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Interval type 2 fuzzy numbers are a special kind of type 2 fuzzy numbers. These numbers can be described by triangular and
trapezoidal shapes. In this paper, first, perfectly normal interval type 2 trapezoidal fuzzy numbers with their left-hand and right-
hand spreads and their core have been introduced, which are normal and convex; then a new type of fuzzy arithmetic operations
for perfectly normal interval type 2 trapezoidal fuzzy numbers has been proposed based on the extension principle of normal type
1 trapezoidal fuzzy numbers. Moreover, in this proposal, linear programming problems with resources and technology coefficients
are perfectly normal interval type 2 fuzzy numbers. To solve this kind of fuzzy linear programming problems, a method based
on the degree of satisfaction (or possibility degree) of the constraints has been introduced. In this method the fulfillment of the
constraints can be measured with the help of ranking method of fuzzy numbers. Optimal solution is obtained at different degree
of satisfaction by using Barnes algorithm with the help of MATLAB. Finally, the optimal solution procedure is illustrated with
numerical example.

1. Introduction

Linear programming and its applications are used in many
fields of operations research. It is concerned with the opti-
mization of a linear function while satisfying a set of linear
equality and/or inequality constraints or restriction. In real
world situation, a linear programmingmodel involves a lot of
parameters whose values are assigned by experts. However,
both experts and decision makers often do not precisely
know the value of those parameters. Therefore, it is useful to
consider the knowledge of experts about the parameters as
fuzzy data. To make this possible Zadeh [1] introduced fuzzy
set theory. The theory proposes a mathematical technique
for dealing with imprecise concepts and problems that have
many possible solutions. The concept of fuzzy mathematical
programming on general level was first proposed by Tanaka
et al. [2] in the framework of the fuzzy decision-making in
fuzzy environment given by Bellman and Zadeh [3].

The concept of fuzzy liner programming was first for-
mulated by Zimmermann [4]. After this motivation and

inspiration several authors such as Deng et al. discussed the
fact that the fuzzy bilevel linear programming with multiple
followers model solved this complex problem by using the
fuzzy structured element method [5]. A new interior point
method has been presented to solve fuzzy number linear
programming problems using linear ranking function by
Zhong et al. [6]. A fully fuzzy linear programming problem
with fuzzy equality constraints has been discussed and solved
using a compromise programming approach by Cheng et al.
[7]. An intuitionistic fuzzy chance constraints model (CCM)
based on possibility and necessity measures has been devel-
oped and proposed a newmethod for solving an intuitionistic
fuzzy CCM using chance operators by Chakraborty et al.
[8]. All the above authors and many others have considered
various types of fuzzy linear programming problems and
proposed several approaches for solving these problems.
Among them, Le and Gogne introduced a class of linear pro-
gramming problems based on the possibility and necessity
relation [9]. Figueroa-Garćıa and Hernández proposed an
extension of the fuzzy linear programming method which
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was proposed by Zimmermann to an interval type 2 fuzzy lin-
ear programming problem with linear membership function
[10]. In another work Garćıa presented a general model for
linear programming where its technological coefficients are
assumed as interval type 2 fuzzy sets and it is solved through
an 𝛼-cuts approach [11]. Furthermore Garćıa [12] presented
a general model to handle uncertainty to right-hand side
parameters of a linear programmingmodel by interval type 2
fuzzy sets and trapezoidal membership functions to optimize
by using classical algorithms. Chen and Lee [13] proposed the
definition of possibility degree of trapezoidal interval type 2
fuzzy numbers and some arithmetic operations. Hu et al. [14]
proposed a new approach based on possibility degree to solve
multicriteria decision-making problems in which the criteria
value takes the form of interval type 2 fuzzy number.

Based on these literatures’ survey, with our best knowl-
edge, however, none of them introduced fuzzy linear pro-
gramming model with both the right-hand side (resources)
and the technological coefficients being perfectly normal
interval type 2 fuzzy numbers based on possibility. In this
paper, first, we have presented a method to do Perfectly
normal Interval Type 2 Fuzzy Number (PnIT2FN) arith-
metic operation using well-known arithmetical operations
on type 1 fuzzy numbers. Further the relation of possibility
for PnIT2FN as well as its property are discussed. And
a fuzzy linear programming model with both the right-
hand side (resources) and the technological coefficients being
PnIT2FNs has been proposed. By using Zadeh’s extension
principle, a pair of upper and lower linear problems are devel-
oped to calculate the optimal solution of upper and lower
bounds of linear problems measure at different possibility
level 𝛼.

The rest of this paper is organized as follows. Firstly
Section 2 deals with some preliminary definitions which are
given. In Section 3, the definitions of interval type 2 fuzzy
sets and trapezoidal interval type 2 fuzzy number have been
recalled. In Section 4, the new representation for PnIT2TrFN,
its properties, and some arithmetic operations of PnIT2TrFN
based on type 1 fuzzy number are presented. The possibility
degree of PnIT2TrFN is discussed in Section 5. The fuzzy
linear programming problem with the right-hand side and
the technological coefficientsmodel is presented in Section 6;
Section 7 has numerical illustrations of proposed fuzzy linear
programming model with PnIT2TrFN; finally Section 8 has
the conclusion of the work.

2. Preliminaries

Definition 1 (see [15]). Let𝑋 be a nonempty set. A fuzzy set �̃�
in 𝑋 is characterized by its membership function 𝜇

̃

𝐴

: 𝑋 →

[0, 1] and 𝜇
̃

𝐴

(𝑥) is interpreted as the degree of membership
of element 𝑥 in fuzzy set �̃� for each 𝑥 ∈ 𝑋. It is clear that �̃� is
completely determined by the set of tuples

�̃� = {(𝑥, 𝜇
̃

𝐴

(𝑥)) | 𝑥 ∈ 𝑋} . (1)

Definition 2 (see [15]). Let �̃� be a fuzzy subset of 𝑋: the
support of �̃�, denoted by Supp(�̃�), is the crisp subset of

𝑋 whose elements all have nonzero membership grades in
�̃�:

Supp (�̃�) = {𝑥 ∈ 𝑋 | 𝜇
̃

𝐴

(𝑥) > 0} . (2)

Definition 3 (see [15]). A fuzzy subset �̃� of a classical set 𝑋
is called normal if there exists 𝑥 ∈ 𝑋 such that 𝜇

̃

𝐴

(𝑥) = 1.
Otherwise �̃� is subnormal.

Definition 4. An 𝛼-level set (or 𝛼-cut) of a fuzzy set �̃� of𝑋 is
a nonfuzzy set denoted by �̃�

𝛼

and defined by

�̃�
𝛼

=

{

{

{

{𝑥 ∈ 𝑋 | 𝜇
̃

𝐴

(𝑥) ≥ 𝛼} , if 𝛼 > 0,

cl (Supp �̃�) , if 𝛼 = 0,

(3)

where cl(Supp�̃�) denotes the closure of the support of �̃�.

Definition 5 (see [15]). A fuzzy set �̃� of 𝑋 is called convex if
�̃�
𝛼

is a convex subset of𝑋 for all 𝛼 ∈ [0, 1].

Definition 6 (see [15, 16]). A fuzzy number �̃� is a fuzzy set of
the real lines with a normal (fuzzy), convex, and continuous
membership function of bounded support. Alternatively, the
fuzzy subset �̃� of R is called a fuzzy number if the following
conditions are satisfied:

(i) �̃� is normal; that is, there exists 𝑥 ∈ R such that
𝜇
̃

𝐴

(𝑥) = 1;
(ii) the membership function 𝜇

̃

𝐴

(𝑥) is quasiconcave; that
is, 𝜇
̃

𝐴

(𝜆𝑥
1

+ (1 − 𝜆)𝑥
2

) ≥ min{𝜇
̃

𝐴

(𝑥
1

), 𝜇
̃

𝐴

(𝑥
2

)} for all
𝛼 ∈ [0, 1];

(iii) the membership function 𝜇
̃

𝐴

(𝑥) is upper semicontin-
uous; that is, {𝑥 ∈ R : 𝜇

̃

𝐴

(𝑥) ≥ 𝛼} is a closed subset of
R for all 𝛼 ∈ [0, 1];

(iv) the 0-level set �̃�
𝛼=0

is compact (closed and bounded
in R).

We denote by𝐹(R) the set of all fuzzy numbers. If �̃� is a fuzzy
number, then from Zadeh [1] 𝛼-level set �̃�

𝛼

is a convex set
from condition (ii). Combining this fact with condition (iii),
the 𝛼-level set �̃�

𝛼

is a compact and convex set for all 𝛼 ∈ [0, 1]

(since �̃�
𝛼=0

is bounded, it says that �̃�
𝛼

⊆ �̃�
𝛼=0

is also bounded
for all 𝛼 ∈ (0, 1]). Therefore, we can write �̃�

𝛼

= [𝑎
𝐿

𝛼

, 𝑎
𝑈

𝛼

].

Definition 7 (see [9]). The trapezoidal fuzzy number is fully
determined by quadruples (𝑎

𝐿

, 𝑎
𝑈

, 𝛼, 𝛽) of crisp numbers
such that 𝑎𝐿 ≤ 𝑎

𝑈, 𝛼 ≥ 0, and 𝛽 ≥ 0, whose membership
function can be denoted by

𝜇
̃

𝐴

(𝑥) =

{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{

{

(𝑥 − 𝑎
𝐿

+ 𝛼)

𝛼

, 𝑎
𝐿

− 𝛼 ≤ 𝑥 ≤ 𝑎
𝐿

,

1, 𝑎
𝐿

≤ 𝑥 ≤ 𝑎
𝑈

,

−

(𝑥 − 𝑎
𝑈

− 𝛽)

𝛽

, 𝑎
𝑈

≤ 𝑥 ≤ 𝑎
𝑈

+ 𝛽,

0, otherwise.

(4)
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When 𝑎
𝐿

= 𝑎
𝑈, the trapezoidal fuzzy number becomes a

triangular fuzzy number. If 𝛼 = 𝛽, the trapezoidal fuzzy
number becomes a symmetrical trapezoidal fuzzy number.
[𝑎
𝐿

, 𝑎
𝑈

] is the core of �̃�, and 𝛼 ≥ 0, 𝛽 ≥ 0 are the left-hand
and right-hand spreads.

It can easily be shown that

�̃�
𝛼

= [𝛼 (𝑎
𝐿

− (𝑎
𝐿

− 𝛼)) + (𝑎
𝐿

− 𝛼) ,

− 𝛼 ((𝑎
𝑈

+ 𝛽) − 𝑎
𝑈

) + (𝑎
𝑈

+ 𝛽)] ,

(5)

and the support of �̃� is (𝑎𝐿 − 𝛼, 𝑎
𝑈

+ 𝛽).

2.1. Arithmetic Operations. In this subsection addition, sub-
traction, and scalar multiplication operation of trapezoidal
fuzzy numbers are reviewed [9, 15].

Let �̃� = (𝑎
𝐿

, 𝑎
𝑈

, 𝛼, 𝛽) and �̃� = (𝑏
𝐿

, 𝑏
𝑈

, 𝜃, 𝛾) be two
trapezoidal fuzzy numbers; then

�̃� = (𝑎
𝐿

, 𝑎
𝑈

, 𝛼, 𝛽) ,

�̃� = (𝑏
𝐿

, 𝑏
𝑈

, 𝛾, 𝜃) ,

�̃� + �̃� = (𝑎
𝐿

+ 𝑏
𝐿

, 𝑎
𝑈

+ 𝑏
𝑈

, 𝛼 + 𝛾, 𝛽 + 𝜃) ,

�̃� − �̃� = (𝑎
𝐿

− 𝑏
𝑈

, 𝑎
𝑈

− 𝑏
𝐿

, 𝛼 + 𝜃, 𝛽 + 𝛾) ,

𝜆�̃� =

{

{

{

(𝜆𝑎
𝐿

, 𝜆𝑎
𝑈

, 𝜆𝛼, 𝜆𝛽) , 𝜆 ≥ 0,

(𝜆𝑎
𝑈

, 𝜆𝑎
𝐿

, |𝜆| 𝛽, |𝜆| 𝛼) , 𝜆 < 0.

(6)

3. Interval Type 2 Fuzzy Sets

Interval type 2 fuzzy sets (IT2FSs) play a central role in fuzzy
sets as models for words and in engineering applications of
type 2 fuzzy sets. These fuzzy sets are characterized by their
footprints of uncertainty, which in turn are characterized by
their boundaries upper and lower membership functions.

Definition 8 (see [17]). Type 2 fuzzy set �̃� in the universe
of discourse 𝑋 can be represented by type 2 membership
function 𝜇

̃

𝐴

(𝑥, 𝑢) as follows:

�̃� = {((𝑥, 𝑢) , 𝜇
̃

𝐴

(𝑥, 𝑢)) | ∀𝑥 ∈ 𝑋, ∀𝑢 ∈ 𝐽
𝑥

⊆ [0, 1] , 0

≤ 𝜇
̃

𝐴

(𝑥, 𝑢) ≤ 1} ,

(7)

where 𝐽
𝑥

⊆ [0, 1] is the primary membership function at 𝑥,
and

∫

𝑢∈𝐽

𝑥

𝜇
̃

𝐴

(𝑥, 𝑢)

𝑢

(8)

indicates the secondmembership at 𝑥. For discrete situations,
∫ is replaced by ∑.

Definition 9 (see [17, 18]). Let �̃� be type 2 fuzzy set in the
universe of discourse 𝑋 represented by type 2 membership
function 𝜇

̃

𝐴

(𝑥, 𝑢). If all 𝜇
̃

𝐴

(𝑥, 𝑢) = 1, then �̃� is called IT2FS.

IT2FS can be regarded as a special case of type 2 fuzzy set,
which is defined as

�̃� = ∫

𝑥∈𝑋

∫

𝑢∈𝐽

𝑥

1

(𝑥, 𝑢)

= ∫

𝑥∈𝑋

[∫
𝑢∈𝐽

𝑥

1/𝑢]

𝑥

,
(9)

where 𝑥 is the primary variable, 𝐽
𝑥

⊆ [0, 1] is the primary
membership of 𝑥, 𝑢 is the secondary variable, and ∫

𝑢∈𝐽

𝑥

1/𝑢 is
the secondary membership function at 𝑥.

It is obvious that IT2FS �̃� defined on 𝑋 is completely
determined by the primary membership which is called the
footprint of uncertainty, and the footprint of uncertainty can
be expressed as follows:

FOU (�̃�) = ⋃

𝑥∈𝑋

𝐽
𝑥

= ⋃

𝑥∈𝑋

{(𝑥, 𝑢) | 𝑢 ∈ 𝐽
𝑥

⊆ [0, 1]} . (10)

Definition 10 (see [14, 19]). Let �̃� be IT2FS; uncertainty
in the primary membership of type 2 fuzzy set consists
of a bounded region called the footprint of uncertainty,
which is the union of all primary membership. Footprint of
uncertainty is characterized by upper membership function
and lower membership function. Both of the membership
functions are type 1 fuzzy sets. Upper membership function
is denoted by 𝜇

̃

𝐴

and lower membership function is denoted
by 𝜇
̃

𝐴

, respectively.

Definition 11 (see [14]). An interval type 2 fuzzy number is
called trapezoidal interval type 2 fuzzy number where the
uppermembership function and lowermembership function
are both trapezoidal fuzzy numbers; that is,

�̃� = (𝐴
𝐿

, 𝐴
𝑈

) = ((𝑎
𝐿

1

, 𝑎
𝐿

2

, 𝑎
𝐿

3

, 𝑎
𝐿

4

; 𝐻
1

(𝐴
𝐿

) ,𝐻
2

(𝐴
𝐿

)) ,

(𝑎
𝑈

1

, 𝑎
𝑈

2

, 𝑎
𝑈

3

, 𝑎
𝑈

4

; 𝐻
1

(𝐴
𝑈

) ,𝐻
2

(𝐴
𝑈

))) ,

(11)

where 𝐻
𝑗

(𝐴
𝐿

) and 𝐻
𝑗

(𝐴
𝑈

), (𝑗 = 1, 2) denote membership
values of the corresponding elements 𝑎𝐿

𝑗+1

and 𝑎𝑈
𝑗+1

(𝑗 = 1, 2),
respectively.

Definition 12 (see [13]). The upper membership function and
lower membership function of IT2FSs are type 1 membership
function, respectively.

Definition 13 (see [20]). IT2FS, �̃�, is said to be perfectly
normal if both its upper and lower membership functions are
normal. It is denoted by PnIT2FS; that is,

sup 𝜇
̃

𝐴

(𝑥) = sup 𝜇
̃

𝐴

= 1. (12)

4. Perfectly Normal IT2TrFN

In this section, the concept of PnIT2TrFN is discussed and
it is the extension work of Chiao [21] that proposed the
concept of trapezoidal interval type 2 fuzzy set, in which
the upper membership function and the lower membership
function are represented by trapezoidal fuzzy number, which
is adopted for PnIT2TrFN. PnIT2FN is a fuzzy subset of the
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real line, which is both “normal” and “convex.” The opera-
tions PnIT2FSs are very complex according to the decom-
position theorem [22], and the IT2FSs are usually taken in
some simplified formations in applications. In subsection,
the arithmetic operation on PnIT2TrFNs is formulated by
proposing the extension principle.

Definition 14. Let �̃� = [𝐴
𝐿

, 𝐴
𝑈

] be PnIT2FS on 𝑋. Let �̃�𝐿 =
(𝑎
𝐿

2

, 𝑎
𝐿

3

, 𝛼
𝐿

, 𝛽
𝐿

) and �̃�

𝑈

= (𝑎
𝑈

2

, 𝑎
𝑈

3

, 𝛼
𝑈

, 𝛽
𝑈

) be the lower and
upper trapezoidal fuzzy number, respectively, with respect to
�̃� defined on the universe of discourse 𝑋, where 𝑎

𝐿

2

≤ 𝑎
𝐿

3

,
𝑎
𝑈

2

≤ 𝑎
𝑈

3

, 𝛼
𝐿

, 𝛼
𝑈

≥ 0, and 𝛽
𝐿

, 𝛽
𝑈

≥ 0. [𝑎𝐿
2

, 𝑎
𝐿

3

] is the core of
�̃�

𝐿, and 𝛼
𝐿

, 𝛽
𝐿

≥ 0 are the left-hand and right-hand spreads
and [𝑎

𝑈

2

, 𝑎
𝑈

3

] is the core of �̃�𝑈, and 𝛼
𝑈

, 𝛽
𝑈

≥ 0 are the left-
hand and right-hand spreads. The membership functions of
𝑥 in �̃�

𝐿 and �̃�

𝑈 are expressed as follows:

𝜇
̃

𝐴

(𝑥) =

{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{

{

(𝑥 − 𝑎
𝐿

2

+ 𝛼
𝐿

)

𝛼
𝐿

, 𝑎
𝐿

2

− 𝛼
𝐿

≤ 𝑥 ≤ 𝑎
𝐿

2

,

1, 𝑎
𝐿

2

≤ 𝑥 ≤ 𝑎
𝐿

3

,

−

(𝑥 − 𝑎
𝐿

3

− 𝛽
𝐿

)

𝛽
𝐿

, 𝑎
𝐿

3

≤ 𝑥 ≤ 𝑎
𝐿

3

+ 𝛽
𝐿

,

0, otherwise,

𝜇
̃

𝐴

(𝑥) =

{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{

{

(𝑥 − 𝑎
𝑈

2

+ 𝛼
𝑈

)

𝛼
𝑈

, 𝑎
𝑈

2

− 𝛼
𝑈

≤ 𝑥 ≤ 𝑎
𝑈

2

,

1, 𝑎
𝑈

2

≤ 𝑥 ≤ 𝑎
𝑈

3

,

−

(𝑥 − 𝑎
𝑈

3

− 𝛽
𝑈

)

𝛽
𝑈

, 𝑎
𝑈

3

≤ 𝑥 ≤ 𝑎
𝑈

3

+ 𝛽
𝑈

,

0, otherwise.

(13)

𝜇
̃

𝐴

(𝑥) and 𝜇
̃

𝐴

(𝑥) are lower and upper bounds, respectively,
of �̃� (see Figure 1). Then, �̃� is a PnIT2TrFN on 𝑋 and is
represented by the following: �̃� = [𝐴

𝐿

, 𝐴
𝑈

] = [(𝑎
𝐿

2

, 𝑎
𝐿

3

, 𝛼
𝐿

,
𝛽
𝐿

), (𝑎
𝑈

2

, 𝑎
𝑈

3

, 𝛼
𝑈

, 𝛽
𝑈

)]. Obviously, if 𝑎𝐿
2

= 𝑎
𝐿

3

and 𝑎
𝑈

2

= 𝑎
𝑈

3

the PnIT2TrFN reduces to the perfectly normal interval type
2 triangular fuzzy number (PnIT2TFN). If 𝐴𝐿 = 𝐴

𝑈, then
PnIT2TrFN �̃� becomes type 1 trapezoidal fuzzy number [13,
23].

Definition 15 (primary 𝛼-cut of PnIT2FS). The primary 𝛼-cut
of PnIT2FS is 𝛼�̃� = {(𝑥, 𝑢) | 𝐽

𝑥

≥ 𝛼, 𝑢 ∈ [0, 1]} which is
bounded by two regions:

𝛼

𝜇
̃

𝐴

(𝑥) = {(𝑥, 𝜇
̃

𝐴

(𝑥)) | 𝜇
̃

𝐴

(𝑥) ≥ 𝛼, ∀𝛼 ∈ [0, 1]} ,

𝛼

𝜇
̃

𝐴

(𝑥) = {(𝑥, 𝜇
̃

𝐴

(𝑥)) | 𝜇
̃

𝐴

(𝑥) ≥ 𝛼, ∀𝛼 ∈ [0, 1]} .

(14)

Definition 16 (crisp bounds of PnIT2FN). The crisp boundary
of the primary 𝛼-cut of PnIT2FN �̃� = (𝐴

𝐿

, 𝐴
𝑈

) is closed
interval 𝛼

𝑐𝑏

�̃� which will be obtained as follows: 𝐴𝐿 and 𝐴
𝑈

are the lower and upper interval valued bounds of �̃�. Also

0

𝜇(x)

hU = hL = 1

aU2 − 𝛼U aU2 − 𝛼L aU2 aL2 aL3 aU3
xaU3 + 𝛼L aU3 + 𝛼U

Figure 1: The lower trapezoidal membership function �̃�

𝐿 and the
upper trapezoidal membership function �̃�

𝑈 of PnIT2FS �̃�.

the boundary of 𝐴𝐿
𝛼

and 𝐴
𝑈

𝛼

can be defined as the boundary
of the 𝛼-cuts of each interval type 1 fuzzy set:

𝐴
𝐿

𝛼

= [inf
𝑥

𝛼

𝜇
̃

𝐴

(𝑥) , sup
𝑥

𝛼

𝜇
̃

𝐴

(𝑥)] = [𝑎
𝐿

𝑙

, 𝑎
𝐿

𝑢

] ,

𝐴
𝑈

𝛼

= [inf
𝑥

𝛼

𝜇
̃

𝐴

(𝑥) , sup
𝑥

𝛼

𝜇
̃

𝐴

(𝑥)] = [𝑎
𝑈

𝑙

, 𝑎
𝑈

𝑢

] ,

𝛼

𝑐𝑏

�̃� = [inf
𝑥

{
𝛼

𝜇
̃

𝐴

(𝑥, 𝑢)} , sup
𝑥

{
𝛼

𝜇
̃

𝐴

(𝑥, 𝑢)}]

= [[𝑎
𝑈

𝑙

, 𝑎
𝐿

𝑙

] , [𝑎
𝐿

𝑢

, 𝑎
𝑈

𝑢

]]

= [[
𝛼

𝑎
𝐿

,
𝛼

𝑎
𝐿

] , [
𝛼

𝑎
𝑅

,
𝛼

𝑎
𝑅

]]

(15)

which is equivalent to, say,

𝛼

𝑐𝑏

𝜇
̃

𝐴

∈ [[
𝛼

𝑎
𝐿

,
𝛼

𝑎
𝐿

] , [
𝛼

𝑎
𝑅

,
𝛼

𝑎
𝑅

]] . (16)

Evidently, for PnIT2TrFN from Figure 2

𝛼

𝑎
𝐿

≤
𝛼

𝑎
𝐿

≤
𝛼

𝑎
𝑅

≤
𝛼

𝑎
𝑅

. (17)

Definition 17. A fuzzy number �̃� = (𝐴
𝐿

, 𝐴
𝑈

) = ((𝑎
𝐿

2

, 𝑎
𝐿

3

, 𝛼
𝐿

,
𝛽
𝐿

), (𝑎
𝑈

2

, 𝑎
𝑈

3

, 𝛼
𝑈

, 𝛽
𝑈

)) is said to be nonnegative PnIT2TrFN
if 𝜇
̃

𝐴

(𝑥) = 𝜇
̃

𝐴

= 0, ∀𝑥 > 0.

Definition 18. A fuzzy number �̃� = (𝐴
𝐿

, 𝐴
𝑈

) = ((𝑎
𝐿

2

, 𝑎
𝐿

3

, 𝛼
𝐿

,
𝛽
𝐿

), (𝑎
𝑈

2

, 𝑎
𝑈

3

, 𝛼
𝑈

, 𝛽
𝑈

)) is said to be nonpositive PnIT2TrFN if
𝜇
̃

𝐴

(𝑥) = 𝜇
̃

𝐴

= 0, ∀𝑥 < 0.

Definition 19. A fuzzy number �̃� = (𝐴
𝐿

, 𝐴
𝑈

) = ((𝑎
𝐿

2

, 𝑎
𝐿

3

, 𝛼
𝐿

,
𝛽
𝐿

), (𝑎
𝑈

2

, 𝑎
𝑈

3

, 𝛼
𝑈

, 𝛽
𝑈

)) is said to be zero PnIT2TrFN if 𝑎𝐿
2

=

𝑏
𝐿

2

= 0, 𝑎𝐿
3

= 𝑏
𝐿

3

= 0, 𝛼
𝐿

= 𝛾
𝐿

= 𝛽
𝐿

= 𝜃
𝐿

= 𝛼
𝑈

= 𝛾
𝑈

= 0, and
𝛽
𝑈

= 𝜃
𝑈

= 0.

Definition 20. PnIT2TrFNs �̃� = ((𝑎
𝐿

2

, 𝑎
𝐿

3

, 𝛼
𝐿

, 𝛽
𝐿

), (𝑎
𝑈

2

, 𝑎
𝑈

3

, 𝛼
𝑈

,
𝛽
𝑈

)) and �̃� = ((𝑏
𝐿

2

, 𝑏
𝐿

3

, 𝛾
𝐿

, 𝜃
𝐿

), (𝑏
𝑈

2

, 𝑏
𝑈

3

, 𝛾
𝑈

, 𝜃
𝑈

)) are said to be
identically equal to �̃� = �̃� if and only if 𝑎𝐿

2

= 𝑏
𝐿

2

, 𝑎𝐿
3

= 𝑏
𝐿

3

,
𝛼
𝐿

= 𝛾
𝐿

, 𝛽
𝐿

= 𝜃
𝐿

, 𝛼
𝑈

= 𝛾
𝑈

, and 𝛽
𝑈

= 𝜃
𝑈

.



Journal of Applied Mathematics 5

0
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Figure 2: Crisp bounds of PnIT2TrFN.

4.1. Arithmetic Operations on PnIT2TrFN

Definition 21. If �̃� = ((𝑎
𝐿

2

, 𝑎
𝐿

3

, 𝛼
𝐿

, 𝛽
𝐿

), (𝑎
𝑈

2

, 𝑎
𝑈

3

, 𝛼
𝑈

, 𝛽
𝑈

)) and
�̃� = ((𝑏

𝐿

2

, 𝑏
𝐿

3

, 𝛾
𝐿

, 𝜃
𝐿

), (𝑏
𝑈

2

, 𝑏
𝑈

3

, 𝛾
𝑈

, 𝜃
𝑈

)) are PnIT2TrFNs, then
�̃� = �̃� + �̃� is also PnIT2TrFN and defined by

�̃� = ((𝑎
𝐿

2

+ 𝑏
𝐿

2

, 𝑎
𝐿

3

+ 𝑏
𝐿

3

, 𝛼
𝐿

+ 𝛾
𝐿

, 𝛽
𝐿

+ 𝜃
𝐿

) ,

(𝑎
𝑈

2

+ 𝑏
𝑈

2

, 𝑎
𝑈

3

+ 𝑏
𝑈

3

, 𝛼
𝑈

+ 𝛾
𝑈

, 𝛽
𝑈

+ 𝜃
𝑈

)) .

(18)

Definition 22. If �̃� = ((𝑎
𝐿

2

, 𝑎
𝐿

3

, 𝛼
𝐿

, 𝛽
𝐿

), (𝑎
𝑈

2

, 𝑎
𝑈

3

, 𝛼
𝑈

, 𝛽
𝑈

)) and
�̃� = ((𝑏

𝐿

2

, 𝑏
𝐿

3

, 𝛾
𝐿

, 𝜃
𝐿

), (𝑏
𝑈

2

, 𝑏
𝑈

3

, 𝛾
𝑈

, 𝜃
𝑈

)) are PnIT2TrFNs, then
�̃� = �̃� − �̃� is also PnIT2TrFN and defined by

�̃� = ([𝑎
𝐿

2

− 𝑏
𝑈

3

, 𝑎
𝐿

3

− 𝑏
𝑈

2

, 𝛼
𝐿

+ 𝜃
𝑈

, 𝛽
𝐿

+ 𝛾
𝑈

] ,

[𝑎
𝑈

2

− 𝑏
𝐿

3

, 𝑎
𝑈

3

− 𝑏
𝐿

2

, 𝛼
𝑈

+ 𝜃
𝐿

, 𝛽
𝑈

+ 𝛾
𝐿

]) .

(19)

Definition 23. Let 𝜆 ∈ R. If �̃� = ((𝑎
𝐿

2

, 𝑎
𝐿

3

, 𝛼
𝐿

, 𝛽
𝐿

), (𝑎
𝑈

2

, 𝑎
𝑈

3

, 𝛼
𝑈

,
𝛽
𝑈

)) is PnIT2TrFN, then �̃� = 𝜆�̃� is also PnIT2TrFN and is
given by

�̃� = 𝜆�̃� =

{

{

{

((𝜆𝑎
𝐿

2

, 𝜆𝑎
𝐿

3

, 𝜆𝛼
𝐿

, 𝜆𝛽
𝐿

) , (𝜆𝑎
𝑈

2

, 𝜆𝑎
𝑈

3

, 𝜆𝛼
𝑈

, 𝜆𝛽
𝑈

)) ; if 𝜆 ≥ 0,

((𝜆𝑎
𝑈

3

, 𝜆𝑎
𝑈

2

, |𝜆| 𝛽
𝑈

, |𝜆| 𝛼
𝑈

) , (𝜆𝑎
𝐿

3

, 𝜆𝑎
𝐿

2

, |𝜆| 𝛽
𝐿

, |𝜆| 𝛼
𝐿

)) ; if 𝜆 < 0.

(20)

5. The Possibility Degree of PnIT2TrFN

Comparison of fuzzy numbers is considered one of the most
important topics in fuzzy logic theory. The early and most
important work in the field of comparing fuzzy numbers
has been presented by Dubois and Prade [24]. On the other
hand, the dominance possibility indices, which have been
introduced by Negi et al., were utilized in the field of fuzzy
mathematical programming [25, 26]. The approach used in
these fields was based on formulating a possibility function,
whether in the case of trapezoidal fuzzy numbers or the case
of triangular fuzzy numbers. In this paper, we are going to

utilize the degree of possibility that the proposition stating
that “𝐴 is less than or equal to 𝐵” is true which is proposed
by Chen and Lee [13] for calculating the ranking values of
perfectly normal trapezoidal interval type 2 fuzzy number.
Here, the height of the uppermembership function and lower
membership function is considered as 1, so the modified
proposition can be as follows.

Definition 24. Let �̃� = ((𝑎
𝐿

2

, 𝑎
𝐿

3

, 𝛼
𝐿

, 𝛽
𝐿

), (𝑎
𝑈

2

, 𝑎
𝑈

3

, 𝛼
𝑈

, 𝛽
𝑈

)) and
�̃� = ((𝑏

𝐿

2

, 𝑏
𝐿

3

, 𝛾
𝐿

, 𝜃
𝐿

), (𝑏
𝑈

2

, 𝑏
𝑈

3

, 𝛾
𝑈

, 𝜃
𝑈

)) be two PnIT2TrFNs.
Then the possibility degrees of lower and upper membership
function are defined as follows:

Pos (𝐴𝐿 ≤ 𝐵
𝐿

) = max(1

−max(
max (𝛼𝑎𝐿 − 𝛼𝑏𝐿, 0) +max ((𝑎𝐿

2

− 𝑏
𝐿

2

) , 0) +max ((𝑎𝐿
3

− 𝑏
𝐿

3

) , 0) +max (𝛼𝑎𝑅 − 𝛼𝑏𝑅, 0) + (
𝛼

𝑎
𝑅

−
𝛼

𝑏
𝐿

)







𝛼

𝑎
𝐿

−
𝛼

𝑏
𝐿






+




𝑎
𝐿

2

− 𝑏
𝐿

2





+




𝑎
𝐿

3

− 𝑏
𝐿

3





+







𝛼

𝑎
𝑅

−
𝛼

𝑏
𝑅






+ (
𝛼

𝑏
𝑅

−
𝛼

𝑏
𝐿

) + (
𝛼

𝑎
𝑅

−
𝛼

𝑎
𝐿

)

, 0) ,

0) ,
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Pos (𝐴𝑈 ≤ 𝐵
𝑈

) = max(1

−max(
max (𝛼𝑎𝐿 − 𝛼𝑏

𝐿

, 0) +max ((𝑎𝑈
2

− 𝑏
𝑈

2

) , 0) +max ((𝑎𝑈
3

− 𝑏
𝑈

3

) , 0) +max (𝛼𝑎𝑅 − 𝛼𝑏
𝑅

, 0) + (
𝛼

𝑎
𝑅

−
𝛼

𝑏

𝐿

)








𝛼

𝑎
𝐿

−
𝛼

𝑏

𝐿







+




𝑎
𝑈

2

− 𝑏
𝑈

2





+




𝑎
𝑈

3

− 𝑏
𝑈

3





+








𝛼

𝑎
𝑅

−
𝛼

𝑏

𝑅







+ (
𝛼

𝑏

𝑅

−
𝛼

𝑏

𝐿

) + (
𝛼

𝑎
𝑅

−
𝛼

𝑎
𝐿

)

, 0) ,

0) .

(21)

Proposition 25. Let �̃� = ((𝑎
𝐿

2

, 𝑎
𝐿

3

, 𝛼
𝐿

, 𝛽
𝐿

), (𝑎
𝑈

2

, 𝑎
𝑈

3

, 𝛼
𝑈

, 𝛽
𝑈

))

and �̃� = ((𝑏
𝐿

2

, 𝑏
𝐿

3

, 𝛾
𝐿

, 𝜃
𝐿

), (𝑏
𝑈

2

, 𝑏
𝑈

3

, 𝛾
𝑈

, 𝜃
𝑈

)) be two PnIT2FNs,
Pos(𝐴𝐿 ⪯ 𝐵

𝐿

) ≥ 𝛼, if and only if inf[𝐴𝐿]
𝛼

≤ sup[𝐵𝐿]
𝛼

; that is,

Pos (𝐴𝐿 ⪯ 𝐵
𝐿

) ≥ 𝛼 iff 𝛼𝑎𝐿 ≤ 𝛼𝑏𝑅. (22)

Alternatively,

Pos (𝐴𝐿 ⪯ 𝐵
𝐿

) = 𝜇Pos(𝐴𝐿,𝐵𝐿) = (𝐴
𝐿

⪯
Pos

𝐵

𝐿

) . (23)

An interpretation of the 𝛼− relation associated with possibility
when comparing fuzzy numbers 𝐴𝐿 and 𝐵𝐿 is as follows. For a
given level of satisfaction 𝛼 ∈ [0, 1], a fuzzy number 𝐴𝐿 is not
better than 𝐵𝐿 with respect to fuzzy relation ⪯Pos, if the smallest
value of𝐴𝐿 with the degree of satisfaction (or possibility degree)
being greater than or equal to 𝛼− is less than or equal to the
largest value of 𝐵𝐿 with the degree of satisfaction greater than
or equal to 𝛼. Similar to the above

Pos (𝐴𝑈 ⪯ 𝐵
𝑈

) ≥ 𝛼 iff 𝛼𝑎𝐿 ≤ 𝛼𝑏
𝑅

. (24)

Proposition 26 (see [15, 23, 24]). Let �̃� = ((𝑎
𝐿

2

, 𝑎
𝐿

3

, 𝛼
𝐿

, 𝛽
𝐿

),
(𝑎
𝑈

2

, 𝑎
𝑈

3

, 𝛼
𝑈

, 𝛽
𝑈

)) and �̃� = ((𝑏
𝐿

2

, 𝑏
𝐿

3

, 𝛾
𝐿

, 𝜃
𝐿

), (𝑏
𝑈

2

, 𝑏
𝑈

3

, 𝛾
𝑈

, 𝜃
𝑈

)) be
two PnIT2TrFNs; then

Pos (𝐴𝐿 ⪯ 𝐵
𝐿

)

=

{
{
{
{
{

{
{
{
{
{

{

1, 𝑏
𝐿

3

≥ 𝑎
𝐿

2

,

𝑏
𝐿

3

− 𝑎
𝐿

2

+ 𝜃
𝐿

+ 𝛼
𝐿

𝜃
𝐿

+ 𝛼
𝐿

, 0 ≤ 𝑎
𝐿

2

− 𝑏
𝐿

3

≤ 𝜃
𝐿

+ 𝛼
𝐿

,

0, 𝑎
𝐿

2

− 𝑏
𝐿

3

> 𝜃
𝐿

+ 𝛼
𝐿

;

(25)

see Figure 3:

Pos (𝐴𝑈 ⪯ 𝐵
𝑈

)

=

{
{
{
{
{

{
{
{
{
{

{

1, 𝑏
𝑈

3

≥ 𝑎
𝑈

2

,

𝑏
𝑈

3

− 𝑎
𝑈

2

+ 𝜃
𝑈

+ 𝛼
𝑢

𝜃
𝑈

+ 𝛼
𝑈

, 0 ≤ 𝑎
𝑈

2

− 𝑏
𝑈

3

≤ 𝜃
𝑈

+ 𝛼
𝑈

,

0, 𝑎
𝑈

2

− 𝑏
𝑈

3

> 𝜃
𝑈

+ 𝛼
𝑈

;

(26)

see Figure 4.

Theorem 27. Let �̃� = ((𝑎
𝐿

2

, 𝑎
𝐿

3

, 𝛼
𝐿

, 𝛽
𝐿

), (𝑎
𝑈

2

, 𝑎
𝑈

3

, 𝛼
𝑈

, 𝛽
𝑈

)) and
�̃� = ((𝑏

𝐿

2

, 𝑏
𝐿

3

, 𝛾
𝐿

, 𝜃
𝐿

), (𝑏
𝑈

2

, 𝑏
𝑈

3

, 𝛾
𝑈

, 𝜃
𝑈

)) be two PnIT2TrFNs, 𝑝 ∈

(0, 1], Pos(�̃�𝐿 ⪯ �̃�

𝐿

) ≥ 𝑝, if and only if 𝑏𝐿
3

− 𝑎
𝐿

2

≥ (𝑝 − 1)(𝜃
𝐿

+

𝛼
𝐿

).

Proof. If 𝑝 = 1, then from Pos(�̃�𝐿 ⪯ �̃�

𝐿

) ≥ 1 one can get
that 𝑏𝐿
3

≥ 𝑎
𝐿

2

, and vice versa. If 0 < 𝑝 < 1, then 𝑏
𝐿

3

< 𝑎
𝐿

2

and
𝑏
𝐿

3

+ 𝜃
𝐿

> 𝑎
𝐿

2

− 𝛼
𝐿

, Pos(�̃�𝐿 ⪯ �̃�

𝐿

) ≥ 𝑝, if and only if (𝑏𝐿
3

− 𝑎
𝐿

2

+

𝜃
𝐿

+𝛼
𝐿

)/(𝜃
𝐿

+𝛼
𝐿

) ≥ 𝑝; that is, 𝑏𝐿
3

−𝑎
𝐿

2

≥ (𝑝−1)(𝜃
𝐿

+𝛼
𝐿

).

Theorem 28. Let �̃� = ((𝑎
𝐿

2

, 𝑎
𝐿

3

, 𝛼
𝐿

, 𝛽
𝐿

), (𝑎
𝑈

2

, 𝑎
𝑈

3

, 𝛼
𝑈

, 𝛽
𝑈

)) and
�̃� = ((𝑏

𝐿

2

, 𝑏
𝐿

3

, 𝛾
𝐿

, 𝜃
𝐿

), (𝑏
𝑈

2

, 𝑏
𝑈

3

, 𝛾
𝑈

, 𝜃
𝑈

)) be two PnIT2TrFNs, 𝑝 ∈

(0, 1], Pos(�̃�𝑈 ⪯ �̃�

𝑈

) ≥ 𝑝, if and only if 𝑏𝑈
3

−𝑎
𝑈

2

≥ (𝑝−1)(𝜃
𝑈

+

𝛼
𝑈

).

Proof. If 𝑝 = 1, then from Pos(�̃�𝑈 ⪯ �̃�

𝑈

) ≥ 1 one can get
that 𝑏𝑈

3

≥ 𝑎
𝑈

2

, and vice versa. If 0 < 𝑝 < 1, then 𝑏
𝑈

3

< 𝑎
𝑈

2

and 𝑏
𝑈

3

+ 𝜃
𝑈

> 𝑎
𝑈

2

− 𝛼
𝑈

, Pos(�̃�𝑈 ⪯ �̃�

𝑈

) ≥ 𝑝, if and only
if (𝑏𝑈
3

− 𝑎
𝑈

2

+ 𝜃
𝑈

+ 𝛼
𝑈

)/(𝜃
𝑈

+ 𝛼
𝑈

) ≥ 𝑝; that is, 𝑏𝑈
3

− 𝑎
𝑈

2

≥

(𝑝 − 1)(𝜃
𝑈

+ 𝛼
𝑈

).

6. Fuzzy Linear Programming

In this section, we propose a fuzzy linear programming
model with the technological coefficients and right-hand side
(resources) being PnIT2FN:

Max/Min
𝑥∈𝑋

𝑍 = 𝑐𝑥

S.t 𝐴𝑥 ⪯ 𝑏, 𝑥 ≥ 0,

(27)

where 𝐴 = (𝑎
𝑖𝑗

)
𝑚×𝑛

, 𝑏 = (𝑏
1

, 𝑏
2

, . . . , 𝑏
𝑚

)
𝑇, 𝑐 = (𝑐

1

, 𝑐
2

, . . . , 𝑐
𝑛

),
𝑥 = (𝑥

1

, 𝑥
2

, . . . , 𝑥
𝑛

)
𝑇, and 𝑎

𝑖𝑗

, 𝑏
𝑖

are PnIT2FN and 𝑥
𝑗

, 𝑐
𝑗

∈

R (𝑖 = 1, 2, . . . , 𝑚; 𝑗 = 1, 2, . . . , 𝑛). ⪯ is type 2 fuzzy order.

Definition 29. Consider a set of right-hand side (resources)
parameters of a fuzzy linear programming problem defined
as PnIT2FS ̃𝑏 defined on the closed interval

̃
𝑏
𝑖

∈ [[
𝛼

𝑏

𝐿

𝑖

,
𝛼

𝑏
𝐿

𝑖

] , [
𝛼

𝑏
𝑅

𝑖

,
𝛼

𝑏

𝑅

𝑖

]] ∈ R (28)
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𝐿.

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0

M
em

be
rs

hi
p 

fu
nc

tio
n

bU3 aU2

Pos[̃AU
≤ B̃

U]

Figure 4: Pos[�̃�𝑈 ≤ �̃�
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] < 1 because �̃�𝑈 > �̃�

𝑈.

and 𝑖 ∈ N
𝑛

. The membership function which represents the
fuzzy space Supp(̃𝑏

𝑖

) is

̃
𝑏
𝑖

= ∫

𝑏

𝑖
∈R

[∫
𝑢∈𝐽

𝑏
𝑖

1/𝑢]

𝑏
𝑖

, 𝑖 ∈ N
𝑛

, 𝐽
𝑏

𝑖

⊆ [0, 1] .
(29)

Here, ̃𝑏 is bounded by both lower and upper primary mem-
bership function; namely,

𝛼

𝜇
̃

𝑏

𝑖

= {(𝑏
𝑖

, 𝑢) | 𝜇
̃

𝑏

𝑖

≥ 𝛼} , (30)

with parameters 𝛼𝑏𝐿
𝑖

and 𝛼𝑏𝑅
𝑖

, and

𝛼

𝜇
̃

𝑏

𝑖

= {(𝑏
𝑖

, 𝑢) | 𝜇
̃

𝑏

𝑖

≥ 𝛼} (31)

with parameters 𝛼𝑏
𝐿

𝑖

and 𝛼𝑏
𝑅

𝑖

.

Definition 30. Consider a technological coefficient of fuzzy
linear programming problem defined as PnIT2FS �̃�

𝑖𝑗

defined
on the closed interval

�̃�
𝑖𝑗

∈ [inf
𝑎

𝑖𝑗

{
𝛼

𝜇
�̃�

𝑖𝑗

(𝑎
𝑖𝑗

, 𝑢)} , sup
𝑎

𝑖𝑗

{
𝛼

𝜇
�̃�

𝑖𝑗

(𝑎
𝑖𝑗

, 𝑢)}]

= [[
𝛼

𝑎
𝐿

𝑖𝑗

,
𝛼

𝑎
𝐿

𝑖𝑗

] , [
𝛼

𝑎
𝑅

𝑖𝑗

,
𝛼

𝑎
𝑅

𝑖𝑗

]] ∈ R, 𝑖 ∈ N
𝑛

, 𝑗 ∈ N
𝑚

.

(32)

The membership function which represents the fuzzy space
Supp(�̃�

𝑖𝑗

) is

�̃�
𝑖𝑗

= ∫

�̃�

𝑖𝑗
∈R

[∫
𝑢∈𝐽

�̃�
𝑖𝑗

1/𝑢]

�̃�
𝑖𝑗

,

𝑖 ∈ N
𝑛

, 𝑗 ∈ N
𝑚

, 𝐽
�̃�

𝑖𝑗

⊆ [0, 1] .

(33)

Here, �̃�
𝑖𝑗

is bounded by both lower and upper primary
membership functions; namely

𝛼

𝜇
�̃�

𝑖𝑗

= {(𝑎
𝑖𝑗

, 𝑢) | 𝜇
�̃�

𝑖𝑗

≥ 𝛼} (34)

with parameters 𝛼𝑎𝐿
𝑖𝑗

and 𝛼𝑎𝑅
𝑖𝑗

and

𝛼

𝜇
�̃�

𝑖𝑗

= {(𝑎
𝑖𝑗

, 𝑢) | 𝜇
�̃�

𝑖𝑗

≥ 𝛼} (35)

with parameters 𝛼𝑎𝐿
𝑖𝑗

and 𝛼𝑎𝑅
𝑖𝑗

.

Proposition 31. Let �̃�
𝑖𝑗

∈ 𝐹(R), 𝑥
𝑗

≥ 0, 𝑖 ∈ N
𝑛

, 𝑗 ∈ N
𝑚

.
Then the fuzzy set∑𝑛

𝑗=1

�̃�
𝑖𝑗

𝑥
𝑗

defined by the extension principle
is again a fuzzy number.

Let �̃� = ⪯
Pos be a fuzzy relation [27] fuzzy extension of the

usual binary relation ≤ on R. The fuzzy linear programming
problem associated with a standard linear programming
problem is denoted as

Max/Min 𝑍 =

𝑛

∑

𝑗=1

𝑐
𝑗

𝑥
𝑗

S.t (

𝑛

∑

𝑗=1

�̃�
𝑖𝑗

𝑥
𝑗

) �̃�
̃
𝑏
𝑖

, 𝑖 = 1, 2, . . . , 𝑚

𝑥
𝑗

≥ 0, 𝑗 = 1, 2, . . . , 𝑛.

(36)

In (36) the value ∑𝑛
𝑗=1

�̃�
𝑖𝑗

𝑥
𝑗

∈ 𝐹(R) is compared with a fuzzy
number ̃𝑏

𝑖

∈ 𝐹(R) by sum fuzzy relation. The maximization
of the objective function is denoted by Max𝑍 = ∑

𝑛

𝑗=1

𝑐
𝑗

𝑥
𝑗

.

Definition 32. Let 𝜇
�̃�

𝑖𝑗

: R → [0, 1] and 𝜇
̃

𝑏

𝑖

: R → [0, 1],
𝑖 ∈ N

𝑛

, 𝑗 ∈ N
𝑚

, be membership function of fuzzy numbers
�̃�
𝑖𝑗

and ̃
𝑏
𝑖

, respectively. Let �̃� be a fuzzy extension of a binary
relation ≤ on R. A fuzzy set �̃�, whose membership function
𝜇
̃

𝑋

is defined as 𝑥 ∈ R𝑛 by

𝜇
̃

𝑋

=

{

{

{

min {𝜇
̃

𝑃

(�̃�
11

𝑥
1

+ ⋅ ⋅ ⋅ + �̃�
1𝑛

𝑥
𝑛

,
̃
𝑏
1

) , . . . , 𝜇
̃

𝑃

(�̃�
𝑚1

𝑥
1

+ ⋅ ⋅ ⋅ + �̃�
𝑚𝑛

𝑥
𝑛

,
̃
𝑏
𝑚

)} , if 𝑥
𝑗

≥ 0, 𝑗 = 1, 2, . . . , 𝑛,

0, otherwise,
(37)
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is called the fuzzy set of feasible regions of the fuzzy linear
programming problem (36). For 𝛼 ∈ (0, 1], a vector 𝑥 ∈

[�̃�]
𝛼

is called the 𝛼-feasible solution of the fuzzy linear
programming problem.

Notice that the feasible region �̃� of the fuzzy linear
programming problem is a fuzzy set. On the other hand, 𝛼-
feasible solution is a vector belonging to the 𝛼-cut of the fea-
sible region �̃�. If all the coefficients �̃�

𝑖𝑗

and ̃
𝑏
𝑖

are crisp fuzzy
number, that is, they are equivalent to the corresponding crisp
fuzzy number, then the fuzzy feasible region is equivalent to
the set of all feasible solutions of the corresponding classical
linear programming.

6.1. Type 2 Fuzzy Linear Programming Problem. Let us con-
sider the following fuzzy linear programming problem with
right-hand side (resources) and technology coefficients are
PNIT2TrFNs:

Max/Min 𝑍 =

𝑛

∑

𝑗=1

𝑐
𝑗

𝑥
𝑗

S.t
𝑛

∑

𝑗=1

�̃�
𝑖𝑗

𝑥
𝑗

≤
̃
𝑏
𝑖

, 𝑖 = 1, 2, . . . , 𝑚

𝑥
𝑗

≥ 0, 𝑗 = 1, 2, . . . , 𝑛,

(38)

where �̃�
𝑖𝑗

= ((�̃�
𝑖𝑗

)
𝐿

, (�̃�
𝑖𝑗

)
𝑈

) = (((𝑎
𝑖𝑗

)
𝐿

2

, (𝑎
𝑖𝑗

)
𝐿

3

, (𝛼
𝑖𝑗

)
𝐿

, (𝛽
𝑖𝑗

)
𝐿

),
((𝑎
𝑖𝑗

)
𝑈

2

, (𝑎
𝑖𝑗

)
𝑈

3

, (𝛼
𝑖𝑗

)
𝑈

, (𝛽
𝑖𝑗

)
𝑈

)), ̃𝑏
𝑖

= ((
̃
𝑏
𝑖

)
𝐿

, (
̃
𝑏
𝑖

)
𝑈

) = (((𝑏
𝑖

)
𝐿

2

,
(𝑏
𝑖

)
𝐿

3

, (𝛾
𝑖

)
𝐿

, (𝜃
𝑖

)
𝐿

), ((𝑏
𝑖

)
𝑈

2

, (𝑏
𝑖

)
𝑈

3

, (𝛾
𝑖

)
𝑈

, (𝜃
𝑖

)
𝑈

)) are PnIT2TrFNs,
𝑐
𝑖

are crisp coefficients of the objective, and 𝑥
𝑖

are the decision
variable.

From Definitions 15, 21, 22, and 23 and (38),

Max/Min 𝑍 =

𝑛

∑

𝑗=1

𝑐
𝑗

𝑥
𝑗

S.t
𝑛

∑

𝑗=1

�̃�
𝐿

𝑖𝑗

𝑥
𝑗

≤
̃
𝑏

𝐿

𝑖

, 𝑖 = 1, 2, . . . , 𝑚

𝑥
𝑗

≥ 0, 𝑗 = 1, 2, . . . , 𝑛,

Max/Min 𝑍 =

𝑛

∑

𝑗=1

𝑐
𝑗

𝑥
𝑗

S.t
𝑛

∑

𝑗=1

�̃�
𝑈

𝑖𝑗

𝑥
𝑗

≤
̃
𝑏

𝑈

𝑖

, 𝑖 = 1, 2, . . . , 𝑚

𝑥
𝑗

≥ 0, 𝑗 = 1, 2, . . . , 𝑛.

(39)

Based on the relation of possibility we can rewrite (39) as
follows:

Max/Min 𝑍 =

𝑛

∑

𝑗=1

𝑐
𝑗

𝑥
𝑗

S.t �̃�
𝐿

𝑖1

𝑥
1

+ �̃�
𝐿

𝑖2

𝑥
2

+ ⋅ ⋅ ⋅ + �̃�
𝐿

𝑖𝑛

𝑥
𝑛

⪯
Pos̃

𝑏

𝐿

𝑖

,

𝑖 = 1, 2, . . . , 𝑚,

𝑥
𝑗

≥ 0, 𝑗 = 1, 2, . . . , 𝑛,

Max/Min 𝑍 =

𝑛

∑

𝑗=1

𝑐
𝑗

𝑥
𝑗

S.t �̃�
𝑈

𝑖1

𝑥
1

+ �̃�
𝑈

𝑖2

𝑥
2

+ ⋅ ⋅ ⋅ + �̃�
𝑈

𝑖𝑛

𝑥
𝑛

⪯
Pos̃

𝑏

𝑈

𝑖

,

𝑖 = 1, 2, . . . , 𝑚,

𝑥
𝑗

≥ 0, 𝑗 = 1, 2, . . . , 𝑛.

(40)

With respect to constraints of linear programming possibility,
the optimal solution is completely determined by degrees of
possibility. So, we can obtain the optimal solution of linear
programming possibility at 𝑝-cut levels by solving the two
crisp linear programming problems using Barnes algorithm:

Max/Min 𝑍 =

𝑛

∑

𝑗=1

𝑐
𝑗

𝑥
𝑗

S.t Pos (�̃�𝐿
𝑖1

𝑥
1

+ �̃�
𝐿

𝑖2

𝑥
2

+ ⋅ ⋅ ⋅ + �̃�
𝐿

𝑖𝑛

𝑥
𝑛

⪯
̃
𝑏

𝐿

𝑖

)

≥ 𝑝,

𝑖 = 1, 2, . . . , 𝑚,

𝑥
𝑗

≥ 0, 𝑗 = 1, 2, . . . , 𝑛,

Max/Min 𝑍 =

𝑛

∑

𝑗=1

𝑐
𝑗

𝑥
𝑗

S.t Pos (�̃�𝑈
𝑖1

𝑥
1

+ �̃�
𝑈

𝑖2

𝑥
2

+ ⋅ ⋅ ⋅ + �̃�
𝑈

𝑖𝑛

𝑥
𝑛

⪯
̃
𝑏

𝑈

𝑖

)

≥ 𝑝,

𝑖 = 1, 2, . . . , 𝑚,

𝑥
𝑗

≥ 0, 𝑗 = 1, 2, . . . , 𝑛.

(41)

FromTheorems 27 and 28 we have

(𝐿𝑃𝑃
𝑝

) = Max/Min 𝑍 =

𝑛

∑

𝑗=1

𝑐
𝑗

𝑥
𝑗

S.t 𝑏
𝑈

− 𝐴
𝐿

𝑥 ≥ (𝑝 − 1) (𝛼𝑥 + 𝜃) ,

𝑥
𝑗

≥ 0, 𝑗 = 1, 2, . . . , 𝑛,

(𝐿𝑃𝑃
𝑝

) = Max/Min 𝑍 =

𝑛

∑

𝑗=1

𝑐
𝑗

𝑥
𝑗

S.t 𝑏

𝑈

− 𝐴

𝐿

𝑥 ≥ (𝑝 − 1) (𝛼𝑥 + 𝜃) ,

𝑥
𝑗

≥ 0, 𝑗 = 1, 2, . . . , 𝑛,

(42)

where 𝐴𝐿 = {(𝑎
𝑖𝑗

)
𝐿

2

}, 𝐴𝐿 = {(𝑎
𝑖𝑗

)
𝑈

2

}, 𝑏𝑈 = {(𝑏
𝑖

)
𝐿

3

}, 𝑏
𝑈

= {(𝑏
𝑖

)
𝑈

3

},
𝛼 = {(𝛼

𝑖𝑗

)
𝐿

}, 𝛼 = {(𝛼
𝑖𝑗

)
𝑈

}, 𝛽 = {(𝛽
𝑖𝑗

)
𝐿

}, 𝛽 = {(𝛽
𝑖𝑗

)
𝑈

}, 𝛾 =

{(𝛾
𝑖

)
𝐿

}, 𝛾 = {(𝛾
𝑖

)
𝑈

}, 𝜃 = {(𝜃
𝑖

)
𝐿

}, 𝜃 = {(𝜃
𝑖

)
𝑈

}, and 𝑥 = 𝑥
𝑗

,
𝑗 = 1, 2, . . . , 𝑛, 𝑖 = 1, 2, . . . , 𝑚.
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The feasible regions of (𝐿𝑃𝑃
𝑝

) and (𝐿𝑃𝑃
𝑝

) are denoted by

𝑋
𝑃

𝑝

= {𝑥 ∈ 𝑅
𝑛

| 𝑏
𝑈

− 𝐴
𝐿

𝑥 ≥ (𝑝 − 1) (𝛼𝑥 + 𝜃)} ,

𝑋

𝑃

𝑝

= {𝑥 ∈ 𝑅
𝑛

| 𝑏

𝑈

− 𝐴

𝐿

𝑥 ≥ (𝑝 − 1) (𝛼𝑥 + 𝜃)} .

(43)

Assume the optimal solutions of (𝐿𝑃𝑃
𝑝

) and (𝐿𝑃𝑃
𝑝

) are 𝑍𝑃
𝑝

and 𝑍

𝑃

𝑝

, respectively.

Theorem 33. For linear programming (𝐿𝑃𝑃
𝑝

) and program-

ming (𝐿𝑃𝑃
𝑝

), 0 ≤ 𝑝
1

≤ 𝑝
2

≤ 1, and then 𝑋
𝑃

𝑝

2

⊆ 𝑋
𝑃

𝑝

1

, 𝑋

𝑃

𝑝

2

⊆

𝑋

𝑃

𝑝

1

and 𝑍𝑃
𝑝

1

≥ 𝑍
𝑃

𝑝

2

, 𝑍

𝑃

𝑝

1

≥ 𝑍

𝑃

𝑝

2

.

Proof. If 𝑥 ∈ 𝑋
𝑃

𝑝

2

, we have 𝑏𝑈 −𝐴
𝐿

𝑥 ≥ (𝑝
2

− 1)(𝛼𝑥 + 𝜃), from
𝛽 > 0, 𝛾 > 0, and 𝑥 > 0; then 𝑏

𝑈

− 𝐴
𝐿

𝑥 ≥ (𝑝
2

− 1)(𝛼𝑥 + 𝜃) ≥

(𝑝
1

−1)(𝛼𝑥+𝜃), so 𝑥 ∈ 𝑋
𝑃

𝑝

1

; that is,𝑋𝑃
𝑝

2

⊆ 𝑋
𝑃

𝑝

1

and𝑍𝑃
𝑝

1

≥ 𝑍
𝑃

𝑝

2

.

In a similar way𝑋𝑃
𝑝

2

⊆ 𝑋

𝑃

𝑝

1

and 𝑍

𝑃

𝑝

1

≥ 𝑍

𝑃

𝑝

2

.

Theorem 34. For linear programming (𝐿𝑃𝑃
𝑝

) and program-

ming (𝐿𝑃𝑃
𝑝

), 0 ≤ 𝑝
1

≤ 𝑝
2

≤ 1, and then 𝑋
𝑃

𝑝

2

⊆ 𝑋

𝑃

𝑝

1

and

𝑍
𝑃

𝑝

1

≥ 𝑍

𝑃

𝑝

2

.

Proof. If 𝑥 ∈ 𝑋
𝑃

𝑝

2

, we have 𝑏𝑈 −𝐴
𝐿

𝑥 ≥ (𝑝
2

− 1)(𝛼𝑥 + 𝜃), from
𝛽 > 0, 𝛾 > 0, and 𝑥 > 0; then 𝑏

𝑈

− 𝐴
𝐿

𝑥 ≥ (𝑝
2

− 1)(𝛼𝑥 +

𝜃) ≥ (𝑝
1

− 1)(𝛼𝑥 + 𝜃), so 𝑥 ∈ 𝑋

𝑃

𝑝

1

; that is, 𝑋𝑃
𝑝

2

⊆ 𝑋

𝑃

𝑝

1

and

𝑍

𝑃

𝑝

1

≥ 𝑍
𝑃

𝑝

2

.

FromTheorems 33 and 34, we obtain that 𝑍𝑃
𝑝

, 𝑍

𝑃

𝑝

consti-
tute the lower and upper bound of fuzzy objective value at
level 𝑝. Then the objective value of 𝑍𝑃

𝑝

at level 𝑝 is the mean

of [𝑍𝑃
𝑝

, 𝑍

𝑃

𝑝

].

7. Numerical Illustration

An application of the proposed method is introduced with
an example, where all its technological coefficients and right-
hand side (resources) are defined as PnIT2FNs. The optimal
solution will be obtained in terms of crisp for the following
problem.

The company plans tomanufacture two types of products.
The selling prices for these products are as follows: 𝑃

1

costs Rs. 1,750 per unit and 𝑃
2

costs Rs. 2,000 per unit.
Daily production volume of each type of these products is
constrained by available man hours and available machine
hours. The production specifications for the given problem
situation are presented in as shown in Table 1:

Max 𝑍 = 𝑐
1

𝑥
1

+ 𝑐
2

𝑥
2

S.t �̃�
11

𝑥
1

+ �̃�
12

𝑥
2

⪯
̃
𝑏
1

Table 1

Resource requirement/unit
Resource 𝑃

1

𝑃
2

Availability
Man hours (in minutes) Around 4 Around 8 Around 32
Machine hours (in minutes) Around 6 Around 4 Around 36

�̃�
21

𝑥
1

+ �̃�
22

𝑥
2

⪯
̃
𝑏
2

𝑥
𝑗

≥ 0, 𝑗 = 1, 2,

(44)

where �̃�
11

= [(230, 250, 20, 10), (230, 250, 30, 20)], �̃�
12

=

[(460, 500, 40, 20), (460, 500, 60, 40)], �̃�
21

= [(345, 375, 30,

15), (345, 375, 45, 30)], �̃�
22

= [(230, 250, 20, 10), (230, 250,

30, 20)], ̃𝑏
1

= [(1840, 2000, 160, 80), (1840, 2000, 240, 160)],
̃
𝑏
2

= [(2070, 2250, 180, 90), (2070, 2250, 270, 180)], 𝑐
1

=

1750, and 𝑐
2

= 2000. From (42) we have the following crisp
optimal problem based on the level 𝑝:

Max 𝑍
𝑃

𝑝

= 1750𝑥
1

+ 2000𝑥
2

S.t (210 + 20𝑝) 𝑥
1

+ (420 + 40𝑝) 𝑥
2

≤ 2080 − 80𝑝

(315 + 30𝑝) 𝑥
1

+ (210 + 20𝑝) 𝑥
2

≤ 2340 − 90𝑝

𝑥
1

, 𝑥
2

≥ 0

(45)

Max 𝑍

𝑃

𝑝

= 1750𝑥
1

+ 2000𝑥
2

S.t (200 + 30𝑝) 𝑥
1

+ (400 + 60𝑝) 𝑥
2

≤ 2160 − 160𝑝

(300 + 45𝑝) 𝑥
1

+ (200 + 30𝑝) 𝑥
2

≤ 2430 − 180𝑝

𝑥
1

, 𝑥
2

≥ 0.

(46)

For different cut level 𝑝, we can get different optimal solution
and denote by 𝑍𝑃

𝑝

, 𝑍
𝑃

𝑝

the optimal solution (see Figure 5 and
Table 2) [28] of the crisp programming (45) and program-
ming (46), respectively.

8. Conclusion

In this paper a method to do perfectly normal interval type
2 fuzzy arithmetic operation using extension principle is pre-
sented and defined the possibility degrees of upper and lower
membership function to compare perfectly normal interval
type 2 fuzzy numbers. These functions are defined based on
the strength of upper and lower membership function of
perfectly normal interval type 2 fuzzy numbers. Meanwhile,
some properties and theorems were proved. Then, the lower
and upper fuzzy satisfaction based on possibility degrees of
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Table 2: Optimal solution at different possibility levels.

𝑝-cut 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
𝑍
𝑃

𝑝

14354.9528 14165.8878 13980.324 13798.1651 13619.3181 13443.6937 13271.2053 13101.7699 12935.3069 12771.7393

𝑍

𝑃

𝑝

15512.3153 15172.3301 14842.1051 14521.2264 14209.3022 13905.9633 13610.8597 13323.6607 13044.0529 12771.7393
𝑍
𝑃

𝑝

14933.6341 14669.1090 14411.2146 14159.6958 13914.3102 13674.8285 13441.0325 13212.7153 12989.6799 12771.7393

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
12,500 13,000 13,500 14,000 14,500 15,000

p
-c

ut

Z

Figure 5: Optimal solution at different possibility levels.

membership function, respectively, are defined. These fuzzy
satisfactions create two nonstrict order relations on the set
of overlapping intervals. Also, linear programming problem
was introduced with resources and technology coefficients
of perfectly normal interval type 2 fuzzy numbers. Then,
the possibility degrees of membership function were applied
in order to interpret inequality constraints with interval
coefficients. According to the definition of possibility degrees
of membership function and their properties, the inequality
constraints with interval coefficients were reduced in their
satisfactory crisp equivalent forms. Finally, the decision
maker can get the crisp optimal solution of the problem for
every grade 𝛼 ∈ [0, 1] which was obtained by using Barnes
algorithm and then mean value is selected according to the
decision maker optimistic attitude.
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