄨∑𝑙∈Z Θ𝑙 exp (𝑖𝑙𝑢)󵄨󵄨󵄨󵄨‖Θ‖𝑋0𝑞 = sup

𝑙∈Z

1 + |𝑙|󵄨󵄨󵄨󵄨]𝑙󵄨󵄨󵄨󵄨
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= sup
𝑙∈Z

1 + |𝑙|󵄨󵄨󵄨󵄨󵄨(𝑞 + 𝑙) (𝜔 + (4/ (𝑞 + 𝑙))∑𝑁𝑐𝑗=1 𝜅𝑗 sin2 (((𝑞 + 𝑙) /2) 𝑗))󵄨󵄨󵄨󵄨󵄨 ≤ (𝑞 + 11 − 𝑞) 1|𝜔| −R

≤ (1 + 𝑞)R + 4𝜅 + 𝑎 (1 +P𝑏)
𝑎 (1 +P𝑏)R ,

(25)

where 𝑞 is given in (11).
For periodic travelling wave solutionsΦ ∈ 𝐶12𝜋(R,C) one

derives, using (3), (5), (8), and (16), the bounds

max
𝑢∈[0,2𝜋]

|Φ (𝑢)| ≤ P
1/2,

max
𝑢∈(0,2𝜋)

󵄨󵄨󵄨󵄨󵄨Φ󸀠 (𝑢)󵄨󵄨󵄨󵄨󵄨 ≤ (𝑞 + 4𝜅 + 𝑎 (1 +P𝑏)
R

)P
1/2.

(26)

We consider then the closed and convex subsets of𝑋0𝑞 and𝑋1𝑞 determined by

𝑌0𝑞 = {Θ ∈ 𝑋0𝑞 : ‖Θ‖𝐶02𝜋 ≤ P
1/2} ,

𝑌1𝑞 = {Θ ∈ 𝑋1𝑞 : ‖Θ‖𝐶12𝜋
≤ (1 + 𝑞 + 4𝜅 + 𝑎 (1 +P𝑏)

R
)P
1/2} ,

(27)

respectively. 𝑌1𝑞 is compactly embedded in 𝑌0𝑞 (𝑌1𝑞 ⋐ 𝑌0𝑞 ).
Furthermore associated with the r.h.s. of (18) we intro-

duce the nonlinear operator𝑁𝑞 : 𝑌0𝑞 → 𝑌0𝑞 , as
𝑁𝑞 (Θ) = 𝐹 (|Θ|2)Θ. (28)

Clearly, the operator 𝑁𝑞 is uniformly continuous on 𝑌0𝑞 .
The range is contained in a bounded ball in 𝑌0𝑞 , since

󵄩󵄩󵄩󵄩󵄩𝑁𝑞 (Θ)󵄩󵄩󵄩󵄩󵄩𝑌0𝑞 = 󵄩󵄩󵄩󵄩󵄩𝐹 (|Θ|2)Θ󵄩󵄩󵄩󵄩󵄩𝐶02𝜋
= max
𝑢∈[0,2𝜋]

󵄨󵄨󵄨󵄨󵄨𝐹 (|Θ (𝑢)|2)Θ (𝑢)󵄨󵄨󵄨󵄨󵄨
≤ 𝑎 (1 +P

𝑏)P1/2.
(29)

Finally, we express problem (18) as a fixed point equation
in terms of a mapping 𝑌0𝑞 → 𝑌1𝑞 ⋐ 𝑌0𝑞 :

Φ = 𝑀−1𝑞 ∘ 𝑁𝑞 (Φ) ≡ 𝑇𝑞 (Φ) . (30)

We get
󵄩󵄩󵄩󵄩󵄩𝑇𝑞 (Φ)󵄩󵄩󵄩󵄩󵄩𝑌1𝑞 = 󵄩󵄩󵄩󵄩󵄩𝑀−1𝑞 (𝑁𝑞 (Φ))󵄩󵄩󵄩󵄩󵄩 ≤ 󵄩󵄩󵄩󵄩󵄩𝑀−1𝑞 󵄩󵄩󵄩󵄩󵄩 󵄩󵄩󵄩󵄩󵄩𝑁𝑞 (Φ)󵄩󵄩󵄩󵄩󵄩𝑌0𝑞

≤ (1 + 𝑞 + 4𝜅 + 𝑎 (1 +P𝑏)
R

)P
1/2, (31)

verifying that indeed

𝑇𝑞 (𝑌0𝑞 ) ⊆ 𝑌1𝑞 . (32)

Hence 𝑇𝑞 maps bounded subsets 𝑌0𝑞 of 𝑋0𝑞 into relatively
compact subsets 𝑌1𝑞 of 𝑌0𝑞 .

It remains to prove that 𝑇𝑞 is continuous on 𝑌0𝑞 . As 𝑁
is uniformly continuous on 𝑌0𝑞 , one has ∀𝑡 ∈ [0, 2𝜋] and
∀Φ1, Φ2 ∈ 𝑌0𝑞 that for a fixed arbitrary 𝜖 > 0 there exists𝛿 > 0 such that󵄩󵄩󵄩󵄩󵄩𝑁𝑞 (Φ1) (𝑡) − 𝑁𝑞 (Φ2) (𝑡)󵄩󵄩󵄩󵄩󵄩𝑌0𝑞

< 𝑎 (1 +P𝑏)R
(1 + 𝑞)R + 4𝜅 + 𝑎 (1 +P𝑏)𝜖

(33)

if ‖Φ1 −Φ2‖𝑌0𝑞 < 𝛿. Hence, for arbitraryΦ1, Φ2 ∈ 𝑌0𝑞 , we have
󵄩󵄩󵄩󵄩󵄩𝑀−1𝑞 (𝑁𝑞 (Φ1)) −𝑀−1𝑞 (𝑁𝑞 (Φ2))󵄩󵄩󵄩󵄩󵄩𝑌1𝑞⋐𝑌0𝑞

≤ 󵄩󵄩󵄩󵄩󵄩𝑀−1𝑞 󵄩󵄩󵄩󵄩󵄩 󵄩󵄩󵄩󵄩󵄩𝑁𝑞 (Φ1) − 𝑁𝑞 (Φ2)󵄩󵄩󵄩󵄩󵄩𝑌0𝑞 < 𝜖, (34)

verifying that 𝑇𝑞(Φ) is continuous on 𝑌0𝑞 . Schauder’s Fixed
PointTheorem implies then that the fixed point equationΦ =𝑇𝑞(Φ) has at least one solution.

Furthermore, the spectrum of linear plane wave solutions
(phonons) arising for zero nonlinear term, determined by the
r.h.s. of system (18), forms a continuous band with values in
the interval [−R,R]. However, since by hypothesis (8) the
values of the frequency of oscillations 𝜔 lie outside the range
of the linear (phonon) band, the corresponding orbits are
anharmonic. This necessitates amplitude-depending tuning
of the frequency so that the latter comes to lie outside of
the phonon spectrum. Thus it must hold that ‖𝑁𝑞(Φ)‖𝑌0𝑞 =
‖𝐹(|Φ|2)Φ‖𝐶02𝜋 ̸≡ 0 which is fulfilled only if Φ ̸≡ 0.
That is, the fixed point equation (30) possesses only nonzero
solutions and the proof is finished.

5. Summary

To summarise, we have proven the existence of nonzero peri-
odic travelling wave solutions for a general DNLS (includ-
ing as a special case the standard DNLS) on finite one-
dimensional lattices. To this end the existence problem has
been reformulated as a fixed point problem for an operator on
a function space which is solved with the help of Schauder’s
Fixed Point Theorem. Our method can be straightforwardly
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extended not only to treating the general DNLS on lattices of
higher dimension but also to other types of nonlinear lattice
systems such as nonlinear discrete Klein-Gordon systems.
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