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The quaternion Wigner-Ville distribution associated with linear canonical transform (QWVD-LCT) is a nontrivial generalization
of the quaternion Wigner-Ville distribution to the linear canonical transform (LCT) domain. In the present paper, we establish a
fundamental relationship between the QWVD-LCT and the quaternion Fourier transform (QFT). Based on this fact, we provide
alternative proof of the well-known properties of the QWVD-LCT such as inversion formula and Moyal formula. We also discuss
in detail the relationship among the QWVD-LCT and other generalized transforms. Finally, based on the basic relation between the
quaternion ambiguity function associatedwith the linear canonical transform (QAF-LCT) and theQFT, we present some important
properties of the QAF-LCT.

1. Introduction

The quaternion Fourier transform (QFT) is a nontrivial
generalization of the real and complex classical Fourier trans-
forms (FT) using quaternion algebra. Many useful properties
of the QFT were obtained such as shift, modulation, con-
volution, correlation, differentiation, energy conservation,
and uncertainty principle. It was first introduced in [1] for
the analysis of 2D linear time-invariant partial differential
systems and then applied in color image processing [2, 3]. It
is a natural question to extend the QFT to the linear canon-
ical transform (LCT) domains and then it is the so-called
quaternionic linear transform (QLCT). This extension is
constructed by substituting the kernel of the QFT with the
kernel of the LCT.A number of useful properties of theQLCT
have been investigated including shift, orthogonality relation,
reconstruction formula, and Heisenberg uncertainty princi-
ple (see, for example, [4–6] and the references given therein).

In [7], the author studied that the fractional Fourier
transform (FrFT) can be reduced to the classical Fourier
transform. Based on this fact, some properties of the FrFT
can be derived very easily from those of the classical Fourier
transform by simple change variable. Recently, in [8], the

authors developed this idea to derive an uncertainty principle
associated with the quaternion linear canonical transform
(QLCT) by using the fundamental relationship between the
QLCT and the QFT [8]. In [9], the authors proposed the
quaternion Wigner-Ville distribution associated with linear
canonical transform (QWVD-LCT) and obtain its funda-
mental properties. In the present paper, we first establish
the basic relationship between the QWVD-LCT and the
QFT. We then show that some fundamental properties of the
QWVD-LCT such as inversion formula and Moyal formula
can be obtained by combining this relation and the properties
of the QFT. We investigate that the QWVD-LCT can be
reduced to the quaternion windowed Fourier transform and
the continuous quaternion Fourier transform. We finally
establish the relationship between theQAF-LCT and theQFT
which enables us to derive some useful properties of theQAF-
LCT.

2. Preliminaries

In the preliminaries we remind the reader of some facts
of quaternions, the quaternion Fourier transform, and the
quaternion linear canonical transform.

Hindawi
Journal of Applied Mathematics
Volume 2017, Article ID 3247364, 10 pages
http://dx.doi.org/10.1155/2017/3247364

http://dx.doi.org/10.1155/2017/3247364


2 Journal of Applied Mathematics

2.1. Basic Facts about Quaternions. The quaternion algebra
overR, denoted byH, is an associative noncommutative four-
dimensional algebra:

H = {𝑞 = 𝑞0 + i𝑞1 + j𝑞2 + k𝑞3; 𝑞0, 𝑞1, 𝑞2, 𝑞3 ∈ R} , (1)

which obeys the following multiplication rules:

ij = −ji = k,
jk = −kj = i,
ki = −ik = j,
i2 = j2 = k2 = ijk = −1.

(2)

For a quaternion 𝑞 = 𝑞0 + i𝑞1 + j𝑞2 + k𝑞3 ∈ H, 𝑞0 is called
the scalar part of 𝑞 denoted by Sc(𝑞) and i𝑞1 + j𝑞2 + k𝑞3
is called the vector (or pure) part of 𝑞. The vector part of𝑞 is conventionally denoted by q. Let 𝑝, 𝑞 ∈ H and p, q
be their vector parts, respectively. Equation (2) yields the
quaternionic multiplication 𝑞𝑝 as

𝑞𝑝 = 𝑞0𝑝0 − q ⋅ p + 𝑞0p + 𝑝0q + q × p, (3)

where q ⋅p = (𝑞1𝑝1+𝑞2𝑝2+𝑞3𝑝3) and q×p = i(𝑞2𝑝3−𝑞3𝑝2)+
j(𝑞3𝑝1 − 𝑞1𝑝3) + k(𝑞1𝑝2 − 𝑞2𝑝1).

The quaternion conjugate of 𝑞, given by

𝑞 = 𝑞0 − i𝑞1 − j𝑞2 − k𝑞3, 𝑞0, 𝑞1, 𝑞2, 𝑞3 ∈ R, (4)

is an anti-involution; that is,

𝑞𝑝 = 𝑝𝑞. (5)

From (4), we obtain the norm or modulus of 𝑞 ∈ H defined
as

󵄨󵄨󵄨󵄨𝑞󵄨󵄨󵄨󵄨 = √𝑞𝑞 = √𝑞20 + 𝑞21 + 𝑞22 + 𝑞23. (6)

It is not difficult to see that
󵄨󵄨󵄨󵄨𝑞𝑝󵄨󵄨󵄨󵄨 = 󵄨󵄨󵄨󵄨𝑞󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨𝑝󵄨󵄨󵄨󵄨 , ∀𝑝, 𝑞 ∈ H. (7)

Furthermore, it is easily seen that
󵄨󵄨󵄨󵄨𝑝𝑞𝑟󵄨󵄨󵄨󵄨 = 󵄨󵄨󵄨󵄨𝑟𝑞𝑝󵄨󵄨󵄨󵄨 , ∀𝑝, 𝑞, 𝑞 ∈ H. (8)

Using conjugate (4) and the modulus of 𝑞, we can define the
inverse of 𝑞 ∈ H \ {0} as

𝑞−1 = 𝑞󵄨󵄨󵄨󵄨𝑞󵄨󵄨󵄨󵄨2 , (9)

which shows that H is a normed division algebra.
Now we observe that

Sc (𝑝𝑞) = 12 (𝑝𝑞 + 𝑞𝑝) = 𝑞0𝑝0 + q ⋅ p. (10)

This leads to the cyclic multiplication; that is,

Sc (𝑝𝑞𝑟) = Sc (𝑟𝑞𝑝) = Sc (𝑞𝑝𝑟) , ∀𝑝, 𝑞, 𝑟 ∈ H. (11)

We define an inner product for quaternion-valued func-
tions 𝑓, 𝑔 : R2 → H as follows:

(𝑓, 𝑔) = ∫
R2

𝑓 (x) 𝑔 (x)𝑑x, 𝑑x = 𝑑𝑥1𝑑𝑥2 (12)

with symmetric real scalar part

⟨𝑓, 𝑔⟩ = 12 [(𝑓, 𝑔) + (𝑔, 𝑓)] = Sc∫
R2

𝑓 (x) 𝑔 (x) 𝑑x. (13)

In particular, for 𝑓 = 𝑔, we obtain the 𝐿2(R2;H)-norm
󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩 = √⟨𝑓, 𝑓⟩ = (∫

R2

󵄨󵄨󵄨󵄨𝑓 (x)󵄨󵄨󵄨󵄨2 𝑑x)1/2 . (14)

This gives the 𝐿𝑝(R2;H)-norm
󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝑝 = (∫

R2

󵄨󵄨󵄨󵄨𝑓 (x)󵄨󵄨󵄨󵄨𝑝 𝑑x)1/𝑝 , 1 ≤ 𝑝 < ∞. (15)

2.2. Quaternion Linear Canonical Transform and Its Basic
Properties. In this section, we briefly discuss the definition
of the two-sided QFT and the two-sided quaternion linear
canonical transform (QLCT) (for simplicity of notation, we
write the QFT and QLCT instead of the two-sided QFT and
the two-sided QLCT, resp., in the next section). We further
collect some basic properties of the QLCT, which will be very
useful later on.

Definition 1. The QFT of 𝑓 ∈ 𝐿1(R2;H) is the transform
F𝑞{𝑓} : R2 → H given by the integral

F𝑞 {𝑓} (𝜔) = ∫
R2

𝑒−i𝜔1𝑥1𝑓 (x) 𝑒−j𝜔2𝑥2𝑑x, (16)

where x = 𝑥1e1 + 𝑥2e2, 𝜔 = 𝜔1e1 + 𝜔2e2 and the quaternion
exponential product 𝑒−i𝜔1𝑥1𝑒−j𝜔2𝑥2 is the quaternion Fourier
kernel. Here F𝑞 is called the quaternion Fourier transform
operator.

Definition 2. If 𝑓 ∈ 𝐿1(R2;H) and F𝑞{𝑓} ∈ 𝐿1(R2;H), then
the inverse transform of the QFT is given by

𝑓 (x) = F
−1
𝑞 [F𝑞 {𝑓}] (x)

= 1(2𝜋)2 ∫R2 𝑒i𝜔1𝑥1F𝑞 {𝑓} (𝜔) 𝑒j𝜔2𝑥2𝑑𝜔, (17)

whereF−1𝑞 is called the inverse QFT operator.

A useful property of the QFT is stated in the following
lemma, which is needed to derive Moyal formula of the
quaternion Wigner-Ville distribution associated with the
linear canonical transform (QWVD-LCT).

Lemma 3 (QFT Parseval). Let 𝑓, 𝑔 ∈ 𝐿1(R2;H) ∩ 𝐿2(R2;H).
The relation between 𝑓, 𝑔 and their QFT is given by

⟨𝑓, 𝑔⟩ = ⟨F𝑞 {𝑓} ,F𝑞 {𝑔}⟩ . (18)
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In particular, with 𝑓 = 𝑔, we get the QFT version of the
Plancherel formula; that is,

󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩2 = 󵄩󵄩󵄩󵄩󵄩F𝑞 {𝑓}󵄩󵄩󵄩󵄩󵄩2 . (19)

Definition 4 (QLCT definition). Suppose that 𝐴1 = (𝑎1, 𝑏1,𝑐1, 𝑑1) and 𝐴2 = (𝑎2, 𝑏2, 𝑐2, 𝑑2) are real matrix parameters
satisfying det(𝐴1) = det(𝐴2) = 1. The QLCT of a quaternion
signal 𝑓 ∈ 𝐿1(R2;H) is defined by

𝐿H
𝐴
1
,𝐴
2

{𝑓} (𝜔)
= ∫

R2
𝐾𝐴
1

(𝑥1, 𝜔1) 𝑓 (x) 𝐾𝐴
2

(𝑥2, 𝜔2) 𝑑x, (20)

where the kernel functions of the QLCT above are given by

𝐾𝐴
1

(𝑥1, 𝜔1)
= {{{{{

1√2𝜋𝑏1 𝑒(i/2)((𝑎1/𝑏1)𝑥
2

1
−(2/𝑏
1
)𝑥
1
𝜔
1
+(𝑑
1
/𝑏
1
)𝜔2
1
−𝜋/2), for 𝑏1 ̸= 0

√𝑑1𝑒i(𝑐1𝑑1/2)𝜔21 , for 𝑏1 = 0,
𝐾𝐴
2

(𝑥2, 𝜔2)
= {{{{{

1√2𝜋𝑏2 𝑒(j/2)((𝑎2/𝑏2)𝑥
2

2
−(2/𝑏
2
)𝑥
2
𝜔
2
+(𝑑
2
/𝑏
2
)𝜔2
2
−𝜋/2), for 𝑏2 ̸= 0

√𝑑2𝑒j(𝑐2𝑑2/2)𝜔22 , for 𝑏2 = 0.

(21)

From the definition of the QLCT, we can see easily that,
when 𝑏1𝑏2 = 0 and 𝑏1 = 𝑏2 = 0, the QLCT of a signal is
essentially a quaternion chirp multiplication. Therefore, in
this work, we always assume that 𝑏1𝑏2 ̸= 0.
Lemma 5. The QLCT of a signal 𝑓 can be seen as the QFT of
the signal 𝑓 in the following form:

𝐿H
𝐴
1
,𝐴
2

{𝑓} (𝜔) = 𝑒−i(𝜋/4)√2𝜋𝑏1
⋅ 𝑒(i𝑑1/2𝑏1)𝜔21F𝑞 {𝑒i(𝑎1/2𝑏1)𝑥21𝑓 (x) 𝑒j(𝑎2/2𝑏2)𝑥22}
⋅ (𝜔1𝑏1 ,

𝜔2𝑏2 )
𝑒−j(𝜋/4)√2𝜋𝑏2 𝑒(j𝑑2/2𝑏2)𝜔

2

2 .
(22)

It is worth noting that if 𝐴1 = 𝐴2 = (𝑎𝑖, 𝑏𝑖, 𝑐𝑖, 𝑑𝑖) =(0, 1, −1, 0) for 𝑖 = 1, 2, (22) will reduce to the QFT definition;
that is,

𝐿H
𝐴
1
,𝐴
2

{𝑓} (𝜔)
= ∫

R2

𝑒−i(𝜋/4)√2𝜋 𝑒−i𝜔1𝑥1𝑓 (x) 𝑒−j𝜔2𝑥2 𝑒−j(𝜋/4)√2𝜋 𝑑x
= 𝑒−i(𝜋/4)√2𝜋 F𝑞 {𝑓} (𝜔) 𝑒−j(𝜋/4)√2𝜋 .

(23)

Theorem 6 (QLCT Parseval). Two quaternion functions𝑓, ℎ ∈ 𝐿1(R2;H) ∩ 𝐿2(R2;H) are related to their QLCT via
the Parseval formula, given as

⟨𝑓, ℎ⟩ = ⟨𝐿H
𝐴
1
,𝐴
2

{𝑓} , 𝐿H
𝐴
1
,𝐴
2

{ℎ}⟩ . (24)

When 𝑓 = ℎ, we get
󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩2 = 󵄩󵄩󵄩󵄩󵄩𝐿H

𝐴
1
,𝐴
2

{𝑓}󵄩󵄩󵄩󵄩󵄩2 . (25)

Proof. For a detailed proof of the above theorem, we refer the
reader to [8].

3. Quaternion Wigner-Ville Distribution and
Quaternion Ambiguity Function in Linear
Canonical Transform Domains

Let us introduce the 2D quaternionWigner-Ville distribution
(QWVD) and quaternion ambiguity function QAF [10].
According to the QWVD andQAF definitions and the QLCT
definition, we obtain a definition of the quaternion Wigner-
Ville distribution associated with the linear canonical trans-
form (QWVD-LCT) and the quaternion ambiguity function
associated with the linear canonical transform (QAF-LCT)
(see [9]). We establish the fundamental relationship between
the QWVD-LCT and QFT. Applying this relation and the
properties of the QFT, we in detail derive the inverse
transform formula and Moyal’s formula for the QWVD-
LCT and the QAF-LCT, where the proof of the properties
is quite different from one proposed in [9]. We also study
the relationship among the QWVD-LCT, the quaternion
windowed Fourier transform, and the continuous quaternion
Fourier transform.

3.1. Main Properties of QWVD-LCTandRelation amongQAF-
LCT, QWFT, and CQWT

Definition 7. The cross quaternion Wigner-Ville distribution
of two-dimensional functions (or signals) 𝑓, 𝑔 ∈ 𝐿2(R2;H) is
given by

W𝑓,𝑔 (x,𝜔)
= ∫

R2
𝑒−i𝜔1𝜏1𝑓(x + 𝜏2) 𝑔 (x − 𝜏2) 𝑒−j𝜔2𝜏2𝑑𝜏, (26)

provided that the integral exists.

It should be remembered that the kernel of the cross
QWVD in (26) does not commute with quaternion functions𝑓 and𝑔 so that several properties of the classicalWigner-Ville
distribution (WVD) are not valid in the cross QWVD [10].

Definition 8. The cross quaternion ambiguity function of
two-dimensional functions (or signals) 𝑓, 𝑔 ∈ 𝐿2(R2;H) is
given by

A𝑓,𝑔 (x,𝜔)
= ∫

R2
𝑒−i𝜔1𝜏1𝑓(𝜏 + x2) 𝑔 (𝜏 − x2) 𝑒−j𝜔2𝜏2𝑑𝜏, (27)

provided that the integral exists.
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Definition 9. Suppose that 𝐴1 = (𝑎1, 𝑏1, 𝑐1, 𝑑1) and 𝐴2 = (𝑎2,𝑏2, 𝑐2, 𝑑2) are real matrix parameters satisfying det(𝐴1) =
det(𝐴2) = 1. The cross QWVD-LCT and cross QAF-LCT of
a quaternion signal 𝑓, 𝑔 ∈ 𝐿1(R2;H) are defined by

W
𝐴
1
,𝐴
2

𝑓,𝑔 (x,𝜔) = ∫
R2

𝐾𝐴
1

(𝜏1, 𝜔1) 𝑓 (x + 𝜏2)
⋅ 𝑔 (x − 𝜏2)𝐾𝐴

2

(𝜏2, 𝜔2) 𝑑𝜏
(28)

A
𝐴
1
,𝐴
2

𝑓,𝑔 (x,𝜔) = ∫
R2

𝐾𝐴
1

(𝜏1, 𝜔1) 𝑓 (𝜏 + x2)
⋅ 𝑔 (𝜏 − x2)𝐾𝐴

2

(𝜏2, 𝜔2) 𝑑𝜏.
(29)

Here the kernel functions of the above transforms are given
by

𝐾𝐴
1

(𝜏1, 𝜔1)
= {{{{{

1√2𝜋𝑏1 𝑒(i/2)((𝑎1/𝑏1)𝜏
2

1
−(2/𝑏
1
)𝜏
1
𝜔
1
+(𝑑
1
/𝑏
1
)𝜔2
1
−𝜋/2), for 𝑏1 ̸= 0

√𝑑1𝑒i(𝑐1𝑑1/2)𝜔21 , for 𝑏1 = 0,
𝐾𝐴
2

(𝜏2, 𝜔2)
= {{{{{

1√2𝜋𝑏2 𝑒(j/2)((𝑎2/𝑏2)𝜏
2

2
−(2/𝑏
2
)𝜏
2
𝜔
2
+(𝑑
2
/𝑏
2
)𝜔2
2
−𝜋/2), for 𝑏2 ̸= 0

√𝑑2𝑒j(𝑐2𝑑2/2)𝜔22 , for 𝑏2 = 0.

(30)

It can be directly seen that if we write ℎ𝑓,𝑔(x, 𝜏) = 𝑓(x +
𝜏/2)𝑔(x − 𝜏/2), we immediately obtain

W
𝐴
1
,𝐴
2

𝑓,𝑔 (x,𝜔)
= ∫

R2

1√2𝜋𝑏1 𝑒(i/2)((𝑎1/𝑏1)𝜏
2

1
−(2/𝑏
1
)𝜏
1
𝜔
1
+(𝑑
1
/𝑏
1
)𝜔2
1
−𝜋/2)𝑓(x

+ 𝜏2) 𝑔 (x − 𝜏2)
⋅ 1√2𝜋𝑏2 𝑒(j/2)((𝑎2/𝑏2)𝜏

2

2
−(2/𝑏
2
)𝜏
2
𝜔
2
+(𝑑
2
/𝑏
2
)𝜔2
2
−𝜋/2)𝑑𝜏

= ∫
R2

1√2𝜋𝑏1 𝑒(i/2)((𝑎1/𝑏1)𝜏
2

1
−(2/𝑏
1
)𝜏
1
𝜔
1
+(𝑑
1
/𝑏
1
)𝜔2
1
−𝜋/2)ℎ𝑓,𝑔 (x,

𝜏) 1√2𝜋𝑏2 𝑒(j/2)((𝑎2/𝑏2)𝜏
2

2
−(2/𝑏
2
)𝜏
2
𝜔
2
+(𝑑
2
/𝑏
2
)𝜔2
2
−𝜋/2)𝑑𝜏

= 𝐿H
𝐴
1
,𝐴
2

{ℎ𝑓,𝑔} (𝜔) .

(31)

This tells us that the cross QWVD-LCT is in fact the QLCT
of the function ℎ𝑓,𝑔(x, 𝜏) with respect to 𝜏. This fact is very
important in proving Moyal’s formula for the cross QWVD-
LCT. Similarly, we also get

A
𝐴
1
,𝐴
2

𝑓,𝑔 (x,𝜔) = 𝐿H
𝐴
1
,𝐴
2

{𝑅𝑓,𝑔} (𝜔) , (32)

where 𝑅𝑓,𝑔 is given by

𝑅𝑓,𝑔 (x, 𝜏) = 𝑓 (𝜏 + x2) 𝑔 (𝜏 − x2) . (33)

The following result presents an inequality related to the
cross QWVD-LCT.

Lemma 10. Suppose that 𝑓 ∈ 𝐿𝑝(R2;H), 𝑔 ∈ 𝐿𝑞(R2;H) with1/𝑝 + 1/𝑞 = 1. Then we have

󵄨󵄨󵄨󵄨󵄨󵄨W𝐴1 ,𝐴2𝑓,𝑔 (x,𝜔)󵄨󵄨󵄨󵄨󵄨󵄨 ≤ 12𝜋√𝑏1𝑏2
󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝑝 󵄩󵄩󵄩󵄩𝑔󵄩󵄩󵄩󵄩𝑞 . (34)

Proof. We straightforwardly obtain from (28) that

󵄨󵄨󵄨󵄨󵄨󵄨W𝐴1 ,𝐴2𝑓,𝑔 (x,𝜔)󵄨󵄨󵄨󵄨󵄨󵄨
= 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫R2

1√2𝜋𝑏1 𝑒(i/2)((𝑎1/𝑏1)𝜏
2

1
−(2/𝑏
1
)𝜏
1
𝜔
1
+(𝑑
1
/𝑏
1
)𝜔2
1
−𝜋/2)𝑓(x

+ 𝜏2) 𝑔 (x − 𝜏2) × 1√2𝜋𝑏2
⋅ 𝑒(j/2)((𝑎2/𝑏2)𝜏22−(2/𝑏2)𝜏2𝜔2+(𝑑2/𝑏2)𝜔22−𝜋/2)𝑑𝜏󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ≤ (∫

R2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
1√2𝜋𝑏1

⋅ 𝑒(i/2)((𝑎1/𝑏1)𝜏21−(2/𝑏1)𝜏1𝜔1+(𝑑1/𝑏1)𝜔21−𝜋/2)𝑓(x + 𝜏2)󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑝 𝑑𝜏)1/𝑝

× (∫
R2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑔 (x − 𝜏2) 1√2𝜋𝑏2
⋅ 𝑒(j/2)((𝑎2/𝑏2)𝜏22−(2/𝑏2)𝜏2𝜔2+(𝑑2/𝑏2)𝜔22−𝜋/2)󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑞 𝑑𝜏)1/𝑞 .

(35)

Letting x + 𝜏/2 = y and x − 𝜏/2 = z, we immediately obtain

󵄨󵄨󵄨󵄨󵄨󵄨W𝐴1 ,𝐴2𝑓,𝑔 (x,𝜔)󵄨󵄨󵄨󵄨󵄨󵄨
= 12𝜋√𝑏1𝑏2 (∫

R2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑓 (x + 𝜏2)󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑝 𝑑𝜏)1/𝑝

⋅ (∫
R2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑔 (x − 𝜏2)󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑞 𝑑𝜏)1/𝑞

= 12𝜋√𝑏1𝑏2 (∫R2
󵄨󵄨󵄨󵄨𝑓 (y)󵄨󵄨󵄨󵄨𝑝 𝑑y)1/𝑝

⋅ (∫
R2

󵄨󵄨󵄨󵄨𝑔 (z)󵄨󵄨󵄨󵄨𝑞 𝑑z)1/𝑞 .

(36)

Hence, the result follows.

Observe first that, for 𝑝 = 𝑞 = 2, (34) will reduce to
󵄨󵄨󵄨󵄨󵄨󵄨W𝐴1 ,𝐴2𝑓,𝑔 (x,𝜔)󵄨󵄨󵄨󵄨󵄨󵄨 ≤ 12𝜋√𝑏1𝑏2

󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩 󵄩󵄩󵄩󵄩𝑔󵄩󵄩󵄩󵄩 , (37)

which shows thatW𝐴1 ,𝐴2
𝑓,𝑔

(x,𝜔) is bounded on 𝐿2(R2;H).
Lemma 11. The cross QWVD-LCT of a signal 𝑓 with matrix
parameters 𝐴1 = (𝑎1, 𝑏1, 𝑐1, 𝑑1) and 𝐴2 = (𝑎2, 𝑏2, 𝑐2, 𝑑2)
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can be reduced as the QFT of the signal 𝑓 in the following
form:

W
𝐴
1
,𝐴
2

𝑓,𝑔 (x,𝜔) = 𝑒−i(𝜋/4)√2𝜋𝑏1
⋅ 𝑒(i𝑑1/2𝑏1)𝜔21F𝑞 {𝑒i(𝑎1/2𝑏1)𝜏21𝑓(x + 𝜏2) 𝑔 (x − 𝜏2)
⋅ 𝑒j(𝑎2/2𝑏2)𝜏22}(𝜔1𝑏1 ,

𝜔2𝑏2 )
𝑒−j(𝜋/4)√2𝜋𝑏2 𝑒(j𝑑2/2𝑏2)𝜔

2

2 .
(38)

Proof. By calculation directly, we get

W
𝐴
1
,𝐴
2

𝑓,𝑔 (x,𝜔) = 1√2𝜋𝑏1
⋅ ∫

R2
𝑒i(1/2)((𝑎1/𝑏1)𝜏21−(2/𝑏1)𝜏1𝜔1+(𝑑1/𝑏1)𝜔21−𝜋/2)𝑓(x

+ 𝜏2) 𝑔 (x − 𝜏2)
⋅ 1√2𝜋𝑏2 𝑒j(1/2)((𝑎2/𝑏2)𝜏

2

2
−(2/𝑏
2
)𝜏
2
𝜔
2
+(𝑑
2
/𝑏
2
)𝜔2
2
−𝜋/2)𝑑𝜏

= 𝑒−i(𝜋/4)√2𝜋𝑏1
⋅ 𝑒i(𝑑1/2𝑏1)𝜔21 ∫

R2
𝑒−i𝜏1(𝜔1/𝑏1) (𝑒i(𝑎1/2𝑏1)𝜏21𝑓(x + 𝜏2)

⋅ 𝑔 (x − 𝜏2) 𝑒j(𝑎2/2𝑏2)𝜏22) 𝑒−j𝜏2(𝜔2/𝑏2)𝑑𝜏
⋅ 𝑒−j(𝜋/4)√2𝜋𝑏2 𝑒j(𝑑2/2𝑏2)𝜔

2

2 = 𝑒−i(𝜋/4)√2𝜋𝑏1
⋅ 𝑒(i𝑑1/2𝑏1)𝜔21F𝑞 {𝑒i(𝑎1/2𝑏1)𝜏21𝑓(x + 𝜏2) 𝑔 (x − 𝜏2)
⋅ 𝑒j(𝑎2/2𝑏2)𝜏22}(𝜔1𝑏1 ,

𝜔2𝑏2 )
𝑒−j(𝜋/4)√2𝜋𝑏2 𝑒(j𝑑2/2𝑏2)𝜔

2

2 ,

(39)

where the last line follows directly from (28).

For abbreviation, we use the notation

ℎ̃𝑓,𝑔 (x, 𝜏) = 𝑒−i(𝜋/4)√2𝜋𝑏1 𝑒i(𝑎1/2𝑏1)𝜏
2

1𝑓(x + 𝜏2) 𝑔 (x − 𝜏2)
⋅ 𝑒j(𝑎2/2𝑏2)𝜏22 𝑒−j(𝜋/4)√2𝜋𝑏2 .

(40)

Therefore, we can write (38) in the form

F𝑞 {ℎ̃𝑓,𝑔 (x, 𝜏)} (𝜔1𝑏1 ,
𝜔2𝑏2 )

= 𝑒−(i𝑑1/2𝑏1)𝜔21W𝐴1,𝐴2
𝑓,𝑔 (x,𝜔) 𝑒−(j𝑑2/2𝑏2)𝜔22 .

(41)

In the below theorem by combining the properties of the
QFT and the fundamental relation between the QFT and
the QWVD-LCT, we provide a new proof of reconstruction
formula for the QWVD-LCT.

Theorem 12 (reconstruction formula for QWVD-LCT). The
inverse transform of the cross the QWVD-LCT of the signal𝑓 ∈𝐿2(R2;H) is given by

𝑓 (𝑥) = 1𝑔 (0) ∫
R2

𝐾𝐴−1
1

(𝑥1, 𝜔1)W𝐴1 ,𝐴2𝑓,𝑔 (x2 ,𝜔)
⋅ 𝐾𝐴−1

2

(𝑥2, 𝜔2) 𝑑𝜔
(42)

provided that 𝑔(0) ̸= 0.

Proof. From the inverse transform of the QFT (17), it follows
that

ℎ̃𝑓,𝑔 (x, 𝜏) = 1(2𝜋)2 ∫R2 𝑒i(𝜔1𝜏1/𝑏1)F𝑞 {ℎ̃𝑓,𝑔 (x, 𝜏)}
⋅ (𝜔1𝑏1 ,

𝜔2𝑏2 ) 𝑒j(𝜔2𝜏2/𝑏2)𝑑𝜔
b
.

(43)

In view of (40) and (41), we easily get

𝑒−i(𝜋/4)√2𝜋𝑏1 𝑒i(𝑎1/2𝑏1)𝜏
2

1𝑓(x + 𝜏2) 𝑔 (x − 𝜏2) 𝑒j(𝑎2/2𝑏2)𝜏22
⋅ 𝑒−j(𝜋/4)√2𝜋𝑏2 = 1(2𝜋)2 ∫R2 𝑒i(𝜔1𝜏1/𝑏1)F𝑞 {ℎ̃𝑓,𝑔 (x, 𝜏)}
⋅ (𝜔1𝑏1 ,

𝜔2𝑏2 ) 𝑒j(𝜔2𝜏2/𝑏2)𝑑𝜔
b

= 1(2𝜋)2
⋅ ∫

R2
𝑒i(𝜔1𝜏1/𝑏1)𝑒−(i𝑑1/2𝑏1)𝜔21W𝐴1,𝐴2

𝑓,𝑔 (x,𝜔)
⋅ 𝑒−(j𝑑2/2𝑏2)𝜔22𝑒j(𝜔2𝜏2/𝑏2)𝑑𝜔

b
.

(44)

Subsequently,

𝑓(x + 𝜏2) 𝑔 (x − 𝜏2)
= ∫

R2

𝑒i(𝜋/4)√2𝜋𝑏1 𝑒−i(𝑎1/2𝑏1)𝜏
2

1 𝑒i(𝜔1𝜏1/𝑏1)𝑒−(i𝑑1/2𝑏1)𝜔21W𝐴1 ,𝐴2
𝑓,𝑔 (x,𝜔)

⋅ 𝑒j(𝜋/4)√2𝜋𝑏2 𝑒−(j𝑑2/2𝑏2)𝜔
2

2𝑒j(𝜔2𝜏2/𝑏2)𝑒−j(𝑎2/2𝑏2)𝜏22𝑑𝜔
= ∫

R2

1√2𝜋𝑏1 𝑒−(i/2)((𝑎1/𝑏1)𝜏
2

1
−(2/𝑏
1
)𝜏
1
𝜔
1
+(𝑑
1
/𝑏
1
)𝜔2
1
−𝜋/2)

W
𝐴
1
,𝐴
2

𝑓,𝑔 (x,
𝜔) 1√2𝜋𝑏2 𝑒−(j/2)((𝑎2/𝑏2)𝜏

2

2
−(2/𝑏
2
)𝜏
2
𝜔
2
+(𝑑
2
/𝑏
2
)𝜔2
2
−𝜋/2)𝑑𝜔

= ∫
R2

𝐾𝐴−1
1

(𝜏1, 𝜔1)W𝐴1 ,𝐴2𝑓,𝑔 (x,𝜔) 𝐾𝐴−1
2

(𝜏2, 𝜔2) 𝑑𝜔.

(45)
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Letting 𝜏/2 = x, the above expression will lead to

𝑓 (2x) 𝑔 (0) = ∫
R2

𝐾𝐴−1
1

(2𝑥1, 𝜔1)W𝐴1 ,𝐴2𝑓,𝑔 (x,𝜔)
⋅ 𝐾𝐴−1

2

(2𝑥2, 𝜔2) 𝑑𝜔,
(46)

and the final result can be obtained by letting 2x = s; that is,

𝑓 (s) = 1𝑔 (0) ∫
R2

𝐾𝐴−1
1

(𝑠1, 𝜔1)W𝐴1 ,𝐴2𝑓,𝑔 ( s2 ,𝜔)
⋅ 𝐾𝐴−1

2

(𝑠2, 𝜔2) 𝑑𝜔,
(47)

which completes the proof.

We now observe that from (45), we straightforwardly
obtain the time marginal property of the QWVD-LCT; that
is,

𝑓(x + 𝜏2) 𝑔 (x − 𝜏2)
= ∫

R2

1√2𝜋𝑏1 𝑒(i/2)((𝑎1/𝑏1)𝜏
2

1
−(2/𝑏
1
)𝜏
1
𝜔
1
+(𝑑
1
/𝑏
1
)𝜔2
1
−𝜋/2)

W
𝐴
1
,𝐴
2

𝑓,𝑔 (x,
𝜔) 1√2𝜋𝑏2 𝑒(j/2)((𝑎2/𝑏2)𝜏

2

2
−(2/𝑏
2
)𝜏
2
𝜔
2
+(𝑑
2
/𝑏
2
)𝜔2
2
−𝜋/2)𝑑𝜔.

(48)

If we set 𝜏 = 0, the above identity will reduce to
𝑓 (x) 𝑔 (x) = ∫

R2

𝑒i(𝜋/4)√2𝜋𝑏1 𝑒−i(𝑑1/2𝑏1)𝜔
2

1W
𝐴
1
,𝐴
2

𝑓,𝑔 (x,𝜔)
⋅ 𝑒j(𝜋/4)√2𝜋𝑏2 𝑒−j(𝑑2/2𝑏2)𝜔

2

2𝑑𝜔,
(49)

and if we set 𝜏 = 0 and 𝑓 = 𝑔, (48) becomes

󵄨󵄨󵄨󵄨𝑓 (x)󵄨󵄨󵄨󵄨2 = ∫
R2

𝑒i(𝜋/4)√2𝜋𝑏1 𝑒−i(𝑑1/2b1)𝜔
2

1W
𝐴
1
,𝐴
2

𝑓 (x,𝜔)
⋅ 𝑒j(𝜋/4)√2𝜋𝑏2 𝑒−j(𝑑2/2𝑏2)𝜔

2

2𝑑𝜔.
(50)

Integrating (49) and (50) with respect to the x-variable gives

∫
R2

𝑓 (x) 𝑔 (x) 𝑑x
= ∫

R2
∫
R2

𝑒i(𝜋/4)√2𝜋𝑏1 𝑒−i(𝑑1/2𝑏1)𝜔
2

1W
𝐴
1
,𝐴
2

𝑓,𝑔 (x,𝜔)
⋅ 𝑒j(𝜋/4)√2𝜋𝑏2 𝑒−j(𝑑2/2𝑏2)𝜔

2

2𝑑𝜔 𝑑x

∫
R2

󵄨󵄨󵄨󵄨𝑓 (x)󵄨󵄨󵄨󵄨2 𝑑x
= ∫

R2
∫
R2

𝑒i(𝜋/4)√2𝜋𝑏1 𝑒−i(𝑑1/2𝑏1)𝜔
2

1W
𝐴
1
,𝐴
2

𝑓 (x,𝜔)
⋅ 𝑒j(𝜋/4)√2𝜋𝑏2 𝑒−j(𝑑2/2𝑏2)𝜔

2

2𝑑𝜔 𝑑x.
(51)

Applying Moyal’s formula for the QFT and the relation
between the QFT and the QWVD-LCT, we establish general
Moyal’s formula of the QWVD-LCT (compared to [9]).

Theorem 13 (Moyal’s formula for the QWVD-LCT). Let𝑓1, 𝑓2, 𝑔1, 𝑔2 ∈ 𝐿2(R2;H) be quaternion-valued signals. Then
the following equation holds:

Sc∫
R2

∫
R2

W
𝐴
1
,𝐴
2

𝑓
1
,𝑔
1

(x,𝜔)W𝐴1 ,𝐴2𝑓
2
,𝑔
2

(x,𝜔)𝑑𝜔 𝑑𝜏
= ⟨𝑓1 (𝑔1, 𝑔2) , 𝑓2⟩ .

(52)

Proof. Applying Parseval’s formula of the QFT (18) to 𝜔-
integral into the left-hand side of (52) yields

∫
R2

⟨ℎ̃𝑓
1
,𝑔
1

, ℎ̃𝑓
2
,𝑔
2

⟩ 𝑑𝜏
= ∫

R2
⟨F𝑞 {ℎ̃𝑓

1
,𝑔
1

} ,F𝑞 {ℎ̃𝑓
2
,𝑔
2

}⟩ 𝑑𝜏 = 1󵄨󵄨󵄨󵄨𝑏1𝑏2󵄨󵄨󵄨󵄨
⋅ ∫

R2
Sc∫

R2
F𝑞 {ℎ̃𝑓

1
,𝑔
1

} (𝜔
b
)

⋅F𝑞 {ℎ̃𝑓
2
,𝑔
2

} (𝜔
b
)𝑑𝜔𝑑𝜏.

(53)

Using the cyclic multiplication symmetry (11) yields

∫
R2

⟨ℎ̃𝑓
1
,𝑔
1

, ℎ̃𝑓
2
,𝑔
2

⟩ 𝑑𝜏 = 1󵄨󵄨󵄨󵄨𝑏1𝑏2󵄨󵄨󵄨󵄨
⋅ Sc∫

R2
∫
R2

𝑒−i(𝑑1/2𝑏1)𝜔21W𝐴1 ,𝐴2
𝑓
1
,𝑔
1

(x,𝜔)
⋅ 𝑒−j(𝑑2/2𝑏2)𝜔22𝑒−i(𝑑1/2𝑏1)𝜔21W𝐴1 ,𝐴2

𝑓
2
,𝑔
2

(x,𝜔) 𝑒−j(𝑑2/2𝑏2)𝜔22𝑑𝜔 𝑑𝜏
= 1󵄨󵄨󵄨󵄨𝑏1𝑏2󵄨󵄨󵄨󵄨Sc∫R2 ∫R2 𝑒−i(𝑑1/2𝑏1)𝜔

2

1W
𝐴
1
,𝐴
2

𝑓
1
,𝑔
1

(x,𝜔)
⋅ 𝑒−j(𝑑2/2𝑏2)𝜔22𝑒j(𝑑2/2𝑏2)𝜔21W𝐴1 ,𝐴2

𝑓
2
,𝑔
2

(x,𝜔)𝑒i(𝑑1/2𝑏1)𝜔21𝑑𝜔 𝑑𝜏
= 1󵄨󵄨󵄨󵄨𝑏1𝑏2󵄨󵄨󵄨󵄨Sc∫R2 ∫R2W

𝐴
1
,𝐴
2

𝑓
1
,𝑔
1

(x,𝜔)W𝐴1 ,𝐴2𝑓
2
,𝑔
2

(x,𝜔)𝑑𝜔 𝑑𝜏.

(54)

The right-hand side of the above identity can be rewritten in
the form
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∫
R2

⟨ℎ̃𝑓
1
,𝑔
1

, ℎ̃𝑓
2
,𝑔
2

⟩ 𝑑𝜏 = Sc∫
R2

∫
R2

ℎ̃𝑓
1
,𝑔
1
(x, 𝜏) ℎ̃𝑓

2
,𝑔
2
(x, 𝜏)𝑑x 𝑑𝜏

= Sc(∫
R2

∫
R2

𝑒−i(𝜋/4)√2𝜋𝑏1 𝑒i(𝑎1/2𝑏1)𝜏
2

1𝑓1 (x + 𝜏2) 𝑔1 (x − 𝜏2) 𝑒j(𝑎2/2𝑏2)𝜏22 𝑒−j(𝜋/4)√2𝜋𝑏2
× 𝑒−i(𝜋/4)√2𝜋𝑏1 𝑒i(𝑎1/2𝑏1)𝜏

2

1𝑓2 (x + 𝜏2) 𝑔2 (x − 𝜏2) 𝑒−j(𝜋/4)√2𝜋𝑏2 𝑒j(𝑎2/2𝑏2)𝜏
2

2𝑑x 𝑑𝜏)
= 1󵄨󵄨󵄨󵄨𝑏1𝑏2󵄨󵄨󵄨󵄨Sc∫R2 ∫R2 𝑓1 (x + 𝜏2) 𝑔1 (x − 𝜏2)𝑓2 (x + 𝜏2) 𝑔2 (x − 𝜏2)𝑑x 𝑑𝜏.

(55)

Making the change of variables y = x + 𝜏/2 and z = x − 𝜏/2
and applying Fubini’s theorem we obtain

∫
R2

⟨ℎ̃𝑓
1
,𝑔
1

, ℎ̃𝑓
2
,𝑔
2

⟩ 𝑑𝜏
= 1󵄨󵄨󵄨󵄨𝑏1𝑏2󵄨󵄨󵄨󵄨Sc∫R2 ∫R2 𝑓1 (y) 𝑔1 (z) 𝑔2 (z) 𝑓2 (y) 𝑑y 𝑑z
= 1󵄨󵄨󵄨󵄨𝑏1𝑏2󵄨󵄨󵄨󵄨Sc∫R2 𝑓1 (y) ∫R2 𝑔1 (z) 𝑔2 (z) 𝑑z𝑓2 (y) 𝑑y
= 1󵄨󵄨󵄨󵄨𝑏1𝑏2󵄨󵄨󵄨󵄨 ⟨𝑓1 (𝑔1, 𝑔2) , 𝑓2⟩ .

(56)

By comparing the last line of (54) with the last line of (56)
finishes the proof of the theorem.

Based on the above theorem, we obtain the following
consequences:

(i) If 𝑔1 = 𝑔2, then
Sc∫

R2
∫
R2

W
𝐴
1
,𝐴
2

𝑓
1
,𝑔
1

(x,𝜔)W𝐴1 ,𝐴2𝑓
2
,𝑔
1

(x,𝜔)𝑑𝜔 𝑑𝜏
= 󵄩󵄩󵄩󵄩𝑔1󵄩󵄩󵄩󵄩2 ⟨𝑓1, 𝑓2⟩ .

(57)

(ii) If 𝑓1 = 𝑓2, then
Sc∫

R2
∫
R2

W
𝐴
1
,𝐴
2

𝑓
1
,𝑔
1

(x,𝜔)W𝐴1 ,𝐴2𝑓
1
,𝑔
2

(x,𝜔)𝑑𝜔 𝑑𝜏
= ⟨𝑓1 (𝑔1, 𝑔2) , 𝑓1⟩ . (58)

(iii) If 𝑓1 = 𝑓2 and 𝑔1 = 𝑔2, then
∫
R2

∫
R2

󵄨󵄨󵄨󵄨󵄨󵄨W𝐴1 ,𝐴2𝑓1 ,𝑔1 (x,𝜔)󵄨󵄨󵄨󵄨󵄨󵄨2 𝑑𝜔 𝑑𝜏 = 󵄩󵄩󵄩󵄩𝑓1󵄩󵄩󵄩󵄩2 󵄩󵄩󵄩󵄩𝑔1󵄩󵄩󵄩󵄩2 . (59)

3.2. Relationship between QAF-LCT and QWFT. In this
subsection, we introduce the quaternionic windowed Fourier
transform (QWFT) and obtain the relationship between the
QAF-LCT and QWFT. Following [11, 12], we define the
QWFT as follows.

Definition 14 (QWFT). Let 𝜙 ∈ 𝐿2(R2;H) be a fixed nonzero
quaternion window function. The QWFT of 𝑓 ∈ 𝐿2(R2;H)
with respect to 𝜙 is defined to be the quaternion function on
phase space R2 ×R2 given by

S𝑓 (x,𝜔) = ∫
R2

𝑒−i𝜔1𝜏1𝑓 (x) 𝑔 (x − 𝜏) 𝑒−j𝜔2𝜏2𝑑𝜏. (60)

Before presenting themain result of this subsection, let us
introduce the following carrier definition and its properties
(see [13, 14]).

Definition 15 (carrier). Given two quaternions 𝑝 and 𝑞, we
define the right 𝐶𝑟 and left 𝐶𝑙 carrier operators as

𝐶𝑟 (𝑝) 𝑞 = 𝑞𝑝,
𝑞𝐶𝑙 (𝑝) = 𝑝𝑞. (61)

Lemma 16. Carriers (61) above satisfy the following properties
with 𝑝 ∈ H:

𝐶𝑟 (𝑝) = 𝐶𝑙 (𝑝) ,
𝐶𝑙 (𝑝) = 𝐶𝑟 (𝑝) . (62)

We now describe the relationship between the QAF-LCT
and the QWFT in the following theorem.

Theorem 17. The QAF-LCT of a quaternion signal 𝑓 ∈𝐿2(R2;H) can be expressed by the QWFT in the form

A
𝐴
1
,𝐴
2

𝑓,𝑔
(x2 , 𝜔2 ) = 4𝑒−i(𝜋/4)√2𝜋𝑏1

⋅ 𝑒i((𝑑1/8𝑏1)𝜔21+(1/2𝑏1)𝜔1𝑥1−(3𝑎1/2𝑏1)𝑥21)S𝑓 (x, 𝜔1 + 2𝑎1𝑥1𝑏1 ,
𝜔2 + 2𝑎2𝑥2𝑏2 ) × 4𝑒−j(𝜋/4)√2𝜋𝑏2
⋅ 𝑒j((𝑑2/8𝑏2)𝜔22+(1/2𝑏2)𝜔2𝑥2−(3𝑎2/2𝑏2)𝑥22).

(63)

Proof. According to the definition of QWVD-LCT (28), we
obtain the following by making the change of variable:
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A
𝐴
1
,𝐴
2

𝑓,𝑔
(x2 , 𝜔2 ) = 4√2𝜋𝑏1

⋅ ∫
R2

𝑒i((𝑎1/2𝑏1)𝜏21−(1/2𝑏1)𝜏1𝜔1+(𝑑1/8𝑏1)𝜔21−𝜋/2)𝑓(𝜏2 + x2) 𝑔 (𝜏2 − x2) 1√2𝜋𝑏2 𝑒j((𝑎2/2𝑏2)𝜏
2

2
−(1/2𝑏

2
)𝜏
2
𝜔
2
+(𝑑
2
/8𝑏
2
)𝜔2
2
−𝜋/2)𝑑𝜏

= 4𝑒−i(𝜋/4)√2𝜋𝑏1 𝑒(i𝑑1/8𝑏1)𝜔
2

1 ∫
R2

𝑒−i(𝜏1−𝑥1/2)(𝜔1/𝑏1)𝑒i(2𝑎1/𝑏1)(𝜏1−𝑥1/2)2𝑓 (𝜏) 𝑔 (𝜏 − x) 𝑒j(2𝑎2/𝑏2)(𝜏2−𝑥2/2)2𝑒−j(𝜏2−𝑥2/2)(𝜔2/𝑏2)𝑑𝜏
× 4𝑒−j(𝜋/4)√2𝜋𝑏2 𝑒(j𝑑2/8𝑏2)𝜔

2

2 = 4𝑒−i(𝜋/4)√2𝜋𝑏1 𝑒i((𝑑1/8𝑏1)𝜔
2

1
+(1/2𝑏

1
)𝜔
1
𝑥
1
−(3𝑎
1
/2𝑏
1
)𝑥2
1
) ∫

R2
𝑒−i((𝜔1+2𝑎1𝑥1)/𝑏1)𝜏1𝑒i(2𝑎1/𝑏1)(𝑥1−𝜏1)2𝑓 (x) 𝑔 (x − 𝜏)

× 𝑒j(2𝑎2/𝑏2)(𝑥2−𝜏2)2𝑒−j((𝜔2+2𝑎2𝑥2)/𝑏2)𝜏2𝑑𝜏4𝑒−j(𝜋/4)√2𝜋𝑏2 𝑒j((𝑑2/8𝑏2)𝜔
2

2
+(1/2𝑏

2
)𝜔
2
𝑥
2
−(3𝑎
2
/2𝑏
2
)𝑥2
2
).

(64)

With the help of (61) and (62), we rewrite the above identity
as

A
𝐴
1
,𝐴
2

𝑓,𝑔
(x2 , 𝜔2 ) = 4𝑒−i(𝜋/4)√2𝜋𝑏1

⋅ 𝑒i((𝑑1/8𝑏1)𝜔21+(1/2𝑏1)𝜔1𝑥1−(3𝑎1/2𝑏1)𝑥21) ∫
R2

𝑒−i((𝜔1+2𝑎1𝑥1)/𝑏1)𝜏1𝑓 (x)
× 𝑒−j(2𝑎2/𝑏2)(𝑥2−𝜏2)2𝑔 (x − 𝜏)Cr (𝑒−i(2𝑎1/𝑏1)(𝑥1−𝜏1)2)
× 𝑒−j((𝜔2+2𝑎2𝑥2)/𝑏2)𝜏2𝑑𝜏4𝑒−j(𝜋/4)√2𝜋𝑏2
⋅ 𝑒j((𝑑2/8𝑏2)𝜔22+(1/2𝑏2)𝜔2𝑥2−(3𝑎2/2𝑏2)𝑥22).

(65)

According to the definition of QWFT (60), we choose the
quaternion window function

𝑔 (x) = 𝑒−j(2𝑎2/𝑏2)𝑥22𝑔 (x)Cr (𝑒−i(2𝑎1/𝑏1)𝑥21) (66)

and obtain

A
𝐴
1
,𝐴
2

𝑓,𝑔
(x2 , 𝜔2 ) = 4𝑒−i(𝜋/4)√2𝜋𝑏1

⋅ 𝑒i((𝑑1/8𝑏1)𝜔21+(1/2𝑏1)𝜔1𝑥1−(3𝑎1/2𝑏1)𝑥21)S𝑓 (x, 𝜔1 + 2𝑎1𝑥1𝑏1 ,
𝜔2 + 2𝑎2𝑥2𝑏2 ) × 4𝑒−j(𝜋/4)√2𝜋𝑏2
⋅ 𝑒j((𝑑2/8𝑏2)𝜔22+(1/2𝑏2)𝜔2𝑥2−(3𝑎2/2𝑏2)𝑥22).

(67)

The proof is complete.

3.3. Relationship between QAF-LCT and CQWT. Before
proving the relationship between the QAF-LCT and the
continuous quaternion wavelet transform (CQWT), we first
introduce the definition of the CQWT (see [15–17]).

Definition 18 (CQWT). The CQWT of a quaternion function𝑓 ∈ 𝐿2(R2;H) with respect to the quaternion mother wavelet𝜓 is defined by

𝑇𝜓𝑓 (𝑎, b) = ∫
R2

𝑓 (x) 1𝑎𝜓(x − b𝑎 )𝑑x. (68)

Here the family of the quaternion wavelets 𝜓𝑎,b is defined by

𝜓𝑎,b (x) = 1𝑎𝜓(x − b𝑎 ) , 𝑎 ∈ R
+. (69)

This definition will lead to the following result.

Theorem 19. The QAF-LCT of 𝑓 ∈ 𝐿2(R2;H) can be reduced
to the CQWT

A
𝐴
1
,𝐴
2

𝑓,𝑔 (x,𝜔) = 𝑒−i(𝜋/4)√2𝜋𝑏1
⋅ 𝑒i(𝑑1/2𝑏1)𝜔21−𝜔1𝑥1/2𝑏1+𝑎1𝑥21/8𝑏1𝑇𝜓𝑓 (1, x) 𝑒−j(𝜋/4)√2𝜋𝑏2
⋅ 𝑒j(𝑑2/2𝑏2)𝜔22−𝜔2𝑥2/2𝑏2+𝑎2𝑥22/8𝑏2 .

(70)

Proof. Applying the definition of the QAF-LCT (29) and
following [18], we easily get

A
𝐴
1
,𝐴
2

𝑓,𝑔 (x,𝜔)
= 𝑒−i(𝜋/4)√2𝜋𝑏1 ∫R2 𝑒i((𝑎1/2𝑏1)𝜏

2

1
−(1/𝑏
1
)𝜏
1
𝜔
1
+(𝑑
1
/2𝑏
1
)𝜔2
1
−𝜋/2)𝑓(𝜏 + x2) 𝑔 (𝜏 − x2) 𝑒−j(𝜋/4)√2𝜋𝑏2 𝑒j((𝑎2/2𝑏2)𝜏

2

2
−(1/𝑏
2
)𝜏
2
𝜔
2
+(𝑑
2
/2𝑏
2
)𝜔2
2
−𝜋/2)𝑑𝜏
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= 𝑒−i(𝜋/4)√2𝜋𝑏1 ∫R2 𝑒i((𝑎1/2𝑏1)𝜏
2

1
−(1/𝑏
1
)𝜏
1
𝜔
1
+(𝑑
1
/2𝑏
1
)𝜔2
1
−𝜋/2)𝑓(𝜏 + x2) 𝑔 (𝜏 + x2 − x) 𝑒−j(𝜋/4)√2𝜋𝑏2 𝑒j((𝑎2/2𝑏2)𝜏

2

2
−(1/𝑏
2
)𝜏
2
𝜔
2
+(𝑑
2
/2𝑏
2
)𝜔2
2
−𝜋/2)𝑑𝜏

= 𝑒−i(𝜋/4)√2𝜋𝑏1 ∫R2 𝑒i(𝑑1/2𝑏1)𝜔
2

1𝑒i(1/𝑏1)(𝜏󸀠1−𝑥1/2)𝜔1𝑒i(𝑎1/2𝑏1)(𝜏󸀠1−𝑥1/2)2𝜔1𝑓 (𝜏󸀠) 𝑔 (𝜏󸀠 − x)
× 𝑒−j(𝜋/4)√2𝜋𝑏2 𝑒j(𝑑2/2𝑏2)𝜔

2

2𝑒j(1/𝑏2)(𝜏󸀠2−𝑥2/2)𝜔2𝑒j(𝑎2/2𝑏2)(𝜏󸀠2−𝑥2/2)2𝜔1𝑑𝜏󸀠

= 𝑒−i(𝜋/4)√2𝜋𝑏1 𝑒i((𝑑1/2𝑏1)𝜔
2

1
−𝜔
1
𝑥
1
/2𝑏
1
+𝑎
1
𝑥2
1
/8𝑏
1
) ∫

R2
𝑒i(𝑎1/2𝑏1)(𝜏󸀠1−𝑥1)2−i(𝜏󸀠1−𝑥1)((2𝜔1−𝑎1𝑥1)/2𝑏1)𝑓 (𝜏󸀠) 𝑔 (𝜏󸀠 − x)

× 𝑒j(𝑎2/2𝑏2)(𝜏󸀠2−𝑥2)2−j(𝜏󸀠2−𝑥2)((2𝜔2−𝑎2𝑥2)/2𝑏2)𝑑𝜏󸀠 𝑒−j(𝜋/4)√2𝜋𝑏2 𝑒j((𝑑2/2𝑏2)𝜔
2

2
−𝜔
2
𝑥
2
/2𝑏
2
+𝑎
2
𝑥2
2
/8𝑏
2
).

(71)

Again applying (61) and (62), we obtain

A
𝐴
1
,𝐴
2

𝑓,𝑔 (x,𝜔) = 𝑒−i(𝜋/4)√2𝜋𝑏1 𝑒i((𝑑1/2𝑏1)𝜔
2

1
−𝜔
1
𝑥
1
/2𝑏
1
+𝑎
1
𝑥2
1
/8𝑏
1
) ∫

R2
𝑓 (𝜏󸀠)

× 𝑒−j(𝑎2/2𝑏2)(𝜏󸀠2−𝑥2)2+j(𝜏󸀠2−𝑥2)((2𝜔2−𝑎2𝑥2)/2𝑏2)𝑔 (𝜏󸀠 − x)Cr (𝑒−i(𝑎1/2𝑏1)(𝜏󸀠1−𝑥1)2+i(𝜏󸀠1−𝑥1)((2𝜔1−𝑎1𝑥1)/2𝑏1))
× 𝑑𝜏󸀠 𝑒−j(𝜋/4)√2𝜋𝑏2 𝑒j((𝑑2/2𝑏2)𝜔

2

2
−𝜔
2
𝑥
2
/2𝑏
2
+𝑎
2
𝑥2
2
/8𝑏
2
)

= 𝑒−i(𝜋/4)√2𝜋𝑏1 𝑒i((𝑑1/2𝑏1)𝜔
2

1
−𝜔
1
𝑥
1
/2𝑏
1
+𝑎
1
𝑥2
1
/8𝑏
1
) ∫

R2
𝑓 (𝜏󸀠) 𝜓 (𝜏󸀠 − x) 𝑑𝜏󸀠 𝑒−j(𝜋/4)√2𝜋𝑏2 𝑒j((𝑑2/2𝑏2)𝜔

2

2
−𝜔
2
𝑥
2
/2𝑏
2
+𝑎
2
𝑥2
2
/8𝑏
2
)

= 𝑒−i(𝜋/4)√2𝜋𝑏1 𝑒i((𝑑1/2𝑏1)𝜔
2

1
−𝜔
1
𝑥
1
/2𝑏
1
+𝑎
1
𝑥2
1
/8𝑏
1
)𝑇𝜓𝑓 (1, x) 𝑒−j(𝜋/4)√2𝜋𝑏2 𝑒j((𝑑2/2𝑏2)𝜔

2

2
−𝜔
2
𝑥
2
/2𝑏
2
+𝑎
2
𝑥2
2
/8𝑏
2
),

(72)

where the family of the quaternion wavelets 𝜓1,b is given by

𝜓1,b (x) = 𝑒−j(𝑎2/2𝑏2)(𝜏2−𝑥2)2+j(𝜏2−𝑥2)((2𝜔2−𝑎2𝑥2)/2𝑏2)𝑔 (𝜏 − x)Cr (𝑒−i(𝑎1/2𝑏1)(𝜏1−𝑥1)2+i(𝜏1−𝑥1)((2𝜔1−𝑎1𝑥1)/2𝑏1)). (73)

This is the desired result.

4. Relationship between QAF-LCT and QFT

By a similar argument as in the proof of the Lemma 11, one
may establish the following lemma, which describes the basic
relationship between the QAF-LCT and the QFT.

Lemma 20. The cross QAF-LCT of a signal 𝑓 with ma-
trix parameters 𝐴1 = (𝑎1, 𝑏1, 𝑐1, 𝑑1) and 𝐴2 = (𝑎2, 𝑏2, 𝑐2, 𝑑2)

can be reduced as the QFT of the signal 𝑓 in the following
form:

A
𝐴
1
,𝐴
2

𝑓,𝑔 (x,𝜔) = 𝑒−i(𝜋/4)√2𝜋𝑏1
⋅ 𝑒(i𝑑1/2𝑏1)𝜔21F𝑞 {𝑒i(𝑎1/2𝑏1)𝜏21𝑓(𝜏 + x2) 𝑔 (𝜏 − x2)
⋅ 𝑒j(𝑎2/2𝑏2)𝜏22}(𝜔1𝑏1 ,

𝜔2𝑏2 )
𝑒−j(𝜋/4)√2𝜋𝑏2 𝑒(j𝑑2/2𝑏2)𝜔

2

2 .
(74)
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Applying (74) and inversion formula for the QFT (17), we
easily obtain the following theorem.

Theorem 21 (reconstruction formula for QAF-LCT). The
inverse transform of the cross the QAF-LCT of the signal 𝑓 ∈𝐿2(R2;H) is given by

𝑓 (𝑥) = 1𝑔 (0) ∫
R2

𝐾𝐴−1
1

(𝑥1, 𝜔1)A𝐴1 ,𝐴2𝑓,𝑔 (x2 ,𝜔)
⋅ 𝐾𝐴−1

2

(𝑥2, 𝜔2) 𝑑𝜔,
(75)

provided that 𝑔(0) ̸= 0.

In the same kind of reasoning as Theorem 13, one can
easily derive Moyal’s formula of the QAF-LCT as follows.

Theorem 22 (Moyal’s formula for QAF-LCT). Let 𝑓1, 𝑓2,𝑔1, 𝑔2 ∈ 𝐿2(R2;H) be quaternion-valued signals. Then the
following equation holds:

Sc∫
R2

∫
R2

A
𝐴
1
,𝐴
2

𝑓
1
,𝑔
1

(x,𝜔)A𝐴1 ,𝐴2𝑓
2
,𝑔
2

(x,𝜔)𝑑𝜔𝑑𝜏
= ⟨𝑓1 (𝑔1, 𝑔2) , 𝑓2⟩ . (76)

5. Conclusion

In this paper, we have presented the quaternion Wigner-
Ville distribution associated with linear canonical trans-
form (QWVD-LCT) and the quaternion ambiguity function
associated with linear canonical transform (QAF-LCT). We
provide alternative proof of well-known properties of the
QWVD-LCT and QAF-LCT such as inversion formula and
Moyal formula. The proof of the properties can be obtained
using the properties of the QFT and relationship among the
QWVD-LCT, QAF-LCT, and the QFT. We also studied that
the QAF-LCT can be reduced to the QWFT and the CQWT.
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