
Research Article
Improving Fourier Partial Sum Approximation for
Discontinuous Functions Using a Weight Function

Beong In Yun

Department of Mathematics, Kunsan National University, Gunsan, Republic of Korea

Correspondence should be addressed to Beong In Yun; paulllyun@gmail.com

Received 1 September 2017; Revised 16 October 2017; Accepted 19 October 2017; Published 22 November 2017

Academic Editor: Roberto Barrio

Copyright © 2017 Beong In Yun.This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We introduce a generalized sigmoidal transformation 𝑤𝑚(𝑟; 𝑥) on a given interval [𝑎, 𝑏] with a threshold at 𝑥 = 𝑟 ∈ (𝑎, 𝑏). Using
𝑤𝑚(𝑟; 𝑥), we develop a weighted averaging method in order to improve Fourier partial sum approximation for a function having
a jump-discontinuity. The method is based on the decomposition of the target function into the left-hand and the right-hand part
extensions. The resultant approximate function is composed of the Fourier partial sums of each part extension. The pointwise
convergence of the presented method and its availability for resolving Gibbs phenomenon are proved.The efficiency of the method
is shown by some numerical examples.

1. Introduction

For a function 𝑓 having a jump-discontinuity, every tradi-
tional spectral partial sum approximation will not converge
uniformly on any interval containing the discontinuity. This
deficiency of the spectral approximation results in the so-
called Gibbs phenomenon which shows nonvanishing spikes
near the discontinuity [1, 2].There are lots ofmethods to over-
come the problem such as the Fourier-Gegenbauer method
[3–5], the inverse reconstruction [6, 7], and the adaptive fil-
teringmethod [8–11]. But most existingmethods need a large
number of terms to support high accuracy.

In this work, focusing on the Fourier partial sum approx-
imation for a piecewise smooth function 𝑓 having a jump-
discontinuity 𝜉, we aim to develop a constructive approxima-
tion procedure which is available for eliminating the Gibbs
phenomenon near the discontinuity. First, in the following
section, we introduce the so-called generalized sigmoidal
transformation 𝑤𝑚(𝑟; 𝑥) with a threshold 𝑟 = 𝜉. Using 𝑤𝑚,
we decompose the target function 𝑓 into the left-hand part
extension 𝑓𝐿 and the right-hand part extension 𝑓𝑅 as
described in Section 3.Thenwe combine Fourier partial sums
of𝑓𝐿 and𝑓𝑅 by the form of a weighted average, 𝐹𝑛, as given in
(26) in Section 4. We prove the pointwise convergence
of the presented approximation 𝐹𝑛 to the discontinuous
function 𝑓 over the whole interval. Moreover, it is shown
that the asymptotic version of 𝐹𝑛 which is composed of

uniform convergent partial sums will overcome the Gibbs
phenomenon. This means that 𝐹𝑛 can sufficiently resolve the
problemof inevitablewiggles of the traditional Fourier partial
sum approximation near the jump-discontinuity. In addition,
numerical results for some examples show the availability of
the presented method.

2. A Generalized Sigmoidal Transformation

For a given interval [𝑎, 𝑏] and some interior point 𝑎 < 𝑟 < 𝑏,
referring to the literature [12], we introduce the real valued
function

𝑤𝑚 (𝑟; 𝑥) = (𝑥 − 𝑎)𝑚
(𝑥 − 𝑎)𝑚 + {((𝑟 − 𝑎) / (𝑏 − 𝑟)) (𝑏 − 𝑥)}𝑚 ,

𝑎 ≤ 𝑥 ≤ 𝑏
(1)

for an integer 𝑚 ≥ 1. It was used for cumulative averaging
method for piecewise polynomial interpolations in [12]. We
call 𝑤𝑚(𝑥) = 𝑤𝑚(𝑟; 𝑥) a generalized sigmoidal transforma-
tion of order𝑚 with a threshold 𝑟.

We can observe the basic properties of 𝑤𝑚 as follows:
(i) The special case of 𝑟 = (𝑎+𝑏)/2, with 𝑎 = 0 and 𝑏 = 1,

is

𝑤𝑚 (𝑥) = 𝑥𝑚
𝑥𝑚 + (1 − 𝑥)𝑚 , (2)
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Figure 1: Graphs of test functions.

which is the same with the elementary sigmoidal
transformation proposed in [13, 14].

(ii) Values of 𝑤𝑚(𝑥) at the points 𝑥 = 𝑎, 𝑟, and 𝑏 are
𝑤𝑚 (𝑎) = 0,
𝑤𝑚 (𝑟) = 1

2 ,
𝑤𝑚 (𝑏) = 1

(3)

independently of the parameters 𝑎, 𝑏, 𝑟, and 𝑚. In
addition, 𝑤𝑚(𝑥) is strictly increasing on the interval
[𝑎, 𝑏] because the derivative of 𝑤𝑚(𝑥) with respect to
𝑥 satisfies

𝑤󸀠𝑚 (𝑥)
= 𝑚 (𝑏 − 𝑎) (𝑏 − 𝑟)𝑚 (𝑟 − 𝑎)𝑚 (𝑏 − 𝑥)𝑚−1 (𝑥 − 𝑎)𝑚−1

{(𝑟 − 𝑎)𝑚 (𝑏 − 𝑥)𝑚 + (𝑏 − 𝑟)𝑚 (𝑥 − 𝑎)𝑚}2
> 0

(4)

for all 𝑎 < 𝑥 < 𝑏.
(iii) Asymptotic behavior of 𝑤𝑚(𝑥) near the end points 𝑎

and 𝑏 is

𝑤𝑚 (𝑥) =
{{{
{{{{

𝑂([𝑥 − 𝑎
𝑟 − 𝑎 ]

𝑚) , 𝑥 < 𝑟
1 + 𝑂([𝑏 − 𝑥

𝑏 − 𝑟 ]
𝑚

) , 𝑥 > 𝑟
(5)

as 𝑚 goes to the infinity. Moreover, 𝑤𝑚 is sufficiently
smooth over the interval (𝑎, 𝑏); that is, 𝑤𝑚(𝑥) ∈
𝐶∞(𝑎, 𝑏).

The generalized sigmoidal transformation 𝑤𝑚 plays an
important role in developing a new approximation method
as a weight function in this work.

3. Decomposition of a Discontinuous Function

From now on we suppose that 𝑓 is a piecewise smooth
function containing a jump-discontinuity 𝜉 in an interval
[𝑎, 𝑏]. We assume that the location of 𝜉 or its accurate
approximation is known and that the value 𝑓(𝜉) is defined
to be the average of the left- and right-hand limits of 𝑓 at 𝜉;
that is,

𝑓 (𝜉) = {𝑓 (𝜉−) + 𝑓 (𝜉+)}
2 . (6)

On the other side, taking 𝑟 = 𝜉 in formula (1) or 𝑤𝑚 =
𝑤𝑚(𝜉; 𝑥), we will use it as a weight function for the proposed
approximation method in this work.

We choose the test functions below whose graphs are
given in Figure 1:

𝑓1 (𝑥) =
{{
{{{

1
5 (𝑥 − 1)2 − 4, −𝜋 ≤ 𝑥 < 𝜋

3
𝑥 + sin (3𝑥) , 𝜋

3 < 𝑥 ≤ 𝜋 (7)

which have a jump-discontinuity 𝜉 = 𝜋/3:
𝑓2 (𝑥) = 1

2 (𝑥 + 1)2 , − 𝜋 ≤ 𝑥 ≤ 𝜋 (8)

which is continuous on the interval [−𝜋, 𝜋]. We notice that𝑓𝑖(−𝜋) ̸= 𝑓𝑖(𝜋), 𝑖 = 1, 2, and thus both 𝑓1 and 𝑓2 have jump-
discontinuities at ±𝜋 when we extend these functions to the2𝜋 periodic functions over the real line.

Let the piecewise smooth function 𝑓(𝑥), containing a
jump-discontinuity 𝜉, be defined as

𝑓 (𝑥) = {
{{
𝑓𝐿 (𝑥) , 𝑎 ≤ 𝑥 < 𝜉
𝑓𝑅 (𝑥) , 𝜉 < 𝑥 ≤ 𝑏, (9)

where 𝑓𝐿 and 𝑓𝑅 are continuous on [𝑎, 𝜉) and (𝜉, 𝑏], respec-
tively. We assume that the order 𝑚 of 𝑤𝑚 = 𝑤𝑚(𝜉; 𝑥) is large
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enough throughout this paper. First, we define two quadratic
polynomials 𝑄𝐿 and 𝑄𝑅 as

𝑄𝐿 (𝑥) = 𝑎 − 𝜉
(𝑏 − 𝜉)2 (𝑥 − 𝜉)2 + 𝜉 (10)

satisfying

𝑄𝐿 (𝜉) = 𝜉,
𝑄𝐿 (𝑏) = 𝑎,
𝑄𝑅 (𝑥) = 𝑏 − 𝜉

(𝑎 − 𝜉)2 (𝑥 − 𝜉)2 + 𝜉
(11)

satisfying

𝑄𝑅 (𝜉) = 𝜉,
𝑄𝑅 (𝑎) = 𝑏. (12)

It should be noted that the left- and right-hand limits of 𝑄𝐿
and 𝑄𝑅 at 𝜉 are

𝑄𝐿 (𝜉−) = 𝑄𝐿 (𝜉+) = 𝜉−,
𝑄𝑅 (𝜉−) = 𝑄𝑅 (𝜉+) = 𝜉+. (13)

Thenwe construct extensions of𝑓𝐿 and𝑓𝑅 onto the whole
interval [𝑎, 𝑏] as

𝑓𝐿 (𝑥) = {1 − 𝑤𝑚 (𝑥)} 𝑓 (𝑥) + 𝑤𝑚 (𝑥) 𝑓 (𝑄𝐿 (𝑥)) , (14)

𝑓𝑅 (𝑥) = 𝑤𝑚 (𝑥) 𝑓 (𝑥) + {1 − 𝑤𝑚 (𝑥)} 𝑓 (𝑄𝑅 (𝑥)) , (15)

respectively, for 𝑎 ≤ 𝑥 ≤ 𝑏. It is seen that

𝑓𝐿 (𝜉) = 𝑓𝑅 (𝜉) = 𝑓 (𝜉) = (𝑓 (𝜉−) + 𝑓 (𝜉+))
2 (16)

as 𝑤𝑚(𝜉) = 1/2.
One can surmise that, for sufficiently large 𝑚, 𝑓𝐿 has the

effect of reflecting the left part 𝑓𝐿 of 𝑓 on [𝑎, 𝜉] into the
opposite side [𝜉, 𝑏]. So does 𝑓𝑅, symmetrically. In addition,
these extended functions 𝑓𝐿 and 𝑓𝑅 defined in (14) and (15)
have some particular properties as shown in the following
lemmas.

Lemma 1. Let 𝑓 be a piecewise smooth function on [𝑎, 𝑏] with
a jump-discontinuity 𝜉, and suppose that the order 𝑚 of 𝑤𝑚 is
fixed and finite.Then we have the one-sided limits of𝑓𝐿 and 𝑓𝑅
as follows:

𝑓𝐿 (𝜉−) = 𝑓 (𝜉−) ,
𝑓𝐿 (𝜉+) = (𝑓 (𝜉−) + 𝑓 (𝜉+))

2 ,

𝑓𝑅 (𝜉−) = (𝑓 (𝜉−) + 𝑓 (𝜉+))
2 ,

𝑓𝑅 (𝜉+) = 𝑓 (𝜉+) .

(17)

Furthermore,

𝑓𝐿 (𝑎+) = 𝑓𝐿 (𝑏−) (= 𝑓 (𝑎)) ,
𝑓𝑅 (𝑎+) = 𝑓𝑅 (𝑏−) (= 𝑓 (𝑏)) .

(18)

Proof. Since lim𝑥→𝜉 𝑤𝑚(𝑥) = 1/2 and 𝑓(𝑄𝐿(𝜉−)) =
𝑓(𝑄𝐿(𝜉+)) = 𝑓(𝜉−) for some𝑚 fixed, from (14) we have

𝑓𝐿 (𝜉−) = 1
2 {𝑓 (𝜉−) + 𝑓 (𝑄𝐿 (𝜉−))} = 𝑓 (𝜉−) ,

𝑓𝐿 (𝜉+) = 1
2 {𝑓 (𝜉+) + 𝑓 (𝜉−)} .

(19)

By the same way, from (15) we have 𝑓𝑅(𝜉−) = (1/2){𝑓(𝜉−) +
𝑓(𝜉+)} and 𝑓𝑅(𝜉+) = 𝑓(𝜉+). The equations in (18) directly
result from the properties of 𝑄𝐿, 𝑄𝑅, and 𝑤𝑚.

Properties (17) in Lemma 1 imply that both𝑓𝐿 and𝑓𝑅 have
the jump-discontinuity at 𝜉 if the original function 𝑓 has a
jump-discontinuity such as 𝑓(𝜉−) ̸= 𝑓(𝜉+). The properties in
(18) may resolve the troublesome problem in Fourier series
approximation resulting from themismatch at the end points.

In Figure 2, graphs of 𝑓𝐿 and 𝑓𝑅 for the test function
𝑓(𝑥) = 𝑓1(𝑥) with 𝑚 = 40, for example, illustrate the results
in Lemma 1.Therein, thick lines indicate principal part 𝑓𝐿(𝑥)
of the extended functions𝑓𝐿 in (a) and𝑓𝑅(𝑥) of𝑓𝑅 in (b).Thin
lines indicate reflected parts of𝑓𝐿(𝑥) and𝑓𝑅(𝑥) in (a) and (b),
respectively, and dotted lines show the original graph of𝑓(𝑥).

For sufficiently large 𝑚, however, we can see that the
jump-discontinuities of 𝑓𝐿 and 𝑓𝑅 at 𝜉 vanish as shown in the
following lemma.

Lemma 2. For a function 𝑓 assumed in Lemma 1 both

𝑓𝐿 (𝜉+) − 𝑓𝐿 (𝜉−) ,
𝑓𝑅 (𝜉+) − 𝑓𝑅 (𝜉−)

(20)

vanish as𝑚 goes to the infinity.

Proof. It follows that𝑤𝑚(𝜉−) = 0 and𝑤𝑚(𝜉+) = 1 as𝑚 → ∞.
Thus from (14) and (15) we have 𝑓𝐿(𝜉−) = 𝑓𝐿(𝜉+) = 𝑓(𝜉−)
and 𝑓𝑅(𝜉−) = 𝑓𝑅(𝜉+) = 𝑓(𝜉+). The proof is completed.

Lemma 2 indicates the asymptotic behavior of 𝑓𝐿 and 𝑓𝑅
below:

𝑓𝐿 (𝑥) ∼ 𝑓𝐿,∞ (𝑥) fl {
{{
𝑓𝐿 (𝑥) , 𝑎 ≤ 𝑥 ≤ 𝜉
𝑓𝐿 (𝑄𝐿 (𝑥)) , 𝜉 < 𝑥 ≤ 𝑏, (21)

𝑓𝑅 (𝑥) ∼ 𝑓𝑅,∞ (𝑥) fl {
{{
𝑓𝑅 (𝑄𝑅 (𝑥)) , 𝑎 ≤ 𝑥 < 𝜉
𝑓𝑅 (𝑥) , 𝜉 ≤ 𝑥 ≤ 𝑏 (22)

for𝑚 large enough. It should be noted that

lim
𝑥→𝜉

𝑓𝐿,∞ (𝑥) = 𝑓 (𝜉−) ,
lim
𝑥→𝜉

𝑓𝑅,∞ (𝑥) = 𝑓 (𝜉+) .
(23)

Thus, if we replace the values of 𝑓𝐿 and 𝑓𝑅 at 𝜉 as 𝑓𝐿(𝜉) =
𝑓(𝜉−) and 𝑓𝑅(𝜉) = 𝑓(𝜉+), then both 𝑓𝐿,∞ and 𝑓𝑅,∞ are con-
tinuous on the whole interval [𝑎, 𝑏].
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Figure 2: Graphs of the extended functions 𝑓𝐿(𝑥) and 𝑓𝑅(𝑥) with𝑚 = 40 for the test function 𝑓1(𝑥).

4. Improving Fourier Partial
Sum Approximation

In this section we assume that the piecewise smooth function
𝑓 is defined on [𝑎, 𝑏] = [−𝜋, 𝜋] with a jump-discontinuity
−𝜋 < 𝜉 < 𝜋. We consider Fourier series of 𝑓𝐿 and 𝑓𝑅 in the
form of

𝑆𝑛𝑓𝐿 (𝑥) =
𝑛

∑
𝑘=−𝑛

𝑐𝐿𝑘 𝑒𝑖𝑘𝑥,

𝑆𝑛𝑓𝑅 (𝑥) =
𝑛

∑
𝑘=−𝑛

𝑐𝑅𝑘 𝑒𝑖𝑘𝑥,
(24)

where 𝑐𝐿𝑘 and 𝑐𝑅𝑘 are Fourier coefficients defined as

𝑐𝐿𝑘 = ∫𝜋
−𝜋

𝑓𝐿 (𝑡) 𝑒−𝑖𝑘𝑡𝑑𝑡,

𝑐𝑅𝑘 = ∫𝜋
−𝜋

𝑓𝑅 (𝑡) 𝑒−𝑖𝑘𝑡𝑑𝑡.
(25)

Then we propose a weighted average of 𝑆𝑛𝑓𝐿 and 𝑆𝑛𝑓𝑅 as
follows:

𝐹𝑛 (𝑥) = {1 − 𝑤𝑚 (𝑥)} 𝑆𝑛𝑓𝐿 (𝑥) + 𝑤𝑚 (𝑥) 𝑆𝑛𝑓𝑅 (𝑥)

=
𝑛

∑
𝑘=−𝑛

{𝑐𝐿𝑘 + (𝑐𝑅𝑘 − 𝑐𝐿𝑘 )𝑤𝑚 (𝑥)} 𝑒𝑖𝑘𝑥
(26)

for −𝜋 ≤ 𝑥 ≤ 𝜋. It is noted that, like 𝑓𝐿 and 𝑓𝑅, the
weighted average 𝐹𝑛 is discontinuous at 𝜉 if 𝑓(𝜉−) ̸= 𝑓(𝜉+).
Nevertheless, 𝐹𝑛 has the meaningful convergence properties
shown in the following theorem.

Theorem 3. Let 𝑓 be a function assumed in Lemma 1 with
[𝑎, 𝑏] = [−𝜋, 𝜋]. Then we have the following:

(1) For the order𝑚 of𝑤𝑚 fixed, the weighted average𝐹𝑛(𝑥)
converges to

𝑓 (𝑥) + 𝑂 (ℎ (𝑥)𝑚) ,
ℎ (𝑥) = min{𝑥 + 𝜋

𝜉 + 𝜋 , 𝜋 − 𝑥
𝜋 − 𝜉 }

(27)

pointwise over the interval [−𝜋, 𝜋], provided that the
value of 𝐹𝑛 at the jump-discontinuity 𝜉 is defined as𝐹𝑛(𝜉) fl (𝐹𝑛(𝜉−) + 𝐹𝑛(𝜉+))/2.

(2) Let 𝐹𝑛,∞ be a modified formula of 𝐹𝑛, in (26), obtained
by replacing 𝑓𝐿 and 𝑓𝑅 by their asymptotic versions
𝑓𝐿,∞ and 𝑓𝑅,∞ defined in (21) and (22), respectively,
with the assumptions 𝑓𝐿(𝜉) = 𝑓(𝜉−) and 𝑓𝑅(𝜉) =𝑓(𝜉+). Then 𝐹𝑛,∞ converges to 𝑓 pointwise over the
interval [−𝜋, 𝜋], getting out of the Gibbs phenomenon,
as𝑚, 𝑛 → ∞.

Proof. It is noted that 𝑆𝑛𝑓𝐿 and 𝑆𝑛𝑓𝑅, respectively, converge
to𝑓𝐿 and𝑓𝑅 pointwise on the interval [−𝜋, 𝜋] because𝑓𝐿 and𝑓𝑅 are both piecewise smooth [1].

Let 𝑥 < 𝜉. Then from (26) and (5) we have
lim
𝑛→∞

𝐹𝑛 (𝑥)
= lim
𝑛→∞

{𝑆𝑛𝑓𝐿 (𝑥) + [𝑆𝑛𝑓𝑅 (𝑥) − 𝑆𝑛𝑓𝐿 (𝑥)]𝑤𝑚 (𝑥)}
= 𝑓 (𝑥) + 𝑂([𝑥 + 𝜋

𝜉 + 𝜋 ]
𝑚

) .
(28)

Similarly, for 𝑥 > 𝜉,
lim
𝑛→∞

𝐹𝑛 (𝑥) = lim
𝑛→∞

{𝑆𝑛𝑓𝑅 (𝑥)
+ [𝑆𝑛𝑓𝐿 (𝑥) − 𝑆𝑛𝑓𝑅 (𝑥)] (1 − 𝑤𝑚 (𝑥))} = 𝑓 (𝑥)
+ 𝑂([𝜋 − 𝑥

𝜋 − 𝜉 ]
𝑚

) .
(29)
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Figure 3: Approximations of the weighted average𝐹𝑛(𝑥) in upper rows and the corresponding errors in lower rows for the test function𝑓1(𝑥).
Thin lines indicate approximations and errors of the Fourier partial sum 𝑆𝑛𝑓(𝑥).

For 𝑥 = 𝜉, from definition (26) of 𝐹𝑛 and results (17) in
Lemma 1, we have the equations

lim
𝑛→∞

𝐹𝑛 (𝜉−) = 1
2 {𝑓𝐿 (𝜉−) + 𝑓𝑅 (𝜉−)}

= (3𝑓 (𝜉−) + 𝑓 (𝜉+))
4 ,

lim
𝑛→∞

𝐹𝑛 (𝜉+) = 1
2 {𝑓𝐿 (𝜉+) + 𝑓𝑅 (𝜉+)}

= (𝑓 (𝜉−) + 3𝑓 (𝜉+))
4 .

(30)

This implies that

lim
𝑛→∞

𝐹𝑛 (𝜉) = lim
𝑛→∞

(𝐹𝑛 (𝜉−) + 𝐹𝑛 (𝜉+))
2

= 𝑓 (𝜉−) + 𝑓 (𝜉+)
2 = 𝑓 (𝜉) .

(31)

Therefore, the proof of the assertion that 𝐹𝑛 converges
to 𝑓 pointwise over the interval [−𝜋, 𝜋] is completed.

For (2), it is clear from assertion (1) that 𝐹𝑛,∞ converges
to 𝑓 pointwise over the interval [−𝜋, 𝜋] as𝑚, 𝑛 → ∞. On the
other hand, the definitions of 𝑓𝐿,∞ and 𝑓𝑅,∞ in (21) and
(22), respectively, and the assumptions 𝑓𝐿(𝜉) = 𝑓(𝜉−) and
𝑓𝑅(𝜉) = 𝑓(𝜉+) imply that 𝑓𝐿,∞ and 𝑓𝑅,∞ are continuous at
the original discontinuity 𝜉 with 𝑓𝐿,∞(−𝜋) = 𝑓𝐿,∞(𝜋) and
𝑓𝑅,∞(−𝜋) = 𝑓𝑅,∞(𝜋). That is, 𝑓𝐿,∞ and 𝑓𝑅,∞ are free of jump-
discontinuity at𝑥 = 𝜉, ±𝜋.Thus, the Fourier series 𝑆𝑛𝑓𝐿,∞ and
𝑆𝑛𝑓𝑅,∞ uniformly converge to𝑓𝐿,∞ and𝑓𝑅,∞, respectively. As
a result, we can see that the weighted combination 𝐹𝑛,∞ of
𝑆𝑛𝑓𝐿,∞ and 𝑆𝑛𝑓𝑅,∞ will get out of the Gibbs phenomenon as
𝑚, 𝑛 → ∞. This completes the proof.

Results of the approximations and errors of 𝐹𝑛(𝑥) with𝑛 = 8, 16, for the test functions 𝑓1 and 𝑓2, are illustrated
in Figures 3 and 4, respectively. Therein, we took the order
of weight function as 𝑚 = 10𝑛, for example. The results
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(a) 𝑛 = 8
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Figure 4: Approximations of the weighted average 𝐹𝑛(𝑥) in upper rows and the corresponding errors in lower rows for the test function
𝑓2(𝑥). Thin lines indicate approximations and errors of the Fourier partial sum 𝑆𝑛𝑓(𝑥).

of 𝐹𝑛(𝑥), indicated by the thick lines, are compared with
those of the traditional Fourier partial sum approximation
𝑆𝑛𝑓(𝑥)which are indicated by the thin lines.The figures show
that the proposed approximation 𝐹𝑛(𝑥) highly improves the
Fourier partial sum approximation over thewhole interval. In
particular, the Gibbs phenomenon resulting from the interior
jump-discontinuity or the mismatch at the end points has
been resolved by 𝐹𝑛(𝑥).
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